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Abstract. Distributed data management services usually run on top of dynamic
and heterogeneous systems. This remains true for most distributed services. At
large scale, it becomes impossible to get an accurate global view of the system.
To provide the best quality of service despite this highly dynamic environment,
those services must continuously adapt. To do so, they monitor their environment
and store events and states of the system in memory. In this paper, we propose
a model to formalize this memory and three strategies to use it. We explain the
theoretical difference between those strategies and conduct an experimental eval-
uation. We show that providing the ability to “forget” old events leads to better
performance. However, using fading events (events that progressively disappear)
rather than events that suddenly disappear leads to even better performance and
is more adequate to detect habits and recurrent behaviors.

1 Introduction

With the advent of large scale services and applications comes the rising of large
scale distributed data management systems. Those systems face an ever-changing
and heterogeneous environment: new components come and go continuously.
Such systems also face dynamic workloads: the number of users may vary, their
activity (frequency, type, etc.) their location, etc. Many services are built on top of
such volatile conditions and should be able to provide a good quality of service re-
garding the evolution of the system or the workloads induced by users. There are
many works that take past into consideration to adapt to the future environment
behavior. Every distributed system that aims to adapt has to grab and store infor-
mation about its environment. For instance, in [1], the authors present a leader
election algorithm in a dynamic network. They combine a wave algorithm with
the temporally ordered routing algorithm to face the evolving network. In [2], the
authors propose a way to build failures detectors in a Mobile Ad-Hoc Network. In
the Linux kernel memory management mechanisms, there is a lot of work con-
cerning this problem (access/dirty bits, double LRU lists, shadow page-cache,
etc.). However, even if the weight given to store past events is very important,
in the field of distributed systems, to our knowledge, there is no work focusing
on studying various approaches and their impact on the system performance. For
instance, in the context of reputation systems [3], great importance is given to the



weight that should be given to the past actions of other nodes according to their
freshness, frequency, and regarding the other actions. But this is done in a par-
ticular context, where nodes monitor each other and try to attribute a reputation
level to others.
In a previous work, we presented CAnDoR [4], a dynamic data placement algo-
rithm taking into account the consistency protocol in use, the workload and an
approximate view of system state. In such a service, the local representation of
the global environment and the management of past events have a crucial impact
on the quality that the service can provide. Indeed, giving the same importance to
an “old” event and an event that just occurs may lead to bad adaptation choices
and alter the service. This method can also be used to build learning algorithms
like proposed by [5] or [6]. For example, let us consider a dynamic data place-
ment service that only consider the workload induced by users. The service will
place data such that user interested in those data can access them quickly. To de-
termine which users are interested in a piece of data, the service could compare
users accesses. If the service does not differentiate access that was just requested
to that access that was requested some time before, it cannot precisely compute
which users are interested in the piece of data now. Old requests would still have
an important impact on the data placement choice, which will not be as good as it
could be. However, only considering the most recent requests could equally lead
to bad decisions.
In this paper, we propose a formal model to represent the local memory of a large
scale service, and we use this model to compare the impact of three different
strategies to use local memory of events to build an adaptable service. In the rest
of this paper, we first describe a model to represent a knowledge memory (the
set of stored past events and their associated weight) and 3 strategies to use this
knowledge (Sect. 2). We then present an experimentation where we implement
those strategies in a simulator to observe their impact on a distributed data place-
ment service (Sect. 3). Lastly, we conclude and discuss limitations and future
work (Sect. 4).

2 Memory Model

Let S be a dynamic service deployed on a large scale system. This service runs
over a period of time T= [0; t∞]. Traditionally, a large scale system can be viewed
as different nodes that communicate by exchanging messages. Each node in the
system participating in the execution has a local instance of this service. From
now, only the point of view of a node is considered, thus when we refer to the
service S , we refer to the local execution of that service.
During the run, each instance of S builds a local memory that stores the history
of events. The memory is composed of all events known by the node and some
useful information attached to them. More precisely, an event e is defined by a
tuple e = ⟨ae;se; te⟩ with:

– ae: the action performed,
– se: the source of the event,
– te: the time at which the event occurred.

According to the need of services, it may be possible to add components to this
tuple, such as a recipient de for example. In this paper, we only consider the
triplet ⟨ae;se; te⟩. The set of every event known by a node is denoted E. While



building a memory, it is interesting to consider the “importance” of each event.
This “importance” can be represented by a weight that depends on the age of
the event, its type, its index in the memory both any combination of factors. In
order to determine the weight of each event in the memory, we define a weighting
function noted wS , it provides a value between 0 and M that depends on the time
tk, an event e and the elapsed time since e occurred ∆ k

e = tk − te. For example,
a service could want to forget or less consider the oldest events, or consider the
impact of an event depending on its own history.
In this paper, the focus is on 3 strategies for using the memory. To model these
strategies, let us define associated services. To explain the behavior of those ser-
vices, we use a simple example, illustrated by Fig. 1. In this example, the current
time is denoted tk and past events are denoted from e0 to ei+7.

