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For systems in equilibrium at a temperature T , thermal noise and energy damping are related to
T through the fluctuation-dissipation theorem (FDT). We study here an extension of the FDT to
an out of equilibrium steady state: a microcantilever subject to a constant heat flux. The resulting
thermal profile in this spatially extended system interplays with the local energy dissipation field
to prescribe the amplitude of mechanical fluctuations. Using three samples with different damping
profiles (localized or distributed), we probe this approach and experimentally demonstrate the link
between fluctuations and dissipation. The thermal noise can therefore be predicted a priori from the
measurement of the dissipation as a function of the maximum temperature of the micro-oscillator.

I. INTRODUCTION

Thermally induced fluctuations and energy dissipation
are intimately linked quantities: they both arise from
the coupling of a system with its environment. When an
unsolicited mechanical system has a high (kinetic, po-
tential) energy for example, it will be damped by its
environment, progressively losing this energy to reach a
minimum of potential. The energy transfer occurs in the
opposite direction if the system is too quiet: random
driving from the environment, acting as a thermostat
at temperature T , induce fluctuations known as ther-
mal noise in the observables of the system. In statistical
physics, the equilibrium is defined by the steady state
where on average the energy fluxes cancel out. The am-
plitude of the thermal noise is then accurately described
by the Fluctuation-Dissipation Theorem (FDT), which
states that the magnitude of fluctuations is proportional
to temperature and dissipation [1]. From the FDT, one
can accurately describe the thermal noise of any system
in equilibrium, such as the Johnson-Nyquist noise in elec-
trical impedances [2, 3], the Brownian motion of particle
in a fluid [4, 5], the mechanical noise of atomic force
microscopy (AFM) cantilevers [6], the thermal induced
surface waves on a liquid [7], etc.

In real life, equilibrium is however the exception rather
than the rule: living matter, operating devices, and un-
steady systems are all out of equilibrium and experience
unbalanced energy fluxes with the environment. In many
cases, their random fluctuations due to their tempera-
ture cannot be described in a universal way. Extensions
of the FDT would be useful to understand the thermal
noise in such ubiquitous situations. This is especially
pertinent for mesoscopic scales, where thermal noise and
common deterministic operations have a similar ampli-
tude, or high precision measurements, where any noise
is a source of uncertainty that should be avoided or at
least characterized. We are interested here in a sim-
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ple case: a mechanical system subject to a steady heat
flux. The situation is pertinent for micro devices whose
position is measured with a laser, such as AFM can-
tilevers [8, 9] heated by absorbing a fraction of the light.
It is also meaningful for gravitational wave interferome-
ters [10, 11], where a heat flux occurs in the suspension
system of the mirrors of the instrument under intense
laser radiation. In both cases, thermal noise degrades
the performance of the apparatus, and should be mini-
mized. Once thermal fluctuations are understood, they
can also be turned into a measurement tool: they can
for example help identify dissipation sources, turning the
usual annoyance into a useful signal.

In this article, we tackle the thermal noise of micro-
cantilevers subject to a steady heat flux. As in previous
works [12–14], we use an extension of the FDT [12, 15, 16]
to deal with these spatially extended systems presenting
a temperature profile, rather than a single temperature
corresponding to the thermostat. In these studies, we
assumed a dissipation mechanism for elastic energy (lo-
cated in a single point [12–14], or uniformly distributed
along the cantilever [12]) and demonstrated that the mea-
sured thermal noise amplitude was compatible with such
hypotheses for damping. As a further insight into this
playground, we measure here the dissipation in paral-
lel to the fluctuations on three different samples having
distinct damping mechanisms. We show that the depen-
dency of the dissipation and the fluctuations on the ex-
ternal heating is reasonably captured by the model, and
concluded that both quantities are indeed linked by the
proposed extended FDT.

The article is organized as follows. In section II, we
first present the methods: samples, measurement device,
mechanical modes of the cantilevers, experimental proce-
dure to create the nonequilibrium steady state (NESS),
extraction of the temperature field, thermal noise ampli-
tude and global dissipation, and finally the expected link
between fluctuation and dissipation. In section III, we
present the measurement results for the three samples,
and check the proposed framework. Finally, we briefly
discuss the success and shortcomings of the model before
concluding in section IV.

mailto:Corresponding author: ludovic.bellon@ens-lyon.fr


2

θ
δ

L

H
W
z

y
x

photodiode
4 − quadrants

camera

PBS

BS

lens
converging

vacuum

λ /4

λ /2

x
x

y

y

Cy ∝ θ

Cx ∝ δ

A B

C D

T max T (x) T min

x

λ =
632 nm

λ =
532 nm

fcl

mirror
dichroic

FIG. 1. Experimental setup: The deflection and torsion of a
cantilever are captured thanks to the optical lever technique.
The red laser beam (1 mW at 633 nm), focused on the can-
tilever tip, is reflected towards the four-quadrant photodiode.
This sensor records the temporal signals of deflection δ(t) and
torsion θ(t). A green laser beam (0 − 12 mW at 532 nm) fo-
cused close to the tip of the triangular end of the cantilever
acts as the heater. A camera is used to visualize the position
of both lasers on the sample. The cantilever, in vacuum at
5 × 10−6 mbar, is monolithically clamped to its macroscopic
chip, which is thermalized at room temperature Tmin.

