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Passive antenna characterization through impedance
correlations in a diffuse field

Meriem Tamart, Julien de Rosny, Member, IEEE, and Elodie Richalot, Member, IEEE

Abstract—Ambient noise correlations allow the passive re-
covery of Green’s functions between two probes. Recently, the
same approach has been applied to electromagnetism, but by
correlating diffuse fields in mode stirred chambers. Until now,
only correlation of S-parameters has been studied. However, it
has very recently been shown that the result can be difficult
to interpret. To overcome this limitation, a new approach is
proposed in this paper to directly estimate the self and mutual
impedances of two coupled antennas from impedance corre-
lations. The theoretical developments presented are validated
experimentally in a reverberation chamber excited by a single
antenna where mechanical and source stirring techniques are
combined to generate a sufficiently diffuse field environment.
It is shown, with antennas of different properties, that this
approach allows to reconstruct with a good accuracy the complex
impedance matrix between two receiving antennas as well as
the transmission coefficient between them. The extracted gain
pattern, in good agreement with that measured in an anechoic
chamber, shows the good sensitivity of the proposed passive
characterization technique.

Index Terms—antenna coupling, cross-correlation, passive an-
tenna measurement, reverberation chamber

I. INTRODUCTION

S INCE the pioneer work of Weaver and Lobkis in 2001
based on the fluctuation-dissipation theorem [1], [2],

cross-correlation techniques have been used in numerous
physics domains to retrieve, from the recording of the diffuse
field generated by noise sources, the Green’s function between
two passive and non-invasive point-like sensors, as if a pulse
were emitted by one of the sensors. The convergence of
the cross-correlation of the field requires the equipartition
of the noise field. This approach has been used to gain
information about the propagation medium, as in geophysics
where the elastic response of Earth has been investigated [3]
or for passive structural health monitoring with the detection
of defect appearance [4], [5]. Information about the sensors
themselves can also be extracted as with their localization [6].

A first experimental demonstration of electromagnetic
Green’s function retrieval in the microwave range has been
performed in anechoic and reverberant cavities by computing
the average cross-correlation of noise signals generated by a
wideband diffuse thermal radiation, and the ability to detect
and locate a scattering object solely using this thermal ambient
has been demonstrated [7]. To increase the field intensity, an
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emitting antenna has then been used as a source; the equiparti-
tioned field has been obtained while performing measurement
within a reverberation chamber (RC) inducing field multiple
scattering for different cavity configurations thanks to the
mode-stirrer rotation [8] or a programmable metasurface [9].
The influence of antenna properties on the cross-correlation
result has been highlighted using an antenna and an electro-
optical probe as sensors [8]. Indeed, whereas the time domain
cross-correlation converges towards the sum of the anticausal
and causal Green’s functions with noninvasive probes, only
the anticausal Green’s function can be retrieved when the
electro-optical probe is used along with an absorbing antenna,
as a consequence of the incoming energy absorption by the
matched antenna.

The underlying principle beyond the passive estimation of
the Green’s function from noise correlation can be related to
the thermodynamic equilibrium. In 1946, Dick [10] predicted
that the power spectral density (PSD), i.e. the Fourier trans-
form of the autocorrelation, induced on a matched antenna by
the radiations generated by the walls of a black body cavity at
a given temperature is equal to the autocorrelation of Johnson’s
noise generated by the matched load at the same temperature.
Later, this equivalence principle was generalized to the cross
power spectral density (CSD) based either on the fluctuation
dissipation theorem [11] or on Thevenin’s theorem [12]. In [8],
this principle has been applied to RCs based on the heuristic
assumption that the diffuse field generated in such a room is
equivalent to the thermal field generated by the surfaces of a
virtual black body at the boundary of the reflective cavity. Only
recently [13], it was rigorously shown based on the unitary of
the scattering matrix (S), that the CSD of the S parameters
between one transmit antenna and 2 receive antennas, i.e.
CS12(ω) ≡ ⟨S1Tx(ω)S

∗
2Tx(ω)⟩, converges toward

CS12(ω) ≈ −η ⟨S∗
21(ω).S11(ω) + S12(ω).S

∗
22(ω)⟩ , (1)

where η is the ratio of the number of antenna ports over
the number of all ports including virtual ones which account
for room losses. Symbol ⟨·⟩ indicates an averaging over all
measurement configurations. However, first this expression is
difficult to exploit in order to passively estimate the coupling
parameters S12 and S21 because it also depends on the
unknown factor η and the reflection parameters S11 and S22,
and second it is only valid for lossless antennas.