Fig. 1. Events occurrence at time tk in a service

When an event occurs on a node, the local service adds this event to its memory
with the timestamp te, the time of occurrence. When the service uses the event e
at time step tk, it computes the weight of this event using its weighting function:
wS (e,∆ k

e ). This function can define the chosen strategy. We describe here ways
of using memory using the weighting function. We consider that the memory
always stores every known event with every piece of information. However, the
strategy employed dictates how this knowledge can be used. It is important to
notice that one service can rely on different strategies for different computations
and decision processes.

2.1 Timeless Service

First, consider T , a service that uses all the events the same way without taking
their age into account. We call it a timeless service. Using the simple example,
T will use every event from e0 to ei+7 with the same weight. This service is
illustrated by Fig. 2.

Fig. 2. Weight of event at time tk with timeless service

An intuitive way to use the memory is to consider every event with an equivalent
weight. For example, if a service needs to use the number of requests, it just needs



to count the number of events in the memory. This service does not consider the
“age” of events and use a constant function as weighting function. An example
of weighting function could be:

∀(e, tk) ∈ E×T,wT (e,∆ k
e ) = c.

One of the main limitation of this strategy is that it could induce inertia and pre-
vent the service from reacting quickly enough. Indeed, by construction, the ser-
vice does not make any difference between a recent and old event. Therefore, old
events will have a non-negligible impact on the decision to make an adaptation
or not. For example, let us consider T to be a data placement service try to place
data near users interested in those data. If a user was previously interested in the
data but is not active anymore, but a new user is interested in this data, T will
give the same importance to each request. In this situation, illustrated by Fig. 3,
T will keep putting the data closer to the user that was active at the beginning of
the execution.

Fig. 3. Weight of event at time tk with a timeless service

This strategy of memory usage is quite efficient if the sources of events behave
roughly in a consistent way during the execution, i.e., if users send the same kind
of request periodically during the execution, if the communication between nodes
uses the same patterns, etc. If this behavior is expected from the participants, then
the service will be able to adapt correctly without being disturbed by “noises” or
small irregularity in habits. We expect such behavior in some specific services,
such as a personal data service, where a user tends to access the same restricted
data over time.
However, this strategy could also lead to an “average solution” for every user.
If (a subset of) users have roughly similar habits and activities, the service will
tend to consider those users as equivalent and propose a solution equally efficient
for all of them. It could be possible to provide a better service for every user by
trying to adapt to the users more frequently. Moreover, such a strategy does not
take failures into account: every event is weighted equivalently even if one of the
sources has failed, crashed or left the system.



2.2 Sliding Window Service

While the timeless strategy seems intuitive and can be efficient in some scenarios,
it is usually more efficient to use a finer strategy. Indeed, as we previously saw, a
timeless strategy leads to slower adaptations. In many services, it is preferable to
provide a service that can adapt itself quickly. For example, a failure detector [7]
needs to detect as soon as possible which nodes are still correct, an old event
should not be considered. We then consider W , a service that uses the concept
of sliding window[8]. A period τ is determined and any event older than τ is
ignored.
This service is illustrated by Fig. 4. In this example, the events e1, . . . ,ei+5 are
older than τ . Thus, those events will not be used in adaptation computations.
Events ei+6,ei+7 occurred since less than τ time units and are therefore still in
the time window: they will be used in adaptation. The service is thus able to

Fig. 4. Weight of event at time tk with sliding window service

adapt quickly, as it only takes into account recent events. Any decision will be
made according to recent behavior and any source that became inactive will lost
its impact. This can be achieved by considering a step weighting function wW :

∀(e, tk) ∈ E×T,wW (e,∆ k
e ) =

{
c, if ∆ k

e ≤ τ,

0, if ∆ k
e > τ.

With such a function, the service will assign a weight of 0 the events older than τ

and thus remove any impact they could have on the adaptation. This is illustrated
by the example on Fig. 5. In this example, events that occurred before ei+6 are
given a weight of 0 and thus are ignored by W , while other events are assigned
the weight c = 100.
When using a sliding window approach, it is important to correctly tune the size
of the window, i.e., the period τ . This period can be either static or dynamically
evolve through the execution, based on the number and kinds of events, for ex-
ample. If the period is too short, too few events will be used, important events
could be ignored, leading the service to take bad decisions. On the opposite, if
the period is too long, too many events will be considered which could also lead
to bad decisions, according to the service and its needs.
Some works use a double sliding windows approach. In this case, once an event
is out of the first windows, a new weight is assigned to it until it leaves the second



Fig. 5. Weight of event at time tk with a timeless service

windows, with c1 > c2,τ1 < τ2 to represent those values:

∀(e, tk) ∈ E×T,wW (e,∆ k
e ) =


c1, if ∆ k

e ≤ τ1,

c2, if τ1 < ∆ k
e ≤ τ2,

0, if ∆ k
e > τ2.