II. METHODS

The experimental setup is depicted in fig. 1. The physi-
cal system under study is a silicon microcantilever, whose
thermal fluctuations are measured close to its free end
with the optical lever technique [8, 17]. A red laser beam
(633 nm) is focused with normal incidence on the can-
tilever, and its reflection is collected with a four-quadrant
photodiode. A green laser (532 nm), focused close to its
free end, is partially absorbed and acts as a heat source,
creating a temperature profile along the sample. The
cantilever, in vacuum at 5× 10−6 mbar, is monolithically
clamped to its macroscopic chip which is thermalized at
room temperature Tmin.

A. Microcantilevers

The physical system consists of silicon microcantilevers
of typical length L = 500 µm, with width W and thick-

ness H which depend on the sample. We discuss here the
three samples considered in this work.

The first sample is a silicon cantilever, W = 100 µm
wide and H = 1 µm thick (Nanoworld Arrow TL-8 [18]),
with a triangular free end such as the one sketched in
fig. 1. This cantilever is of particular interest because it
is the same sample studied in the previous NESS ex-
periments in the group, first focusing on the flexural
fluctuations [12] and more recently adding the torsional
ones [13]. In both these works it is demonstrated how,
Brownian fluctuations-wise, the cantilever is almost in-
sensitive to the thermal flux it withstands. In this work
we intend to complete the previous work by adding the
study of the mechanical dissipation of the sample along-
side its thermal fluctuations. We refer to this sample as
C100.

The second sample is a silicon cantilever, W = 30 µm
wide and H = 2.67 µm thick (BudgetSensors AIO-
TL [19]), also with a triangular tip at its end. This sam-
ple, albeit being made purely of silicon as C100, shows
a substantially different behavior with respect to C100.
Indeed, the system is sensitive to the temperature profile
along the system, from both fluctuations and dissipation
points of view. We refer to this cantilever as C30.

The third sample is the same C30 cantilever, addi-
tionally coated with a Tantala (Ta2O5) thin layer by
the Laboratoire des Matériaux Avancés (LMA, Lyon,
France) [20, 21]. With this sample, we study the effect of
a distributed dissipation (due to the coating) on the ther-
mal fluctuations. This cantilever is the same one used in
past experiments of the group [12], where it was shown
how the flexural thermal noise is strongly dependent on
the temperature profile imposed on the system. In this
work, we expand these results for a torsional resonance
mode and analyze the behavior of the dissipation. We
refer to this sample as C30C.

A summary of the characteristics of the different sam-
ples can be found in Table I. A short discussion on geo-
metrical differences between cantilevers C30 and C100 is
given in Appendix A.

TABLE I. Cantilevers studied in this article and their char-
acteristics.

Sample Length Width Thickness Ta2O5 coating
reference L [µm] W [µm] H [µm] (each side) [µm]

C100 500 100 1 -
C30 500 30 2.67 -

C30C 500 30 2.67 0.3

B. Experimental setup

As illustrated in Fig. 1, the red laser (1 mW at 633 nm)
enters the system through a half-wave plate (λ/2) which
tunes its polarization so that after passing through the
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polarizing beam splitter (PBS) the light is directed to-
wards the cantilever. It then passes through a quarter-
wave plate (λ/4), a dichroic beam splitter, and a converg-
ing lens (fcl = 30 mm) which focuses the beam on the
cantilever tip. The waist diameter is tuned to roughly
100 µm to maximize sensitivity [22]. The lens is also
used as the light port to the vacuum chamber. Light
is reflected back on the same path from the cantilever.
The second passage through the quarter-wave plate ro-
tates the polarization perpendicular to the initial one,
and therefore the return beam passes straight through
the PBS. A final beam splitter (BS) divides it towards
an optical camera, used to position the lasers on the can-
tilever, and the four-quadrant photodiode. A motorized
2D translation platform controlling the position of the
sensor in these directions is used in the calibration step
(see Ref. 13 for details).

The green laser beam (0− 12 mW at 532 nm) focused
close to the tip of the cantilever acts as the heater. It
is directed towards the cantilever by the dichroic mirror
and through the lens. Part of the intensity is absorbed
and creates a heat flux, and another part is reflected and
runs through the same path out of the system. The two
laser spots do not overlap in order to avoid mutual dis-
turbances. We discuss the temperature of the cantilever
under the action of the heater in section II E.

