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Abstract. Knowledge Discovery (KD) mechanisms (e.g. data mining,
neural networks) receive more and more interest over the years. A KD
mechanism uses an extraction procedure, namely Kext, to discover knowl-
edge, and an injection procedure, namely Kinj, to exploit knowledge.
However such mechanisms are not often applied to multi-objective com-
binatorial problems, due to the optimization of many objectives, which
can lead to learning conflicting knowledge. The key is to know how the
components of the KD mechanism should coexist and interact with the
knowledge. In this article, we work with the MOEA/D algorithm, and
existing Kinj and Kext components. We propose different interactions be-
tween the components of the KD mechanism, by using different numbers
of knowledge groups (dedicated to the storage of the knowledge) and dif-
ferent strategies for the injection component. The variants are evaluated
through the bi-objective Vehicle Routing Problem with Time Windows
(bVRPTW). Our results show, that using five knowledge groups and an
intensification strategy for the injection procedure leads to better results.

Keywords: Multi-Objective Optimisation · MOEA/D · Knowledge Discovery ·
Routing Problem

1 Introduction

When solving a discrete optimization problem, large parts of the search space
are explored during the execution of the algorithm. However, most of the solu-
tions encountered are simply ignored, while they can bring interesting knowledge
about the search space. Indeed, this knowledge can guide the algorithm towards
more interesting solutions [1]. On the other hand, it can also help the algorithm
to avoid getting stuck in local optima, as explicitly defined in Tabu Search meth-
ods [10].

In multi-objective problems, at least two conflicting functions are simultane-
ously optimized and the objective is to find the Pareto front of solutions. Over
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the years, many metaheuristics based on local search techniques and using evo-
lutionary algorithms [6] have been designed to tackle these problems. Among
the most popular algorithms, there are MOEA/D [28], NSGA-II [8], and their
variants.

Using knowledge from explored solutions is helpful to reduce the search space
or to focus on interesting parts of the space, and can improve the performances of
the algorithms mentioned above. However extracting knowledge from solutions
and then using it to guide the search is a complex task, which has not been
highly explored in the literature. Considering the papers on that subject leads
to the following terminology for Knowledge Discovery (KD) processes. A KD
process is built upon two main procedures called Knowledge Extraction (Kext)
and Knowledge Injection (Kinj). The Kext procedure aims to extract problem-
related knowledge from one or several solutions. Then the extracted knowledge
can be used by the Kinj procedure to build new solutions taking into account
past iterations. However, given extraction and injection procedures for a specific
problem, there exist a plethora of ways to integrate them within a metaheuristic.

In this article, we investigate how a KD mechanism can be integrated into
MOEA/D. To that purpose, we consider a bi-objective Vehicle Routing Problem
with Time Windows (bVRPTW). In this problem, we minimize both the total
traveling time and the total waiting time of drivers. With these two objectives,
we obtain more diverse and bigger fronts (in terms of cardinality) than those
obtained when minimizing the number of vehicles and the total traveling time,
which are the original optimized objectives. Moreover, considering the waiting
time can lead to different applications (e.g. food delivery, medical transporta-
tion). We propose a large number of hybridization variants that are evaluated,
showing that one, in particular, is statistically better than the others.

The remaining of the paper is organized as follows: Section 2 focuses on KD
mechanisms and their link with combinatorial optimization. We present new
strategies for the components of a KD process in Section 3. The KD mechanism
is integrated into MOEA/D in Section 4. The bVRPTW is described in Section 5.
Our experimental setup is presented in Section 6, and our protocol in Section 7.
We show and discuss our results in Section 8. Finally, we conclude in Section 9.

2 Scientific Context

2.1 Knowledge Discovery in Metaheuristics

Hybridizing machine learning methods and metaheuristics has become quite
common to solve combinatorial problems. The survey of Talbi [21] reviews a
large panel of hybridizations that are frequently used in the literature. These
hybridizations are divided into three categories depending on where the inte-
gration is performed: at a problem level, at a low level, or at a high level. A
problem-level integration takes into account the characteristics of the problem
itself (e.g. data relative to the instance considered) to guide the algorithm. A
low-level integration focuses on solutions produced by algorithms. A relevant
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mechanism is able to analyze the structure of the solutions, learn from them,
and then use this knowledge to improve the next steps. A high-level integration
is interesting when several operators are available to solve a problem. A possible
interest is to design automatically a problem-specific heuristic by selecting the
most relevant operators to apply. In the following, we focus on low-level integra-
tion and learning from solutions, also called knowledge discovery (KD). KD can
be realized either online or offline [7]. It is called online when it uses resources
generated during the execution. Otherwise, it is called offline. Both of them have
pros and cons. Online KD are often more adaptive and based on unsupervised
methods, which may lead to a slow convergence rate. While offline methods are
often supervised, and thus require huge amounts of data to be efficient.