For this reason, we propose here an alternative ap-
proach based on the cross-spectral density between mutual
impedances CZ12(ω) ≡ ⟨Z1Tx(ω).Z

∗
2Tx(ω)⟩. We show it

converges directly toward the radiation impedance between
both receiving antennas Z12 and some simple properties of the
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RC and the transmitter. As the self-impedances Z11 and Z22

can be retrieved through the calculation of the autocorrelation,
the whole Z-matrix between both antennas can be estimated
allowing a complete passive characterization of two coupled
antennas. The knowledge of the impedance matrix can then
be exploited to extract other parameters of interest such as
antenna reflection coefficients or radiation pattern. This cor-
relation approach would thus permit to characterize antennas
and the coupling between them while keeping antennas under
test in their receiving mode that is in particular mandatory
for small integrated antennas that cannot be turned into their
emitting mode.

A first demonstration of the capability to retrieve passively
within a reverberation chamber the mutual impedance between
two antennas had been presented in a previous paper [14],
but without calculating the proportionality coefficient between
both entities; as a consequence, only normalized results were
presented and, as this coefficient varies versus frequency, a
distortion of the time response was observed. The theoretical
developments presented for the first time in this paper permit
to determine the real amplitudes of the three impedances.
Similarly to [13], the proportionality factor accounts for the
cavity losses in a simple way through the cavity damping
coefficient. Besides, our impedance approach allows managing
the antenna’s losses through the antenna efficiency, whereas
only lossless antennas had been considered until now.

This paper first of all presents in Section II the theoretical
developments leading, in the case of two coupled antennas
placed within a mode stirred RC excited by an antenna, to
the relationships between, on one hand, the CSD between
Z1Tx and Z2Tx and the real part of mutual impedance Z12

between both receiving antennas, and on the other hand
between the PSD and the real parts of their self impedances.
These theoretical formulas are then validated in Section III
while using, as receiving antennas, two facing horn antennas of
different characteristics. In Section V-C, we will discuss how
to estimate the impedance correlation using high impedance
loads. It is also shown that, besides the real parts of the
impedances, their imaginary parts can also be reconstructed
after a suited post-processing step and, once the total complex
impedance matrix is known, the transmission coefficient can
also be passively estimated. The robustness of our method
is also tested for two coupled receiving antennas of different
natures, indeed a horn antenna and a slot antenna. Section IV
is dedicated to the application of the correlation technique to
estimate in a passive way the gain pattern of an antenna. After
discussions on the measurement conditions, a conclusion ends
this paper.

II. THEORY

The equivalent system of the antenna network considered
here is depicted in Fig. 1. In this section, all the quantities
are considered in the frequency domain and their frequency
dependence are implicit. There is one transmitting antenna of
self impedance ZTx excited by a current generator of intensity
ITx; this antenna is considered to be far enough from the
two receiving antennas so that its radiation properties are

Fig. 1. Equivalent linear system of the interaction between one transmitting
antenna (Tx) and two coupled receiving antennas labeled 1 and 2.

not modified by their presence, whereas the two receiving
antennas are coupled to each other. The Tx-antenna induces an
electromotive force e1 (resp. e2) at the terminal of receiving
antenna 1 (resp. 2). The voltage and current at the antenna
port of antenna 1 (resp. 2) are U1 and I1 (resp. U2 and I2).
The electromotive forces are related to the currents by the
generalized Ohm’s law

e = (ZL + ZA︸ ︷︷ ︸
ZT

)I,

where e = (e1, e2)
t and I = (I1, I2)

t. The self and cross
interactions between antennas 1 and 2 is modeled by the
2-by-2-element impedance matrix ZA. The matrix ZL is a
generalization of the load impedance to a network system. The
correlations between the electromotive forces can be expressed
in terms of

〈
IeH

〉
(subscript H stands for the transpose

conjugate)〈(
e1
e2

)
(e∗1, e

∗
2)

〉
=

(
⟨e1e∗1⟩ ⟨e1e∗2⟩
⟨e2e∗1⟩ ⟨e2e∗2⟩

)
= ZT

〈(
I1
I2

)
(e∗1, e

∗
2)

