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Keywords: projective homogeneous variety, parabolic subgroup scheme, positive characteristic 2020 Mathematics Subject Classification: Primary: 14M17, Secondary: 14L15, 17B20

We extend to characteristic 2 and 3 the classification of projective homogeneous varieties of Picard group Z, corresponding to parabolic subgroups with maximal reduced subgroup. In all types, except for G2 in characteristic 2, the latter are all obtained as product of a maximal reduced parabolic with the kernel of a purely inseparable isogeny. For the G2 case, we exhibit an explicit counterexample and show it is the only one, thus completing the classification. We then construct new examples of projective homogeneous varieties of Picard rank two.

Introduction

We work in the setting of affine group schemes of finite type over an algebraically closed field k. Our object of interest are projective varieties over k, homogeneous under their automorphism group: a first class of examples is given by flag varieties, whose natural generalisation are quotients of semisimple groups by parabolic subgroups, which are not necessarily reduced.

In characteristic zero, the structure of parabolic subgroups is well known: fixing a semisimple group, a Borel subgroup and a maximal torus G Ą B Ą T , there is a bijection between parabolic subgroups containing B and subsets of the set of simple roots of G: it is a classical fact that a parabolic subgroup is determined by the simple roots forming a basis for the root system of a Levi subgroup. Over a field of positive characteristic, parabolic subgroups can be nonreduced hence homogeneous spaces might have very different geometric properties: see for example the computation of the character associated to the canonical bundle in [START_REF] Lauritzen | Splitting properties of complete homogeneous spaces[END_REF], which shows that such varieties are in general not Fano. The easiest example is the hypersurface in P 2 ˆP2 given by the equation x 0 y p 0 `x1 y p 1 `x2 y p 2 " 0, which is homogeneous under PGL 3 and not Fano if p ą 3. If the characteristic is equal to at least 5, or if the Dynkin diagram of G is simply laced (types A n , D n , E 6 , E 7 and E 8 ), Wenzel [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF], Haboush and Lauritzen [START_REF] Haboush | Varieties of unseparated flags, Linear algebraic groups and their representations[END_REF] show that all parabolic subgroups of G can be obtained from reduced ones by fattening with Frobenius kernels and intersecting. More precisely, they are all of the form G m 1 P α 1 X . . . X G mr P αr , where G m denotes the kernel of the m-th iterated Frobenius morphism on G and P α denotes the maximal reduced parabolic subgroup whose Levi subgroup has as basis all simple roots except for α. When no assumption on the characteristic is made, we will call them parabolic subgroups of standard type. The proof of [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF] relies heavily on the structure constants (defined over Z) relative to a Chevalley basis of the Lie algebra of a simply connected semisimple group. By construction such constant are integers with absolute value strictly less than five: the hypothesis on the characteristic and on the Dynkin diagram guarantees that they do not vanish over k. This raises the natural question of how to generalize the classification of parabolic subgroups to characteristic two and three.

In this paper we manage to provide an answer to this question concerning the easiestcombinatorially speaking -class of parabolic subgroups, those having maximal reduced part equal to P α for some simple root α of G. These subgroups correspond to homogeneous projective varieties of Picard group isomorphic to Z: as illustrated later in Subsection 3.2, the Picard group of a homogeneous space G{P is free abelian with rank equal to the number of simple roots of G not belonging to the root system of a Levi subgroup of the reduced part of P . Our main result is the following, allowing us to complete the classification in all types and characteristics.

Theorem 1. Let X be a homogeneous projective variety, over an algebraically closed field of any characteristic, with Picard group isomorphic to Z. Then X is either the quotient of a simple adjoint group by a maximal reduced parabolic subgroup, or it is isomorphic to G 2 {P l (this second case can only arise in characteristic two).

In the above statement, P l is a certain exotic parabolic subgroup scheme, introduced and studied in Section 2.6.2 and Section 2.6.4. The proof of Theorem 1 articulates in two different parts: Theorem 2.1, which treats all cases but G 2 in characteristic two, and Theorem 2.17 which completes the classification.

The paper is organized as follows. In Section 1, we build on previous work of Borel and Tits [START_REF] Borel | Tits, Compléments à l'article « Groupes réductifs[END_REF], then completed and re-elaborated in [START_REF] Conrad | Pseudo-reductive groups[END_REF], to give a factorisation result for isogenies with simply connected source. This digression is self-contained but motivated by the fact that -in Picard rank one -purely inseparable isogenies will generalize the role of the Frobenius morphism in [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF]. An important ingredient is the so-called very special isogeny of a simple simply connected group G, which is the quotient π G : G -G by the unique minimal noncentral subgroup of G with trivial Frobenius. It turns out (as shown in [START_REF] Conrad | Pseudo-reductive groups[END_REF]) that when the Dynkin diagram of G has an edge of multiplicity equal to the characteristic, such a subgroup is strictly contained in the Frobenius kernel. In particular, π G acts as a Frobenius morphism on root subgroups associated to short roots, while it is an isomorphism on root subgroups associated to long ones. The factorisation of isogenies reads as follows, where we denote as F m G : G -G pmq the m-th iterated relative Frobenius homomorphism of G.

Proposition 2. Let G be a simple and simply connected algebraic group over an algebraically closed field k. Let f : G G 1 be an isogeny. Then there exists a unique factorisation of f as

f : G G pGq pmq G 1 , π F m G ρ
where ρ is a central isogeny and π is either the identity or -when the Dynkin diagram of G has an edge of multiplicity p -the very special isogeny π G .

We introduce and prove the first part of Theorem 1 in Section 2. As the different behaviour in type G 2 confirms, there is no way to prove this result using general geometric arguments nor working over Z, so we proceed by a case-by-case analysis. The proof essentially articulates in three steps: the first one consists of some elementary reductions, showing that it is enough to prove that if P has maximal reduced subgroup and G acts faithfully on G{P , then P must be itself reduced. The second step is exploiting the explicit matricial description of the quotient Lie G{ Lie P red , seen as a representation of a Levi subgroup of P red . Finally, the last step involves considering some of the structure constants (chosen so that they do not vanish, depending on the characteristic) and concluding using the notion of very special isogeny.

Next, we consider the case of characteristic 2 and type G 2 , with short simple root α 1 and long simple root α 2 . Perhaps surprisingly, the analogous strategy of proof works when the reduced part is P α 2 , but fails when considering P α 1 , due to the vanishing of structure constants. We deduce that there exist exactly two maximal p-Lie subalgebras h and l of Lie G strictly containing Lie P α 1 . We describe them explicitly and consider the corresponding subgroups of height one in G, which give rise to two new parabolic subgroups denoted P h and P l . Then we study the corresponding homogeneous spaces, by means of the description of G 2 as the automorphism group of an octonion algebra, as in [START_REF] Springer | Octonions, Jordan Algebras and Exceptional Groups[END_REF] and [START_REF] Heinloth | Bounds for Behrend's conjecture on the canonical reduction[END_REF]. One turns out to be isomorphic to the projective space P 5 , while we realize the other as a hyperplane section of the Sp 6homogeneous variety of isotropic 3-dimensional subspaces in a 6-dimensional vector space.For the sake of brevity, computations concerning the group G 2 and its root subgroups can be found in the Appendix [START_REF] Brion | The cone of effective one-cycles of certain G-varieties. A tribute to[END_REF]. We conclude this part with the following result (see Proposition 2.42 for a more detailed statement), which allows in particular to end the proof of Theorem 1.

Proposition 3. Let G be of type G 2 in characteristic two. Then the nonreduced parabolic subgroups of G having P α 1 as reduced part are either of standard type, or obtained from P l and P h by pulling back with an iterated Frobenius homomorphism.

We deduce in Section 3 the desired consequence of Theorem 1: the statement focuses exclusively on the classification of parabolic subgroups with maximal reduced part, and requires no assumptions on the characteristic of the base field. Proposition 4. Let G be simple and P be a parabolic subgroup of G such that its reduced subgroup is P α for some simple root α. Then there exists an isogeny ϕ with source G such that P " pker ϕqP α , unless G is of type G 2 over a field of characteristic p " 2 and α is the short simple root.

We prove Proposition 4 as well as a criterion to determine when two projective homogeneous spaces with Picard group Z are isomorphic as varieties. The remaining part of Section 3 is devoted to the display of a family of projective homogeneous spaces of Picard rank two, whose underlying varieties are not of standard type, where the last terminology means not isomorphic (as a variety) to some quotient with stabilizer a parabolic subgroup of standard type. We follow the conventions on root systems adopted by Bourbaki [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF]. The statement is the following: Proposition 5. Consider a simple, simply connected group G over an algebraically closed field of characteristic 2 and distinct simple roots α and β such that: either G is of type B n or C n and the pair pα, βq is of the form pα j , α i q with i ă j ă n or j " n and i ă n ´1, or G is of type F 4 and the pair pα, βq is one among pα 1 , α 4 q, pα 2 , α 1 q, pα 2 , α 4 q, pα 3 , α 1 q, pα 3 , α 4 q, pα 4 , α 1 q.

Then the homogeneous space X " G{ppker π G qP α X P β q is not of standard type, where π G denotes the very special isogeny of G.

The strategy of proof consists first in recalling and precising a few facts on the Białynicki-Birula decomposition of G-simple projective varieties, following [START_REF] Brion | The cone of effective one-cycles of certain G-varieties. A tribute to[END_REF]. Next we specialize the outline of this decomposition to the particular case of homogeneous spaces. This leads to the description of the Picard group and of the group of 1-cycles on X " G{P , as well as the definition of a finite family of contractions on X indexed by the simple roots of G not belonging to the root system of a Levi subgroup of P red . More precisely, the contraction associated to a root α sends all classes of curves to a point, except for those which are numerically equivalent to the unique B-invariant curve passing through the image of the base point of X by the reflection with respect to α in the Weyl group. This construction, together with the results on automorphism groups in [START_REF] Demazure | Automorphismes et déformations des variétés de Borel[END_REF], allows us to conclude. We end with a final question concerning the more general classification of parabolic subgroups in characteristic 2 and 3.

Preliminary work on isogenies

1.1. Setting and notation. In this work, k denotes an algebraically closed field of prime characteristic p ą 0. When V is a finite-dimensional k-vector space, we adopt the convention for PpV q to be lines in V . By parabolic subgroup we always mean parabolic subgroup scheme. Let G Ą B Ą T be respectively a semisimple, simply connected algebraic group over k, a Borel subgroup and a maximal torus contained in it. Our aim is to classify all homogeneous projective G-varieties, which are quotients of the form G{P , where P is a parabolic subgroup of G, not necessarily reduced. By conjugacy of the Borel subgroups, we might restrict ourselves to those containing the Borel subgroup B, which we call standard parabolic subgroups. From now on, every parabolic subgroup will be standard, unless otherwise mentioned. Such a classification has been established in [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF] and [START_REF] Haboush | Varieties of unseparated flags, Linear algebraic groups and their representations[END_REF], under the assumption that either p ě 5 or that the root system of G relative to T is simply laced.