Most KD processes are composed of an extraction mechanism (Kext), where
something is learned, and an injection mechanism (Kinj), which uses the ex-
tracted knowledge to find new promising solutions. A study of existing works in
KD and its hybridization with metaheuristics [21] leads to four main questions:
What/Where/When/How is the knowledge extracted/injected?

The question What is problem-dependent, since each problem may have spe-
cific relevant knowledge. In the context of this article, this question is answered
in Section 5, where the problem is presented. Questions Where and When are
algorithm-dependent since the extraction and injection steps have to be inte-
grated into the process of the algorithm. Both of these questions are not the
subject of this article, and thus not discussed here at length. However, these
questions are answered in Section 4 for the specific case of our study. The ques-
tion How deals with overall strategies used during the KD mechanism (e.g.
intensification or diversification). The answer to this question should be adapted
according to the category of the problem studied (multi-objective in our case).
Our contribution focuses on this question and is detailed in Sections 3 and 4.

2.2 Knowledge Integration in Multi-Objective Optimization

In the literature, KD processes have received various interests mainly in single-
objective optimization contexts. Especially in routing problems [2,3,15,1]. How-
ever, using KD processes in multi-objective combinatorial optimization is quite
new and has not been widely investigated. Among the first works on this subject,
we cite the paper of Wattanapornprom et al. [26]. In order to solve a bi-objective
TSP they learn probabilities of arcs belonging to good solutions by using a re-
ward and punishment system based on the solutions visited during the execu-
tion. The authors show that their learning procedure improves the performance
of NSGA-II. The survey of Bandaru [4] regroups different data mining methods
that can be used in multi-objective optimization. Recently, Moradi et al. [16]
and Legrand et al. [12] proposed algorithms enhanced with learning mechanisms
to solve routing problems. The former presented the MODLEM algorithm which
uses decision trees updated during the execution to guide the algorithm through
the search space. The latter designed a MOEA/D using a KD mechanism, that
extracts sequences of customers from generated solutions and injects the most
frequent ones in solutions to improve them.
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3 Knowledge Discovery for Multi-Objective Optimization

In this section, we propose an answer to the question How presented in Sec-
tion 2.1. This question focuses on the interaction of the extraction and injection
components with the knowledge itself. First, we present how knowledge groups
are defined in Section 3.1. These groups allow the storage and the use of knowl-
edge by the extraction and injection mechanisms. Section 3.2 is more focused on
the possible strategies followed by both extraction and injection when interacting
with the knowledge groups.

3.1 Definition of Knowledge Groups

One issue of KD mechanisms concerns the structure used to store the extracted
knowledge to be injected. In multi-objective optimization, the fitness space is
not in 1-Dimension and generally, the best solutions for one objective are not
the same as for the other ones. We make the assumption that solutions sharing
some similarities are more likely to be in the same region of the fitness space.

We propose to divide the fitness space into kG regions each representing a
knowledge group. The set of knowledge groups is denoted as G. Therefore, a
knowledge group is defined by a delimited region of the fitness space. The region
can be either explicit (represented by equations) or implicit (represented by sets).
If a solution belongs to the region of a knowledge group, then its associated
knowledge is added to that group.

The number of knowledge groups and their construction within MOEA/D is
discussed in Section 4.4.

3.2 Intensification and Diversification Strategies

Evolutionary algorithms use intensification and diversification mechanisms to
explore the search space more in-depth or more largely. We propose to trans-
pose these mechanisms of intensification and diversification to the KD for the
extraction and injection mechanisms. On the one hand, we propose an intensifi-
cation strategy, where the procedure has access to a small number of groups. The
objective of the procedure is to focus on the same region of the fitness space, by
exploring close regions. In that case, the knowledge is not widely shared between
the groups. On the other hand, with a diversification strategy, the procedure has
access to a large number of groups. The objective of the procedure is to explore
different regions of the fitness space, by bringing diversity to the solutions. In
that case, the knowledge can travel through the groups. The definition of these
strategies for the integration of the KD into MOEA/D is discussed in Section 4.4.