〉
. (2)

The network of the two receiving antennas is matched when
ZL is equal to ZH

A [15]. In such a case, the impedance matrix
ZT is Hermitian. As a consequence, it can be diagonalized,
i.e., it exists two orthonormal eigenstates (u1 and u2) and two
complex eigenvalues (z1T and z2T ) such as

ZTu1,2 = z1,2T u1,2. (3)

Introducing the projection matrix such as P = (u1,u2),〈
IeH

〉
can be expressed in terms of eigenstates〈

IeH
〉
= P

〈(
I ′1
I ′2

)
(e′∗1 , e

′∗
2 )

〉
PH , (4)

where ′ indicates that the quantity is described on the basis of
the eigenvectors. Because the antennas are perfectly matched,
the system behaves as two virtual independent antennas with
orthogonal radiation patterns which absorb all the incident
energy. As a consequence,〈(

I ′1
I ′2

)
(e′∗1 , e

′∗
2 )

〉
=

(
2 ⟨P1⟩ 0

0 2 ⟨P2⟩

)
. (5)

where ⟨P1⟩ and ⟨P2⟩ are the powers absorbed by each virtual
antenna. As shown by Hill [16], the mean power absorbed
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by a lossless single port antenna in a random diffuse and
unpolarized field environment is given by

⟨P1⟩ = ⟨P2⟩ =
⟨Π⟩λ2

8π
, (6)

where Π is the power density. Combining Eqs. (2), (4), (5)
and (6), it comes(

⟨e1e∗1⟩ ⟨e1e∗2⟩
⟨e2e∗1⟩ ⟨e2e∗2⟩

)
=

⟨Π⟩λ2

4π

(
ZH

A + ZA

)
, (7)

because PPH is equal to the identity matrix. In average, the
power density is related to the energy density W by

⟨Π⟩ = c ⟨W ⟩ . (8)

with c the speed of light. At steady state regime, the power
emitted by the source ⟨PTx⟩ is absorbed by all the dissipation
processes in the chamber of volume V , i.e.,

⟨PTx⟩ = ⟨W ⟩V α, (9)

where α the energy decay rate of the chamber. Finally, the
energy emitted by the source can also be expressed in terms
of the antenna efficiency ηTx, the real part of the impedance
ℜ(ZTx) and the current ITx,

PTx = ηTxℜ(ZTx) |ITx|2 . (10)

From Eqs. (7), (8), (9) and (10) it comes

〈
eeH

〉
= (ZH

A + ZA)
λ2cηTxℜ(ZTxTx) |ITx|2

4παV
. (11)

Because the electromotive forces can be written in terms of
mutual impedances (e = (Z1Tx, Z2Tx)

t
ITx), the correlation

between the impedances of the transmitting antenna and the
two receiving ones can be expressed in terms of the self and
mutual impedances of antennas 1 and 2,

CTheo
Z =

(
⟨Z1TxZ

∗
1Tx⟩ ⟨Z1TxZ

∗
2Tx⟩

⟨Z2TxZ
∗
1Tx⟩ ⟨Z2TxZ

∗
2Tx⟩

)
(12)

= (ZH
A + ZA)

λ2cηTxℜ(ZTxTx)

4παV
. (13)

This expression is valid for lossless antennas. To take into ac-
count the losses, a model of Ohmic loss should be introduced.
Here we assume a simple model where Ohmic losses can be
isolated as an impedance in series

ZA = ZΩ
A + ZR

A. (14)

where ZR
A is a complex matrix accounting for radiative losses

and the Ohmic impedance matrix ZΩ
A is a diagonal matrix

ZΩ
A =

(
R1 0
0 R2

)
, (15)

with R1 and R2 are the electrical resistances related to Ohm
losses on antennas 1 and 2, respectively. The above formalism
can be applied but with a load impedance which compensates
the Ohmic losses. It is then given by

ZL = (ZR
A)

H − ZΩ
A (16)

Then Eq. (12) is still valid but ZA has to be replaced by ZR
A.