Let us list the main notations that are fixed throughout the paper, which mostly agree with those of [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF]. Concerning root systems, we follow conventions from Bourbaki [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF] : ' Φ " ΦpG, T q is the root system of the pair pG, T q, ' Φ `" ΦpB, T q is the subset of positive roots associated to the Borel subgroup B, ' ∆ is the corresponding basis of simple roots, ' W " W pG, T q " W pΦq is the Weyl group of pG, T q, ' s α is the reflection associated to the simple root α P ∆, ' Supppγq is the set of simple roots which have a nonzero coefficient in the expression of γ P Φ as linear combination of simple roots, ' B ´is the opposite Borel subgroup, with corresponding set of roots being ΦzΦ `, ' U γ (γ P Φq is the root subgroup associated to γ, with corresponding root homomorphism u γ : G a " -U γ , ' P α (α P ∆) is the maximal reduced parabolic subgroup not containing U ´α, which is generated by B and U ´β with β P ∆ztαu, ' F m G : G -G pmq is the m-th iterated relative Frobenius homomorphism of G, ' G m ¨¨" ker F m G is the m-th Frobenius kernel. Let us recall that the morphism F m G is an isogeny since it is surjective with finite kernel. Moreover, the map α P α defines a bijection between simple roots and maximal reduced parabolic subgroups. More generally, under the assumptions of [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF], there is a bijection

Hom Set p∆, N Y t8uq -tparabolic subgroups G Ą P Ą Bu (1.1)
sending a function ϕ : ∆ N Y t8u to the subgroup scheme P ϕ defined by the intersection of all maximal reduced parabolics fattened by their corresponding Frobenius kernels

P ϕ ¨¨" č αP∆ G ϕpαq P α " č αP∆ : ϕpαq‰8 G ϕpαq P α .
Let us recall that, given a parabolic subgroup P , there is always an associated function ϕ : Φ `-N Y t8u (introduced in [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF]) given by the identity U ´γ X P " u ´γ pα p ϕpγq q, γ P Φ `,

where α p 8 is understood to be G a . For example, the parabolic G m P α defines the function sending all positive roots to infinity, except for those containing α in their support, which assume value m.

Theorem 1.1 (Theorem 10, [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF]). The parabolic subgroup P is uniquely determined by the function ϕ, with no assumption on the characteristic or on the Dyinkin diagram of G.

Moreover, when p ě 5 or G is simply laced, the function ϕ is itself uniquely determined by its values on ∆ via the equality ϕpγq " mintϕpαq : α P Supppγqu, giving the bijection (1.1). See [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF]Theorem 14] for more details. As we will see later, the last statement does not always hold in small characteristic.

The guiding idea is to mimic the known classification -written in terms of Frobenius kernels -replacing the Frobenius morphism with any noncentral isogeny (see Proposition 3.1). This motivates the preliminary study and classification of such homomorphisms. 1.2. Classifying isogenies. We now classify isogenies between simple algebraic groups, first recalling definitions and the Isogeny Theorem, then introducing the so-called very special isogeny π G , whose kernel is a certain subgroup of height one defined by short roots -which only exists when the Dynkin diagram has an edge of multiplicity equal to the characteristicand concluding with the following factorisation result: see Proposition 1.12.

Proposition. Let G be a simple and simply connected algebraic group over k. Let f : G G 1 be an isogeny. Then there exists a factorisation of f as

f : G G pGq pmq G 1 , π F m G ρ
where ρ is a central isogeny and π is either the identity or -when the Dynkin diagram of G has an edge of multiplicity p -the very special isogeny π G .

1.2.1. Preliminaries. We shall start by reviewing what isogenies look like, in particular noncentral ones. First, let us recall some notations and the statement of the Isogeny Theorem, which is proved in detail in [START_REF] Steinberg | The isomorphism and isogeny theorems for reductive algebraic groups[END_REF].

Definition 1.2. Let pG, T q and pG 1 , T 1 q be reductive algebraic groups over k. An isogeny between them is a surjective homomorphism of algebraic groups f : G G 1 having finite kernel, sending the maximal torus T to the maximal torus T 1 . The degree of f is the order of its kernel.

Given an isogeny f , there is an induced map between the character groups ϕ ¨¨" Xpf |T q : XpT 1 q -XpT q, χ 1 -χ 1 ˝f|T , satisfying the conditions :

(i) both ϕ : XpT 1 q XpT q and its dual ϕ _ : X _ pT q X _ pT 1 q are injective, (ii) there exists a bijection Φ ↔ Φ 1 , denoted α ↔ α 1 , and integers qpαq which are all powers of p, such that ϕpα 1 q " qpαqα and ϕ _ pα _ q " qpαqα _1 for all α P Φ. Geometrically, the integers qpαq arise as follows: the image f pU α q is a smooth connected unipotent algebraic subgroup of G 1 which is normalized by T 1 and isomorphic to the additive group G a , hence it must be of the form U α 1 for a unique α 1 P Φ 1 . This gives the bijection; then, using the T -action on those two root subgroups, one finds that there exists a constant c α P G m and an integer qpαq P p N such that f pu α pxqq " u α 1 pc α x qpαq q (1.2) for all x P G a . Definition 1.3. A homomorphism between character groups ϕ : XpT 1 q XpT q satisfying conditions (i) and (ii) is called an isogeny of root data.

Theorem 1.4 (Isogeny Theorem). Let pG, T q and pG 1 , T 1 q be reductive algebraic groups over k. Assume given an isogeny of root data ϕ : XpT 1 q XpT q. Then there exists an isogeny f : pG, T q pG 1 , T 1 q inducing ϕ. Moreover, f is unique up to an inner automorphism innptq for some t P T 1 {ZpG 1 q.

Proof. See [23, 1.5].

For instance, an important class of isogenies is given by the ones having central kernel, which are characterized by the fact that the associated integers qpαq are all equal to 1: these are not interesting for our purpose of studying parabolic subgroups, since we may restrict ourselves in the classification to the case of a simply connected group (or an adjoint one, depending on the desired properties). The most known example of a noncentral isogeny is an iterated Frobenius homomorphism F m , for which α 1 " α and all qpαq are equal to p m . Do other isogenies exist?

We shall now consider this question. 1.2.2. Very special isogenies. From now on we make the assumption that G is simple. The Weyl group W " W pG, T q acts on roots leaving the integer q invariant: if the Dynkin diagram of G is simply laced, then there is only one orbit, hence all qpαq must assume the same value. This means, by the Isogeny Theorem, that up to inner automorphisms the only noncentral isogenies with source G are iterated Frobenius homomorphisms.

On the other hand, assume that the Dynkin diagram of G has a multiple edge. In this setting, there are two distinct orbits under the action of the Weyl group, corresponding to long and short roots: this allows, considering an isogeny f : pG, T q -pG 1 , T 1 q, for two possibly distinct values of qpαq. Let us denote as Φ ă and Φ ą the subsets of Φ consisting of short and long roots respectively, and denote the two integer values as q ă ¨¨" qpαq pα P Φ ă q and q ą ¨¨" qpαq pα P Φ ą q.

(1.3) Analogously, we fix the following notation for the direct sum of root spaces associated to roots of a fixed length:

g ă ¨¨" à αPΦă g α " à αPΦă Lie U α and g ą ¨¨" à αPΦą g α " à αPΦą Lie U α .
We now recall a notion introduced in [7, Section 7.1], based on previous work from Borel and Tits, and some of its properties. Also, let us remark that the assumption we will make is stronger than just asking that the group is not simply laced: to define the following notions, the characteristic needs to be p " 2 for types B n , C n and F 4 , and p " 3 in type G 2 . Equivalently, the group G has Dynkin diagram having an edge of multiplicity p. From now on, we will call this the edge hypothesis. The following result is [START_REF] Conrad | Pseudo-reductive groups[END_REF]Lemma 7.1.2].

Lemma 1.5. Let G be simply connected satisfying the edge hypothesis. Then the vector subspace n G ¨¨" xLie γ _ pG m q : γ P Φ ă y ' g ă is a p-Lie ideal of Lie G. Moreover, every nonzero G-submodule of Lie G distinct from Lie ZpGq contains n G .

By the equivalence of categories between p-Lie subalgebras of Lie G and algebraic subgroups of G of height one, the p-Lie ideal n G lifts to a unique normal subgroup of G. Definition 1.6. Let G be simply connected satisfying the edge hypothesis. The algebraic subgroup of height one having n G as Lie algebra is denoted as N G .

In particular, N G is characterized by being the unique minimal noncentral normal subgroup of G having trivial Frobenius. For more details see [START_REF] Conrad | Pseudo-reductive groups[END_REF]Definition 7.1.3]. Thus, we are led to consider the homomorphism

π G : G -G ¨¨" G{N G .
Let us remark that this is a noncentral isogeny with corresponding values q ă " p and q ą " 1.

Definition 1.7. With the above notations, the homomorphism π G is called the very special isogeny associated to the simple and simply connected algebraic group G.

The following step towards a better understanding of isogenies is the natural generalization of the above notion to the non simply connected case. Definition 1.8. Let G be simple satisfying the edge hypothesis and let ψ : r G -G be its simply connected cover. Let N r G be the kernel of the very special isogeny of r G defined just above. We denote as :

' N G its schematic image via the central isogeny ψ ; ' N m, r G ¨¨" kerpπ r G pmq ˝F m r G q " pF m r G q ´1pN r G pmq q, for any m ě 1 ; ' N m,G the schematic image of N m, r
G via the central isogeny ψ. Let us remark that N G is nontrivial, noncentral, normal and has trivial Frobenius. Moreover, it is minimal with such properties: let H Ă N G be another such subgroup, then r H ¨¨" ψ ´1pH qX N r G is nontrivial, noncentral, normal and of height one, hence by definition contained in N r G . This shows that N G " ψpN r G q Ă ψp r Hq " H. It is now natural to ask ourselves if such a subgroup is unique, or if we can give an example of it appearing in a natural context. This is shown in Lemma 1.14 and Example 1.15 below.

Up to this point in this section we have assumed that the Dynkin diagram of G has an edge of multiplicity p. What about the other cases not satisfying the edge hypothesis, in particular those which are not treated in [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF]? Let us assume that either p " 3 and that the group G is simple of type B n , C n or F 4 , or that p " 2 and the group G is simple of type G 2 . Then an analogous construction to the subgroup N G cannot be done for the following reason: nontrivial normal subgroups of height one correspond, under the equivalence of categories, to nonzero p-Lie ideals of Lie G, which do not exist due to the following result (see [24, 4.4]).

Lemma 1.9. Let p " 3 and G be simple of type B n , C n for some n ě 2, or F 4 , or let p " 2 and G simple of type G 2 . Then Lie G is simple as a p-Lie algebra. 