C. Mechanical resonance modes

The photodetector captures four light power signals,
which combined give two contrasts Cx and Cy (ratio of
the difference over the sum along the x and y axes respec-
tively). These signals are proportional to the angle of the
beam upon reflection on the cantilever. The contrast Cx
leads to the calibrated flexural angle ϑ (in radians), which
can be converted to the deflection δ (in meters), while
the contrast Cy is proportional to the torsional angle θ
(in radians). The conversion factors and the calibration
are carefully discussed in Ref. 13. Computing the Power
Spectrum Density (PSD), we identify the normal modes
of the cantilever, which are shown in fig. 2. The spec-
tra are shot-noise limited and the thermal noise-driven
resonance peaks have a high signal-to-noise ratio.

Typical measurements allow us to explore a wide range
of frequencies, where the observable number of modes de-
pends on the geometry of the sample. In the case of C100,
this is up to 11 flexural and 8 torsional modes; for the C30
and C30C cantilevers we can detect up to 5 flexural and
1 torsional mode. In order to ensure we correctly identify
the resonances, we simulate the cantilever’s eigenmodes
in COMSOL [23]. Indeed, due to the imperfect orien-
tation of the photodetector, torsional signals are visible
in the flexural PSD and vice versa (see fig. 2), and the
simulation helps us qualitatively distinguish the two mo-
tions, especially at high frequency where amplitudes are
intrinsically small and vanish close to nodes. Another im-
portant contribution of these simulations is to prove we

FIG. 2. PSDs of the (a) thermal-noise-induced deflection and
(b) torsion of the cantilever, where each resonance is identi-
fied as a sharp peak with a quality factor in the range of tens
of thousands. The modes can safely be considered decou-
pled and each can be treated as a simple harmonic oscillator.
In the inset, a zoom-in around the second flexural resonance
shows how the resonance is redshifted with the laser power
increasing. The shapes of the modes are simulated in COM-
SOL [23] and shown as snippets corresponding to each peak,
yielding resonance frequencies very close to the ones found
in our experiment and in agreement with the Euler-Bernoulli
description.

can access all the resonances in the available frequency
range: this is indeed true except for one lateral mode
(oscillations in the x − y plane), undetectable with our
setup.

Due to experimental constraints, in this article, some
modes are excluded from the analysis. Flexural mode 1 is
often discarded because of self-oscillations [13, 24], while
some modes can be undetectable due to the probing point
being close to a node of sensitivity [13].

D. Experimental procedure

In order to probe the thermal noise of the cantilever
in a NESS, we increase the temperature at the tip of the
sample through the increase of the injected power P . We
then perform a power ramp, going from 0 to 12 mW and
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back, in order to compare the results at increasing and
decreasing temperature. At each power we record the
Brownian motion of the cantilever. In order to reduce
the statistical uncertainty on the measured noise, at each
power step we record a large number Nmeas of temporal
signals (between 40 and 75), each tmeas = 2 s long and
sampled at 2.5 MHz.

E. Temperature

The absorbed power of the green laser, placed at the
tip of the cantilever, creates a heat flux along the length
of the sample. This generates a temperature profile T (x)
between the maximal temperature at the tip of the sam-
ple Tmax and the temperature at the base Tmin = 295 K,
which is kept constant by the contact with the macro-
scopic chip acting as the thermal reservoir. On the
other side, Tmax and T (x) vary with the absorbed power
according to Fourier’s law. The average temperature

T avg =
∫ L

0
dxT (x)/L is used to characterize the the

nonequilibrium state of the cantilever: the measured am-
plitude of the thermal fluctuations in a NESS at T avg is
compared to the one the system should have if it was
in equilibrium at the same T avg. Its estimation is thus
paramount.

As shown in fig. 1, the flexural resonance frequencies fn
are sensitive to the temperature changes in the cantilever,
mostly through the variations of the Young modulus of
silicon Y . While this is discussed in detail in Ref. 25,
we briefly recall it here. In a first approximation, the
frequency shift ∆fn = fn − fmin

n can be modeled as:

∆fn
fmin
n

=
1

2

∫ L
0

dx∆Y (T (x))ψn(x)2

Y min
∫ L

0
dxψn(x)2

= gn(T ), (1)

where ∆Y = Y − Y min and the superscript min stands
for the reference value of the quantity at Tmin. The func-
tion ψn(x) = φ′′n(x) is the curvature of the normal mode
φn considered. The functions gn are governed by the
temperature dependency of the Young modulus, which
for silicon is tabulated [26]. In the case of C30C, the
cantilever is the same sample used in ref. 12, where a
calibration of gn was performed. Finally, in Ref. 25 it is
shown how inverting the functions gn yields access to the
average temperature of the cantilever at each measured
frequency shift. Therefore, for all the thermal noise mea-
surement presented in this work we can associate a T avg

at each imposed heating power.
The estimation of the uncertainty on T avg is discussed

in Refs. 13, 14, and 25. In a nutshell, for each of the
Nmeas ∼ 50 time recordings at a specific power, we re-
trieve with a fit of the thermal noise peak the value of fn
for each mode n. From the uncertainty on the fit parame-
ter, the dispersion between the modes, the statistical un-
certainty computed on the Nmeas recordings (computed
as their standard deviation over

√
Nmeas − 1), the uncer-

tainty on the function gn, and standard error propagation
rules, we deduce the uncertainty on T avg.