Using Eqs. (14), (15) and (12), it is straightforward to show
that the CSD CTheo

Zi ̸=j =
〈
ZiTxZ

∗
jTx

〉
, is given by

CTheo
Zi̸=j =

λ2cηTxℜ(ZTxTx)

2παV
ℜ(Zij) (17)

and the PSD CTheo
Zii = ⟨ZiTxZ

∗
iTx⟩, by

CTheo
Zii =

λ2ηTxcηiℜ(ZTxTx)

2παV
ℜ(Zii), (18)

where ηi = Ri/ℜ(Zii) is the radiation efficiency of antenna
i.
It has to be noticed that the proportionality coefficients in Eqs.
(17) and (18), presented for the first time in this paper, vary
with respect to the frequency, so that the impedance cannot
be retrieved with accuracy if they are not accounted for.

III. EXPERIMENTAL VALIDATION

A. Measurement Setup

All experiments are performed within the ESYCOM RC of
dimensions 2.95×2.75×2.35 m3 (Fig. 2), whose lowest usable
frequency is estimated to be 400 MHz. It is equipped with
a Z-fold mechanical stirrer and Nmech = 60 equally-spaced
positions are considered over a revolution. The two antennas
under test (AUTs) are double-ridged horn antennas, the first
one, labelled “1” in the following, of 1GHz-18GHz bandwidth
(Schwarzbeck BBHA 9120B), and the second one, labelled
“2”, of 1GHz-18GHz bandwidth (A-INFO JXTXLB-10180).
Both AUTs are facing each other, separated by a distance
d = 50 cm. They are placed within the RC working volume
in such orientation so that they do not face flat walls with
normal incidence, in order to avoid unstirred paths in the RC.
The source antenna, named “Tx” thereafter, is a horn antenna
identical to AUT1, oriented towards the mechanical stirrer and
positioned on a vertically-rotating structure in order to perform
source stirring over Nsrc = 11 positions; indeed, the source
antenna orientation in regard to the floor plane varies from
−35◦ to +35◦ with an angular step of 7◦. Each AUT is linked,
through a 50 cm-long coaxial cable, to a remotely-controlled
mechanical RF switch, in order to be connected either to a
VNA or to an open-circuit (OC) load impedance (see Fig. 3).
It has to be underlined that, in an application case, as with
embedded antennas, the measurement has to be performed
by the receiving antenna connected to a high impedance
probe. However, here for convenience, the impedances Z1Tx

and Z2Tx are measured with a VNA. Of course, using a
VNA with 50Ω ports is not interesting for practical applica-
tions. Nevertheless, it permits in a validation step a complete
characterization of the studied system. Scattering parameters
measurements are carried out over the 1 to 5 GHz frequency
range (20001 frequency points with an IF BW of 10 kHz) with
a Rohde & Schwarz ZNB20 4-port VNA calibrated at the end
of both cables connected to both switches (reference planes
indicated in Fig. 3). The efficiencies of the used antennas
have been previously estimated within the same RC at the
same frequencies following the approach described in [17]: in
order to avoid any bias due to unstirred paths, measurements
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Fig. 2. Schematic of the measurement setup within the RC, with the excitation
antenna pointing towards the mode stirrer and of varying azimuthal angle, and
two facing antennas in reception connected to switches.

Fig. 3. Schematic of the measurement setup and reference planes considered
for measurements.

have been performed over a stirrer rotation (60 positions) for
several orientations of the antenna pointing towards the mode-
stirrer and the one placed within the RC working volume (11
orientations for both antennas). The mean efficiencies over the
frequency range are of 0.916 for AUT1 and 0.822 for AUT2.

Three configurations are successively measured:
• Configref : Both AUTs are connected to the VNA. This

configuration will serve as a reference to directly measure
Z12, Z11 and Z22, and compare them to the reconstructed
ones;

• Config1: The AUT1 is connected to the VNA while the
AUT2 is connected to the OC. Z1Tx will be computed
then used in correlation calculation;

• Config2: The AUT2 is connected to the VNA while the
AUT1 is connected to the OC. Z2Tx will be computed
then used in correlation calculation.

B. Theory validation

We will first of all verify that, according to Eqs. (17) and
(18), it is possible to retrieve the real parts of Zii(f) and
Zij(f) through the correlation of the measured impedances
Z1Tx(f) and Z2Tx(f).