F G : pG G G p1q q π G π
which is the only nontrivial factorisation into isogenies with first step admitting no nontrivial factorisation into isogenies. (b) The root system Φ of G is isomorphic to the dual of the root system of G. (c) The bijection between Φ and Φ defined by π G exchanges long and short roots: denoting it as α ↔ α, if α is long then α is short and vice-versa. (d) In the factorisation of point paq, the map π is the very special isogeny of G.

In particular, the restriction pπ G q |Uα : U α U α gives an isomorphism whenever α is long and a purely inseparable isogeny of degree p whenever α is short. Lemma 1.11. Assume f : G G 1 is a noncentral isogeny with G simply connected and satisfying the edge hypothesis. If at least one value of qpαq is equal to 1, then necessarily q ą " 1.

Proof. Let us consider the Lie subalgebra Liepker f q Ă g. This is a proper G-submodule of the Lie algebra g under the adjoint action, which is not contained in Lie ZpGq: by Lemma 1.5, Liepker f q must contain all of g ă . This means that if α is a short root, then f |Uα : U α U α 1 is not an isomorphism: in other words, q ă ‰ 1.

Proposition 1.12. Let G be a simple and simply connected algebraic group and let f : G G 1 be an isogeny. Then there exists a unique factorisation of f as

f : G G pGq pmq G 1 , π F m G ρ
where ρ is a central isogeny and π is either the identity or -when G satisfies the edge hypothesis -the very special isogeny π G .

Proof. Let us start by considering the bijection Φ ↔ Φ 1 and the corresponding integers qpαq associated to the isogeny f , as recalled in (1.2).

Step 1: is the isogeny central? This is equivalent to asking whether all integers qpαq are equal to one. If this is the case, then we are done. Next, we will hence assume that at least one value of q is nontrivial.

Step 2: does p divide qpαq for all roots α? If the group is simply laced this is always the case, since q is constant. If p " 3 and the group is of type B n , C n or F 4 , or if p " 2 and the group is of type G 2 , this is also always the case: indeed, there exists at least one γ P Φ such that qpγq ‰ 1. Equivalently, the corresponding root space satisfies g γ Ă h ¨¨" Liepker f q. Since h is a nontrivial p-Lie ideal of Lie G, it must coincide with all of Lie G thanks to Lemma 1.9.

In general, if the answer is yes, then the root subspace g α is contained in Liepker f q for all roots. Since the latter is a Lie ideal of Lie G, taking brackets implies that the copy of sl 2 associated to each root is also contained in Liepker f q, which thus coincides with Lie G. This means in particular that the Frobenius kernel of G is contained in the kernel of f , so we can factorise by the Frobenius morphism as follows

G G p1q G 1 f F G f 1
and go back to Step 1 replacing f by f 1 . Notice that this is possible, since the group G p1q is still simple and simply connected. Moreover, the new integers associated to the isogeny f 1 are exactly qpαq{p, hence their values strictly decrease. After this step, we can hence assume that there are two distinct values q ă and q ą as defined in (1.3). In particular, let us remark that in this case G is not simply laced.

Step 3: this step only occurs when the Dynkin diagram of G has an edge of multiplicity p; moreover, by Lemma 1.11 q ą " 1 while q ă is divisible by p. This last condition means that for any short root γ, the root subspaces g γ and g ´γ are contained in Liepker f q. This implies that psl 2 q γ " rg γ , g ´γ s ' g γ ' g ´γ " Liepγ _ pG m qq ' g γ ' g ´γ Ă Liepker f q, hence, by definition of the subgroup N G in the simply connected case, we have

xLiepγ _ pG m qq : γ P Φ ă y à γPΦă g γ ": Lie N G Ă Liepker f q.
Since N G is of height one, this implies that N G Ă ker f , so we can factorise by the very special isogeny as follows

G G p1q G 1 f π G f 1
and go back to Step 1. Notice that this is possible, since by Proposition 1.10, the group G is still simple and simply connected. Moreover, we know that the bijection Φ ↔ Φ exchanges long and short roots and that pπ G q |Uα is an isomorphism for α long and of degree p when α is short. By denoting as q 1 p´q the integers associated to the new isogeny f 1 , we then have pq 1 q ă " q 1 pαq " qpαq " q ą " 1, pα longq pq 1 q ą " q 1 pαq " qpαq{p " q ă {p, pα shortq so the nontrivial integer strictly decreases after this step.

Following this procedure, one will necessarily factorise a finite number of times leading finally to a central isogeny, which is the ρ given in the statement of the proposition. Moreover, we claim that the Frobenius morphism and the very special isogeny -when it is defined -commute, in the following sense: if G is simple and simply connected, then

π G p1q ˝FG " F G ˝πG .
To prove this, let us apply the factorisation of the Frobenius morphism given in Proposition 1.10 twice to get

π G p1q ˝FG " π G p1q ˝pπ G ˝πG q " pπ G p1q ˝πG q ˝πG " F G ˝πG .
This means that we can commute π with the Frobenius and assume that it is the first morphism (or the middle one, which gives another unique factorisation) in the expression f " ρ ˝F m π.

Remark 1.13. The above Proposition allows us to associate to any isogeny f : G G 1 between simple algebraic groups a diagram of the form

G G 1 r G Ă G 1 f F m ˝π ψ ρ
where ψ is the simply connected cover of G and ρ is central. In particular, notice that the group p r Gq pmq , which is the target of the morphism F m ˝π, is simply connected and ρ is central, thus this group is the simply connected cover of G 1 .

The first immediate consequence of this factorisation result is the uniqueness of the subgroup N G . Lemma 1.14. Let G be simple satisfying the edge hypothesis and H Ă G a normal, noncentral subgroup of height one. Then H contains the subgroup N G . In particular, such a subgroup is unique.

Proof. The conclusion clearly holds when H equals the Frobenius kernel of G, hence we can assume that H ‰ G 1 . To prove that N G Ă H it is enough to show that f pN G q is trivial, where f is the isogeny G G{H. Consider the associated diagram given in Remark 1.13 :

G G{H r G Ć G{H f F m ˝π ψ ρ
where π is either the identity or the very special isogeny of G. We want to show that the bottom arrow is necessarily the very special isogeny π r G . First, the subgroup H is noncentral hence if m " 0 then π " π r G , otherwise the bottom row would be the identity and f would be central. Moreover, H Ĺ G 1 " kerpF : G G p1q q hence the factorisation of the isogeny f ˝ψ given in Proposition 1.12 does not contain any Frobenius morphism : this means that m " 0 so necessarily π is the very special isogeny of r G. Thus, we can conclude that f ˝ψ " ρ ˝π r G and f pN G q " f pψpN r G qq " ρpπ r G pN r G qq " 1 as wanted.

Example 1.15. Let us assume p " 2 and consider the group G " SO 2n`1 " SOpk 2n`1 q in type B n with n ě 2, defined as being relative to the quadratic form

Qpxq " x 2 n `n´1 ÿ i"0 x i x 2n´i
and G 1 " Sp 2n " Sppk 2n q relative to the skew form bpy, y 1 q "

n ÿ i"1 y i y 1 2n`1´i ´y2n`1´i y 1 i .
Since G fixes the middle vector of the canonical basis e n , it acts on k 2n " k 2n`1 {ke n and this gives an isogeny

ϕ : G " SO 2n`1 -Sp 2n " G 1 ,
of degree 2 2n . Since the target of the isogeny is already simply connected, the diagram of Remark 1.13 is as follows :

SO 2n`1 Sp 2n Spin 2n`1 ϕ ψ F m ˝π
In particular, since ψ is central -identifying the root systems of a group and of its simply connected cover -the integers qp´q associated to the isogeny ϕ must be the same as those associated to the composition F m ˝π. In particular, this implies m " 0; hence the subgroup N SO 2n`1 " ker ϕ " ψpker πq " ψpN Spin 2n`1 q, which appears in this natural construction, coincides with the one just defined above. In particular, in this case

Lie N Spin 2n`1 " Liepε _ n pG m qq à γPΦă g γ " Liepε _ n pG m qq à 1ďiďn pg ´εi ' g ε i .q
To conclude this example, let us determine explicitly the subgroup N SO 2n`1 " ker ϕ and its Lie algebra, which will be needed later on. A matrix in ker ϕ is of the form

A " ¨a0 1 n . . . 0 n a n´1 b 0 . . . b n´1 a n b n`1 . . . b 2n a n`1 0 n . . . 1 n a 2n ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
and the condition for A to be in SO 2n`1 gives

QpAxq " a 2 n x n `ÿ j‰n b 2 j x 2 j `n´1 ÿ i"0 px i x 2n´i `a2n´i x i x n `ai x 2n´i x n q " Qpxq " x 2 n `n´1 ÿ i"0 x i x 2n´i ,
which is equivalent to a i " 0 for all i ‰ n, a 2 n " 1 and b 2 i " 0 for all i. Moreover, under these conditions det A " a n " 1, thus we have

N SO 2n`1 " ker ϕ " $ & % ¨1 0 0 b 0 . . . b n´1 1 b n`1 . . . b 2n 0 0 1 'P GL 2n`1 : b i P α p , .
-» α 2n p .

Finally, using the equalities in Remark 2.11 concerning short roots, we can conclude that Lie N SO 2n`1 " g ă .

Case of Picard rank one

Let us recall that we are working with a semisimple algebraic group G Ą B Ą T over an algebraically closed field k of characteristic p ą 0, together with a fixed Borel subgroup and a maximal torus contained in it. Our aim is to prove that all projective homogeneous varieties under a G-action having Picard group of rank one are isomorphic (as varieties) to homogeneous spaces having reduced stabilizers, in every type except G 2 when the characteristic is p " 2. Let us remark that, since the Picard rank of X " G{P is equal to the number of simple roots of G not contained in the root system of a Levi subgroup of P , such spaces are realized as quotients G{P such that the reduced subgroup of the stabilizer P is maximal. For a full justification of this assertion, see Section 3.2. The main result is the following : Theorem 2.1. Let X be a projective algebraic variety over an algebraically closed field of characteristic p ą 0, homogeneous under a faithful action of a smooth connected algebraic group H and having Picard group isomorphic to Z. Then there is a simple adjoint algebraic group G and a reduced maximal parabolic subgroup P Ă G such that X " G{P , unless p " 2 and H is of type G 2 .

The purpose of this Section is to prove the above Theorem: the idea is to do it explicitly case by case, since there seems to be no easy general geometric argument, as the case of type G 2 in characteristic two confirms. We proceed as follows: in Section 2.1 we perform elementary reductions to the case where X " G{P with G simple and the characteristic is 2 or 3, and we recall some notation and results used in the proof. In Section 2.2 we illustrate the strategy of the proof in the simplest case of type A n´1 . In Sections 2.3 to 2.5 we implement the argument in types B n , C n and F 4 . The case of G 2 , for which the above Theorem fails in characteristic 2, is then studied separately in Section 2.6.

