Clément Legrand 
email: clement.legrand4.etu@univ-lille.fr
  
Diego Cattaruzza 
email: diego.cattaruzza@centralelille.fr
  
Laetitia Jourdan 
email: laetitia.jourdan@univ-lille.fr
  
Marie-Eléonore Kessaci 
email: marie-eleonore.kessaci@univ-lille.fr
  
  
Improving MOEA/D with Knowledge Discovery. Application to a Bi-Objective Routing Problem

Keywords: Multi-Objective Optimisation, MOEA/D, Knowledge Discovery, Routing Problem

Knowledge Discovery (KD) mechanisms (e.g. data mining, neural networks) receive more and more interest over the years. A KD mechanism uses an extraction procedure, namely Kext, to discover knowledge, and an injection procedure, namely Kinj, to exploit knowledge. However such mechanisms are not often applied to multi-objective combinatorial problems, due to the optimization of many objectives, which can lead to learning conflicting knowledge. The key is to know how the components of the KD mechanism should coexist and interact with the knowledge. In this article, we work with the MOEA/D algorithm, and existing Kinj and Kext components. We propose different interactions between the components of the KD mechanism, by using different numbers of knowledge groups (dedicated to the storage of the knowledge) and different strategies for the injection component. The variants are evaluated through the bi-objective Vehicle Routing Problem with Time Windows (bVRPTW). Our results show, that using five knowledge groups and an intensification strategy for the injection procedure leads to better results.

Introduction

When solving a discrete optimization problem, large parts of the search space are explored during the execution of the algorithm. However, most of the solutions encountered are simply ignored, while they can bring interesting knowledge about the search space. Indeed, this knowledge can guide the algorithm towards more interesting solutions [START_REF] Arnold | Exploring highorder neighborhoods by pattern mining and injection[END_REF]. On the other hand, it can also help the algorithm to avoid getting stuck in local optima, as explicitly defined in Tabu Search methods [START_REF] Glover | Handbook of combinatorial optimization[END_REF].

In multi-objective problems, at least two conflicting functions are simultaneously optimized and the objective is to find the Pareto front of solutions. Over the years, many metaheuristics based on local search techniques and using evolutionary algorithms [START_REF] Blot | Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation[END_REF] have been designed to tackle these problems. Among the most popular algorithms, there are MOEA/D [START_REF] Zhang | Moea/d: A multiobjective evolutionary algorithm based on decomposition[END_REF], NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF], and their variants.

Using knowledge from explored solutions is helpful to reduce the search space or to focus on interesting parts of the space, and can improve the performances of the algorithms mentioned above. However extracting knowledge from solutions and then using it to guide the search is a complex task, which has not been highly explored in the literature. Considering the papers on that subject leads to the following terminology for Knowledge Discovery (KD) processes. A KD process is built upon two main procedures called Knowledge Extraction (K ext ) and Knowledge Injection (K inj ). The K ext procedure aims to extract problemrelated knowledge from one or several solutions. Then the extracted knowledge can be used by the K inj procedure to build new solutions taking into account past iterations. However, given extraction and injection procedures for a specific problem, there exist a plethora of ways to integrate them within a metaheuristic.

In this article, we investigate how a KD mechanism can be integrated into MOEA/D. To that purpose, we consider a bi-objective Vehicle Routing Problem with Time Windows (bVRPTW). In this problem, we minimize both the total traveling time and the total waiting time of drivers. With these two objectives, we obtain more diverse and bigger fronts (in terms of cardinality) than those obtained when minimizing the number of vehicles and the total traveling time, which are the original optimized objectives. Moreover, considering the waiting time can lead to different applications (e.g. food delivery, medical transportation). We propose a large number of hybridization variants that are evaluated, showing that one, in particular, is statistically better than the others.

The remaining of the paper is organized as follows: Section 2 focuses on KD mechanisms and their link with combinatorial optimization. We present new strategies for the components of a KD process in Section 3. The KD mechanism is integrated into MOEA/D in Section 4. The bVRPTW is described in Section 5. Our experimental setup is presented in Section 6, and our protocol in Section 7. We show and discuss our results in Section 8. Finally, we conclude in Section 9.