The real part of the mutual impedance Z12(f) calculated
directly from the measured S-parameters in Configref (named
ZR12(f) thereafter) is compared to Zcorr

R12 (f). The later is

1 1.5 2 2.5 3 3.5 4 4.5 5

-40

-20

0

20

40
Cross-correlation

Direct Measurement

Fig. 4. Real part of Z12 obtained by a direct measurement between both
horn antennas or through CSD between impedances Z1Tx and Z2Tx as a
function of frequency.

estimated from the CSD between Z1Tx(f) of Config1 and
Z2Tx(f) of Config2 in Fig. 4. Compared to previous works
[14], notice that, thanks to the knowledge of the proportion-
ality factor given in Eq. (17), amplitudes are not normalized
here. A very good agreement is observed between measure-
ment and theory. The time-domain variation of the real part of
Z12 is then computed thanks to an inverse Fourier transform of
the CSD. The result is presented in Fig. 5. As Zcorr

R12 (f) is real
and CZ12(f) is almost real (in accordance with Eq. (17)), the
time variations of ZR12(t) and Zcorr

R12 (t) are symmetrical with
respect to t = 0. Consequently, both causal and anti-causal
responses are exhibited.

Fig. 5 shows the appearance of a high transmission peak
having a maximum value at t = 8.58 ns, corresponding to the
direct path between both calibration planes after the switches
connected to both AUTs (see Fig. 3). This transmission time
is in agreement with the propagation time over the air (over
the distance d = 50 cm) then within the antennas (over 30 cm
in AUT1 and 20 cm in AUT2 between antenna opening and
SMA access) and both cables of length l = 50 cm. A second
smaller peak is observed 5 ns after the larger one, this time
corresponding to twice the signal traveling time along the 50
cm-long cable that connects the switch to the antenna access.
This second peak is thus due to a reflection phenomenon at the
connection discontinuities between the cables and the switchs
or the AUTs.

To experimentally validate (18), the PSD CZ11 and CZ22

measured in Config1 and Config2 are calculated and lead to
the estimation of the real parts of Z11 (named Zcorr

R11 ) and
Z22 (named Zcorr

R22 ), respectively. Note that the considered
efficiency includes antenna Ohmic losses (through antenna
radiation efficiency) as well as the attenuation in the 50 cm-
long connection cable and the switch (between the antenna
connector and the reference plane) ; these losses have been
previously measured. The time and frequency variations of
these estimated impedances are compared to the real parts of
Z11 and Z22 obtained by a direct measurement in Configref
(ZR11 and ZR22) in Figs. 6 and 7. To estimate the imaginary
part of Z12, we perform a time folding of the negative times
of Zcorr

R12 (t) toward the positive time. The new time dependent
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Fig. 5. Inverse Fourier Transform of the real part of Z12 obtained by a
direct measurement between both horn antennas or through CSD between
impedances Z1Tx and Z2Tx as a function of time. Insets present zoom on
the first peak for negative and positive times.
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0

100

200

Fig. 6. Real parts of Z11 (above) and Z22 (below) obtained by a direct horn
antenna measurement or through autocorrelation of ZiTx impedances as a
function of frequency.
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Fig. 7. Inverse Fourier transform of the real parts of Z11 (above) and
Z22 (below) obtained by a direct horn antenna measurement or through
autocorrelation of ZiTx impedances as a function of time. Inset presents
a zoom on the central peak.

impedance Zcausal
12 (t) is causal (Zcausal

12 (t) = 0 for t < 0).
The imaginary part of Z12(f) is then just the imaginary of the

1 1.5 2 2.5 3 3.5 4 4.5 5

-30

-20

-10

0

10

20

30

40

Fig. 8. Imaginary part of Z12 obtained by a direct measurement between
both horn antennas or through CSD between Z1Tx and Z2Tx as a function
of frequency.
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Direct Measurement

Fig. 9. Imaginary parts of Z11 (above) and Z22 (below) obtained by a direct
horn antenna measurement or through autocorrelation of ZiTx impedances
as a function of frequency.

direct Fourier transform of Zcausal
12 (t). It is compared with the

imaginary part of the directly measured impedance ZI12 in
Fig. 8 and a good agreement is observed. A similar approach
is applied to get the imaginary part of Z11(f) and Z22(f).
However, contrary to Z12(t), Z11(t) or Z22(t) usually show
a strong contribution near t = 0 that cannot be recovered just
by using the folding technique. We empirically found that this
effect can be mitigated by removing the frequency mean of
the real part (respectively of 47.33 Ω for Z11 and 52.68 Ω for
Z22) that corresponds in the time domain to a Dirac pulse
at t = 0. This operation is performed before the inverse
Fourier transform and the time folding. The comparison in the
frequency domain of the retrieved imaginary parts of Z11 and
Z22 (that are Zcorr

I11 and Zcorr
I22 ) with the ones obtained by the

direct measurement (ZI11 and ZI22) shows a good agreement
(Fig. 9).