This approach allows keeping track of events that occurred before the current
windows but are not recent enough to be fully considered in computations. This
approach can be even more precise and generalized in fading event approach.

2.3 Fading Event Service

Many services aim for a quick adaptation but need to keep information for a
longer period than just a period τ , or to give some nuances to events through
time. Such service can use a fading event strategy. This strategy consists in mak-
ing events less important with time. Many weighting functions can be used to
implement this behavior, as long as it verifies the following properties:

1. Definition: wF must be defined for any couple of event and age (e,∆ k
e ) (how-

ever, the function does not need to be continuous).
2. Evolution of memory: for a given event e, wF is not a constant function over

time.
3. Fading over time: for any event e, wF is a pseudo-decreasing function over

time, that is that wF is decreasing over time except for a meager number of
outliers.

This service is illustrated by Fig. 6. In this example, ti+6 and ti+7 will be fully
considered, ti+4, ti+5 slightly less, ti+1, ti+2,ei+3 even less and so on.
There are many relevant functions that can be used to build a memory in a large-
scale system. A way to represent such a function is the following:

∀e ∈E,∃ tk1 , tk2 ∈ T2 | wF (e,∆ k1
e ) ̸= wF (e,∆ k2

e ),

∀e ∈ E,∀∗(tk1 , tk2) ∈ T2| tk1 < tk2 ⇒ wF (e,∆ k1
e )< wF (e,∆ k2

e ),



Fig. 6. Weight of event at time tk with fading event service

where ∀∗ denotes “for all but a meager of elements”. For the clarity of illustrations
and explanations, we use a simple function that divides the weight of events by 2
every τ time units:

wF (e,∆ k
e ) =

100
2δ

, δ = ⌊∆ k
e

τ
⌋.

This function is a decreasing function over time and thus respects the needed
properties while being easily implemented and does not imply a huge computa-
tion cost. The philosophy described hereafter still holds with most of the others
functions that respects the 3 properties presented.
The impact of this function is illustrated by Fig. 7 where the most recent events
have a weight of 100 which is periodically divided by 2. While the service the-
oretically never truly forget any event, at some point the weight became negli-
gible and the event is almost forgotten. It is possible to provide some variation

Fig. 7. Weight of event at time tk with a timeless service

on purely fading events by allowing the function to occasionally increased the
weight of an event, if this event became more relevant again for some reason
(e.g., recurring events).
As for a sliding window strategy, it is important to tune correctly the value of τ .
Preliminary studies suggest that a dynamic strategy that uses both the frequency
and the kind of event allows reaching a well dimensioned period without prior
knowledge of the system. This service gives more importance to the recent events,
but without forgetting them. Instead, the weight is decreased over time.



Most of the time, services only need a decreasing function over time to run
smoothly. However, it may be interesting to give more importance to old events if
a pattern of events reoccurs. In this case, one may use a pseudo-decreasing func-
tion that will give a bigger weight to old events under some circumstances. Some
mechanisms, such as the double LRUs in Linux, are based on this concept.

3 Experimentations

We propose here an evaluation of the three strategies presented in the previous
section through simulation of a service that rely on its memory to take some
adaptation decisions. CAnDoR is a distributed data placement service that con-
sider both the consistency protocol and the user workload [4]. CAnDoR computes
an efficient position for each replica of data requested by users, focusing on re-
quests location of most acceded data in combination of the guaranties associated
with the consistency model. In such a service, the computation directly uses the
memory and the weighting functions can have a huge impact on the placement
solutions found by the service. We consider here 4 different versions of CAnDoR:

– The static version of CAnDoR N : which place the replica according to
the guaranties but do not try to adapt to users behavior. Therefore, this ser-
vice does not use any memory model. This service is used as a baseline to
compare the efficiency of the memory strategies.

– The timeless version of CAnDoR T : this service uses a timeless strategy
to weight the requests made on data.

– The sliding window version of CAnDoR S : this service uses a time win-
dow of length τ to determine which events must be considered for compu-
tation. The value of τ is based on the frequency of requests. The weighting
function is such that |t − ti|< τ ⇒ w(t, ti) = 100.

– The fading event version of CAnDoR F : this service weights events ac-
cording to the number of periods τ elapsed since the event occurred. More
specifically, the weighting function described in Sec. 2 is used: wF (t, ti) =
100
2δ

, δ = ⌊ t−ti
τ
⌋.