Scientific Context

Knowledge Discovery in Metaheuristics

Hybridizing machine learning methods and metaheuristics has become quite common to solve combinatorial problems. The survey of Talbi [START_REF] Talbi | Machine learning into metaheuristics: A survey and taxonomy[END_REF] reviews a large panel of hybridizations that are frequently used in the literature. These hybridizations are divided into three categories depending on where the integration is performed: at a problem level, at a low level, or at a high level. A problem-level integration takes into account the characteristics of the problem itself (e.g. data relative to the instance considered) to guide the algorithm. A low-level integration focuses on solutions produced by algorithms. A relevant mechanism is able to analyze the structure of the solutions, learn from them, and then use this knowledge to improve the next steps. A high-level integration is interesting when several operators are available to solve a problem. A possible interest is to design automatically a problem-specific heuristic by selecting the most relevant operators to apply. In the following, we focus on low-level integration and learning from solutions, also called knowledge discovery (KD). KD can be realized either online or offline [START_REF] Corne | Synergies between operations research and data mining: The emerging use of multi-objective approaches[END_REF]. It is called online when it uses resources generated during the execution. Otherwise, it is called offline. Both of them have pros and cons. Online KD are often more adaptive and based on unsupervised methods, which may lead to a slow convergence rate. While offline methods are often supervised, and thus require huge amounts of data to be efficient.

Most KD processes are composed of an extraction mechanism (K ext ), where something is learned, and an injection mechanism (K inj ), which uses the extracted knowledge to find new promising solutions. A study of existing works in KD and its hybridization with metaheuristics [START_REF] Talbi | Machine learning into metaheuristics: A survey and taxonomy[END_REF] leads to four main questions: What/Where/When/How is the knowledge extracted/injected?

The question What is problem-dependent, since each problem may have specific relevant knowledge. In the context of this article, this question is answered in Section 5, where the problem is presented. Questions Where and When are algorithm-dependent since the extraction and injection steps have to be integrated into the process of the algorithm. Both of these questions are not the subject of this article, and thus not discussed here at length. However, these questions are answered in Section 4 for the specific case of our study. The question How deals with overall strategies used during the KD mechanism (e.g. intensification or diversification). The answer to this question should be adapted according to the category of the problem studied (multi-objective in our case). Our contribution focuses on this question and is detailed in Sections 3 and 4.

Knowledge Integration in Multi-Objective Optimization

In the literature, KD processes have received various interests mainly in singleobjective optimization contexts. Especially in routing problems [START_REF] Arnold | Knowledge-guided local search for the vehicle routing problem[END_REF][START_REF] Arnold | What makes a vrp solution good? the generation of problem-specific knowledge for heuristics[END_REF][START_REF] Lucas | Reducing space search in combinatorial optimization using machine learning tools[END_REF][START_REF] Arnold | Exploring highorder neighborhoods by pattern mining and injection[END_REF]. However, using KD processes in multi-objective combinatorial optimization is quite new and has not been widely investigated. Among the first works on this subject, we cite the paper of Wattanapornprom et al. [START_REF] Wattanapornprom | Multi-objective combinatorial optimisation with coincidence algorithm[END_REF]. In order to solve a bi-objective TSP they learn probabilities of arcs belonging to good solutions by using a reward and punishment system based on the solutions visited during the execution. The authors show that their learning procedure improves the performance of NSGA-II. The survey of Bandaru [START_REF] Bandaru | Data mining methods for knowledge discovery in multi-objective optimization: Part a-survey[END_REF] regroups different data mining methods that can be used in multi-objective optimization. Recently, Moradi et al. [START_REF] Moradi | The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model[END_REF] and Legrand et al. [START_REF] Legrand | Enhancing moea/d with learning: Application to routing problems with time windows[END_REF] proposed algorithms enhanced with learning mechanisms to solve routing problems. The former presented the MODLEM algorithm which uses decision trees updated during the execution to guide the algorithm through the search space. The latter designed a MOEA/D using a KD mechanism, that extracts sequences of customers from generated solutions and injects the most frequent ones in solutions to improve them.