To quantify the agreement between the self and mutual
impedances obtained by a direct measurement or through PSD
or CSD, the Pearson’s correlation coefficient is computed (see
Tab. I) for the real and imaginary parts. The values between
0.927 and 0.995 confirm the good observed agreement.
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TABLE I
PEARSON’S CORRELATION COEFFICIENTS COMPUTED BETWEEN REAL OR

IMAGINARY PARTS OF IMPEDANCES OBTAINED BY A DIRECT
MEASUREMENT AND THROUGH CORRELATION IN THE CASE OF THE TWO

FACING HORN ANTENNAS.

Pearson’s correlation
coefficients

Real Imag
Z11 0.995 0.937
Z22 0.995 0.978
Z12 0.927 0.950

1 2 3 4 5

-0.2

0

0.2

1 2 3 4 5

-0.2

0

0.2

Cross-correlation

Direct Measurement

Fig. 10. Real part (above) and imaginary part (below) of S12 obtained by a
direct horn antenna measurement or through PSD or CSD of impedances as
a function of frequency.

C. Retrieval of the transmission coefficient

Once the 2×2 complex impedance matrix between antennas
1 and 2 is passively obtained, it is possible to reconstruct the
transmission coefficient in the frequency domain from these
impedances using the following formula :

Srec12 =
2Z0Z

corr
12

(1 + Zcorr
11 )(1 + Zcorr

22 )− Zcorr
12 Zcorr

21

(19)

where Z0 = 50 Ω. The comparison in Fig. 10 of the
reconstructed transmission coefficient with the one directly
measured in Configref validates this approach.

D. Results verification with a slot antenna

Whereas previous results were related to two facing di-
rective antennas, an omnidirectional slot antenna, based on
a half-disc slot excited by a microstrip [17], has then been
placed in front of the horn antenna at a distance of 50 cm.
As the bandwidth of the slot antenna is limited to 1.7GHz-
2.8GHz, the measurement range is reduced to 1.4GHz-3.2GHz
(20001 frequency points with an IF BW of 10 kHz). The
same excitation antenna as well as source and stirrer positions
as in the previous measurement have been used. Figs. 11
and 12 show a good agreement between the measured and
reconstructed ℜ(Z12) impedances in the time as well as in
the frequency domains, associated to a Pearson’s correlation
coefficient of 0.864.

IV. ANTENNA GAIN PATTERN ESTIMATION

The objective of this part is to estimate the gain pattern of
an antenna in a totally passive way (AUTs only in reception)

-30 -20 -10 0 10 20 30

-3

-2

-1

0

1

2

3
Cross-correlation

Direct Measurement

Fig. 11. Inverse Fourier Transform of the real part of Z12 obtained by a
direct measurement between a horn antenna and a slot antenna or through
CSD between impedances Z1Tx and Z2Tx as a function of time. Insets
present zooms on the first peaks for negative and positive times.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
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10

20

30
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Fig. 12. Real part of Z12 obtained by a direct measurement between a horn
antenna and a slot antenna or through through CSD between impedances
Z1Tx and Z2Tx as a function of frequency.

exploiting the PSD and CSD technique. The approach is based
on the theory developed in the first part of the paper and
experimentally validated in the second part for two different
horn antennas then a horn antenna and a printed one. The
characterized antenna is the above-mentioned double-ridged
horn antenna (A-INFO JXTXLB-10180). Measurements are
performed with the same excitation horn antenna as in pre-
vious measurements (for Nsrc = 11 source positions and
Nmech = 60 stirrer positions), and two identical double-ridged
horn antennas facing each other and spaced at a distance of
109 cm. One of the AUTs is placed on a mast rotating from
θ = −40◦ to θ = +40◦ with a rotation step of 2◦. Thanks to
the correlation technique, the 2×2 impedance matrix between
both double-ridged horn antennas is passively retrieved at each
position of the rotating AUT, and the transmission coefficient
Srec
21 is reconstructed following the method presented in III-C.