Experiments presented here are made on CandorSim, a simulator based on peer-
Sim [9]. CandorSim simulates 100 clusters, each of them is considered as a single
node due to the fact that the communication inside the cluster is negligible. Users
can request access to data to a cluster, while clusters can treat those requests and
communicate with each other to periodically compute for better placement. The
evaluated metric is the time needed for at least 95% users to get the requested
data. The simulator has been calibrated with the result of real-world studies, such
as [10], [11]: a message sent by a user needs 100 to 300 ms to reach a cluster
while a cluster needs 30 to 150 ms to reach another cluster. As the memory strat-
egy used can lead to different results according to the number and the kind of
request, experiments have been made using 3 different behaviors for users.
Stable Behavior: In this experiment, some users send many requests during the
whole execution and others only send occasional requests. This behavior is to be
expected with application using personal data. Each data is acceded by a small
group of users (doing regular requests) that can occasionally change locations
(and be considered as new users by the service). Some occasional user may also
perform some requests as well. We can observe that the strategy in use does not
have a huge impact.



For all three services T ,S ,F , the time needed to answer a request drops from
175 to 130 ms. This is due to the lack of adaptation in the system: the set of active
users stays the same during the whole execution, and requests are uniformly made
during the execution. Thus, considering whole requests or only the recent ones
provide the same view of the system. Results of such execution are shown in
Fig. 8.

Fig. 8. Time needed to deliver requested data with stable behavior

Alternating Behavior: This time, users are divided into 3 groups. The first two
groups send many requests but alternatively: while the first group is active, the
second is not and reciprocally. The third group always sends occasional requests
to add some noise to the computation. These behaviors represent applications
where only a defined group of user access the data but regularly change location,
or if two groups are sharing the data but at different times.
We can observe that with such a behavior, the timeless strategy provides worst
performance. This can be explained by the impact of the inactive group: with a
timeless strategy, the inactive group will still be considered with the same im-
portance as the active one. We can thus see a huge latency peak, this peak cor-
responds to the change of activity. As the two groups alternate the activity, the
second will always be less considered than the first one. The use of a sliding win-
dow or fading event strategy allows the service to quickly react to this change
and while smaller latency peaks can be observed, the service reacts much quicker
which provides a better global quality of service. The results of this scenario are
shown in Fig. 9.
Unbalanced Alternating Behavior: This scenario is close to the previous one:
two groups work consecutively while a third one is working sporadically to add
some noise. However, the first two groups do not work during an equivalent pe-



Fig. 9. Time needed to deliver requested data with alternating behavior

riod of time in this scenario: the first group is active for a longer period of time
and is only temporarily replaced by the second group. The context of such appli-
cation is similar to the previous one, but with unbalanced loads between the two
active groups.
As a consequence, we can observe periodic latency peaks. Those peaks corre-
spond to the period where the second group is active. As this group is less active,
it will not be favored a lot by the service. This tendency is especially true with a
timeless service, where the second group will never be favored over the first one,
hence the periodical peaks. The use of a sliding window or a fading event strat-
egy allows the service to quickly react to this change. Furthermore, the dynamic
tuning of τ even allows the service to calibrate it to reduce the impact when the
activity changes. The results of this scenario are shown in Fig. 10.
Those simulations show that the strategy of memory usage has a non-negligible
impact on the system performance. In a service such as CAnDoR, that relies
on its memory for computation, the use of a timeless strategy can lead to bad
performance. In our experiments, we observed that a fading event based strategy
and a sliding windows one lead to quick adaptation and thus better global quality
of service. The simple version of fading events-based strategy seems to provide
slightly better performance than sliding windows.

4 Conclusion and future works

Large scale services often run on top of dynamic systems and have to face con-
tinuously changing workloads. In order to provide a good quality of service and a
smooth experience for users, such services must be able to adapt to their dynamic



Fig. 10. Time needed to deliver requested data with unbalanced alternating behavior

environment. To do so, they usually have to monitor their environment, store past
events in their memory, and take decisions to gracefully adapt.
In this paper, we presented a formal representation of the memory of individual
nodes of a dynamic system and how they can manage their own memory (set of
stored past events). We also propose a theoretical analysis of three strategies to
use this memory when a node needs to make an adaptation decision. We used
our model and weighting functions to influence the impact of some past events
during the computation. More specifically, we proposed a set of restrictions to
build fading events based memory: a memory that progressively diminish the
impact of events with time. We then conduct experiments to evaluate the impact
on the quality of service of a distributed data placement service according to the
strategy in use. Those evaluations show that it is important to use a strategy that
provides the ability to forget, completely to partially, past events. Fading event
based strategy seems to provide better results, but not significantly compared to
a sliding window strategy.
The strategies presented in this paper mostly rely on the time elapsed since an
event occurs. We believe that finer (but more complex) strategies could be used
by injecting other considerations, such as taking into account importance or rarity
of events. Future works will address such strategies.
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