Knowledge Discovery for Multi-Objective Optimization

In this section, we propose an answer to the question How presented in Section 2.1. This question focuses on the interaction of the extraction and injection components with the knowledge itself. First, we present how knowledge groups are defined in Section 3.1. These groups allow the storage and the use of knowledge by the extraction and injection mechanisms. Section 3.2 is more focused on the possible strategies followed by both extraction and injection when interacting with the knowledge groups.

Definition of Knowledge Groups

One issue of KD mechanisms concerns the structure used to store the extracted knowledge to be injected. In multi-objective optimization, the fitness space is not in 1-Dimension and generally, the best solutions for one objective are not the same as for the other ones. We make the assumption that solutions sharing some similarities are more likely to be in the same region of the fitness space.

We propose to divide the fitness space into k G regions each representing a knowledge group. The set of knowledge groups is denoted as G. Therefore, a knowledge group is defined by a delimited region of the fitness space. The region can be either explicit (represented by equations) or implicit (represented by sets). If a solution belongs to the region of a knowledge group, then its associated knowledge is added to that group.

The number of knowledge groups and their construction within MOEA/D is discussed in Section 4.4.

Intensification and Diversification Strategies

Evolutionary algorithms use intensification and diversification mechanisms to explore the search space more in-depth or more largely. We propose to transpose these mechanisms of intensification and diversification to the KD for the extraction and injection mechanisms. On the one hand, we propose an intensification strategy, where the procedure has access to a small number of groups. The objective of the procedure is to focus on the same region of the fitness space, by exploring close regions. In that case, the knowledge is not widely shared between the groups. On the other hand, with a diversification strategy, the procedure has access to a large number of groups. The objective of the procedure is to explore different regions of the fitness space, by bringing diversity to the solutions. In that case, the knowledge can travel through the groups. The definition of these strategies for the integration of the KD into MOEA/D is discussed in Section 4.4. 

MOEA/D Enhanced with Knowledge Discovery

: f (x|w i ) = n k=1 w i k • f k (x)
. During an iteration, MOEA/D minimizes the i-th subproblem by using the solutions of its closest neighbors. The neighborhood, of size m, of a weight vector w i is defined as the set of its m closest (for the euclidean distance) weight vectors among {w 1 , . . . , w M }. Then the neighborhood N m (i) of the i-th subproblem consists of the m subproblems defined with a weight vector belonging to the neighborhood of w i . Note that each subproblem is associated with its best solution found during the execution.

At the start of MOEA/D, M weight vectors are given, then it works as follows. Initially, a random population (of size M ) is generated and evaluated. The neighborhood (of size m) of each subproblem is also computed. When optimizing subproblem i, a random pair of solutions is selected from its neighborhood. The Partially Mapped crossover (PMX) is applied with probability p cro , and only one solution is randomly kept. Then a Local Search (LS), described in Section 5, is applied with probability p mut . Indeed the mutation is frequently replaced by an LS [START_REF] Knowles | Local-search and hybrid evolutionary algorithms for Pareto optimization[END_REF] in genetic algorithms. Finally, the resulting solution is added to the set S of solutions generated during the iteration, and a few neighbors of the subproblem i are updated. When all subproblems have been seen, S is merged with the archive A. If the termination criterion is reached, the nondominated solutions of A are returned, otherwise, a new iteration is started.

