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ABSTRACT 

In this paper, we present the “Around the SmartPhone” interaction 
technique for manipulating 3D elements displayed on a distant 
screen. The design of the technique is based on the selection of 
the most appropriate value for characteristics useful to 
discriminate existing tactile and tangible techniques for 3D 
manipulations. We perform two user studies to compare this 
around-device technique for translating and rotating 3D objects, 
with two existing tangible and tactile solutions, in terms of 
performance and user’s preference. The literature establishes that 
the tactile technique evaluated is the best tactile technique among 
the existing tactile techniques for 3D manipulation. Despite this 
result, our user study reveals that the two others perform 
significantly better. In addition, when feedback visibility is 
preserved, the around-device technique offers similar performance 
results than the tangible one. Finally, the around-device technique 
is significantly preferred over the two others in every condition. 
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3D interaction; manipulation task; around-device interaction. 

1. INTRODUCTION 
Using 3D content in interactive environment is becoming more 
and more frequent. 3D interactive virtual environments (3DVE)  
tend to get out of the sole hands of 3D experts using dedicated 
devices [11]. Indeed 3DVE can now be found in many private 
activities such as on web sites to assist house furniture selection 
[23], in daily mobile contexts [25] and to play public 3D games 
[41]; in professional contexts to visualize scientific 3D data [38], 
to explore 3D data during meetings [16] or to create and edit 3D 
model [2]; and even in museums [29].  

Using a smartphone for supporting the interaction with 3DVE in 
such everyday life situations presents many potential benefits: 
providing a multi-sensor remote interaction control thus avoiding 
occlusion; exploiting a personal and familiar device; displaying 
additional feedback on the smartphone screen. The use of 

smartphone to interact with 3D content on distant display has 
already been considered for example to manipulate a slice plane 
[38], to navigate, select or manipulate a 3D object [5, 21, 23]. 
Combinations of finger movements [39], device orientations [23] 
and gesture around the device [21] represent many alternatives for 
implementing smartphone-based techniques for 3D interaction. 

Among these works, less attention has been paid to the combined 
use of around-device techniques, based on a smartphone, with a 
3D scene displayed on a distant screen. And yet, "around the 
smartphone" interaction techniques have already been 
successfully explored in other settings [17, 20]. The goal of our 
work is thus to design, implement and evaluate a new interaction 
technique involving gestures around a smartphone to manipulate a 
3D object displayed on a distant screen. 

We first review existing smartphone-based interaction techniques 
with 3D environments displayed on the smartphone and on distant 
screens. Secondly, we describe a tangible and a tactile 
smartphone-based interaction technique to manipulate 3D objects: 
each one is representative of one of these two classes of existing 
interaction techniques based on a smartphone in such 3D task. We 
then describe four characteristics related to the specificities of the 
context and through which exiting tactile and tangible techniques 
can be analyzed and discriminated. Based on these characteristics, 
we design a new technique, "Around the SmartPhone" (ASP), 
which involves hand gestures around the smartphone to 
manipulate 3D elements displayed on a distant screen. A first user 
study with training session and a complementary user study 
ensuring a more realistic use of the smartphone, compare the three 
techniques in terms of performance, usability and user’s 
preference. Results reveal that our around-device technique (ASP) 
performs far better than the tactile solution (OSP). Moreover, ASP 
technique offers equivalent performance than the tangible solution 
(WSP). In addition, ASP is largely identified as the preferred 
technique among the three considered.   

2. RELATED WORK 
Many interaction techniques exist in virtual reality (VR) to 
support 3D manipulations (i.e. 3D elements translations and 
rotations), such as World-in-Miniature, Virtual Hand or Go-Go 
techniques [6]. More advanced forms of interaction include 
tangible interfaces such as the Hinckley's puppet [14] and the 
Cubic Mouse [10]. In this section, we specifically focus on other 
advanced interaction techniques in which smartphones have been 
involved to manipulate 3D objects. 

Given the growing computing capabilities of smartphones, 3D 
content can easily be displayed and interacted with, on a 
smartphone. A first trend for supporting 3D manipulations 
consists in using the direct touch modality, i.e. the tactile screen 
[15]. Based on an adaptation of multi-touch and direct interaction 
on tabletop, different techniques have been proposed such as the 
Z-technique [27], useful to translate an object and the Arc-Ball 
[32] technique useful to rotate an object. Both have been 
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be accelerated. Regarding ASP, using a constant C/D gain 
simplifies the use of the technique and limits the learning 
difficulties. A one to one C/D gain for ASP and WSP is thus used. 
Now regarding OSP, adopting a constant C/D gain is conform to 
the initial implementation of the technique [39]: to fit with the 3D 
environment used in our user study, the adopted C/D gain resulted 
from a preliminary study allowing the users to adjust the C/D gain 
to allow a comfortable use of the technique. 