F. Thermal noise

When the heating power is zero, the cantilever is con-
sidered in thermal equilibrium with the environment at
a temperature Tmin. As we can see from fig. 2, the reso-
nances are well separated in frequency, have a high signal-
to-noise ratio, and a quality factor larger than 1000.
Hence, we can model each flexural and torsional mode
as an independent oscillator, and thus we can apply the
equipartition principle to each resonance:

kn〈δ2
n〉EQ = κm〈θ2

m〉EQ = kBT
min, (2)

where kB is the Boltzmann’s constant, and

kn = meffω2
n, κm = Jeffω2

m, (3)

are the flexural (index n) and torsional (index m) stiff-
nesses respectively, with Jeff = meffW 2/3 the inertial
moment of the beam, meff its effective mass and ωn,m =
2πfn,m. The subscript EQ emphasize here that the sys-
tem is considered in equilibrium (implying that we ne-
glect the absorption of the red laser beam). The quanti-
ties 〈δ2

n〉, 〈θ2
m〉 are the thermal fluctuations, calculated as

the area under the resonance peak once the background
noise contribution is subtracted [13].

When the cantilever is in a NESS due to the presence
of the heat flux, we extend Eq. (2) to define a fluctuation
temperature T fluc as

T fluc
n ≡ kn〈δ2

n〉
kB

=

(
fn
fmin
n

)2 〈δ2
n〉NESS

〈δ2
n〉EQ

Tmin,

T fluc
m ≡ κm〈θ2

m〉
kB

=

(
fm
fmin
m

)2 〈θ2
m〉NESS

〈θ2
m〉EQ

Tmin.

(4)

This quantity represents the temperature the system fluc-
tuates at when it is in an out-of-equilibrium state. In-
deed, in this condition, no thermodynamic temperature
can be defined and the equipartition principle cannot be
applied. Nevertheless, the amplitude of the fluctuations
and the resonance frequency can be measured; conse-
quently a temperature T fluc can be defined. While a sin-
gle temperature T can be found for all the modes in equi-
librium (Eq. (2)), in a NESS T fluc is in principle mode
dependent since each resonance mode represents in this
case a different thermometer.

The evaluation of the uncertainty on T fluc
n,m is discussed

in Refs. 13, 14, and 27. Its statistical part is computed
from the dispersion around the mean of the Nmeas mea-
surements (as std/

√
Nmeas − 1). This uncertainty is in-

timately linked to the number of independent samples
that we extract from one measurement. The relaxation
time of one mode (the time it takes to forget its ini-
tial conditions) is τn = 2/(ϕnfn), with ϕn the dissipa-
tion associated to the mode. For a recording time tmeas,
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we have N indep = tmeas/τn independent samples. Both
ϕn and ωn are increasing with the mode number n, and
thus the statistical uncertainty decreases with n. For
large n however, the signal-to-noise ratio (ratio of ther-
mal noise to floor noise) decreases and the uncertainty
rises again: intermediate n have the lowest statistical un-
certainty. Apart from this unavoidable contribution, we
must consider another source of error: during the mea-
surement, the laser position can slowly shift, mainly due
to experimental drifts. This effect causes a change in the
sensitivity of the experiment; therefore, we ascribe it to
a systematic uncertainty. As it turns out, this can be the
main contribution depending on the mode. Indeed, the
amplitude of the change in sensitivity is all the more im-
portant when the measurement point is closer to a node
of the mode. Since the laser is focused close to the free
end of the cantilever, the first resonances are less affected.
The statistical and systematic uncertainties of T fluc

n,m are
finally quadratically summed.

The right-hand-side definition of T fluc in Eq. (4) has
the advantage of yielding a simple calculation of T fluc

as the ratio of measured quantities: the amplitude of
the nonequilibrium fluctuations (NESS) and the equi-
librium ones (EQ). Recalling the discussion in section
II D, this corresponds to normalizing each nonequilibrium
measurement by the average of the first and last record-
ings on the power ramp. Finally, the prefactor with the
ratio of the resonance frequencies in Eq. (4) takes into
account the changes in stiffness with the temperature
(Eq. (3)), since meff and Jeff are supposed constant.