Construction of the Knowledge Groups and Strategies

As explained in Section 3.1, we use knowledge groups to store the extracted knowledge. Since we work with MOEA/D, we use the underlying subproblems to delimit the k G groups. Note that regions are defined implicitly. We propose to characterize each knowledge group G k ∈ G by a vector

g k = (g k 1 , . . . , g k n ) ∈ [0, 1] n satisfying g k 1 + . . . + g k n = 1.
Since the weight vectors of subproblems are chosen uniformly in that hyperplane, we also choose k G uniformly distributed vectors in the same hyperplane, so that groups are balanced. In the following, we assume that we work in a bi-dimensional case. If k G = 1, then the group is associated with all the subproblems, thus the vector characterizing the group does not matter, and we set g 1 = (0.5, 0.5). In the general case, when

k G ≥ 2, for k ∈ {1, . . . , k G }, we characterize G k with g k = ( k-1 k G -1 , 1 -k-1 k G -1
). The definition of the regions of the groups is linked to the strategy followed by the extraction. We consider the M subproblems and their associated weight vectors defined in MOEA/D. Given a subproblem i of weight vector w i , we can compute the set

N G (i) = {d(w i , g k )|1 ≤ k ≤ k G },
where d(w i , g k ) represents the Euclidean distance between the i-th subproblem and the group G k . With this set, we can know how far each group is from the i-th subproblem. We propose to associate each subproblem with its m ext G closest groups. Therefore, the region of a group is the set of subproblems that are associated with that group. The smaller the value of m ext G , the more intensive the extraction. We decide to keep only the most intensive strategy (m ext G = 1) for the extraction. More precisely, if

x is a solution obtained while optimizing the subproblem i, then only the closest group to i (regarding N G (i)) receives the knowledge extracted from x.

Concerning the injection, we introduce similarly a parameter m inj G . It represents the number of groups that can provide the knowledge to be injected. The diversity increases along with the value of m inj G . For the study, we keep only the two extreme values being 1 (for intensification) and M (for diversification). More precisely, when m inj G = 1, only the closest group to the subproblem can provide the knowledge, and when m inj G = M , it can be any group (chosen at random).

MOEA/D with Knowledge Discovery

In this section, we combine the elements described in the former section to obtain the framework shown in Algorithm 1. If lines 3, 11, and 16 are removed, then the algorithm becomes the variant of MOEA/D described in Section 4.1. At line 3, the procedure createGroups is called to create the vector of each group, as explained in Section 4.2. At line 11, the injection procedure K inj is applied to the current solution x, using either an intensification (m inj 

Experimental Variants

In this section, we present and discuss the different values of k G retained for the study. Since the extraction is performed in an intensive manner, only the strategies for the injection are considered.

First of all, we consider the simplest case, where there is only one group (k G = 1). In that case, the intensification is equivalent to the diversification, leading to only one variant, the so-called Base algorithm.

It is known that solutions in the middle of the front (i.e. solutions that have an equivalent trade-off between the objectives) are the most difficult to obtain. Therefore we need to create at least k G = 3 to obtain a relevant decomposition. In this article, we limit the investigation to the case where the groups are uniformly spread along the front. Thus, two groups are focused on a specific objective, and an intermediate group gathers trade-off solutions. Hence there are two variants using three groups: A 3 int (resp. A 3 div ), which uses an intensification (resp. diversification) strategy for the injection. Then we can refine the process to obtain k G = 5 (uniformly spread) groups in the decomposition, leading to two other variants: A 5 int and A 5 div . Moreover, we keep the extreme case where k G = M , creating as many groups as subproblems since it has been studied in [START_REF] Legrand | Enhancing moea/d with learning: Application to routing problems with time windows[END_REF]. In this case, each group is dedicated to one specific aggregation. More precisely, for k ∈ {1, . . . , k G }, g k = w k . However, it may lead to a waste of resources since a lot of redundant knowledge between groups may exist. The last two variants are: A M int and A M div .

Algorithm 1: Knowledge Discovery MOEA/D Framework. 