Gesture mapping and clutching mechanism. Kratz [21] defined 
four different mappings of hand gestures onto the orientation of a 
virtual object, that are also applicable to the translation task: 
absolute control, scaled absolute control, relative control and rate 
control. The three techniques considered adopt a relative control. 
This is again in line with the implementation of OSP provided by 
the authors. Regarding WSP and ASP a relative control induces 
the presence of clutching and provides more fluidity in the 
manipulation: whatever the initial position and orientations of the 
manipulated object, it can be further translated or rotated without 
having to reposition the dominant hand in the previously reached 
configuration. 

    

Figure 4. Visual aids in the 3D scene for the translation (left) 

and rotation task (center and right). 

Visual aids. Many works explored visual aids for guiding and 
helping the user during the interaction process [6]. The three 
interaction techniques includes visual aids to ease the perception 
of the 3D scene frame of reference: the axes of the 3D scene 
frame of reference are represented on the 3D manipulated object, 
thus reproducing the feedback provided in modeler software like 
Maya when manipulating an object. Additional aids are also 
provided to guide the use of the techniques, i.e. to help performing 
the appropriate user's input movements. For the OSP technique, 
fingers contact are displayed on the smartphone to visualize if 
they are considered joint or apart as originally designed in the 
Dual-Finger technique [39]. When performing rotations with 
ASP, a representation of the user's hand position around the 
smartphone is displayed as a black sphere around the manipulated 
object in the 3D scene. This is intended to help the user in 
virtually grabbing one specific vertex of the 3D manipulated 
object (Figure 4-center). In addition, a wireframe sphere is 
displayed around the 3D manipulated object: (Figure 4-center). 
The goal is double: to encourage the user in performing hand 
movements close to the smartphone and therefore better feel that 
the smartphone is the center of the rotations; to give the 
impression that when the hand is moving around the smartphone, 
it is also stroking the digital wireframe sphere and thus rotating 
the 3D object included in the sphere. 

Hardware and software tracking solutions. To support the user 
experiment, we built a proof-of-concept prototype for WSP and 
ASP based on the use of an extra tool to localize the smartphone 
and the user’s hand in 6D, as described in section 6.3. The 
discussion (section 9) mentions alternate embedded solutions. For 
the WSP technique, the position and the orientation of the 
smartphone are captured by the tracking system. We used 
quaternion representation of the orientation of the smartphone in 

order to implement a relative control of the rotation movement. 
For the translation of the ASP technique, the position of the user 
dominant-hand (HSP) is measured with regards to the smartphone 
position and orientation. Regarding the rotation performed with 
ASP, converting the position of HSP into an orientation is a 
technical issue specific to this technique. Our solution relies on 
the use of axis-angle representation and Rodrigues formula. At 
each frame, we compute the 3D rotation matrix required to 
transform the previous HSP into the current HSP. 

6. USER STUDY 
The study includes two distinct sessions: the first (resp. second) 
session consisted in applying 3D translations (resp. rotations) to a 
3D object. For these two sessions, the goal of this study is to 
evaluate and compare the performance, usability and user 
preference of the three techniques introduced in the previous 
section. We hypothesize that the around-device technique (ASP) 
will be more efficient than OSP and WSP because hand gestures 
are easier to perform, control and understand. ASP will also be 
preferred over the two others because it is more comfortable to 
use given the possibility to freely adjust the position and 
orientations of the smartphone. 

6.1 Task and Mapping 
For the two sessions, participants were instructed to perform the 
task as quickly and accurately as possible. For the three 
interactions techniques, participants start and validate each trial by 
pressing the same button displayed on the smartphone screen. 

During the 3D translation task, we asked participants to reach a 
3D spherical target in a 3D environment by translating a small 3D 
spherical cursor (Figure 4-left). The spherical target is always 
displayed in the center of a 3D cube delimiting the 3D 
environment. A representation of the axes is attached to the 
spherical cursor. In addition, stars representing the center of the 
spherical cursor are projected on two planes of the 3D scene 
contour. These visual aids are displayed in blue. The same visual 
aids related to the target sphere are displayed in red. These visual 
aids provide the user with a support to accurately move and 
position the object.  

The initial position of the spherical cursor is situated in one of the 
8 different directions (combining equal x, y and z translations) at 
two different distances (12.99 and 8.66 units) from the spherical 
target. The spherical cursor has a fixed radius of 0.5 units. We 
implemented two different spherical target radiuses (0.5 and 1.7 
units) to produce 4 Index of Difficulties (2.6, 3.11, 4.19 and 4.75 
bits). The participant can validate the 3D translation task when the 
cursor collides with the spherical target. 

