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SUBMANIFOLDS WITH AMPLE NORMAL BUNDLE

MAYCOL FALLA LUZA, FRANK LORAY, AND JORGE VITÓRIO PEREIRA

ABSTRACT. We construct germs of complex manifolds of dimension m along
projective submanifolds of dimension n with ample normal bundle and without
non-constant meromorphic functions whenever m ≥ 2n. We also show that our
methods do not allow the construction of similar examples when m < 2n by
establishing an algebraicity criterion for foliations on projective spaces which
generalizes a classical result by Van den Ven characterizing linear subspaces of
projective spaces as the only submanifolds with split tangent sequence.
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1. INTRODUCTION

Let X be a (not necessarily compact) complex manifold and let Y ⊂ X be
a compact and connected submanifold. We are interested in the field C(X,Y ) of
germs of meromorphic functions along Y , i.e. equivalence classes of meromorphic
functions defined on arbitrarily small open subsets of X containing Y .

When the normal bundle of Y in X is ample, classical results by Andreotti and
Hartshorne imply that the transcendence degree of C(X,Y ) over C is bounded by
the dimension of X . Recently, in [11], the first two of the authors of the present
paper proved the existence of germs of smooth surfaces S along a smooth compact
curve C isomorphic to P1 with arbitrary positive self-intersection without non-
constant meromorphic functions.

Our first main result is a simpler, yet more general, construction of germs of
complex manifolds without non-constant meromorphic functions that generalizes
the main result of [11].

Theorem A. For any complex projective manifold Y of dimension n and any pair
of natural numbers (ℓ,m) such that m ≥ 2n and ℓ ≤ m, there exists a germ of
complex manifold X of dimension m and containing Y such that the normal bundle
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of Y in X is ample and the transcendence degree of C(X,Y ) over C is equal to
ℓ. Moreover, when ℓ = 0 we can further guarantee that X carries no irreducible
subvarieties of dimension at least n + 1 neither foliations/webs of arbitrary non-
zero dimension/codimension.

More informally, if a submanifold Y ⊂ X with ample normal bundle has di-
mension smaller than its codimension then there are no restrictions on the tran-
scendence degree of C(X,Y ) over C besides the upper bound dimX .

In sharp contrast, when Y is a smooth hypersurface with ample normal bundle
on a complex manifold X and dimY ≥ 2, Rossi proved in [21, Section 5, Theorem
3] the existence of a projective manifold X and an open subset U ⊂ X containing
Y that can be identified with an open subset of X .

Question 1.1. Let X be a complex manifold and Y ⊂ X a compact submanifold
with ample normal bundle. Does dimX < 2 dimY (i.e. codimY < dimY )
implies tr degCC(X,Y ) = dimX ?

Theorem A and Question 1.1 should be compared with a conjecture by Peter-
nell [20] which predicts that field C(X) of meromorphic functions on a compact
Kähler manifold X admitting a subvariety Z with ample normal bundle satisfies
tr degCC(X) ≥ dimZ + 1. We do not know if we can construct examples of
pairs (X,Y ) with X compact Kähler with arbitrary tr degCC(X,Y ). Peternell’s
conjecture predicts that this is not the case.

One of the main ingredients of our proof of Theorem A is an old trick attrib-
uted to Haefliger and explored by Loeb-Nicolau, López de Medrano-Verjovsky,
and Meersseman, see [17, Introduction] and references therein. In order to con-
struct complex manifolds, it suffices to construct smooth differentiable manifolds
transverse to holomorphic foliations. Another key ingredients used in the proof
of Theorem A are the very same results by Andreotti and Hartshorne mentioned
above that served as motivation for this work.

Although we are not able to provide an answer to Question 1.1, our second main
result shows that the method of proof of Theorem A cannot be applied to produce
counter-examples to it.

Theorem B. Let F be a codimension q foliation on Pn and let Z ⊂ Pn be a
submanifold disjoint from sing(F). If q < 2 dimZ and, for every z ∈ Z, the
intersection of the tangent spaces of F and Z at z has the expected dimension
max{0, dimZ + dimF − n} then F is algebraically integrable.

As we will explain in Section 4, Theorem B is strictly related to a classical result
of Van de Ven [23] characterizing linear subspaces of projective spaces. We also
point out, that it is unclear what the optimal statement should be. It is conceivable
that under the assumptions of Theorem B the foliation F must defined by a linear
projection (i.e. F has degree zero). We actually prove this when F is a foliation
by curves, see Theorem 4.4.