(i1, i2) ← Select(N (i)) 10 x ← PMX(x i 1 , x i 2 ) 11 x ← Kinj(x, G, i, m inj G ) 12 x ← LS(x)

Problem Description

The bVRPTW [START_REF] Toth | Vehicle routing: problems, methods, and applications[END_REF] is defined on a graph G = (V, E), where V = {0, 1, . . . , N } is the set of vertices and E = {(i, j) | i, j ∈ V } is the set of arcs. It is possible to travel from i to j, incurring a travel cost c ij and a travel time t ij . Vertex 0 represents the depot where a fleet of K identical vehicles with limited capacity Q is based. Vertices 1, . . . , N represent the customers to be served, each one having a demand q i and a time window [a i , b i ] during which service must occur. Vehicles may arrive before a i . In that case, the driver has to wait until a i to accomplish service incurring a waiting time. Arriving later than b i is not allowed. It is assumed that all inputs are nonnegative integers. The bVRPTW calls for the determination of at most K routes such that the traveling cost and waiting time are simultaneously minimized and the following conditions are satisfied: (a) each route starts and ends at the depot, (b) each customer is visited by exactly one route, (c) the sum of the demands of the customers in any route does not exceed Q, (d) time windows are respected.

Related Works

The original VRPTW aims to minimize the number of vehicles and the total traveling cost. In the literature, we find many lexicographic approaches that minimize the number of vehicles first and then the traveling cost. Nowadays, all Solomon's instances [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF] can be optimally solved using an exact algorithm [START_REF] Pecin | New enhancements for the exact solution of the vehicle routing problem with time windows[END_REF], however, the computational cost grows exponentially with the size of the instances. In practice, meta-heuristic algorithms can obtain a "good enough" solution in a short time and have the capacity to solve large-scale complex problems, which is more suitable for applications. Schneider et al. [START_REF] Schneider | Designing granular solution methods for routing problems with time windows[END_REF] proposed different granular neighborhoods to improve the local search performed. More recently Zhang et al. [START_REF] Zhang | An evolutionary scatter search particle swarm optimization algorithm for the vehicle routing problem with time windows[END_REF] designed a new Evolutionary Scatter Search with Particle Swarm Optimization, the so-called ESS-PSO, able to reach very good results on Solomon's instances in a small amount of time. Considering the multi-objective approaches, the literature is more sparse. Qi et al. [START_REF] Qi | A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows[END_REF] proposed a memetic algorithm based on MOEA/D to solve a bi-objective VRPTW. More recently, Moradi [START_REF] Moradi | The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model[END_REF] integrated a learnable evolutionary model into a Pareto evolutionary algorithm.

Local Search and Knowledge Operators

The LS performed in Algorithm 1 is the same as described in [START_REF] Legrand | New neighborhood strategies for the bi-objective vehicle routing problem with time windows[END_REF]. Briefly, three neighborhood operators are used: swap, relocate, and 2-opt * . Initially, we shuffle the list of operators, so that they are not always applied in the same order. Then, for a given operator, we try to insert each customer to its best location, considering the possible moves allowed by the operator. If a better location is found for the customer, the process is repeated with another customer. When no more improving moves are found for all customers, the search stops and the next operator is picked up. Now we define the K inj and K ext mechanisms related to the bVRPTW. Both mechanisms are based on the work of Arnold et al. [START_REF] Arnold | Exploring highorder neighborhoods by pattern mining and injection[END_REF]. They introduced PILS, an optimization strategy that uses frequent patterns from high-quality solutions, to explore high-order local-search neighborhoods. PILS has been hybridized with the Hybrid Genetic Search (HGS) of Vidal et al. [START_REF] Vidal | A unified solution framework for multi-attribute vehicle routing problems[END_REF] and the Guided Local Search (GLS) of Arnold and Sörensen [START_REF] Arnold | Knowledge-guided local search for the vehicle routing problem[END_REF] to solve the Capacitated Vehicle Routing Problem (CVRP) with good results. Given a solution x of the problem, K ext extracts all patterns of x with a size between 2 and size p , a user-defined parameter. The depot is not considered inside patterns. Patterns are sequences of consecutive customers in a route. For instance, a route r = (0, v 1 , . . . , v |r| , 0), contains max(|r| -k + 1, 0) patterns of size k. Then for each extracted pattern, its frequency inside the groups updated is incremented. K inj tentatively injects N Inj patterns in the current solution x. Only improving patterns are kept in the solution, leading to a kind of elitism selection for patterns. To select a pattern we proceed as follows. First, the size of the pattern is randomly chosen among {2, . . . , size p }. It allows to not bias the selection towards smaller, more numerous, patterns. Then the pattern is randomly chosen among the N F requent most frequent patterns of the same size. Here N F requent is also a parameter of the algorithm. When all the N Inj patterns have been selected, they are injected one by one according to the following steps. Firstly arcs incident to a node of the pattern are removed and the nodes of the pattern are connected. This step creates several pieces of routes, that are reconnected to form a feasible solution. The reconnection is optimal, in the sense that all possibilities are tested. Because of time windows, we do not consider reversed patterns in our mechanism.