4 MOEA/D Enhanced with Knowledge Discovery

4.1 MOEA/D

MOEA/D [28] is a genetic algorithm that approximates the Pareto front by
decomposing the multi-objective problem into M several scalar objective sub-
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problems. The scalarization is obtained by weighting each of the n objectives fk
with a weight wk ∈ [0, 1]. Thus the fitness of a solution x for the subproblem i
is the following quantity: f(x|wi) =

∑n
k=1 w

i
k · fk(x).

During an iteration, MOEA/D minimizes the i-th subproblem by using the
solutions of its closest neighbors. The neighborhood, of size m, of a weight vec-
tor wi is defined as the set of its m closest (for the euclidean distance) weight
vectors among {w1, . . . , wM}. Then the neighborhood Nm(i) of the i-th sub-
problem consists of the m subproblems defined with a weight vector belonging
to the neighborhood of wi. Note that each subproblem is associated with its best
solution found during the execution.

At the start of MOEA/D, M weight vectors are given, then it works as fol-
lows. Initially, a random population (of size M) is generated and evaluated. The
neighborhood (of size m) of each subproblem is also computed. When optimizing
subproblem i, a random pair of solutions is selected from its neighborhood. The
Partially Mapped crossover (PMX) is applied with probability pcro, and only
one solution is randomly kept. Then a Local Search (LS), described in Section 5,
is applied with probability pmut. Indeed the mutation is frequently replaced by
an LS [11] in genetic algorithms. Finally, the resulting solution is added to the
set S of solutions generated during the iteration, and a few neighbors of the
subproblem i are updated. When all subproblems have been seen, S is merged
with the archive A. If the termination criterion is reached, the nondominated
solutions of A are returned, otherwise, a new iteration is started.

4.2 Construction of the Knowledge Groups and Strategies

As explained in Section 3.1, we use knowledge groups to store the extracted
knowledge. Since we work with MOEA/D, we use the underlying subproblems
to delimit the kG groups. Note that regions are defined implicitly. We propose to
characterize each knowledge group Gk ∈ G by a vector gk = (gk1 , . . . , g

k
n) ∈ [0, 1]n

satisfying gk1 + . . .+ gkn = 1. Since the weight vectors of subproblems are chosen
uniformly in that hyperplane, we also choose kG uniformly distributed vectors in
the same hyperplane, so that groups are balanced. In the following, we assume
that we work in a bi-dimensional case. If kG = 1, then the group is associated with
all the subproblems, thus the vector characterizing the group does not matter,
and we set g1 = (0.5, 0.5). In the general case, when kG ≥ 2, for k ∈ {1, . . . , kG},
we characterize Gk with gk = ( k−1

kG−1 , 1−
k−1
kG−1 ).

The definition of the regions of the groups is linked to the strategy followed
by the extraction. We consider the M subproblems and their associated weight
vectors defined in MOEA/D. Given a subproblem i of weight vector wi, we can
compute the set NG(i) = {d(wi, gk)|1 ≤ k ≤ kG}, where d(wi, gk) represents the
Euclidean distance between the i-th subproblem and the group Gk. With this
set, we can know how far each group is from the i-th subproblem. We propose
to associate each subproblem with its mext

G closest groups. Therefore, the region
of a group is the set of subproblems that are associated with that group. The
smaller the value of mext

G , the more intensive the extraction. We decide to keep
only the most intensive strategy (mext

G = 1) for the extraction. More precisely, if
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x is a solution obtained while optimizing the subproblem i, then only the closest
group to i (regarding NG(i)) receives the knowledge extracted from x.

Concerning the injection, we introduce similarly a parameter minj
G . It repre-

sents the number of groups that can provide the knowledge to be injected. The
diversity increases along with the value of minj

G . For the study, we keep only the
two extreme values being 1 (for intensification) and M (for diversification). More
precisely, when minj

G = 1, only the closest group to the subproblem can provide

the knowledge, and when minj
G = M , it can be any group (chosen at random).