2.1. Reductions and notation. Let us place ourselves under the hypothesis of Theorem 2.1 and denote as H aff the largest connected affine normal subgroup of H. By [6, Theorem 4.1.1], there is a canonical isomorphism X » AˆY , where A is an abelian variety and Y is a projective homogeneous variety under a faithful H aff action. Moreover, H aff is semisimple and of adjoint type. Under our assumptions, the abelian variety must be a point because otherwise the Picard group of X would not be discrete; more precisely, the hypothesis Pic X " Z implies -by the combinatorial description of the Białynicki-Birula decomposition of homogeneous spaces given in Theorem 3.12 -that we can assume H to be simple.

After such reductions, it is thus enough to prove the following statement. 19 concerning the notation on automorphism groups) we may assume that the action is faithful. In particular, this means that there is no normal algebraic subgroup of G contained in P . However, we need to be careful in the case-by-case proof because this additional assumption -which is not restrictive on the varieties considered -forces the group G to be of adjoint type.

Let us place ourselves in the setting of Theorem 2.2 and sketch the strategy of the proof: let P be a nonreduced parabolic subgroup such that P red " P α for some simple positive root α P ∆; consider P α Ĺ P Ă G, inducing the corresponding inclusions on Lie algebras:

Lie P α Ĺ Lie P Ă Lie G.

Since we do not have any information a priori on P , we study the quotient

V α ¨¨" Lie G{ Lie P α ,
considered as a L α -module under the representation given by the adjoint action, where L α denotes the Levi subgroup defined as the intersection P α X pP α q ´with the corresponding opposite parabolic subgroup. Let us fix some notation and state a Lemma on structure constants which will be repeatedly used in what follows : ' the decomposition of the Lie algebra in weight spaces under the T -action is

g " Lie G " Lie T à γPΦ g γ ,
' when G is simply connected, a Chevalley basis of Lie G is denoted as tX γ , H α u γPΦ,αP∆ . In particular, g γ " Lie U γ " kX γ and X γ " du γ p1q, where u γ is the root homomorphism (d) rX γ , X δ s " ˘pr `1qX γ`δ for all δ ‰ ˘γ roots such that the δ-string through γ goes from γ ´rδ to γ `qδ with q ě 1, i.e. such that γ `δ is still a root ; (e) rX γ , X δ s " 0 for all roots δ ‰ ˘γ such that γ `δ is not a root.

G a " -U γ .
In particular, the Chevalley relation we use the most frequently is pdq: it is important to recall that structure constants appearing in such equations are among ˘1, ˘2, ˘3, ˘4, which indicates why problems arise in characteristic 2 and 3.

The main line of argument to prove Theorem 2.2 is the following: we start by considering X " G{P with G adjoint acting faithfully and P nonreduced. Then with some computation on Lie algebras, we show that -when it is defined -N G Ă P , while otherwise G 1 Ă P . In both cases this gives a normal algebraic subgroup of G contained in the stabilizer P , which cannot exist due to Remark 2.4.

2.2.

Type A n´1 . We start with a case whose classification is already covered by [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF] -without needing any assumption on the characteristic of the base field -but which is useful in order to explain the approach used in the other cases below. Let us consider the reductive group G " GL n in type A n´1 , its maximal torus T given by diagonal matrices of the form t " diagpt 1 , . . . , t n q P GL n and the Borel subgroup B of upper triangular matrices. Let us denote as ε i P XpT q the character sending t t i , for i " 1, . . . , n. Then the root system Φ " ΦpG, T q is given by

Φ `" tε i ´εj , 1 ď i ă j ď nu,
with basis ∆ consisting of the following roots :

α 1 " ε 1 ´ε2 , . . . , α n´1 " ε n´1 ´εn .
Finally, assume given a nonreduced parabolic subgroup P such that P red " P m , where P m ¨¨" P αm denotes the maximal reduced parabolic subgroup associated to the simple positive root α m for a fixed 1 ď m ă n. Thus, the Levi subgroup L m of this reduced parabolic subgroup is a product of a reductive group of type A m´1 and one of type A n´m´1 :

L m " "ˆ˚0 0 ˚˙* » GL m ˆGL n´m ,
and the two factors have as basis of simple roots tα 1 , . . . , α m´1 u and tα m`1 , . . . , α n´1 u respectively. Now, let us consider the vector space V m " Lie G{ Lie P m . Since tγ P Φ `: α m P Supppγqu " tε i ´εj , i ď m ă ju, the root spaces in V m are of the form g ´εi `εj " kE ji , for i ď m ă j, where E ji denotes the square matrix of order n having all zero entries except the pj, iq-th entry which is equal to 1.

Concretely, V m consists as L m -module of all matrices M of size pn ´mq ˆm. The action of L m on V m is given by

pA, Bq ¨M " ˆA 0 0 B ˙ˆ0 0 M 0 ˙ˆA ´1 0 0 B ´1˙" ˆ0 0 BM A ´1 0 ˙" BM A ´1,
for all A P GL m , B P GL n´m . This just corresponds to the natural action of GL m ˆGL n´m on Hom k pk m , k n´m q. In particular, V m is an irreducible L m -module. Since Lie P { Lie P m is an L m -submodule of V m and we assumed P to be nonreduced, this implies Lie P " Lie G hence G 1 Ă P . Under our assumptions, by Remark 2.4 we get a contradiction. In other words, under the hypothesis of maximality of the reduced subgroup, we find that there are no new varieties other than those of the known classification. In the following subsections we will treat the other cases -not included in Wenzel's article -where two different root lengths are involved.

Remark 2.6. What does this case correspond to, geometrically, on the level of varieties? We know by [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF] that P red " P αm implies P " G r P αm for some r ě 0, hence X " G{G r P αm » G prq {pP αm q prq » G{P αm " Grass m,n is isomorphic to the Grassmannian of m-th dimensional vector subspaces in k n , equipped with the natural G " GL n -action, twisted by the r-th iterated Frobenius morphism. In particular, assuming faithfulness of the action implies r " 0.

2.3. Type C n . Let us consider the group r G " Sp 2n in type C n , with n ě 2 in characteristic p " 2 or 3. Defining r G as relative to the skew form bpx, yq "

ř n i"1 x i y 2n`1´i ´x2n`1´i y i on k 2n , one has r G " " X P GL 2n : t X ˆ0 Ω n ´Ωn 0 ˙X " ˆ0 Ω n ´Ωn 0 ˙* , where Ω n " ¨0 0 1 0 . . . 0 1 0 0 ‹ '.

Deriving this condition gives as Lie algebra

Lie r G "

" M P gl 2n : t M ˆ0 Ω n ´Ωn 0 ˙`ˆ0 Ω n ´Ωn 0 ˙M " 0 * " "ˆA B C ´A7 ˙P gl 2n : B " B 7 and C " C 7 * ,
where for any square matrix X of order n we denote as X 7 the matrix Ω n t XΩ n , i.e.

pX 7 q i,j " X n`1´j,n`1´i . (2.1) Remark 2.7. Next, let us consider as maximal torus T the one given by diagonal matrices of the form t " diagpt 1 , . . . , t n , t ´1 n , . . . , t ´1 1 q P GL 2n and denote as ε i P X ˚pT q the character sending t t i , for i " 1, . . . , n. A direct computation gives the following root spaces in Lie r G:

g 2ε i " k ˆ0 E i,n`1´i 0 0 ˙" k ˆ0 E ii Ω n 0 0 ġ´2ε i " k ˆ0 0 E n`1´i,i 0 ˙" k ˆ0 0 Ω n E ii 0 ˙, 1 ď i ď n,
g ε i `εj " k ˆ0 E i,n`1´j `Ej,n`1´i 0 0 ˙" k ˆ0 pE ij `Eji qΩ n 0 0 ˙, g ´εi ´εj " k ˆ0 0 E n`1´i,j `En`1´j,i 0 ˙" k ˆ0 0 Ω n pE ij `Eji q 0 ˙, i ă j,
g ε i ´εj " k ˆEij 0 0 ´En`1´j,n`1´i ˙" k ˆEij 0 0 ´E7 ij ˙, g ´εi `εj " k ˆEji 0 0 ´En`1´i,n`1´j ˙k ˆEji 0 0 ´E7 ji ˙, i ă j,
where E ij denotes the square matrix of order n with zero entries except for the pi, jq-th which is equal to one.

The root system Φ " Φp r G, T q is thus indeed

Φ `" tε i ´εj , ε i `εj , 1 ď i ă j ď nu Y t2ε i , 1 ď i ď nu,
having chosen as Borel subgroup the one given by all upper triangular matrices in r G Ă GL 2n . The corresponding basis ∆ consists of the following roots :

α 1 " ε 1 ´ε2 , . . . , α n´1 " ε n´1 ´εn , α n " 2ε n . (2.2) 2.3.1. Reduced parabolic P n . Still considering the group r
G " Sp 2n , denote as P n the maximal reduced parabolic subgroup associated to the long simple positive root α n : in a more intrinsic way, this subgroup is the stabilizer of an isotropic vector subspace W Ă V of dimension n, where r G " SppV q. In particular, W is the span of e 1 , . . . , e n , where pe i q 2n i"1 denotes the standard basis of k 2n . Moreover, let us denote as P ń the opposite parabolic subgroup and as L n their common Levi subgroup, so that

P n " StabpW Ă V q P ń " StabpW ˚Ă V q L n " P n X P ń " GLpW q » GL n ,
where W ' W ˚" V . Let us also remark that L has root system Ψ given by Ψ `" tε i ´εj , 1 ď i ă j ď nu, corresponding to a reductive group of type A n´1 having as basis α 1 , . . . , α n´1 . This can be visualized in the following block decomposition :

L n " "ˆA 0 0 ´pA ´1q 7 ˙: A P GLpW q » GL n * Ă r G.
First, the Lie algebra of P n is

Lie P n " Lie B à iăj g ´εi `εj " à iăj `gε i ´εj ' g ´εi `εj ˘à iăj g ε i `εj à i g 2ε i .
For our purposes it is useful to study the L n -action on the vector space

V n ¨¨" Lie r G{ Lie P n " à iăj g ´εi ´εj à i g ´2ε i .
Lemma 2.8. The L n -module V n is isomorphic to the dual of the standard representation of GL n on Sym 2 pk n q.

Proof. Indeed, the root spaces we are interested in have been computed in Remark 2.7. Those equalities imply that a matrix in

V n is of the form ˆ0 0 Ω n X 0 ˙, with X P Sym 2 pk n q,
thus the dual action of A P GL n » L n can be computed as follows:

t A ´1 ¨X » ˆtA ´1 0 0 ´pt Aq 7 ˙ˆ0 0 Ω n X 0 ˙ˆt A 0 0 ´pt A ´1q 7 ˙" ˆ0 0 ´Ωn AX t A 0 ˙» AX t A.
This gives the desired isomorphism between the two GL n -modules.

Let us remark that if we are working over a field of characteristic p " 2, the

L n -module V n contains a simple L n -quotient, namely $ ' ' ' ' ' & ' ' ' ' ' % ¨0 0 c 1 . . . c n 0 ‹ ‹ ‹ ‹ ‹ ' , c i P k , / / / / / . / / / / / - " n à i"1 g ´2ε i ,
which is isomorphic to the dual of the standard representation of GL n on k n , twisted once by the Frobenius morphism.