6 Experimental Setup

Solomon's Benchmark

We use Solomon's instances [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF], of size 100, to evaluate the performance of all the seven variants presented in Section 4. This set is frequently used in the literature to evaluate the performance of multi-objective algorithms [START_REF] Ghoseiri | Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm[END_REF][START_REF] Qi | A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows[END_REF][START_REF] Moradi | The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model[END_REF]. The set contains 56 instances divided into three categories according to the type of generation used, either R (random), C (clustered), or RC (randomclustered). The generation R (23 instances) randomly places customers in the grid, while the generation C (17 instances) tends to create clusters of customers. The generation RC (16 instances) mixes both generations. Each category is itself divided into two classes, either 1XX or 2XX, according to the width of time windows. Instances of class 2XX have wider time windows than instances of class 1XX, meaning that instances 1XX are more constrained.

Termination Criterion and Performance Assessment

The termination criterion of all the variants is set to 720 seconds. It allows us to obtain accurate and robust results. The quality of the fronts is evaluated with the unary hypervolume [START_REF] Zitzler | Performance assessment of multiobjective optimizers: An analysis and review[END_REF] (uHV), which measures the volume of the area dominated by the solutions of the front. Indeed, true Pareto fronts of the problem are not known, thus we can not use metrics that rely on them. For each instance, the two extreme points used to normalize the objectives of the solutions, are obtained through our experiments and are automatically updated when a new point is found. To compute the uHV we use the point (1.001, 1.001) as a reference. The experiments are run on two computers "Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz", with 24 cores each. The variants have been implemented using the jMetalPy framework [START_REF] Benitez-Hidalgo | jmetalpy: A python framework for multi-objective optimization with metaheuristics[END_REF]. The code is available at https://github.com/Clegrandlixon/kdmoopy.

Tuning

Each algorithm is tuned with irace [START_REF] López-Ibáñez | The irace package: Iterated racing for automatic algorithm configuration[END_REF] to find a good setting of the parameters. To perform the tuning, we generated 96 new instances of size 100, by using the method described by Uchoa et al. [START_REF] Uchoa | New benchmark instances for the capacitated vehicle routing problem[END_REF] to mimic Solomon's instances. Each variant uses the following parameters: M , the number of subproblems considered, and m the size of the neighborhood of each subproblem. The probabilities associated with each mechanism are p cro for the crossover, p inj for the injection, and p mut for the LS. The granularity parameter δ [START_REF] Toth | The granular tabu search and its application to the vehicle-routing problem[END_REF] is used to prune the neighborhood during LS. The maximal size size p of the patterns extracted, and the number N Inj of patterns injected, chosen among the N F requent most frequent patterns. According to a preliminary study and existing works, we set m = 1/4 × M and N F requent = 100. We do not consider the number of groups k G in the tuning, because we want to highlight its influence on the algorithm. We propose a different range of values for the seven remaining parameters (cf. Table 1), to define the configuration space in irace. We granted a budget of 2000 configurations over 8 iterations to irace. Each configuration is evaluated with the uHV metric. The best configurations are presented in Table 2.