1.1. Acknowledgments. The authors thank Brazilian-French Network in Math-
ematics and CAPES/COFECUB Project Ma 932/19 “Feuilletages holomorphes
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2. EXTENSION

2.1. Conventions. Although we are mainly interested on submanifolds of com-
plex manifolds, we will need to consider the more general notion of complex
analytic spaces in the sense of Grauert, see for instance [13, Appendix B]. To
wit, subvarieties are closed complex analytic subspaces without nilpotents in their
structural sheaves, and submanifolds are smooth subvarieties.

2.2. Infinitesimal neighborhoods. Let X be a complex manifold and let Y ⊂ X
be a closed and connected complex analytic subspace. If I is the defining ideal
sheaf of Y then n-th infinitesimal neighborhood of Y is the complex analytic space
Y (n) with underlying topological space equal to Y and structural sheaf equal to

OX

In+1
.

There are natural inclusions Y (n) ↪→ Y (n+1) between infinitesimal neighbor-
hoods of Y induced by the natural restriction morphisms

OX

In+2
→ OX

In+1
.

The formal completion of X along Y , denoted here by Y (∞), is the formal analytic
space obtained as the direct limit of Y (n) when n goes to∞, i.e.

Y (∞) = lim−→Y (n) .

In other words, Y (∞) is the ringed space with underlying topological space equal
to Y and with structural sheaf equal to the inverse limit

OY (∞) = lim←−
OX

In+1
= lim←−OY (n) .

2.3. The field of formal meromorphic functions. Following [14], we define the
sheaf MY (∞) of (formal) meromorphic functions on Y (∞) as the sheaf associ-
ated to the presheaf with sections over an open subset U ⊂ Y equal to the total
ring of fractions of OY (∞)(U). We will denote the global sections ofMY (∞) by
C(Y (∞)).

As we are assuming that Y is connected C(Y (∞)) is a field, see [5, Proposition
9.2]. Moreover, we have injective restriction morphisms

(2.1) C(X) ↪→ C(X,Y ) ↪→ C(Y (∞)).

When Y is a point on a n-dimensional projective manifold X , then C(X,Y ) is
the quotient field of the ring of convergent power series C{x1, . . . , xn} while
C(Y (∞)) is the quotient field of the ring of formal power series C[[x1, . . . , xn]].
Therefore, in general, both inclusions can have infinite transcendence degree.
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In sharp contrast, Hironaka and Matsumura [14, Theorem 3.3] proved the fol-
lowing result for subvarieties of projective spaces.

Theorem 2.1. Let Y be a closed and connected complex analytic subspace of Pn,
n ≥ 2. If dimY ≥ 1 then C(Y (∞)) = C(X,Y ) = C(Pn).

For an analytic version of Theorem 2.1, establishing the equality C(X,Y ) =
C(Pn) through Hartog’s theorem and without the use of formal geometry, see [22,
Theorem 3].

When dimY > 0 and the normal bundle of Y is ample, we can rephrase a result
by Hartshorne [12, Theorem 6.7 and Corollary 6.8] to our setting as follows.

Theorem 2.2. Let Y be a connected and compact complex analytic subspace of a
complex manifold X . If Y is locally a complete intersection of dimension at least
one and the normal bundle NY/X is ample then the transcendence degree over C
of C(Y (∞)) is bounded by the dimension of X . Moreover, if tr degCC(Y (∞)) =
dimX then C(Y (∞)) is a finitely generated extension of C.

Although Theorem 2.2 was originally stated in the algebraic category,
Hartshorne’s proof works, as it is, in the context of complex manifolds considered
here.

When the ambient manifold X is projective (or more generally Moishezon) and
Y has ample normal bundle, Theorem 2.2 implies that C(Y (∞)) is a finite al-
gebraic extension of C(X). Consequently, in this case, both inclusions in (2.1)
are finite algebraic extensions. This fact combined with the proposition below,
due to Badescu and Schneider (see [6, Proposition 3.5] or [5, Proposition 10.17]),
imply the convergence of formal meromorphic functions defined on formal neigh-
borhoods of subvarieties with ample normal bundle on projective manifolds.

Proposition 2.3. Let X be a projective manifold and Y ⊂ X a connected sub-
variety. Then the algebraic closure of C(X) inside of C(Y (∞)) is contained in
C(X,Y ).

Corollary 2.4. Let X be a projective manifold and Y ⊂ X a connected subvariety
with ample normal bundle. Then C(X,Y ) = C(Y (∞)).

Question 2.5. If the ambient space is not projective, just a small euclidean neigh-
borhood of Y , is it true that the ampleness of NY implies the convergence of the
formal meromorphic functions ?

Rossi’s theorem ([21]) gives a positive answer when Y is a hypersurface of
dimension at least two.