The nature of the fluctuation temperature is re-
lated to the existence of a nonequilibrium Fluctuation-
Dissipation Theorem. Carefully extending this relation,
which is normally valid solely in equilibrium, for a sys-
tem with a temperature profile T (x), it is possible to
show that T fluc is related to the normalized local me-
chanical energy dissipation wdiss(x) in the cantilever and
the temperature profile as [12, 13, 16]

T fluc
n,m =

∫ L

0

dxT (x)wdiss
n,m(x). (5)

This relation tells us that the amplitude of the fluctua-
tions is then related to the temperature profile weighed
by the dissipation profile, i.e. the locations with the
higher dissipation contribute more to the total thermal
noise. We discuss the nature of the damping in the sys-
tem in the next section.

G. Dissipation

In the experiment, the damping of the system is mea-
sured through a fit of the PSD around the resonance
frequency using the following expression, for example for
a flexural mode n:

Sδn(f) =
2kBT

πmeffω2
nf

f4
nϕn

(f2 − f2
n)2 + (f2

nϕn)2
. (6)

The loss angles ϕn,m are extracted from the fits of the
Nmeas spectra corresponding to the recordings, and we
compute their expectation value (as the mean) and sta-
tistical uncertainty (as std/

√
Nmeas − 1). ϕn,m represent

the global dissipation of the cantilever for each mode. It
can have the various microscopic origins, and can depend
slowly on frequency. However for each mode, strongly
peaked around resonance, it corresponds to the inverse
of the quality factor Q, and we have no access to its value
out of the resonance frequency.

The cantilever being held in vacuum, the dissipation of
the bulk material (silicon) arises from two mechanisms:
clamping losses [28] and internal damping [29] (also called
viscoelasticity). The latter can be due to the presence of
defects in the cantilever or thermoelasticity [30]. The
presence of the coating adds damping via its own inter-
nal damping and losses at the interface with the sub-
strate [31]. In the end, the effect of these processes is the
loss angle ϕ. In principle, ϕ depends on the frequency
f , the temperature T , the presence of defects, and con-
sequently the spatial coordinate x. The loss angle can be
thought of as the imaginary part of the static stiffness:

k =
3I

L3
Y = k0(1 + iϕY ),

κ =
4I

L
S = κ0(1 + iϕS),

(7)

with I = WH3/12 the second moment of area of the
sample, and S the shear modulus. Here the flexural and
torsional loss angles, ϕY and ϕS respectively, are mainly
due to the imaginary part of the Young modulus and
shear modulus.

The loss angles ϕn,m of the modes are expressed
through [12, 13, 16]:

ϕn{T (x)} =

∫ L

0

dxϕY (x, fn, T (x))ψn(x)2,

ϕm{T (x)} =

∫ L

0

dxϕS(x, fm, T (x))ψm(x)2,

(8)

with ψn,m(x) the local curvature: ψn(x) = φ′′n(x) for the
flexural normal mode, where φn(x) is the local deflec-
tion, and ψm(x) = φ′m(x) for the torsional normal mode,
where φm(x) is the local transverse slope. Using these no-
tations, the two expressions in Eqs. (8) are equivalent for
flexural and torsional modes simply interchanging sub-
scripts n by m and Y by S, thus in the following we
display only the equations for flexural modes, but ev-
erything applies directly to torsional modes as well. The
spatial profile ϕY,S is in general not experimentally acces-
sible, and thus neither is the normalized local dissipation
wdiss
n,m(x), defined as [12, 13, 16]:

wdiss
n (x) =

1

ϕn{T (x)}
ϕY (x, fn, T (x))ψn(x)2. (9)

Nevertheless, in section II H below, we show that, if cer-
tain hypotheses regarding the temperature profile and
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the local damping are satisfied, wdiss becomes experimen-
tally accessible. In this case, the fluctuation temperature
T fluc can be theoretically calculated through Eq. (5) and
compared to the experimental results.

H. Local properties vs global measurements

The elastic properties of the silicon and of the optional
coating depend only weakly on the temperature: the res-
onance frequencies of the normal modes change for in-
stance in the per thousand range when the average tem-
perature doubles. We make the hypothesis that the dis-
sipative part of the elastic moduli changes accordingly,
so that a second order expansion of ϕY in T is enough on
the explored temperature range. If the damping is dis-
tributed, we also make the hypothesis that the material
properties are uniform (independent of the position), so
that

ϕY (x, fn, T ) = αn + βn∆T (x) + γn∆T (x)2. (10)

The weak dependency of properties on frequency is cap-
tured by the mode number dependency, sampling prop-
erties only around the resonance frequency fn. Let us
finally suppose that the temperature profile is linear:
∆T (x) = ∆Tmaxx/L. This assumption is equivalent
to considering that the thermal conductivity of the can-
tilever is independent of temperature. It is reasonable
at the considered heating powers for samples C30 and
C30C, and it was verified thanks to numerical simula-
tions and in previous experiments [25]. In such a case,
Eq. (10) is written

ϕY (x, fn, T ) = αn + βn∆Tmax x

L
+ γn

(
∆Tmax x

L

)2

.