4.3 MOEA/D with Knowledge Discovery

In this section, we combine the elements described in the former section to
obtain the framework shown in Algorithm 1. If lines 3, 11, and 16 are removed,
then the algorithm becomes the variant of MOEA/D described in Section 4.1.
At line 3, the procedure createGroups is called to create the vector of each
group, as explained in Section 4.2. At line 11, the injection procedure Kinj is

applied to the current solution x, using either an intensification (minj
G = 1) or

a diversification (minj
G = kG) strategy as explained in Section 4.2. At line 16,

the extraction procedure Kext is used to extract the knowledge from the set
of solutions generated during the iteration. Then it updates the closest group
(mext

G = 1) of the subproblem being optimized as explained in Section 4.2. In
the following section, we instantiate the Algorithm 1 with different values of kG .

4.4 Experimental Variants

In this section, we present and discuss the different values of kG retained for
the study. Since the extraction is performed in an intensive manner, only the
strategies for the injection are considered.

First of all, we consider the simplest case, where there is only one group
(kG = 1). In that case, the intensification is equivalent to the diversification,
leading to only one variant, the so-called Base algorithm.

It is known that solutions in the middle of the front (i.e. solutions that have
an equivalent trade-off between the objectives) are the most difficult to obtain.
Therefore we need to create at least kG = 3 to obtain a relevant decomposi-
tion. In this article, we limit the investigation to the case where the groups are
uniformly spread along the front. Thus, two groups are focused on a specific ob-
jective, and an intermediate group gathers trade-off solutions. Hence there are
two variants using three groups: A3

int (resp. A
3
div), which uses an intensification

(resp. diversification) strategy for the injection. Then we can refine the process
to obtain kG = 5 (uniformly spread) groups in the decomposition, leading to
two other variants: A5

int and A5
div. Moreover, we keep the extreme case where

kG = M , creating as many groups as subproblems since it has been studied
in [12]. In this case, each group is dedicated to one specific aggregation. More
precisely, for k ∈ {1, . . . , kG}, gk = wk. However, it may lead to a waste of re-
sources since a lot of redundant knowledge between groups may exist. The last
two variants are: AM

int and AM
div.
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Algorithm 1: Knowledge Discovery MOEA/D Framework.

Input: M weight vectors w1, . . . , wM . The number kG of knowledge groups
and the strategy minj

G (resp. mext
G ) for Kinj (resp. Kext).

Output: The external archive A
/* Initialisation */

1 A← ∅; S ← ∅
2 P ← random initial population (xi for the i-th subproblem)
3 G ← createGroups(kG)
4 for i ∈ {1, . . . ,M} do
5 N (i)← indexes of the m closest weight vectors to wi

6 Obji ← {fj(xi) | 1 ≤ j ≤ n}
/* Core of the algorithm */

7 while not stopping criterion satisfied do
8 for i ∈ {1, . . . ,M} do
9 (i1, i2)← Select(N (i))

10 x← PMX(xi1 , xi2)

11 x← Kinj(x,G, i,minj
G )

12 x← LS(x)
13 S ← S ∪ {x}
14 updateNeighbors(P,N (i), x)

15 A← updateArchive(A,S)
16 G ← Kext(G, S,mext

G )
17 S ← ∅
18 return A

5 Bi-Objective Vehicle Routing Problem with Time
Windows (bVRPTW)

5.1 Problem Description

The bVRPTW [23] is defined on a graph G = (V,E), where V = {0, 1, . . . , N}
is the set of vertices and E = {(i, j) | i, j ∈ V } is the set of arcs. It is possible
to travel from i to j, incurring a travel cost cij and a travel time tij . Vertex 0
represents the depot where a fleet of K identical vehicles with limited capacity
Q is based. Vertices 1, . . . , N represent the customers to be served, each one
having a demand qi and a time window [ai, bi] during which service must occur.
Vehicles may arrive before ai. In that case, the driver has to wait until ai to
accomplish service incurring a waiting time. Arriving later than bi is not allowed.
It is assumed that all inputs are nonnegative integers. The bVRPTW calls for
the determination of at most K routes such that the traveling cost and waiting
time are simultaneously minimized and the following conditions are satisfied: (a)
each route starts and ends at the depot, (b) each customer is visited by exactly
one route, (c) the sum of the demands of the customers in any route does not
exceed Q, (d) time windows are respected.
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5.2 Related Works