Proposition 2.9. Assume given a nonreduced parabolic subgroup P such that P red " P n . Then Lie P " Lie r G or Lie P " Lie P n `gă . If p " 3, then necessarily Lie P " Lie r G.

Proof. Let us assume that p " 2 and consider the nonzero vector space Lie P { Lie P n , which is an L n -submodule of V n . The latter being isomorphic to Sym 2 pk n q ˚by Lemma 2.8, we have that (a) either Lie P { Lie P n contains all of the weight spaces g ´2ε i associated to long negative roots, (b) or it does not contain any of them.

Let us start by (a) and assume g ´2ε i Ă Lie P for all i. In order to prove that Lie P " Lie r G, it is enough to show that for any i ă j, the Chevalley vector X ´εi ´εj also belongs to Lie P . For this, let us consider roots γ " ε i ´εj , satisfying X γ P Lie L n Ă Lie P, δ " ´2ε i , satisfying X δ P Lie P by our last assumption.

Thus, γ `δ " ´εi ´εj is still a root while δ ´γ " ´3ε i ´εj is not: applying Lemma 2.5 gives rX ε i ´εj , X ´2ε i s " ˘X´ε i ´εj P Lie P as wanted.

Let us place ourselves in the hypothesis of (b) and assume that no root subspace associated to a negative long root is in Lie P . Since by assumption P is nonreduced, Lie P n Ĺ Lie P so there must be at least one short root of the form ´εi ´εj satisfying X ´εi ´εj P Lie P . We will now prove that this implies all short roots ´εl ´εm for l ă m belong to Lie P , hence showing Lie P " Lie P n `gă . First, assume l ‰ i, j and consider roots γ " ´εi ´εj , satisfying X γ P Lie P by assumption, δ " ´εl `εi , satisfying X δ P Lie L n Ă Lie P.

In this case, γ `δ " ´εl ´εj is still a root while δ ´γ " ´εl `2ε i `εj is not: applying Lemma 2.5 gives rX ´εi ´εj , X ´εl `εi s " ˘X´ε l ´εj P Lie P. Now, let us fix any l ă m satisfying l, m ‰ j and consider roots γ " ε j ´εm , satisfying X γ P Lie L n Ă Lie P, δ " ´εl ´εj , satisfying X δ P Lie P by the last step. Thus, γ `δ " ´εl ´εm is still a root while δ ´γ " ´εl ´2ε j `εm is not: applying Lemma 2.5 gives rX ε j ´εm , X ´εl ´εj s " ˘X´ε l ´εm P Lie P.

If we are working over a field of characteristic p " 3, the representation of GL n acting on Sym 2 pk n q is already an irreducible one: this means that V n is an irreducible L n -module. Hence the nonzero submodule Lie P { Lie P n must coincide with all of V n ; equivalently, Lie P " Lie r G as wanted.

Proof. (of Theorem 2.2 in type C n when P red " P n ) Let G be simple adjoint of type C n and X " G{P with a faithful G-action such that P red " P αn and P is nonreduced. Define r P Ă r G " Sp 2n as being the preimage of P in the simply connected cover: it is a nonreduced parabolic subgroup satisfying r P red " P n . When p " 2, the above Proposition implies that

x Liepγ _ pG m qq : γ P Φ ă y ' g ă " Lie N r G Ă Lie r P ,
hence by considering the image in the adjoint quotient we get N G Ă P , which is a contradiction by Remark 2.4. If p " 3 then the above Proposition implies that Lie r P " Lie r G, hence the Frobenius kernel satisfies r G 1 Ă r P , and its image in the adjoint quotient is a normal subgroup of G contained in P , which gives again a contradiction. Therefore in both cases P must be a smooth parabolic.

2.3.2.

Reduced parabolic P m , m ă n. Let us consider again a k-vector space V of dimension 2n and denote as r G the group Sp 2n " SppV q, of type C n with n ě 2 and k of characteristic p " 2 or 3. Its root system has been recalled in (2.2). Let us fix an integer 1 ď m ă n and consider -keeping the notation recalled at the beginning of this subsection -the maximal reduced parabolic P m ¨¨" P αm , associated to the short simple root α m , which is the subgroup scheme stabilizing an isotropic vector subspace of dimension m: let us denote the latter as W . Then, P m also stabilizes its orthogonal with respect to the symplectic form on V : denoting as P ḿ the opposite parabolic subgroup and as L m their common Levi subgroup, one finds

P m " StabpW Ă W K Ă V q " StabpW Ă W ' U Ă V q P ḿ " StabpW ˚Ă pW ˚qK Ă V q " StabpW Ă W ˚' U Ă V q L m " P m X P ḿ " GLpW q ˆSppU q » GL m ˆSp 2n´2m .
In other words, the choice of such a Levi subgroup corresponds to fixing a vector subspace U satisfying V " W ' U ' W ˚. Let us also remark that L has root system Ψ given by

Ψ `" tε i ´εj , i ă j ď mu Y tε i ´εj , ε i `εj , m ă i ă ju Y t2ε j , m ă ju.
This can be visualized in the following block decomposition :

L m " $ & % ¨A 0 0 0 B 0 0 0 ´pA ´1q 7 ': A P GLpW q, B P SppU q , .
-

Ă P m " $ & % ¨˚˚0 ˚0 0 ˚' , .
-Proposition 2.10. Assume given a nonreduced parabolic subgroup P such that P red " P m . Then Lie P " Lie r G or Lie P " Lie P m `gă . If p " 3, then necessarily Lie P " Lie r G.

Proof. The Lie algebra of P m contains all root subspaces except for those associated to negative roots containing α m in their support, hence

V m ¨¨" Lie r G{ Lie P m " ˜à iăjďm g ´εi ´εj à jďm g ´2ε j ¸à iďmăj `g´ε i ´εj ' g ´εi `εj
More concretely, since L m " StabpW q X StabpW ˚q, the Levi subgroup acts on V m as follows. First, a matrix in ˜à iăjďm

g ´εi ´εj à jďm g ´2ε j (2.3)
is of the form ¨0 0 0 0 0 0 Ω m X 0 0 ' with X P Sym 2 pW q, and the L m -action on it is given by

pA, Bq ¨X » ¨A 0 0 0 B 0 0 0 ´pA ´1q 7 '¨0 0 0 0 0 0 X 0 0 '¨A ´1 0 0 0 B ´1 0 0 0 ´A7 ' " ¨0 0 0 0 0 0 ´Ωm p t A ´1X A ´1q 0 0 '» t A ´1X A ´1,
hence this L m -module is isomorphic to the dual of the standard representation of GL m acting on Sym 2 pk m q.

Let us assume that the characteristic of the base field is p " 2: then the dual of Sym 2 pW q has an irreducible L m -quotient given by ' jďm g ´2ε j : this proves that, once such a root subspace is contained in Lie P for some j ď m, then all root subspaces associated to long negative roots are. If p " 3, then Sym 2 pW q _ is already irreducible itself, hence either all subspaces in (2.3) are contained in Lie P , or none of them is. On the other hand, by Remark 2.7, an element of the quotient

à iďmăj `g´ε i ´εj ' g ´εi `εj ˘": M is of the form ¨0 0 0 Y 0 0 0 Y 5 0 ', where Y 5 ¨¨" Ω m t Y ˆ0 Ω n´m Ω n´m 0 ẇith Y P Hom k pW, U q. This gives the following L m -action on M pA, Bq ¨Y » ¨A 0 0 0 B 0 0 0 ´pA ´1q 7 '¨0 0 0 Y 0 0 0 Y 5 0 '¨A ´1 0 0 0 B ´1 0 0 0 ´A7 '» BY A ´1, because B being an element of SppU q implies pA ´1q 7 Y 5 B ´1 " Ω m t A ´1 t Y t B ˆ0 Ω n´m ´Ωn´m 0 ˙" pBY A ´1q 5 .
Thus, M is isomorphic as an L m -module to the representation

GL m ˆSp 2n´2m ñ Hom k pk m , k 2n´2m q, pA, Bq ¨Y " BY A ´1
This means in particular that M is an irreducible L m -module, since the Weyl group acts transitively on the set of its weights. Now, let us go back to the parabolic subgroup P : being nonreduced, Lie P { Lie P m is a nontrivial L m -submodule of V m . We already know that assuming such a quotient to contain g ´2ε j implies it contains all of them, thus we still need three claims to conclude the proof: (a) assuming Lie P { Lie P m to contain a subspace associated to a long negative root implies it also contains a subspace associated to a short negative root; (b) assuming it to contain a subspace associated to a short negative root implies it contains all of them; (c) when p " 3, assuming it to contain a subspace associated to a short negative root implies it also contains a subspace associated to a long negative root. For (a), assume g ´2ε j Ă Lie P for some j ď m, then consider roots γ " ´2ε j , satisfying X γ P Lie P δ " ε j ´εn , satisfying X δ P Lie B Ă Lie P.

Since γ `δ is a root and δ ´γ is not, Lemma 2.5 yields rX ´2ε j , X ε j ´εn s " ˘X´ε j ´εn P Lie P.

Let us remark that (a) is automatically true when p " 3 due to the irreducibility of the L mmodule Sym 2 pW q, without needing to consider any structure constant. For (b), first assume some g η Ă M is also contained in Lie P . Then M Ă Lie P because of its irreducibility as L m -quotient of V m . Moreover, fixing i ă j ď m and applying Lemma 2.5 to γ " ´εi ´εn and δ " ´εj `εn , satisfying X γ , X δ P M , we obtain rX ´εi ´εj , X ´εj `εn s " ˘X´ε i ´εj P Lie P.

Thus (b) holds in this case. On the other hand, let us start by assuming that g ´εi ´εj Ă Lie P for some i ă j ď m. Then, applying Lemma 2.5 to γ " ´εi ´εj and δ " ε j ´εn P Φ `yields rX ´εi ´εj , X ε j ´εn s " ˘X´ε i ´εn P Lie P so we conclude that some g ν Ă M is contained in Lie P and conclude by the beginning of the proof of (b). For (c) it is enough to use (b) and the irreducibility of Sym 2 pW q when p " 3.

Proof. (of Theorem 2.2 in type C n when P red " P m ) Let G be simple adjoint of type C n and X " G{P with a faithful G-action such that P red " P αm and P is nonreduced. Define r P Ă r G " Sp 2n as being the preimage of P in the simply connected cover: it is a nonreduced parabolic subgroup satisfying r P red " P m . When p " 2, Proposition 2.10 implies that

x Liepγ _ pG m qq : γ P Φ ă y ' g ă " Lie N r G Ă Lie r P ,
hence by considering the image in the adjoint quotient we get N G Ă P , which is a contradiction by Remark 2.4. If p " 3 then Proposition 2.10 implies that Lie r P " Lie r G, hence the Frobenius kernel satisfies r G 1 Ă r P , and its image in the adjoint quotient is a normal subgroup of G contained in P , which gives again a contradiction. Therefore in both cases P must be a smooth parabolic.