(11)
Injecting this expression in Eqs. (8), we compute the
global dissipation of each mode as

ϕn = an + bn∆Tmax + cn(∆Tmax)2, (12)

where the set of coefficients an, bn and cn is directly
linked to the expansion coefficients of the elastic moduli
αn, βn and γn:

an =
αn
L

∫ L

0

dxψn(x)2,

bn =
βn
L

∫ L

0

dx
x

L
ψn(x)2,

cn =
γn
L

∫ L

0

dx
x2

L2
ψn(x)2.

(13)

Experimentally, we can measure the dissipation ϕn as
a function of ∆Tmax, thus when a parabolic fit is perti-
nent to describe these data, we can extract coefficients
αn, βn and γn from the fit parameters and Eqs. (13).
We therefore can compute the local loss angle (Eq. (11)),
then the normalized dissipation (Eq. (9)), and finally the

expected amplitude of the fluctuations (Eq. (5)). We
refer to this computed temperature as theoretical to dis-
tinguish it from the measured one, though it is expressed
from experimentally accessible parameters:

T theo
n =Tmin +

1

ϕn

1

L

∫ L

0

dx∆Tmax x

L
ψ2
n(x) (14)(

αn + βn∆Tmax x

L
+ γn

(
∆Tmax x

L

)2
)
.

In the case of a distributed damping, we thus have a strat-
egy to assess the validity of our model; ie., compute the
expected value of the fluctuation from the measurement
of dissipation.

III. RESULTS

In this section we discuss the results of the measure-
ments on the three cantilevers. In each section we show
the measured fluctuation temperatures T fluc

n,m alongside
the estimated damping ϕn,m, and we link them through
Eq. (5).

A. C100

Thermal noise measurements of the C100 sample are
shown in Figs. 3(a) and 4(a), which as mentioned are
the same presented in Ref. 13. We note how, while the
temperature T avg increases, the thermal fluctuations of
the cantilever are roughly unchanged for both flexural
and torsional modes. In order to interpret this dearth
of fluctuations through Eq. (5), we display the evolu-
tion of the loss angles ϕn,m in Figs. 3(b) and 4(b). One
can understand the lack of fluctuations assuming that
the C100 sample is dominated by clamping losses, i.e.
T fluc ≈ Tmin = T (0) because wdiss(x) ≈ wdiss

0 δD(x),
where δD(x) is Dirac’s distribution. This claim can be
assessed with the observation of the damping of the sys-
tem, which shows little if no evolution at increasing tem-
perature. Two explanations are possible for this phe-
nomenon: either the dissipation is distributed all over
the cantilever but it is independent of the temperature,
or it is located at a point at constant temperature. The
former is unlikely and would not account for the flat be-
havior of T fluc: applying Eq. (14), the prediction is a
temperature-dependent T fluc (linear in T avg) . The hy-
pothesis of a clamped-based dissipation must thus be con-
sidered. In this regard, we may look at two phenomena:
clamping shear stresses and clamping-located defects. A
simple model for the former [28] predicts typical quality
factors at least ten times higher than the measured ones;
thus it is unlikely to be the dominant phenomenon for
this sample. The presence of defects may then be the
key. Indeed, the C100 is chemically etched from a single
crystal silicon wafer, i.e. in principle devoid of internal
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FIG. 3. Cantilever C100, flexural modes. (a) The thermal
noise amplitude T fluc

n is shown with respect to T avg. The
black solid line represents the equilibrium temperature, i.e.
the fluctuations an object would show had it been in thermal
equilibrium with a thermal bath at T avg. All the modes lie
below this line, showing a dearth of thermal noise. Further-
more, we note how they are also much lower than the maximal
temperature of the system, represented by the black dashed
line. The modes shown span from 2 to 8, excluding mode 5
because of the laser probe being on a mechanical node. (b)
The measured loss angles ϕn show little change with the av-
erage temperature. We note also how the loss angle of the
mode n = 6 is roughly twice that of the other modes. (c) The
PSD of the same mode at two different powers alongside the
fit with Eq. (6).

defects, and the vacuum removes most of the hydrody-
namical damping. An imperfect etching at the clamping
may still be present, thus lowering the quality factor to
the observed values.

Regardless of its origin, a Dirac delta-type dissipation
function wdiss(x) ≈ δD(x) explains then both the ther-
mal noise and the dissipation measurements through the
extended FDT expressed in Eq. (5).