The original VRPTW aims to minimize the number of vehicles and the total trav-
eling cost. In the literature, we find many lexicographic approaches that minimize
the number of vehicles first and then the traveling cost. Nowadays, all Solomon’s
instances [20] can be optimally solved using an exact algorithm [17], however,
the computational cost grows exponentially with the size of the instances. In
practice, meta-heuristic algorithms can obtain a “good enough” solution in a
short time and have the capacity to solve large-scale complex problems, which is
more suitable for applications. Schneider et al. [19] proposed different granular
neighborhoods to improve the local search performed. More recently Zhang et
al. [27] designed a new Evolutionary Scatter Search with Particle Swarm Opti-
mization, the so-called ESS-PSO, able to reach very good results on Solomon’s
instances in a small amount of time. Considering the multi-objective approaches,
the literature is more sparse. Qi et al. [18] proposed a memetic algorithm based
on MOEA/D to solve a bi-objective VRPTW. More recently, Moradi [16] inte-
grated a learnable evolutionary model into a Pareto evolutionary algorithm.

5.3 Local Search and Knowledge Operators

The LS performed in Algorithm 1 is the same as described in [13]. Briefly, three
neighborhood operators are used: swap, relocate, and 2-opt∗. Initially, we shuffle
the list of operators, so that they are not always applied in the same order.
Then, for a given operator, we try to insert each customer to its best location,
considering the possible moves allowed by the operator. If a better location is
found for the customer, the process is repeated with another customer. When
no more improving moves are found for all customers, the search stops and the
next operator is picked up.

Now we define the Kinj and Kext mechanisms related to the bVRPTW. Both
mechanisms are based on the work of Arnold et al. [1]. They introduced PILS, an
optimization strategy that uses frequent patterns from high-quality solutions, to
explore high-order local-search neighborhoods. PILS has been hybridized with
the Hybrid Genetic Search (HGS) of Vidal et al. [25] and the Guided Local
Search (GLS) of Arnold and Sörensen [2] to solve the Capacitated Vehicle Rout-
ing Problem (CVRP) with good results. Given a solution x of the problem, Kext

extracts all patterns of x with a size between 2 and sizep, a user-defined pa-
rameter. The depot is not considered inside patterns. Patterns are sequences of
consecutive customers in a route. For instance, a route r = (0, v1, . . . , v|r|, 0),
contains max(|r| − k+ 1, 0) patterns of size k. Then for each extracted pattern,
its frequency inside the groups updated is incremented. Kinj tentatively injects
NInj patterns in the current solution x. Only improving patterns are kept in
the solution, leading to a kind of elitism selection for patterns. To select a pat-
tern we proceed as follows. First, the size of the pattern is randomly chosen
among {2, . . . , sizep}. It allows to not bias the selection towards smaller, more
numerous, patterns. Then the pattern is randomly chosen among the NFrequent

most frequent patterns of the same size. Here NFrequent is also a parameter of



Improving MOEA/D with Knowledge Discovery 9

the algorithm. When all the NInj patterns have been selected, they are injected
one by one according to the following steps. Firstly arcs incident to a node of
the pattern are removed and the nodes of the pattern are connected. This step
creates several pieces of routes, that are reconnected to form a feasible solution.
The reconnection is optimal, in the sense that all possibilities are tested. Because
of time windows, we do not consider reversed patterns in our mechanism.

6 Experimental Setup

6.1 Solomon’s Benchmark

We use Solomon’s instances [20], of size 100, to evaluate the performance of
all the seven variants presented in Section 4. This set is frequently used in the
literature to evaluate the performance of multi-objective algorithms [9,18,16].
The set contains 56 instances divided into three categories according to the
type of generation used, either R (random), C (clustered), or RC (random-
clustered). The generation R (23 instances) randomly places customers in the
grid, while the generation C (17 instances) tends to create clusters of customers.
The generation RC (16 instances) mixes both generations. Each category is itself
divided into two classes, either 1XX or 2XX, according to the width of time
windows. Instances of class 2XX have wider time windows than instances of
class 1XX, meaning that instances 1XX are more constrained.