2.4. Type B n . The aim of this subsection is to get the same results for the group of type B n , with the help of some of the computations involving structure constants, which we have already done in case of type C n .

2.4.1.

Lie algebra of SO 2n`1 . Before continuing with our proof, let us compute what Lie G looks like, where G " SO 2n`1 " SOpk 2n`1 q is defined as being relative to the quadratic form

Qpxq " x 2 n `n´1 ÿ i"0 x i x 2n´i ,
in order to determine all its root spaces and be able to make explicit computations with them. To do this, let us consider as maximal torus T Ă G the one given by diagonal matrices of the form

t " diagpt 1 , . . . , t n , 1, t ´1 n , . . . , t ´1 1 q P GL 2n`1 , (2.4)
while the Borel subgroup is given by upper triangular matrices in G. The Lie algebra is given by all matrices of the form

M " ¨f0 A " pa ij q n i,j"1 . . . B " pb ij q n i,j"1 f n´1 g 0 . . . g n´1 h g n`1 . . . g 2n f n`1 C " pc ij q n i,j"1 . . . D " pd ij q n i,j"1 f 2n ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' P g 2n`1
satisfying Qpp1 `ǫM qxq " Qpxq for all x P k 2n`1 , where ǫ 2 " 0. Let us compute

Qpp1 `ǫM qxq " px n `ǫpg 0 x 0 `. . . `gn´1 x n´1 `hx n `gn`1 x n`1 `. . . g 2n x 2n qq 2 `n´1 ÿ i"0 ˜xi `ǫ ˜n´1 ÿ j"0 a ij x j `fi x n `n´1 ÿ m"0 b i,n`1´m x 2n´m ¸x 2n´i `ǫ ˜n´1 ÿ r"0 c n`1´i,r x r `f2n´i x n `n´1 ÿ l"0 d n`1´i,n`1´l x 2n´l ¸" Qpxq `ǫr2hx 2 n `n´1 ÿ i"0 pf 2n´i `2g i qx i x n `n´1 ÿ i"0 pf i `2g 2n´i qx n x 2n´i `n´1 ÿ i,m"0 b i,n`1´m x 2n´m x 2n´i `n´1 ÿ i,r"0 c n`1´i,r x i x r `n´1 ÿ i,j"0 pa ij `dn`1´j,n`1´i qx j x 2n´i s
Asking the above quantity to be equal to Qpxq gives the following conditions:

2h " 0, f i " ´2g 2n´i , f 2n´i " g i , D " ´A7 , C " ´C7 , B " ´B7 ,
where we keep the notation (2.1). Moreover, the matrices Ω n B and Ω n C have zero diagonal.

Since the group considered is special orthogonal, the last condition on the determinant implies that the trace of the matrix must be zero hence h " 0 also in characteristic 2. The result is thus

Lie SO 2n`1 " $ & % ¨A ´2Ω n w B t v 0 t w C ´2Ω n v ´A7 'P gl 2n`1 : C " ´C7 , B " ´B7 , c n`1´i,i " b n`1´i,i " 0 , .
-Remark 2.11. Denoting, analogously to the type C n , as ε i P XpT q the character t t i for 1 ď i ď n, the root spaces are the following :

g ´εi " k ¨0 0 0 t e i 0 0 0 ´2e n`1´i 0 ', g ε i " k ¨0 ´2e i 0 0 0 t e n`1´i 0 0 0 ', 1 ď i ď n,
g ε i `εj " k ¨0 0 pE ij `Eji qΩ n 0 0 0 0 0 0 ', g ´εi ´εj " k ¨0 0 0 0 0 0 Ω n pE ij `Eji q 0 0 ', i ă j, g ε i ´εj " k ¨Eij 0 0 0 0 0 0 0 ´E7 ij ', g ´εi `εj " k ¨Eji 0 0 0 0 0 0 0 ´E7 ji ', i ă j,
where e i denotes the standard basis of k n and E ij the square matrix of order n with all zero entries except for the pi, jq-th which is equal to one.

We thus verify that the root system Φ " ΦpG, T q is given by

Φ `" tε i ´εj , ε i `εj , 1 ď i ă j ď nu Y tε i , 1 ď i ď nu,
with basis ∆ consisting of the following roots :

α 1 " ε 1 ´ε2 , . . . , α n´1 " ε n´1 ´εn , α n " ε n . (2.5)
2.4.2. Reduced parabolic P n . Going back to our setting, let us consider the maximal reduced parabolic subgroup P n " P αn associated to the short simple root α n , i.e. the stabilizer of the isotropic vector subspace W " ke 0 ' ¨¨¨' ke n´1 Ă V of dimension n, where G " SOpV q and pe i q 2n

i"0 denotes the standard basis of k 2n`1 . Since its Levi subgroup L n " P n X P ń stabilizes both W and its dual W ˚" ke n`1 ' ¨¨¨' ke 2n , we conclude that it is of the form

L n " $ & % ¨A 0 0 0 1 0 0 0 pA ´1q 7 ': A P GLpW q » GL n , .
-

Ă P n " $ & % ¨˚˚0 ˚0 0 ˚' , . - Ă G,
where V " W ' ke n ' W ˚. In particular, L n is isomorphic to GL n , with root system Ψ given by Ψ `" tε i ´εj , 1 ď i ă j ď nu.

Proposition 2.12. Assume given a nonreduced parabolic subgroup P such that P red " P n . Then Lie P " Lie G or Lie P " Lie P n `gă . If p " 3, then necessarily Lie P " Lie G.

Proof. First, by definition of P n its Lie algebra is given by

Lie P n " Lie L n à iăj g ε i `εj à i g ε i ,
Since P is assumed to be nonreduced, Lie P n Ĺ Lie P hence : p1q either there is some i such that g ´εi Ă Lie P , p2q or there is some i ă j such that g ´εi ´εj Ă Lie P . Let us start by assuming p1q and fix such an index i. To show that all other g ´εj are then contained in Lie P , let us consider the L n -module

V n ¨¨" Lie G{ Lie P n " à iăj g ´εi ´εj à i g ´εi .
By Remark 2.11, a matrix in

À n i"1 g ´εi is of the form ¨0 0 0 t v 0 0 0 ´2Ω n v 0 ' for v P k n ,
and the dual L n -action on it is given by t A ´1 ¨v "

¨tA ´1 0 0 0 1 0 0 0 t A 7 '¨0 0 0 t v 0 0 0 ´2Ω n v 0 '¨t A 0 0 0 1 0 0 0 p t A ´1q 7 ' (2.6) " ¨0 0 0 t pAvq 0 0 0 ´2Ω n Av 0 '» Av (2.7)
In particular, À n i"1 g ´εi is a simple L n -module, isomorphic to the dual of the standard representation of GL n on k n . Thus, if a root subspace associated to some ´εi is contained in Lie P , all of the g ´εj are too. Let us assume instead that p2q holds: then, by repeating the same exact reasoning done in case (b) of the preceding subsection, we show that Lie P contains all weight spaces associated to long roots. This is due to the fact that the argument above only involves roots of the form ˘pε l ˘εm q. Moreover, assume i ‰ n and consider roots γ " ε n , satisfying X γ P Lie L n Ă Lie P δ " ´εi ´εn , satisfying X δ P Lie P by our last assumption. Thus, γ `δ " ´εi is still a root while δ ´γ " ´εi ´2ε n is not: applying Lemma 2.5 gives rX εn , X ´εi ´εn s " ˘X´ε i P Lie P.

In conclusion, when p " 2 we have shown that condition p2q implies Lie P " Lie G, while assuming condition p1q to be true and p2q to be false implies Lie P " Lie P n `gă . If p " 3 then the above reasoning still holds; the only remark that we need to add is that g ă Ă Lie P implies that there is a long negative root ν satisfying g ν Ă Lie P { Lie P n . For this, let us consider roots γ " ´ε1 and δ " ´εn , satisfying X γ , X δ P Lie P by our last assumption. Thus, γ `δ " ´ε1 ´εn is still a root, γ ´δ " ´ε1 `εn is too, while γ ´2δ " ´ε1 `2ε n is not: applying Lemma 2.5 gives rX ´ε1 , X ´εn s " ˘2X ´ε1 ´εn , hence X ´ε1 ´εn P Lie P.

Clearly, this last step of the proof would not work under the hypothesis p " 2.

Proof. (of Theorem 2.2 in type B n when P red " P n ) Let G be simple adjoint of type B n and X " G{P with a faithful G-action such that P red " P n " P αn and P is nonreduced. When p " 2, the above Proposition, together with the computation of Example 1.15, imply that g ă " Lie N G Ă Lie P, hence we get N G Ă P , which is a contradiction by Remark 2.4. When p " 3, the above Proposition implies that Lie P " Lie G, hence the Frobenius kernel satisfies G 1 Ă P , which gives again a contradiction. Therefore in both cases P must be a smooth parabolic. Remark 2.13. A small additional remark is needed in order to have a uniform statement later on, since this is the only case where the group G is not simply connected: let ψ : r G " Spin 2n`1 -G " SO 2n`1 be the quotient morphism and consider a nonreduced parabolic subgroup P Ă r G such that P red " P αn . The above reasoning implies that ψpP q either contains N G -when such a subgroup is defined -or it contains the Frobenius kernel G 1 . In particular, P contains a normal noncentral subgroup of height one, namely P X ψ ´1pN G q or P X ψ ´1pG 1 q.

2.4.3. Reduced parabolic P m , m ă n. Let us consider again a k-vector space V of dimension 2n `1 and denote as G the group SO 2n`1 " SOpV q, of type B n with n ě 2 and k of characteristic p " 2 or 3. Moreover, let us consider the maximal reduced parabolic subgroup P m ¨¨" P αm associated to a long simple root α m for some m ă n, keeping notations from (2.5). This subgroup is the stabilizer of an isotropic vector subspace W " ke 0 ' ¨¨¨' ke m´1 Ă V of dimension m, where pe i q 2n

i"0 denotes the standard basis of k 2n`1 . Since its Levi subgroup L m " P m X P ḿ stabilizes both W and its dual W ˚" ke 2n´m`1 ' ¨¨¨' ke 2n , we conclude that it is of the form

L m " $ & % ¨A 0 0 0 B 0 0 0 pA ´1q 7 ': A P GLpW q, B P SOpU q , .
-

Ă P m " $ & % ¨˚˚0 ˚0 0 ˚' , .
-

where V " W ' U ' W ˚.
In particular, L m » GL m ˆSO 2n´2m`1 with root system Ψ given by Ψ `" tε i ´εj , i ă j ď mu Y tε i ´εj , ε i `εj , m ă i ă ju Y tε j , m ă ju.

Proposition 2.14. Assume given a nonreduced parabolic subgroup P such that P red " P m . Then Lie P " Lie G or Lie P " Lie P m `gă . If p " 3, then necessarily Lie P " Lie G.