Antenna gain is then obtained from Friis formula using the
modulus of the transmission coefficient.

The gain of the same antenna has then be characterized
at 1.5 GHz and 2.5 GHz within an anechoic chamber for a
distance between both facing antennas (the AUT and a MVG
dual-ridge horn SH800) of 110 cm and for orientation angles
of the AUT varying from θ = −40◦ to θ = +40◦ with
a rotation step of 1◦. It has to be noticed that the far-field
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Fig. 13. Comparison of the gain patterns at 1.5 GHz and 2.5 GHz obtained
through CSD in the RC with the ones measured classically in an anechoic
chamber.

criterion is respected at 1.5GHz but not at 2.5GHz for this
measurement distance. The comparison in Fig. 13 of the gain
pattern of the double-ridge antenna extracted from passive
measurements in the RC with the one obtained by the reference
measurement in the anechoic chamber shows the possibility
to extract passively antenna gain through the proposed CSD
technique. The mean difference between both gain estimations
over the angle range is of 0.465dB at 1.5 GHz and 0.597 dB
at 2.5dB, and the difference between the maximal gain values
are of 0.537dB at 1.5 GHz and 0.465 dB at 2.5 GHz.

V. DISCUSSION

A. Stirring effect

The theory is based on the assumption of equipartitioned
sources illuminating the AUTs. In our measurement setup, this
condition is approached while varying the cavity configuration
through the rotation of the mechanical stirrer (Nmech = 60)
and of the excitation antenna (Nsrc = 11), leading to 660
measurement configurations. The field generated within an RC
by a single excitation antenna is assumed to be statistically
uniform, isotropic and depolarized; the multitude of noise
sources required by the correlation technique is thus replaced
by an ensemble of diffuse field distributions associated to
different RC configurations. To evaluate the RC performances
in the considered measurement conditions, the number of
uncorrelated configurations has been estimated using the
methodology presented in [18]. We found that there are 49
uncorrelated stirrer positions out of 60 and 7 uncorrelated
source orientations out of 11. The resulting total number of
uncorrelated RC configurations is thus estimated to 49× 11 =
539.

To highlight the role of both stirring processes on the con-
vergence of the measured correlation towards the theoretical
one, the Pearson’s correlation coefficient between the real parts
of Z12 directly measured or estimated through correlation is
computed as a function of the number of source positions
Nsrc for various angular positions of the mechanical stirring
Nmech. Results are presented in Fig. 14. As expected, the more
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Fig. 14. ’s correlation coefficient between the real part of Z12 obtained by
a direct measurement or through correlations as a function of Nsrc and for
various Nmech.

configurations, the higher the Pearson’s coefficient. When
only one configuration is considered, i.e., Nsrc = 1 and
Nmech = 1, the Pearson’s coefficient is equal to only 0.215.
Also, it confirms that the source stirring is as efficient as
the mechanical stirrer to provide uncorrelated configurations.
Indeed, the case Nsrc = 1 and Nmech = 10 leads to almost
the same Pearson’s coefficient as the case Nsrc = 10 and
Nmech = 1, i.e, about 0.465.

B. Impact of antenna location and properties

The accuracy of the impedance reconstruction has been
quantified through the Pearson’s correlation coefficient. In
this part, we compare the Pearson’s coefficients obtained for
different AUT positions or properties while considering all
mechanical stirrer and excitation antenna positions (i.e. 660
measurement configurations).

First measurements were performed for a distance d be-
tween both AUTs equals to 50 cm, with, in the first case, two
horn antennas (Section III-B), and in the second case a horn
antenna and an omnidirectional slot antenna (Section III-D).
In both cases, the AUTs are facing each other to maximize
the transmission between them. The Pearson’s correlation
coefficient between measured and reconstructed ℜ(Z12) is of
0.927 in the first case. In the second case, the coefficient
decreases to 0.864. This lower value can be explained by
the lower amplitude of ℜ(Z12), resulting in a lower signal-
to-noise ratio. Indeed, the maximum value of ℜ(Z12(t)) is of
1164 Ω/s between the two horn antennas while it is only 2.62
Ω/s between the slot antenna and the horn antenna.