6.2 Termination Criterion and Performance Assessment

The termination criterion of all the variants is set to 720 seconds. It allows
us to obtain accurate and robust results. The quality of the fronts is evalu-
ated with the unary hypervolume [29] (uHV), which measures the volume of
the area dominated by the solutions of the front. Indeed, true Pareto fronts of
the problem are not known, thus we can not use metrics that rely on them.
For each instance, the two extreme points used to normalize the objectives
of the solutions, are obtained through our experiments and are automatically
updated when a new point is found. To compute the uHV we use the point
(1.001, 1.001) as a reference. The experiments are run on two computers “In-
tel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz”, with 24 cores each. The variants
have been implemented using the jMetalPy framework [5]. The code is available
at https://github.com/Clegrandlixon/kdmoopy.

6.3 Tuning

Each algorithm is tuned with irace [14] to find a good setting of the parame-
ters. To perform the tuning, we generated 96 new instances of size 100, by using
the method described by Uchoa et al. [24] to mimic Solomon’s instances. Each
variant uses the following parameters: M , the number of subproblems consid-
ered, and m the size of the neighborhood of each subproblem. The probabilities

https://github.com/Clegrandlixon/kdmoopy
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associated with each mechanism are pcro for the crossover, pinj for the injec-
tion, and pmut for the LS. The granularity parameter δ [22] is used to prune
the neighborhood during LS. The maximal size sizep of the patterns extracted,
and the number NInj of patterns injected, chosen among the NFrequent most
frequent patterns. According to a preliminary study and existing works, we set
m = 1/4 ×M and NFrequent = 100. We do not consider the number of groups
kG in the tuning, because we want to highlight its influence on the algorithm.
We propose a different range of values for the seven remaining parameters (cf.
Table 1), to define the configuration space in irace. We granted a budget of 2000
configurations over 8 iterations to irace. Each configuration is evaluated with
the uHV metric. The best configurations are presented in Table 2.

We can remark that the number of subproblems is always below 60, which
makes sense since small populations are often preferred in genetic algorithms.
The granularity is almost always set to 25, which is coherent with existing studies
in the literature on routing problems. The maximal size of patterns alternates
between 5 and 7, which is close to the value recommended in [1]. Moreover, the
probability of applying the LS seems low, but the LS is the most time-consuming
step of the algorithm, mainly in the beginning when solutions are not optimized.
With pmut = 0.10 the LS represents already 50% of the running time. However,
it represents only 60% when pmut = 0.25. The second most time-consuming
step is the injection mechanism. When pinj = 1.00, it represents around 25% of
the total running time, but this mechanism requires a constant cost during the
execution contrarily to the LS.

Table 1. Parameter’s space given to irace. The space contains 77175 configurations.

Name Range

Population size: M (20, 40, 60, 80, 100)

Granularity: δ (10, 25, 50, 75, 100)

Probability of crossover: pcro (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)

Probability of mutation: pmut (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)

Maximum size of pattern: sizep (5, 7, 10)

Number of patterns injected: NInj (20, 40, 60)

Probability of injection: pinj (0.00, 0.10, 0.25, 0.50, 0.75, 0.90, 1.00)

7 Experimental Protocol

In our experiments, we investigate how the number of groups and the strategy
followed by the injection impact the quality of the solutions returned.

To that aim, each variant is executed 30 times on the 56 instances of size
100 of Solomon’s benchmark. For each algorithm, the k-th run of an instance is
executed with the seed 10(k−1), to compare the algorithms with the same seeds.
We recall that the termination criterion is set to 720 seconds for all variants.
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Table 2. Best elite configurations returned by irace for each variant.

Params. Base A3
int A3

div A5
int A5

div AM
int AM

div

M 60 60 40 40 20 40 20

m 15 15 10 10 5 10 5

δ 50 25 25 25 25 25 25

pcro 0.50 0.50 0.90 0.50 0.90 0.50 0.75

pmut 0.10 0.10 0.10 0.25 0.10 0.10 0.25

sizep 5 5 7 7 5 5 5

NInj 60 20 40 60 60 40 40

pinj 0.75 0.75 1.00 1.00 0.90 1.00 0.90

For each category of instance (either R, RC, or C), we compute the average
uHV obtained over the 30 runs. Then we rank each variant on each instance and
we compute the average rank on all the categories. We perform a Friedman test
on the average uHV, to know if all algorithms are equivalent, and if it is not the
case, we apply a pairwise Wilcoxon test with the Bonferroni correction to know
which algorithms are statistically better. Finally, we define a fourth category
All, containing all the instances, and we compute similarly the average ranks of
each variant in that case.