Proof. The Lie algebra of P m contains all root subspaces except for those associated to negative roots containing α m in their support, hence

V m ¨¨" Lie G{ Lie P m " ˜à iăjďm g ´εi ´εj à jďm g ´εj ¸à iďmăj `g´ε i ´εj ' g ´εi `εj
The analogous computations as those in the proofs of Proposition 2.10 and (2.6) imply that, as L m -modules,

À jďm g ´εj is isomorphic to the dual of the standard representation of GL n on k m , hence it is in particular a simple L m -quotient of V m ; (2) (1) 
À iďmăj `g´ε i ´εj ' g ´εi `εj ˘is isomorphic to the following representation, which gives a second irreducible L m -quotient of V m : GL m ˆSO 2n´2m`1 ñ Hom k pk m , k 2n´2m`1 q, pA, Bq ¨Y " BY A ´1. Now, first assume g ´εl Ă Lie P for some l ď m. Then À jďm g ´εj is contained in Lie P , since Lie P { Lie P m is a nontrivial L m -submodule of V m . Hence in this case g ă Ă Lie P . The only other possibility is to start by assuming that g γ Ă Lie P for some long negative root γ containing α m in its support. Then one can repeat the same exact reasoning of point (b) in the proof of Proposition 2.10, since it involves only roots of the form ˘pε l ˘εm q with l ă m, to conclude that all root subspaces associated to long negative roots are also contained in Lie P . To conclude that, in this case, Lie P " Lie G, it suffices to apply Lemma 2.5 to γ " ´ε1 ´εm and δ " ε m , which gives rX ´ε1 ´εm , X εm s " ˘X´ε 1 P Lie P as wanted.

Up to this point everything holds in both characteristic p " 2 and 3. To conclude it is enough to show that, when p " 3, if g ă Ă Lie P then there is a long negative root ν satisfying g ν Ă Lie P { Lie P m . For this, let us consider roots γ " ´ε1 and δ " ´εn , satisfying X γ , X δ P Lie P by our last assumption.

Thus, γ `δ " ´ε1 ´εn is still a root, γ ´δ " ´ε1 `εn is too, while γ ´2δ " ´ε1 `2ε n is not: applying Lemma 2.5 gives rX ´ε1 , X ´εn s " ˘2X ´ε1 ´εn , hence X ´ε1 ´εn P Lie P as wanted.

Proof. (of Theorem 2.2 in type B n when P red " P m ) Let G be simple adjoint of type B n and X " G{P with a faithful G-action such that P red " P αm and P is nonreduced. When p " 2 the above Proposition, together with Example 1.15, imply that g ă " Lie N G Ă Lie P, hence we get N G Ă P , which is a contradiction by Remark 2.4. When p " 3, the above Proposition implies that Lie P " Lie G, hence the Frobenius kernel satisfies G 1 Ă P , which gives again a contradiction. Therefore in both cases P must be a smooth parabolic.

Remark 2.15. As in Remark 2.13 above, we can conclude that if P Ă Spin 2n`1 is a nonreduced parabolic subgroup satisfying P red " P αm , then it contains a normal noncentral subgroup of height one.

2.5. Type F 4 . Let us consider a simple group G with root system F 4 over an algebraically closed field k of characteristic p " 2 or 3. Following notations from [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF], a basis ∆ of its root system Φ is given by

α 1 " ε 2 ´ε3 , α 2 " ε 3 ´ε4 , α 3 " ε 4 , α 4 " 1 2 pε 1 ´ε2 ´ε3 ´ε4 q,
satisfying the relations

||α 1 || 2 " ||α 2 || 2 " 2, ||α 3 || 2 " ||α 4 || 2 " 1 and pα 1 , α 2 q " pα 2 , α 3 q " ´1, pα 1 , α 3 q " pα 1 , α 4 q " pα 2 , α 4 q " 0, pα 3 , α 4 q " ´1 2 . (2.8)
Let us denote the associated maximal reduced parabolic subgroups as P i ¨¨" P α i , for i P t1, 2, 3, 4u. Let us also recall that, when p " 2, N G Ă G is the unique subgroup of height one such that

Lie N G " Lie α _ 3 pG m q ' Lie α _ 4 pG m q ' g ă , where the short positive roots are

α 3 , α 4 , α 2 `α3 , α 3 `α4 , α 1 `α2 `α3 , α 2 `2α 3 `α4 , α 2 `α3 `α4 , α 1 `2α 2 `3α 3 `2α 4 , α 1 `α2 `α3 `α4 , α 1 `α2 `2α 3 `α4 , α 1 `2α 2 `2α 3 `α4 , α 1 `2α 2 `3α 3 `α4 .
Proposition 2.16. Assume given a nonreduced parabolic subgroup P such that P red " P i for some i. Then Lie P " Lie G or Lie P " Lie P i `gă . If p " 3, then necessarily Lie P " Lie G.

Proof. Before starting a case-by-case analysis, let us denote as s i , for i " 1, 2, 3, 4, the reflection associated to the simple root α i , i.e.

s i pγq " γ ´2 pα i , γq pα i , α i q α i ,
for all γ P Φ. (2.9)

Case P red " P 1 .
Let us assume that P red " P 1 and denote as L 1 ¨¨" P 1 X P 1 the Levi subgroup: its root system is of type C 3 with basis consisting of short roots α 4 , α 3 and the long root α 2 . Moreover, L 1 acts on the vector space

V 1 ¨¨" Lie G{ Lie P 1 " à γPΓ 1 g ´γ ,
where Γ 1 is the subset of all positive roots satisfying α 1 P Supppγq. As usual, let us consider the nonzero vector subspace W 1 ¨¨" Lie P { Lie P 1 , which is a L 1 -submodule of V 1 : the set of its weights, which we denote Ω 1 , must be stable under the reflections s 2 , s 3 and s 4 . Our aim is to show that

either Ω 1 " Γ 1 X Φ ă or Ω 1 " Γ 1 : (2.10) in other words, either W 1 " ' γPΓ 1 XΦă g ´γ or W 1 " V 1 .
First, let us show that the Weyl group W pL 1 , T q " xs 2 , s 3 , s 4 y acts transitively on

Γ 1 X Φ ă " tα 1 `α2 `α3 , α 1 `α2 `α3 `α4 , α 1 `α2 `2α 3 `α4 , α 1 `2α 2 `2α 3 `α4 , α 1 `2α 2 `3α 3 `α4 , α 1 `2α 2 `3α 3 `2α 4 u : this implies that either Γ 1 X Φ ă Ă Ω 1 or pΓ 1 X Φ ă q X Ω 1 " H.
The following computations follow directly from (2.8) and (2.9) :

s 4 pα 1 `α2 `α3 q " α 1 `α2 `α3 `α4 , s 3 pα 1 `α2 `α3 `α4 q " α 1 `α2 `2α 3 `α4 , s 2 pα 1 `α2 `2α 3 `α4 q " α 1 `2α 2 `2α 3 `α4 , s 3 pα 1 `2α 2 `2α 3 `α4 q " α 1 `2α 2 `3α 3 `α4 , s 4 pα 1 `2α 2 `3α 3 `α4 q " α 1 `2α 2 `3α 3 `2α 4 .
Next, let us show that W pL 1 , T q acts transitively on

pΓ 1 X Φ ą qztr αu " tα 1 , α 1 `α2 , α 1 `α2 `2α 3 , α 1 `2α 2 `2α 3 , α 1 `α2 `2α 3 `2α 4 , α 1 `2α 2 `2α 3 `2α 4 , α 1 `2α 2 `4α 3 `2α 4 , α 1 `3α 2 `4α 3 `2α 4 u,
where r α ¨¨" 2α 1 `3α 2 `4α 3 `2α 4 is the highest root. Let us remark that r α is indeed fixed by the Weyl group of L 1 : this is due to the fact that it is the only root whose coefficient of α 1 is 2 instead of 1. Again, the transitivity of the action is proved by direct computation :

s 2 pα 1 q " α 1 `α2 , s 3 pα 1 `α2 q " α 1 `α2 `2α 3 , s 2 pα 1 `α2 `2α 3 q " α 1 `2α 2 `2α 3 , s 4 pα 1 `2α 2 `2α 3 q " α 1 `2α 2 `2α 3 `2α 4 , s 3 pα 1 `2α 2 `2α 3 `2α 4 q " α 1 `2α 2 `4α 3 `2α 4 , s 1 pα 1 `2α 2 `2α 3 `2α 4 q " α 1 `α2 `2α 3 `2α 4 , s 2 pα 1 `2α 2 `4α 3 `2α 4 q " α 1 `3α 2 `4α 3 `2α 4 . Thus, either pΓ 1 X Φ ą qztr αu Ă Ω 1 or ppΓ 1 X Φ ą qztr αuq X Ω 1 " H. Next, we show that r α P Ω 1 if and only if pΓ 1 X Φ ą qztr αu Ă Ω 1 .
' Assume that g ´r α Ă W 1 . Then applying Lemma 2.5 to γ " ´r α and δ " α 1 `2α 2 `2α 3 give rX ´r α , X α 1 `2α 2 `2α 3 s " ˘X´α 1 ´α2 ´2α 3 ´2α 4 P Lie P, since γ `δ is a root while γ ´δ " ´3α 1 ´5α 2 ´6α 3 ´2α 4 is not. This implies that the long root α 1 `α2 `2α 3 `2α 4 belongs to Ω 1 ' Assume that pΓ 1 X Φ ą qztr αu Ă Ω 1 . In particular, g ´α1 ´2α 2 ´2α 3 ' g ´α1 ´α2 ´2α 3 ´2α 4 Ă Lie P.

Thus, we can apply Lemma 2.5 to γ " ´α1 ´2α 2 ´2α 3 and δ " ´α1 ´α2 ´2α 3 ´2α 4 to get rX ´α1 ´2α 2 ´2α 3 , X ´α1 ´α2 ´2α 3 ´2α 4 s " ˘X´r α P Lie P, since γ `δ is a root while γ ´δ " ´α2 `2α 4 is not. The last step in order to prove (2.10) consists in showing that pΓ 1 X Φ ą q Ă Ω 1 implies pΓ 1 X Φ ă q X Ω 1 ‰ H which, by the above reasoning, means Γ 1 " Ω 1 . By our assumption, the long root γ " ´α1 ´2α 2 ´2α 3 ´2α 4 satisfies g γ Ă Lie P . Setting δ " ´α3 and applying Lemma 2.5 gives rX ´α1 ´2α 2 ´2α 3 ´2α 4 , X ´α3 s " ˘X´α 1 ´2α 2 ´3α 3 ´2α 4 P Lie P, since γ `δ is a root while γ ´δ " ´α1 ´2α 2 ´α3 ´2α 4 is not. This concludes the first case.