We now consider the results with two horn antennas at a
distance d of 109 cm from each other. One of the 2 antennas
(Section IV) is fixed on a stepper motor rotation stage. The
variation of the Pearson’s coefficient versus the angle between
the axes of the 2 horn antennas is shown in Fig. 15. We
first notice that because of the lower coupling level between
antennas when d = 109, the maximal Pearson’s coefficient
value obtained for θ ≈ 0◦ is 0.877 instead of 0.927 when
d = 50 cm. For the same coupling reason, the larger the
angle and the smaller the Pearson’s coefficient. Note that
the asymmetry of this figure with respect to the angle can
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obtained by a direct measurement or through correlations as a function of
AUT angular position in the antenna gain pattern estimation measurement.

be explained by an imperfect alignment between AUTs and
the fact that the level of fluctuations may also be slightly
anisotropic.

C. Measurements with open-circuits

As presented in the setup of the first measurement configu-
ration, both switches permit to connect the AUTs alternatively
to the VNA or an open-circuit load. The choice of this
load is in agreement with the definition of the impedances.
Indeed, by definition, the impedance Zij is the ratio of the
voltage measured on port i and the current on port j when
all the currents on the other ports (i ̸= j) are 0. Therefore,
when AUT1 is connected to the VNA and AUT2 to an
open-circuit (Config1), the measured S-parameters lead to the
knowledge of the impedances Z11, Z1Tx and ZTxTx, whereas
the complementary configuration Config2 (AUT1 connected to
the open-circuit and AUT2 to the VNA) leads to Z22, Z2Tx

and ZTxTx. However, in measurement an open-circuit is never
ideal, in particular on a large frequency band. To verify the
accuracy of this approach, the real part of Z12 impedance
retrieved by CSD after this two-step measurement has been
compared to the one issued from the CSD of impedances
obtained by the direct measurement in Configref of the 3× 3
S-matrix between the three antennas (the excitation antenna
and both AUTs). The obtained similarity coefficient of 0.9997
permits to validate this approach consisting of using open-
circuit loads.

Once the proposed measurement approach is validated,
that could be used to perform passive measurements, the
following measurements (with the slot antenna then for the
gain pattern) have been performed while directly connecting
the three antennas to the VNA (without switches), in order to
accelerate the measurement process.

VI. CONCLUSION

In this paper, we have presented a passive measurement
technique to estimate the 2×2 impedance matrix between two
receiving antennas. As the underlying theory leans on the as-
sumption of uniformly distributed sources, measurements have
been performed within an RC excited by a single source where

mechanical and source stirring techniques have been combined
to enhance the number of measurement configurations. For the
first time, explicit formulas have been derived from a theoreti-
cal approach linking, in the diffuse field environment generated
within an RC, the real parts of self and mutual impedances of
two coupled antennas in receiving mode with the power and
cross spectral densities of impedances weighted by measure-
ment setup properties. Our model includes losses within the
cavity as well as excitation and reception antenna losses. The
exposed theoretical developments have been experimentally
validated while considering antennas of different properties,
and it has been proven that, besides the retrieval of the real
parts of the impedances, it is possible to reconstruct the com-
plex impedance matrix as well as the transmission coefficient
between both receiving antennas. Once the impedance matrix
and the transmission coefficient are obtained, the presented
correlation method offers the potential to characterize more
extensively antennas or antenna arrays, as shown with the
extraction of the gain pattern of a horn antenna that is achieved
with a good accuracy.

The presented approach paves the way to characterization of
antennas that cannot be turned into emitting modes, as small
embedded antennas. Moreover, even if we only considered
two receiving antennas in this paper, this passive antenna
characterization technique can be extended to a higher number
of receiving antennas, and it could permit to accelerate the
characterization of the mutual coupling matrix of large antenna
arrays: indeed, the mutual coupling between each pair of
antennas could be done without turning antennas successively
in their emitting and receiving modes but while keeping all
array antennas in their receiving mode and using another
antenna to generate the required diffuse field. The condition
is that each antenna port can be set to a high impedance level.
Besides, the possible use of cross-correlation techniques for
passive imaging applications has already been demonstrated
in several physics domains [4] [7]. The sensitivity of the
proposed approach to a geometrical parameter variation has
been shown with the reconstruction of the antenna gain pattern
obtained while rotating the AUT; it is thus promising to detect
environment variations in a passive imaging context.
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