8 Experimental Results and Discussion

In previous studies [12,13], we compared different instantiations of the frame-
work with the original MOEA/D (i.e. without using the knowledge groups). It
shows that using the knowledge discovery framework is beneficial. Table 3 (resp.
Table 4) shows the average rank (resp. uHV) of each variant on each category
of instance. The variant A5

int always leads to the best average rank (1.46) and
average uHV (0.828). Moreover, this variant returns statistically better results
than the other variants. Hence it is interesting to use more than one group in a
multi-objective context.

Using the diversification strategy with five groups worsened a lot the returned
results. Indeed, A5

div ranks 5.73 on average, which is the second highest rank.
Only A3

int has a higher rank. The other variant A
3
div has also a high rank, meaning

that using three groups is a wrong choice in that context.

The variants AM
int and AM

div provide average uHV that are close in value. It
is 0.767 for AM

int and 0.770 for AM
div. The conclusion is similar if we look at each

category separately. Hence, when many groups are used, there is not a significant
difference between intensification and diversification strategies for the injection.

Surprisingly, the Base variant returns good results, except on clustered in-
stances. Hence it is not interesting to use a too-large or a too-small number of
groups. The goal is to provide a “good” intermediate value. Here, the best results
are obtained with five groups, but further studies should investigate the behavior
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of the procedure with different numbers of groups or consider the possibility of
adapting the number of groups during execution.

Table 3. Average ranks of the variants according to their average uHV over the dif-
ferent categories of instance. Bold results are statistically significant.

Category Base A3
int A3

div A5
int A5

div AM
int AM

div

R 2.52 6.65 4.09 1.26 5.59 4.61 3.28

RC 2.16 6.94 4.72 1.56 5.53 3.53 3.56

C 4.09 5.29 5.50 1.62 6.12 2.21 3.18

All 2.89 6.32 4.70 1.46 5.73 3.57 3.33

Table 4. Average uHV of the variants according to their average uHV over the different
categories of instance. Bold results are statistically significant.

Category Base A3
int A3

div A5
int A5

div AM
int AM

div

R 0.730 0.627 0.703 0.764 0.667 0.682 0.706

RC 0.738 0.590 0.695 0.781 0.665 0.713 0.705

C 0.889 0.848 0.848 0.959 0.831 0.934 0.919

All 0.780 0.684 0.745 0.828 0.716 0.767 0.770

9 Conclusion

Integrating a knowledge discovery mechanism into a metaheuristic requires tak-
ing into account a lot of design aspects, summarized by the questions: What,
Where, When, and How should the knowledge be extracted and injected. In this
article, we mainly focused on the question How, while we considered existing
works to answer the other questions. In particular, to answer the How question
we have to consider how should interact the extraction and injection components
of the KD mechanism, to be as efficient as possible.

As a contribution, we defined the notion of knowledge groups, studied in the
literature, by giving a construction for any number of groups in a bi-objective
context. Moreover, we formalized the strategies that extraction and injection can
follow, and we instantiated them to obtain an intensification and a diversification
strategy. We integrated our propositions into a MOEA/D framework, and we
tested them on a bVRPTW. The results showed that the variant using five
knowledge groups with an intensification strategy for both the injection and
extraction was statistically better than the others.
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In the near future, our framework will be compared to different state-of-the-
art algorithms (e.g. NSGA-II, MODLEM), and different problems will also be
investigated (e.g. bTSP). The tuning phase performed by irace provided similar
configurations for each of the variants. Hence it will be interesting to investigate,
whether with the same parameter configuration for all variants similar conclu-
sions can be reached. Moreover, the number of groups will be considered as a
parameter to be tuned in future works, to see if irace achieves similar conclu-
sions. We would also like to investigate more deeply the impact of the strategies
presented for injection and extraction. Finally, we aim to create an adaptive
algorithm, which automatically adapts the number of groups and the strategies
followed by the operators.
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