2.4. Continuation of analytic subvarieties. The next result was proved by Rossi
in [22, Theorem 3.2] under the additional assumption dim(V ∩ Y ) + n =
dimY + dimV . The improvement below is due to Chow [9, Corollary of The-
orem 4]. Unaware of Chow’s improvement on Rossi’s result, one of the authors
of the present paper obtained an alternative proof of Rossi-Chow Theorem in [19,
Theorem C].
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Theorem 2.6. Let Y ⊂ Pn be an irreducible subvariety and let U ⊂ Pn be a
Euclidean neighborhood of Y . If V ⊂ U is an irreducible subvariety of U with
dimV +dimY > n and non-empty intersection with Y then there exists a projec-
tive subvariety V ⊂ Pn such that V is an irreducible component of V ∩ U .

Bost [4, Theorem 3.5], Bogomolov-McQuillan [2], Campana-Paun [7, Theorem
1.1], Druel [10, Proposition 8.4], and others, used variants of Hartshorne’s argu-
ment to establish algebraicity criteria for leaves of foliations on projective varieties.
See also the work of Chen [8, Theorem A] for an algebraicity criterion for formal
subschemes of projective schemes. Here we point out that we can deduce from
Theorem 2.2 a variant of Theorem 2.6.

Proposition 2.7. Let X be a projective manifold, let Y ⊂ X be an irreducible lo-
cally complete intersection analytic subspace/subscheme with ample normal bun-
dle, and let U ⊂ X be a small Euclidean neighborhood of Y . If V ⊂ U is a closed,
irreducible, smooth subvariety of U such that

(1) dimV + dimY > dimX and
(2) dim(V ∩ Y ) + dimX = dimY + dimV

then there exists a projective subvariety V ⊂ X such that V is an irreducible
component of V ∩ U .

Proof. Condition (1) implies that dimV ∩ Y > 0. Condition (2) implies that the
codimension of V ∩Y in V equals the codimension of Y in X . Therefore V ∩Y is
a locally complete intersection analytic subspace of V with ample normal bundle
and positive dimension. Consider the Zariski closure V ⊂ X of V and notice
that tr degCC(V ) = tr degCC(V ∩ Y (∞)). On the other hand, we can apply
Theorem 2.2 to V ∩ Y ⊂ V and get that tr degCC(V ∩ Y (∞)) ≤ dim(V ), and
conclude. □

3. CONSTRUCTION

We carry out the proof of Theorem A in this section.

3.1. Weakly transverse submanifolds. LetF be a singular holomorphic foliation
on a complex manifold W . We will say that a submanifold Z ⊂ W is weakly
transverse to F if

(1) the singular set of F does not intersect Z; and
(2) for every point z ∈ Z, the tangent space of Z at z intersects the tangent

space of F at z only at 0.
The relevance of the concept to our discussion is put in evidence by our next

result.

Proposition 3.1. LetF be a singular holomorphic foliation on a complex manifold
W . If Z ⊂ W is a compact submanifold weakly transverse to F then there exist
a neighborhood U of Z; a complex manifold X of dimension equal to dimW −
dimF; and a holomorphic submersion π : U → X such that

(1) the leaves of F
∣∣
U

coincide with the fibers of π; and
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(2) the morphism π maps Z isomorphically to a submanifold Y of X with
normal bundle isomorphic to the quotient of NZ/W by the image of TF

∣∣
Z

inside it; and
(3) the field of germs of meromorphic functions C(X,Y ) is mapped by π∗

isomorphically onto the field of germs of meromorphic first integrals of the
germ of foliation F

∣∣
(W,Z)

.

Proof. Let U be equal to a sufficiently small tubular neighborhood of Z in W . The
weakly transversality between F and Z implies that the leaves of F

∣∣
U

are closed
subvarieties of U . Therefore the leaf space X = U/F of F

∣∣
U

is a Hausdorff
complex manifold. The quotient morphism π : U → X has the sought properties.

□

3.2. Formal meromorphic functions versus rational first integrals. The field of
meromorphic functions of the leaf space constructed in Proposition 3.1 is described
by the lemma below.

Lemma 3.2. Notation and the assumptions as in Proposition 3.1. Further assume
that W = Pm. If Y (∞) ⊂ X is the formal completion of Y = π(Z) in X then
C(Y (∞)) is isomorphic to the field of rational first integrals of the foliation F .