We can remark that the number of subproblems is always below 60, which makes sense since small populations are often preferred in genetic algorithms. The granularity is almost always set to 25, which is coherent with existing studies in the literature on routing problems. The maximal size of patterns alternates between 5 and 7, which is close to the value recommended in [START_REF] Arnold | Exploring highorder neighborhoods by pattern mining and injection[END_REF]. Moreover, the probability of applying the LS seems low, but the LS is the most time-consuming step of the algorithm, mainly in the beginning when solutions are not optimized. With p mut = 0.10 the LS represents already 50% of the running time. However, it represents only 60% when p mut = 0.25. The second most time-consuming step is the injection mechanism. When p inj = 1.00, it represents around 25% of the total running time, but this mechanism requires a constant cost during the execution contrarily to the LS. 

Experimental Protocol

In our experiments, we investigate how the number of groups and the strategy followed by the injection impact the quality of the solutions returned.

To that aim, each variant is executed 30 times on the 56 instances of size 100 of Solomon's benchmark. For each algorithm, the k-th run of an instance is executed with the seed 10(k -1), to compare the algorithms with the same seeds. We recall that the termination criterion is set to 720 seconds for all variants. For each category of instance (either R, RC, or C), we compute the average uHV obtained over the 30 runs. Then we rank each variant on each instance and we compute the average rank on all the categories. We perform a Friedman test on the average uHV, to know if all algorithms are equivalent, and if it is not the case, we apply a pairwise Wilcoxon test with the Bonferroni correction to know which algorithms are statistically better. Finally, we define a fourth category All, containing all the instances, and we compute similarly the average ranks of each variant in that case.

Experimental Results and Discussion

In previous studies [START_REF] Legrand | Enhancing moea/d with learning: Application to routing problems with time windows[END_REF][START_REF] Legrand | New neighborhood strategies for the bi-objective vehicle routing problem with time windows[END_REF], we compared different instantiations of the framework with the original MOEA/D (i.e. without using the knowledge groups). It shows that using the knowledge discovery framework is beneficial. Table 3 (resp. Table 4) shows the average rank (resp. uHV) of each variant on each category of instance. The variant A 5 int always leads to the best average rank (1.46) and average uHV (0.828). Moreover, this variant returns statistically better results than the other variants. Hence it is interesting to use more than one group in a multi-objective context.

Using the diversification strategy with five groups worsened a lot the returned results. Indeed, A 5 div ranks 5.73 on average, which is the second highest rank. Only A 3 int has a higher rank. The other variant A 3 div has also a high rank, meaning that using three groups is a wrong choice in that context.

The variants A M int and A M div provide average uHV that are close in value. It is 0.767 for A M int and 0.770 for A M div . The conclusion is similar if we look at each category separately. Hence, when many groups are used, there is not a significant difference between intensification and diversification strategies for the injection.

Surprisingly, the Base variant returns good results, except on clustered instances. Hence it is not interesting to use a too-large or a too-small number of groups. The goal is to provide a "good" intermediate value. Here, the best results are obtained with five groups, but further studies should investigate the behavior of the procedure with different numbers of groups or consider the possibility of adapting the number of groups during execution. 

Conclusion

Integrating a knowledge discovery mechanism into a metaheuristic requires taking into account a lot of design aspects, summarized by the questions: What, Where, When, and How should the knowledge be extracted and injected. In this article, we mainly focused on the question How, while we considered existing works to answer the other questions. In particular, to answer the How question we have to consider how should interact the extraction and injection components of the KD mechanism, to be as efficient as possible.

As a contribution, we defined the notion of knowledge groups, studied in the literature, by giving a construction for any number of groups in a bi-objective context. Moreover, we formalized the strategies that extraction and injection can follow, and we instantiated them to obtain an intensification and a diversification strategy. We integrated our propositions into a MOEA/D framework, and we tested them on a bVRPTW. The results showed that the variant using five knowledge groups with an intensification strategy for both the injection and extraction was statistically better than the others.