During the 3D rotation task, we asked participants to rotate a 
tetrahedral cursor until it fits the orientation of the tetrahedral 
target (Figure 4-center). The two tetrahedral centers are always 
located in the center of the 3D environment. Spheres of different 
colors are attached to the vertices of the tetrahedral form. The 
tetrahedral target is always displayed in green with a fixed 
orientation. In contrast, the tetrahedral cursor is displayed in 
brown. These visual aids provide the participant with indications 
to correctly interpret the current and targeted orientations of the 
3D objects. 

The initial orientation of the tetrahedral cursor is a combination of 
rotation axes (XY, XZ, YX, and XYZ) with one of the two angle 
values (50° and 100°), giving a total of 8 different starting 
orientations. The participant can validate the 3D orientation task 
when all the colored spheres of the tetrahedral cursor collide with 
the corresponding colored spheres of the tetrahedral target. 
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relationship to the object [33]. Although the input frames of 
reference of WSP and ASP are respectively world reference and 
the smartphone, we did not observe in these studies significant 
difference between the users' performance with WSP and ASP. 
We believe that the design of ASP provides an original and 
appropriate solution to cope with such frame of reference 
mismatch issues because the smartphone can be seen as a physical 
landmark. This landmark contributes to overcome the arbitrary 
relationship between the two frames of reference because it reifies 
the coordinate system in which gestures has to be performed to 
move an object in 6DOF. This hypothesis is in line with previous 
work related to bimanual interaction [12]. Future works are 
required to precisely establish under which conditions an around-
device technique provides a better support for interacting with a 
distantly rendered 3D scene, and especially for situations 
involving predefined and high mismatches of frames of reference, 
similar to those involved in Ware's experiment [42]. 

DOF combination and input space were more limited in OSP 
than in ASP and WSP. We believe that this is partly responsible 
for the low OSP performance results. The visibility of the 

feedback provided by the smartphone was not concretely 
evaluated in our study, since no dynamic information relevant to 
the task was provided to users. However, the complementary user 
study clearly established the effect of this characteristic on the 
performances.   

Finally, one limitation of our study is the detection mechanisms of 
the hand and smartphone motions in the WSP and ASP 
techniques: the technology used in this study is external to the 
smartphone and will very unlikely be available in many places. 
But, this solution was used to ensure robust and accurate measures 
to support the evaluation of the technique. Thinking in terms of a 
proof-of-Concept version of the technique might however rely on 
many existing solutions: proximity sensors on some Samsung 
devices already allow page browsing based on hand-motions 
detection; camera resolution are always increasing on current 
smartphone; small depth camera sensor [21] also constitute an 
alternative. 

Social acceptability issue is a second limitation of around-device 
techniques. Would a user accept to move his/her hand around the 
smartphone to interact with a distant display in an office or public 
context? Recent works started to explore this acceptability 
question [35] and we will explore it through in-situ evaluation. 

10. CONCLUSION AND FUTURE WORK 
In this paper, we presented the first around-device interaction 
technique (“Around the SmartPhone” - ASP), based on a 
smartphone and used to manipulate 3D elements displayed on a 
distant screen. The design was guided by reasoning on four 
characteristics discriminating existing smartphone-based tactile 
and tangible interaction techniques with 3DVE. 

To evaluate this new interaction technique, we performed two 
controlled user studies to compare ASP to a tangible (“With the 
SmartPhone” - WSP) and a tactile (“On the SmartPhone” - OSP) 
smartphone-based techniques taken from the literature. These 
evaluations reveal that WSP and ASP perform better than OSP in 
3D translation and rotation. WSP and ASP perform similarly in 
3D translation. They also perform similarly in 3D rotation when 
eye-access to the smartphone-screen is maintained all along the 
task. Otherwise, WSP is significantly faster that ASP but does no 
longer support an access to additional feedback provided on the 
smartphone screen.  

From a qualitative point of view, ASP is the most attractive and 
preferred technique. It also minimizes the risk of dropping the 
smartphone and physically materializes the input frame of 
reference. 

This work confirms that an “around the smartphone” interaction 
technique to control distant 3D is a very good alternative to tactile 
and tangible solutions: this is in line with results observed when 
interacting with 3D scenes directly displayed on the smartphone. 
We also revealed the need to further explore the impact of the 
smartphone, considered as a physical handled landmark, on the 
user’s ability to cope with mismatch between input and 3D scene 
frames of reference. In the future, we plan to integrate ASP and 
WSP techniques in a concrete public scenario in order to observe 
limitations inherent to an in-situ context and to explore further 
optimizations of ASP and WSP, such as in [1, 40], in order to 
reduce the need for clutching. 
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