Proof. Direct consequence of Hironaka-Matsumura result discussed in Subsec-
tion 2.3. Indeed, the pull-back of C(Y (∞)) under π is the subfield of C(Z(∞))
formed by the formal meromorphic first integrals ofF

∣∣
Z(∞)

. By Hartshorne result,
C(Z(∞)) coincides with the field C(W ) = C(Pm) the field of rational functions
on W . Consequently, we get an isomorphism between C(Y (∞)) and the field of
rational first integrals of F . □

Remark 3.3. Likewise, when F is a global foliation on Pn, foliations/webs living
in the leaf space of F

∣∣
U

correspond to global foliations/global webs invariant by
F . This again is a consequence of Hartshorne’s result.

The situation for subvarieties of the leaf space is slightly different, and it is not
true that their pre-iamges under the quotient morphism can always be globalized.

Lemma 3.4. Notation and the assumptions as in Proposition 3.1. Further assume
that W = Pm. If S ⊂ X = U/F is a subvariety intersecting Y = π(Z) such that
dimS +dimY > dimX then π−1(S) is contained in a F-invariant subvariety S
of Pm with dimS = dimS + dimF .

Proof. Direct consequence of Theorem 2.6. □

3.3. Existence of weakly transverse submanifolds. As shown below, the exis-
tence of weakly transverse submanifolds, under suitable numerical assumptions, is
easy consequence of Kleiman’s transversality of a general translate.

Lemma 3.5. Let F be a foliation by curves on Pm+1 with isolated singularities.
Let Y ⊂ Pm+1 be a projective submanifold of dimension n. If m ≥ 2n then Y is
weakly transverse to g∗F for any general g ∈ Aut(Pm+1).
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Proof. The proof is a simple application of Kleiman’s transversality of a general
translate, [15, Theorem 2]. Indeed, we can identify the projectivization of the
tangent bundle of Y , P(TY ) (space of lines on TY ), with a submanifold τ(Y ) of
PTPm+1 of dimension 2n − 1. Likewise, we consider τ(F) ⊂ P(TPm+1) as the
Zariski closure of the tangent lines of F

∣∣
Pm+1−sing(F)

. As such τ(F) ⊂ P(TPm+1)

is a subvariety of dimension m+ 1. By assumption

dim τ(Y ) + dim τ(F) < dimP(TPn) .

Since the natural action of Aut(Pm+1) on P(TPm+1) is transitive, we can apply [15,
Theorem 2] to guarantee that, for a general g ∈ Aut(Pm+1), g∗τ(F) = τ(g∗F) is
disjoint from τ(y). The lemma follows. □

3.4. Field of rational first integrals of foliations on projective manifolds. Let
F be a foliation on a projective manifold X . According to [3], there exists a unique
foliation by algebraic leaves G containing F and such that C(F) = C(G).

Example 3.6. Let λ1, . . . , λm+1 be complex numbers and consider the following
vector field on Cm+1

v =

m+1∑
i=1

λixi
∂

∂xi
.

The foliation F on Pm+1 defined by v has Zariski closure G of dimension equal
to the dimension of Q-vector subspace of C generated by λ1, . . . , λm+1. In par-
ticular, choosing appropriately the complex numbers λ we have one dimensional
foliations on Pm+1 having field of rational first integrals of any transcendence de-
gree between 0 and m.

3.5. Proof of Theorem A. Let F be a one-dimensional foliation Pm+1 with field
of rational first integrals of transcendence degree ℓ over C. For instance, we can
take a foliation F as in Example 3.6. Embed Y in Pm+1. According to Lemma
3.5 we can assume that Y is weakly transverse to F . Proposition 3.1 implies the
existence of an Euclidean open subset U ⊂ Pm+1 containing Y such that the leaf
space X = U/F

∣∣
U

has C(X) equal to C(F
∣∣
U
). Lemma 3.2 implies that C(X)

equals to C(F). This shows that the leaf space X = U/F
∣∣
U

is a complex manifold
of dimension m containing Y and with tr degCC(X,Y ) = ℓ as claimed.

The last claim concerning the existence of manifolds with ℓ = 0 follows from
Remark 3.3 and Lemma 3.4 combined with [18, Theorem 1] which guarantees that
the very general one-dimensional foliation on Pm+1 of degree at least two is not
tangent to any other foliation or web and does not leave invariant any algebraic
subvariety. □

4. ALGEBRAICITY

In this section we will present a proof of Theorem B from the Introduction.
Actually Theorem B is the combination of Theorems 4.1 and 4.4 below.
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4.1. Submanifolds transverse to foliations. We start by treating submanifolds
transverse to foliations.

Theorem 4.1. Let F be a codimension q foliation on a projective space Pn. If Z ⊂
Pn is a submanifold disjoint from sing(F) and transverse to F then dimZ = q, Z
is a linear subspace, and the foliation F has degree zero.

