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State of the art of unloaded configuration research

Inverse problem illustration, from A computational method to
assess the in vivo stresses and unloaded configuration of

patient-specific blood vessels, J. Bols et al. (2013)

Input data
xm, pm ...

Initialization, Xk=0 = xm

Apply loading to Xk , get
loaded config xk and the

displacement u = xk − Xk

||xk − xm|| < ε ?
Next iteration

Xk+1 = xm − u

Victory! Xk is an
unloaded configu-
ration of xm to ε

no

k = k + 1

yes

Fixed Point strategy for unloaded configuration research
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Particular case of shell modelization

▶ Solid

▶ continuous media

▶ Volumic modelization

▶ The solid must be discretized in
its thickness

▶ 3 dofs per nodes (3
displacements)

▶ Shell modelization

▶ Only the median surface of the
solid is discretized

▶ 6 dofs per nodes (3
displacements + 3 rotations)
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Fixed Point algorithm modification

u = xk − Xk describe the displacement of the
solid for a volumic modelization but is not enough
in the case of shell modelization and more
complex geometry than found in the litterature.

In our case, the substraction of the rotation must
be taken into account.

Input data
xm, pm ...

Initialization, Xk=0 = xm

Apply loading to Xk ,
get loaded config xk ,

strain U and rotation R

||xk − xm|| < ε ?
Next iteration

Xk+1 = U−1(R−1(xm))

Victory! Xk is an
unloaded configu-
ration of xm to ε

no

k = k + 1

yes

Update of the unloaded configuration research’s algorithm
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Application - Circular artery

Direct problem

R

H

e

P

Cylinder of radius R, height H
and wall thickness e, with a pressure P within

▶ Quasi-incompressible hyperelastic
material - Neo Hookean potential
(CNH = 2kPa)

▶ Homogeneous pressure (P = 0.5kPa)
▶ No axial displacement
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Application - Circular artery

Direct problem

R

H

e

P

Cylinder of radius R, height H
and wall thickness e, with a pressure P within

Initial state, ”X∗”
eccentricity e = 0

Deformed state, ”xm = Φ(X∗)”
eccentricity e = 0

Direct problem of the inflation of a circular artery
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Application - Circular artery

Inverse problem

R

H

e

P

Cylinder of radius R, height H
and wall thickness e, with a pressure P within

Algorithm convergence
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Application - Circular artery

Inverse problem

Radius in the deformed and initial state
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Application - Elliptical artery I

Direct problem

b a

H

e

P

Elliptical cylinder of radius R, height H
and wall thickness e, with a pressure P within

Initial state, ”X∗”
eccentricity e ≃ 0.745

Deformed state, ”xm = Φ(X∗)”
eccentricity e ≃ 0.130

Direct problem of the inflation of an elliptic artery
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Application - Elliptical artery I

Inverse problem

b a

H

e

P

Elliptical cylinder of radius R, height H
and wall thickness e, with a pressure P within

Algorithm convergence
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Application - Elliptical artery II

Inverse problem

Ellipse parameters in the deformed state 10/19



Application - Elliptical artery II

No direct problem for this case

b a

H

e

P

Elliptical cylinder of radius R, height H
and wall thickness e, with a pressure P within

Unknown initial state, ”X∗”
Deformed state, ”xm”
eccentricity e ≃ 0.745

Direct problem of the inflation of an artery, elliptic after
inflation.
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Application - Elliptical artery II

Inverse problem

b a

H

e

P

Elliptical cylinder of radius R, height H
and wall thickness e, with a pressure P within

Algorithm convergence
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Application - Elliptical artery II

Problème inverse

Ellipse parameters in the deformed state
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Application - Elliptical artery II

Problème inverse

Now well-known initial state, ”X∗”
not an ellipse

Deformed state, ”xm”
eccentricity e ≃ 0.745

Results of the algorithm for the deformed elliptical artery
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Application - patient specific aneurysm I

First example of patient specific aneurysm
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Application - patient specific aneurysm I

Extracted aneurysm

▶ Soft hyperelastic material from Biomechanical wall
properties of human intracranial aneurysms
resected following surgical clipping, V. Costalat et
al. (2011)

▶ Imposed homegeneous pressure, with values
obtained from Monitoring the injured brain: ICP
and CBF, Steiner L.A. et al. (2006)

▶ No displacements of the neck outline
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Application - patient specific aneurysm I

Extracted aneurysm

Algorithm convergence
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Application - Elliptical artery I

Cut view of the result of the algorithm for the patient specifi aneurysm I
Unloaded state ”X∗” in red and deformed state ”xm” in blue.
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Application - patient specific aneurysm II

Second example of patient specific aneurysm

17/19



Application - patient specific aneurysm II

Extracted aneurysm

▶ Hyperelastic material from Biomechanical wall
properties of human intracranial aneurysms
resected following surgical clipping, V. Costalat et
al. (2011)

▶ Imposed homegeneous pressure, with values
obtained from Monitoring the injured brain: ICP
and CBF, Steiner L.A. et al. (2006)

▶ No displacements of the artery outline

The algorithm doesn’t converge.
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Application - patient specific aneurysm II

Extracted aneurysm

▶ Hyperelastic material from Biomechanical wall
properties of human intracranial aneurysms
resected following surgical clipping, V. Costalat et
al. (2011)

▶ Imposed homegeneous pressure, with values
obtained from Monitoring the injured brain: ICP
and CBF, Steiner L.A. et al. (2006)

▶ No displacements of the artery outline

The algorithm doesn’t converge.
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Conclusion

▶ Numerical iterative methods exist to find unloaded state of given geometry despite geometrical and
material non linearity.

▶ Our contribution was to adapt such algorithm for thin elements modelization, in particular shell elements.
▶ Those methods depend of 2 kind of inputs:

▶ the geometry which is sensible of measurement precision.
▶ the material behaviour and the boundary conditions which can results in incompatibilities.

▶ The inverse image of a quasi-circular cylinder is not necessarily a quasi-circular cylinder.

▶ The inverse image of an ellipse is not necessarily an ellipse.

▶ For patient specific soft tissues modelization, the interaction with rigid tissues (e.g. bones) or more complex
loading (non homogeneous pressure) must be taken into account to attain kinematic compatibility.

▶ The procurement of such unloaded configurations allow to control the influence of the anatomic structure’s
modelization on device deployment’s computation.
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Computation data

Circular and elliptic cylinders

Geometry
Cirecle radii R = 10mm
Ellipses radii a = 10mm, b = 15mm
Thickness e = 2mm

Loading
Pressure P = 0.5kPa

Material
Neo Hookean coefficient CNH = 2kPa
Poisson’s ratio ν = 0.49

Aneurysm

Geometry
Thickness e = 0.3mm

Loading
Pressure P = 10.6kPa

Material
Rivlin coefficients C10 = 191.1kPa, C01 = 26.7kPa,
C11 = 1370kPa
Poisson’s ratio ν = 0.49
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In vivo application - patient specific aneurysm II

Extracted aneurysm

Interactive illustration:

see https://www.neurosurgicalatlas.
com/sketchfab?id=
ba43653cc29d40b1ae5febb3472f924a
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