B. C30

The results for the C30 sample are shown in Figs. 5-
7. We depict five flexural resonances and one torsional
one, with the third resonance mode depicted separately

FIG. 4. Cantilever C100, torsional modes. (a) The ther-
mal noise content of the first eight torsional modes (except
the fifth due to the sensitivity being too low) is shown to
be roughly independent of the temperature profile imposed
on the system. (b) The loss angle also shows little changes
at different temperatures. (c) The resonance m = 1 at two
powers alongside the fit with Eq. (6).

in Fig. 6. We see that apart from the latter, the fluctua-
tion temperature increases with the average temperature,
thus showing how we cannot suppose C30 to be a clamp-
ing losses-dominated system as C100. The observation of
the loss angles confirms this view, since also the damping
changes with the temperature. In this case, we can sup-
pose that if clamping losses exist, a distributed damping
exists too as it becomes the main contribution when we
increase the temperature for the cantilever. Though sam-
ples C30 and C100 are made of the same material (sil-
icon), they have slightly different geometries and their
manufacturers (and thus manufacturing processes) are
different, resulting in different mechanical damping be-
haviors.

To a reasonable approximation, we observe that the
global losses ϕn,m are a smooth function of the aver-
age temperature, and thus of Tmax, so that we can ap-
proximate them by a quadratic fit. We can therefore
apply the recipe of section II H to predict the ampli-
tude of the fluctuations. Those are reported as dotted
lines in Figs. 5-7. We note how for most modes the
overlap of the experimental T fluc and this simple model
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FIG. 5. Cantilever C30, flexural modes. (a) Dissipation ϕn

versus T avg for flexural modes n = 1−5, alongside a quadratic
fit of each. (b)-(e) Thermal noise amplitude T fluc

n alongside its
theoretical prediction (dotted line) from Eq. (5) versus T avg

for the same modes n (excluding n = 3, shown in fig. 6) . The
model nicely predicts the thermal noise evolution, except for
a mode 2 and 4 around T = 400 K where fluctuations are
somewhat below the expected value.

shows an overall reasonable agreement, which suggests
that the simple extension of the FDT appears to hold in
this distributed-dissipation case. We nevertheless remark
how at around T = 400 K the thermal content (mostly
for mode n = 2) does not follow exactly the theoretical
prediction, and how for the torsion the prediction is a
little below the experimental data. Finally, for flexural

FIG. 6. Cantilever C30, flexural mode n = 3. (a) The thermal
noise of the third flexural mode shows little to no dependence
on the temperature profile, which is the opposite behavior
expected looking at the dissipation (b). In this case, the sim-
ple quadratic approximation of the dissipation fails, and the
model cannot predict the thermal fluctuations.

FIG. 7. Cantilever C30, torsional mode m = 1. (a) The ther-
mal noise amplitude of the first torsional mode stays roughly
below the average temperature line. In this case, the model
qualitatively predicts this behavior. (b) The evolution of the
dissipation with the temperature and its fit with a quadratic
function.

mode n = 3 (Fig. 6), the damping and the fluctuations
do not draw the same picture: indeed, while the thermal
noise is roughly independent of the damping, the latter
increases strongly with the temperature. In this case,
the simple approximations do not hold. This mode also
stand apart from the others on the magnitude of dissi-
pation, which is ten times larger than one would expect
from the extrapolation of the smooth (both in temper-
ature and mode number) behavior of modes 1 through
5. This odd behavior of these modes probably hints at
a different mechanism implied at this specific frequency
or mode shape for this cantilever, a mechanism that we
could not identify and deemed not representative of the
overall behavior.
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FIG. 8. Cantilever C30C, flexural modes n = 1 − 4. (a) Dis-
sipation ϕn versus T avg, alongside a quadratic fit of each. We
note how the coating increases the magnitude of the dissipa-
tion at least ten times with respect to the bare C30 sample.
(b)-(e) Thermal noise amplitude T fluc

n alongside its theoret-
ical prediction (dotted line) from Eq. (5) versus T avg. The
theoretical framework and the simple hypotheses formulated
for the C30 sample allow us to approximately predict the
nonequilibrium thermal content of the C30C sample. We nev-
ertheless note how mode 3 deviates slightly from the predic-
tion.

C. C30C

If the C30 cantilever data hint at a distributed dissipa-
tion, we expect this phenomenon to be even more strik-
ing for the C30C case. Indeed, the coating on this sample

FIG. 9. Cantilever C30C, torsional mode m = 1. (a) The
theoretical prediction of the thermal noise thanks to the evo-
lution of the dissipation ((b), quadratic fit) would predict an
increase of the fluctuations below the average temperature
of the system. This is not observed in the measurement. A
possible explanation is discussed in the text.