Proof. Let i : Z → Pn be the natural inclusion and let ω ∈ H0(Pn,Ωq
Pn⊗detNF )

be a q-form defining F . Observe that dimZ ≥ q = codimF by the definition of
transversality. Moreover, i∗ω ∈ H0(Z,Ωq

Z⊗detNF
∣∣
Z
) is an everywhere non-zero

twisted q-form on Z. If dimZ ≥ q + 1 then i∗ω defines a smooth foliation on Z
of positive dimension. Bott’s vanishing theorem implies that (detNF

∣∣
Z
)q+1 = 0.

But detNF
∣∣
Z

is an ample line-bundle and q+1 ≤ dimZ, hence (detNF
∣∣
Z
)q+1 ̸=

0. We obtain in this way a contradiction that establishes that dimZ = q. Therefore
the non-vanishing of i∗ω implies that the canonical sheaf Ωq

Z is isomorphic to
detN∗

F
∣∣
Z
= OZ(−deg(F) − q − 1). Kobayashi-Ochiai Theorem [16, Corollary

of Theorem 1.1] implies that Z = Pq , deg(F) = 0 and deg(Z) = 1. □

Remark 4.2. Let F be a codimension q foliation on a projective manifold X . If
Z ⊂ X is a submanifold with ample normal bundle, disjoint from sing(F), and
transverse to F then proof of Theorem 4.1 shows that dimZ = q. Hence TF

∣∣
Z
≃

NZ is ample and we can apply [4, Theorem 3.5] or [2] to guarantee that every leaf
of F passing through the points of Z is algebraic. Consequently, by dimension
reasons, every leaf of F is algebraic and F is algebraically integrable.

We present below a proof of a classical result by Van de Ven.

Corollary 4.3. Let X be a submanifold of Pn. If the normal sequence

0→ TX → TPn

∣∣
X
→ NX → 0

splits then X is a linear subspace of Pn.

Proof. Let q be the codimension of X . The existence of a splitting φ : NX →
TPn

∣∣
X

gives us for every x ∈ X , a unique linear Pq through x with tangent space
at x equal to φ(NX(x)). If U is a sufficiently nieghborhood of X then this family
of Pq’s will not intersect at U , and will thus define a codimension q foliationFU on
U . Theorem 2.2 implies that FU extends to a foliation F on Pn. By construction
F is transverse to X . Theorem 4.1 implies the result. □

4.2. Submanifolds weakly trasnverse to foliations. Our last result treats the case
of submanifolds weakly transverse to foliations.

Theorem 4.4. Let F be a codimension q foliation on Pn. If Z is a submanifold
weakly transverse to F and q < 2 dimZ then F is algebraically integrable. More-
over, if dimF = 1 then deg(F) = 0.

Proof. Let U ⊂ Pn be a sufficiently small Euclidean neighborhood of Z. Let
π : U → U/F be the quotient of U by F

∣∣
U

. Observe that V = π−1(π(Z)) is a
closed subvariety of U of dimension

(4.1) dimF + dimZ.
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Hence our assumptions imply that dimZ+dimV = 2dimZ+dimF > n. The-
orem 2.6 implies that V , the Zariski closure of V , and V have the same dimension.
Since V is invariant by F

∣∣
U

, V is also invariant by F .
Let G be the unique foliation by algebraic leaves containingF and with C(F) =

C(G) given by [3]. After replacing Z by gZ for a sufficiently general automor-
phism g ∈ Aut(Pn), we can assume that the Zariski closure of a leaf of F through
a general point z of Z coincides with a leaf of G. Therefore

(4.2) dimV = dimG + dimZ.

Since dimV = dimV , we can combine Equations (4.1) and (4.2) to establish the
algebraicity of the leaves of F , in other terms F = G.

In the one dimensional case, weakly transversality implies the existence of a
nowhere zero section of NZ ⊗ ωF |Z , thus ccod(Z)(NZ ⊗ ωF ) = 0.

Since NZ is an ample vector bundle, and the Chern classes of ample vector
bundles are strictly positive according to [1, Theorem 2.5], we deduce that ωF is
not nef. Since ωF |Z = OZ(deg(F) − 1) we necessarily have deg(F) = 0 as
claimed. □

Remark 4.5. We believe that a similar statement should hold true if Pn is replaced
by an arbitrary projective manifold and Z is replaced by a submanifold with ample
normal bundle.
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[5] Lucian Bădescu, Projective geometry and formal geometry, Instytut Matematyczny Polskiej
Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish
Academy of Sciences. Mathematical Monographs (New Series)], vol. 65, Birkhäuser Verlag,
Basel, 2004.
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