In the near future, our framework will be compared to different state-of-theart algorithms (e.g. NSGA-II, MODLEM), and different problems will also be investigated (e.g. bTSP). The tuning phase performed by irace provided similar configurations for each of the variants. Hence it will be interesting to investigate, whether with the same parameter configuration for all variants similar conclusions can be reached. Moreover, the number of groups will be considered as a parameter to be tuned in future works, to see if irace achieves similar conclusions. We would also like to investigate more deeply the impact of the strategies presented for injection and extraction. Finally, we aim to create an adaptive algorithm, which automatically adapts the number of groups and the strategies followed by the operators.

4. 1

 1 MOEA/DMOEA/D[START_REF] Zhang | Moea/d: A multiobjective evolutionary algorithm based on decomposition[END_REF] is a genetic algorithm that approximates the Pareto front by decomposing the multi-objective problem into M several scalar objective sub-problems. The scalarization is obtained by weighting each of the n objectives f k with a weight w k ∈ [0, 1]. Thus the fitness of a solution x for the subproblem i is the following quantity

G = 1

 1 ) or a diversification (m inj G = k G ) strategy as explained in Section 4.2. At line 16, the extraction procedure K ext is used to extract the knowledge from the set of solutions generated during the iteration. Then it updates the closest group (m ext G = 1) of the subproblem being optimized as explained in Section 4.2. In the following section, we instantiate the Algorithm 1 with different values of k G .

Input: M weight vectors w 1 5 N

 15 , . . . , w M . The number kG of knowledge groups and the strategy m inj G (resp. m ext G ) for Kinj (resp. Kext). Output: The external archive A /* Initialisation */ 1 A ← ∅; S ← ∅ 2 P ← random initial population (x i for the i-th subproblem) 3 G ← createGroups(kG) 4 for i ∈ {1, . . . , M } do (i) ← indexes of the m closest weight vectors to w i 6 Obj i ← {fj(x i ) | 1 ≤ j ≤ n} /* Core of the algorithm */ 7 while not stopping criterion satisfied do 8 for i ∈ {1, . . . , M } do 9

13 S ← S ∪ {x} 14 updateNeighbors

 1314 

Table 1 .

 1 Parameter's space given to irace. The space contains 77175 configurations.

	Name

Table 2 .

 2 Best elite configurations returned by irace for each variant.

	Params.	Base	A 3 int	A 3 div	A 5 int	A 5 div	A M int	A M div
	M	60	60	40	40	20	40	20
	m	15	15	10	10	5	10	5
	δ	50	25	25	25	25	25	25
	pcro	0.50	0.50	0.90	0.50	0.90	0.50	0.75
	pmut	0.10	0.10	0.10	0.25	0.10	0.10	0.25
	sizep	5	5	7	7	5	5	5
	NInj	60	20	40	60	60	40	40
	pinj	0.75	0.75	1.00	1.00	0.90	1.00	0.90

Table 3 .

 3 Average ranks of the variants according to their average uHV over the different categories of instance. Bold results are statistically significant.

	Category	Base	A 3 int	A 3 div	A 5 int	A 5 div	A M int	A M div
	R	2.52	6.65	4.09	1.26	5.59	4.61	3.28
	RC	2.16	6.94	4.72	1.56	5.53	3.53	3.56
	C	4.09	5.29	5.50	1.62	6.12	2.21	3.18
	All	2.89	6.32	4.70	1.46	5.73	3.57	3.33

Table 4 .

 4 Average uHV of the variants according to their average uHV over the different categories of instance. Bold results are statistically significant.

	Category	Base	A 3 int	A 3 div	A 5 int	A 5 div	A M int	A M div
	R	0.730	0.627	0.703	0.764	0.667	0.682	0.706
	RC	0.738	0.590	0.695	0.781	0.665	0.713	0.705
	C	0.889	0.848	0.848	0.959	0.831	0.934	0.919
	All	0.780	0.684	0.745	0.828	0.716	0.767	0.770