adds an additional distributed damping due to the dissi-
pation in the coating thickness [20]. We can observe this
phenomenon comparing Fig. 8(a) with Fig. 5(a), where
an increase in damping of a factor of ten is measured,
alongside the squeezing of all the loss factors alongside
roughly the same curve. From the thermal noise point of
view, the fluctuation temperatures increase similarly to
the C30 case, and the theoretical prediction once again
allows us to qualitatively describe them alongside the
damping through the simple hypotheses exposed in sec-
tion II H. It is to be noted that in this case mode n = 3
shows higher thermal content than predicted, at the edge
of the error bars. This cannot be said for the torsional
mode, presented in Fig. 9, for which the damping would
predict a fluctuation temperature always below the av-
erage one, while the measurement shows otherwise. A
possible explanation lies on the uniform hypothesis for
the loss angle ϕS(x, . . .). Indeed, a higher value of dissi-
pation close to the free end would stand apart from the
hypothesis we used, and raise the theoretical prediction
T theo
m . Even if dissipation processes for the shear modulus

and the Young one can be different, a higher dissipation
close to the cantilever end would also be compatible with
most flexural mode being slightly above the prediction,
though mostly within error bars.

IV. DISCUSSION AND CONCLUSION

The comparison of the simultaneous measurement of
the nonequilibrium thermal fluctuations and the damping
on three different samples allows us to test the simple the-
oretical prediction represented by the extended equipar-
tition of Eq. (5). Indeed, this equation simply states that
the amplitude of thermal fluctuations of a spatially ex-
tended system, when a temperature profile is established,
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depends on where and at which temperature the dissipa-
tion occurs. First, we show how this theoretical frame-
work explains the observed thermal noise and damping
on a clamping-located dissipation cantilever. Indeed, the
thermal fluctuations and the dissipation are roughly in-
dependent of the temperature profile imposed on the sys-
tem. On different samples (different manufacturer, and
optional coating layer), a quite different behavior is ob-
served: the thermal noise increases with the average tem-
perature of the system, as does the dissipation (in gen-
eral, with the exception of the first torsional mode of
cantilever C30). In these cases, the system is dominated
by other sources of dissipation, and indeed present loss
angles at least twice larger than those of cantilever C100.
This can be due to a higher degree of impurity in the sys-
tem, which create higher viscoelastic losses, or a result
of the damping due to the coating. We propose a sim-
ple model with a linear dependance of temperature on
space and second order expansion of the local dissipation
on temperature. Thanks to these simple but reasonable
hypotheses, we can then predict the fluctuation temper-
ature of the cantilever by just characterizing the damp-
ing. Though not always quantitative, the global picture
is consistent and predictions of the thermal fluctuations
are effective for most of the resonance modes.

Our purpose was to demonstrate the compatibility of
the extended equipartition, including the variation of the
dissipation with the local temperature field, with the
measurement. Though not perfect, this agreement is rea-
sonable. This study sheds light on the power of a simple
extension of the FDT for systems far from equilibrium.
It expands the previous studies on such systems [12–
14] for various damping sources and it includes a the-
oretical prediction of the fluctuation based solely on the
evolution of the dissipation with temperature, whether
constant (clamped based damping) or not (distributed
damping). Obviously, one could encounter situations
where dissipation is a combination of several mechanism
with comparable magnitude, and we would then need
to mix hypotheses of local (including not only localized
at the clamp) and global dissipation. Deviation from the
present model could be useful to identify the physical ori-
gin or location of the dissipation, with the possibility to
use the complementary information from several modes
to pin defects (they would be observable or not depending
on the proximity of a node). Another degree of freedom
to probe the dissipation field and its temperature depen-
dency would be to change the location of the heating

point: it changes the shape of T (x), thus can lead to fur-
ther insight on the matter. This strategy has been used
successfully to quantify the temperature field by tracking
the resonance frequencies of several modes while scanning
the heating position [25]. The extension to thermal noise
measurement still has to be demonstrated.

The data that support the findings of this study are
openly available in Zenodo [32].
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Appendix A: Geometrical differences between
samples C30 and C100

It can be surprising at first to observe very different
thermal noise behaviors on cantilevers C30 and C100,
since both samples are made of the same material. How-
ever, after repeating the measurement on several can-
tilevers from different batches of both types, we came
to the robust conclusion that they are demonstrating a
different thermal noise amplitude and dissipation when
heated. Though we have no strong insight on the man-
ufacturing processes, doping of substrates used, thermal
treatments, or thickness of the oxide layer, they actu-
ally have an important geometric difference. Indeed, the
chemical etching which is usually used to manufacture
the cantilever creates slanted sides, so that the cross sec-
tion of the cantilever is trapezoidal instead of rectangu-
lar. This effect is barely noticeable on cantilever C100
(1µm thick, 100µm wide), but much more on cantilever
C30 (2.7µm thick, 30µm wide). We plot in Fig. 10 the
cross section to scale: cantilever C30 presents large areas
which are slanted, and may contribute differently to the
dissipation. Obviously also, the clamp between the can-
tilever and the base is approximately three times longer
for cantilever C100, and enhances any clamp-induced dis-
sipation.
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