Case P red " P 2 . Let us assume that P red " P 2 and fix the analogous notation as above: L 2 ¨¨" P 2 X P 2 acts on

W 2 ¨¨" Lie P { Lie P 2 " à γPΩ 2 g ´γ Ă V 2 ¨¨" Lie G{ Lie P 2 " à γPΓ 2 g ´γ
and its set of weights Ω 2 must be stable under the action of the Weyl group W pL 2 , T q " xs 1 , s 3 , s 4 y. Our aim is to show that

either Ω 2 " Γ 2 X Φ ă or Ω 2 " Γ 2 . (2.11)
First, let us consider the partition of Γ 2 as disjoint union of the following subsets :

Σ 1 ¨¨" tα 1 `3α 2 `4α 3 `2α 4 , r αu, Σ 2 ¨¨" tα 1 `2α 2 `2α 3 , α 1 `2α 2 `2α 3 `2α 4 , α 1 `2α 2 `4α 3 `2α 4 u, Σ 3 ¨¨" tα 1 `2α 2 `2α 3 `α4 , α 1 `2α 2 `3α 3 `α4 , α 1 `2α 2 `3α 3 `2α 4 u, Σ 4 ¨¨" tα 2 `α3 , α 1 `α2 `α3 , α 1 `α2 `α3 `α4 , α 1 `α2 `2α 3 `α4 , α 2 `2α 3 `α4 , α 2 `α3 `α4 u, Σ 5 ¨¨" tα 2 `2α 3 `α4 , α 2 `2α 3 , α 1 `α2 , α 2 , α 1 `α2 `2α 3 , α 1 `α2 `2α 3 `2α 4 u. Notice that Σ 1 Y Σ 2 Y Σ 5 " Γ 2 X Φ ą and Σ 3 Y Σ 4 " Γ 2 X Φ ă
, so the root lengths once again come into play. Moreover, Σ 1 , Σ 2 Y Σ 3 and Σ 4 Y Σ 5 are indeed stable under the action of W pL 2 , T q, since their elements have coefficient 3, 2 and 1 respectively with respect to the simple root α 2 . Now, the following computations prove that :

' Σ 1 is stable by W pL 2 , T q : s 1 pα 1 `3α 2 `4α 3 `2α 4 q " r α;
' Σ 2 is stable by W pL 2 , T q :

s 4 pα 1 `2α 2 `2α 3 q " α 1 `2α 2 `2α 3 `2α 4 , s 3 pα 1 `2α 2 `2α 3 `2α 4 q " α 1 `2α 2 `4α 3 `2α 4 ;
' Σ 3 is stable by W pL 2 , T q:

s 3 pα 1 `2α 2 `2α 3 `α4 q " α 1 `2α 2 `3α 3 `α4 , s 4 pα 1 `2α 2 `3α 3 `2α 4 q " α 1 `2α 2 `3α 3 `2α 4 ;
' Σ 4 is stable by W pL 2 , T q :

s 1 pα 2 `α3 q " α 1 `α2 `α3 , s 4 pα 1 `α2 `α3 q " α 1 `α2 `α3 `α4 , s 1 pα 1 `α2 `α3 `α4 q " α 2 `α3 `α4 , s 3 pα 2 `α3 `α4 q " α 2 `2α 3 `α4 , s 1 pα 2 `2α 3 `α4 q " α 1 `α2 `2α 3 `α4 ;
s 4 pα 2 `2α 3 `2α 4 q " α 2 `2α 3 , s 3 pα 2 `2α 3 q " α 1 `α2 , s 1 pα 1 `α2 q " α 2 and s 3 pα 1 `α2 q " α 1 `α2 `2α 3 , s 4 pα 1 `α2 `2α 3 q " α 1 `α2 `2α 3 `2α 4 .

Thus, for j " 1, . . . , 5, we have shown that Σ j X Ω 2 ‰ H implies that Σ j Ă Ω 2 . Next, we prove the following claims by using Lemma 2.5 on structure constants :

(a) Σ 1 Ă Ω 2 implies that Σ 2 Ă Ω 2 , (b) Σ 2 Ă Ω 2 implies that Σ 5 Ă Ω 2 , (c) Σ 5 Ă Ω 2 implies that Σ 2 Ă Ω 2 , (d) Σ 2 Y Σ 5 Ă Ω 2 implies that Σ 1 Ă Ω 2 , (e) Σ 3 Ă Ω 2 implies that Σ 4 Ă Ω 2 , (f) Σ 4 Ă Ω 2 implies that Σ 3 Ă Ω 2 , (g) Σ 2 Ă Ω 2 implies that Σ 3 Ă Ω 2 .
The parabolic subgroup P being non-reduced by assumption, the set Ω 2 is nonempty hence, once these implications are proved, it must be either all of Γ 2 or Σ 3 Y Σ 4 " Γ 2 X Φ ă , which proves (2.11).

(a): By assumption g ´α1 ´3α 2 ´4α 3 ´2α 4 Ă Lie P . Set γ " ´α1 ´3α 2 ´4α 3 ´2α 4 and δ " α 2 , then γ ´δ " ´α1 ´4α 2 ´4α 3 ´2α 4 is not a root hence

rX γ , X δ s " ˘X´α 1 ´2α 2 ´4α 3 ´2α 4 P Lie P so α 1 `2α 2 `4α 3 `2α 4 P Σ 2 X Ω 2 .
(b): By assumption g ´α1 ´2α 2 ´4α 3 ´2α 4 Ă Lie P . Set γ " ´α1 ´2α 2 ´4α 3 ´2α 4 and δ " α 2 `2α 3 , then γ ´δ " ´α1 ´3α 2 ´6α 3 ´2α 4 is not a root hence rX γ , X δ s " ˘X´α 1 ´α2 ´2α 3 ´2α 4 P Lie P so α 1 `α2 `2α 3 `2α 4 P Σ 5 X Ω 2 .

(c): By assumption g ´α1 ´α2 ' g ´α2 ´2α 3 Ă Lie P . Set γ " ´α1 ´α2 and δ " ´α2 ´2α 3 , then γ ´δ " ´α1 ´2α 3 is not a root hence rX γ , X δ s " ˘X´α 1 ´2α 2 ´2α 3 P Lie P so α 1 `2α 2 `2α 3 P Σ 2 X Ω 2 .

(d): By assumption g ´α1 ´α2 ´2α 3 ´2α 4 'g ´α1 ´2α 2 ´2α 3 Ă Lie P . Set γ " ´α1 ´α2 ´2α 3 ´2α 4 and δ " ´α1 ´2α 2 ´2α 3 , then γ ´δ " α 2 ´2α 4 is not a root hence rX γ , X δ s " ˘X´r α P Lie P so r α P Σ 1 X Ω 2 .

(e): By assumption g ´α1 ´2α 2 ´2α 3 ´α4 Ă Lie P . Set γ " ´α1 ´2α 2 ´2α 3 ´α4 and δ " α 2 , then γ ´δ " ´α1 ´3α 2 ´2α 3 ´α4 is not a root hence rX γ , X δ s " ˘X´α 1 ´α2 ´2α 3 ´α4 P Lie P so α 1 `α2 `2α 3 `α4 P Σ 4 X Ω 2 .

(f): By assumption g ´α1 ´α2 ´α3 ´α4 ' g ´α2 ´2α 3 ´α4 Ă Lie P . Set γ " ´α1 ´α2 ´α3 ´α4 and δ " ´α2 ´2α 3 ´α4 , then γ ´δ " ´α1 `α3 is not a root hence rX γ , X δ s " ˘X´α 1 ´2α 2 ´3α 3 ´2α 4 P Lie P so α 1 `2α 2 `3α 3 `2α 4 P Σ 3 X Ω 2 .

(g): By assumption g ´α1 ´2α 2 ´2α 3 ´2α 4 Ă Lie P . Set γ " ´α1 ´2α 2 ´2α 3 ´2α 4 and δ " ´α3 , then γ ´δ " ´α1 ´2α 2 ´α3 ´2α 4 is not a root hence rX γ , X δ s " ˘X´α 1 ´2α 2 ´3α 3 ´2α 4 P Lie P so α 1 `2α 2 `3α 3 `2α 4 P Σ 3 X Ω 2 .

Case P red " P 3 . Let us assume that P red " P 3 and fix the analogous notation as above: L 3 ¨¨" P 3 X P 3 acts on

W 3 ¨¨" Lie P { Lie P 3 " à γPΩ 3 g ´γ Ă V 3 ¨¨" Lie G{ Lie P 3 " à γPΓ 3 g ´γ
and its set of weights Ω 3 must be stable under the action of the Weyl group W pL 3 , T q " xs 1 , s 2 , s 4 y. Our aim is to show that

either Ω 3 " Γ 3 X Φ ă or Ω 3 " Γ 3 . (2.12)
First, let us consider the partition of Γ 3 as disjoint union of the following subsets :

Λ 1 ¨¨"tα 1 `2α 2 `4α 3 `2α 4 , α 1 `3α 2 `4α 3 `2α 4 , r αu, Λ 2 ¨¨"tα 1 `2α 2 `2α 3 , α 1 `2α 2 `2α 3 `2α 4 , α 1 `α2 `2α 3 `2α 4 , α 2 `2α 3 `2α 4 , α 2 `2α 3 , α 1 `α2 `2α 3 u, Λ 3 ¨¨"tα 1 `2α 2 `3α 3 `2α 4 , α 1 `2α 2 `3α 3 `α4 u, Λ 4 ¨¨"tα 1 `2α 2 `2α 3 `α4 , α 1 `α2 `2α 3 `α4 , α 2 `2α 3 `α4 u, Λ 5 ¨¨"tα 2 `α3 `α4 , α 1 `α2 `α3 `α4 , α 1 `α2 `α3 , α 2 `α3 , α 3 , α 3 `α4 u.
Notice that Λ 1 Y Λ 2 " Γ 3 X Φ ą and Λ 3 Y Λ 4 Y Λ 5 " Γ 3 X Φ ă ; moreover, as in the preceding case, let us remark that Λ 1 , Λ 3 , Λ 2 Y Λ 4 and Λ 5 are stable under W pL 3 , T q because their elements have as coefficient respectively 4, 3, 2 and 1 with respect to the simple root α 3 . Now let us prove by direct computation that :

' Λ 1 is stable by W pL 3 , T q :

s 2 pα 1 `2α 2 `4α 3 `2α 4 q " α 1 `3α 2 `4α 3 `2α 4 , s 1 pα 1 `3α 2 `4α 3 `2α 4 q " r α;
' Λ 2 is stable by W pL 3 , T q :

s 4 pα 1 `2α 2 `2α 3 q " α 1 `2α 2 `2α 3 `2α 4 , s 2 pα 1 `2α 2 `2α 3 `2α 4 q " α 1 `α2 `2α 3 `2α 4 , s 1 pα 1 `α2 `2α 3 `2α 4 q " α 2 `2α 3 `2α 4 , s 4 pα 2 `2α 3 `2α 4 q " α 2 `2α 3 , s 1 pα 2 `2α 3 q " α 1 `α2 `2α 3 ;
' Λ 3 is stable by W pL 3 , T q :

s 4 pα 1 `2α 2 `3α 3 `2α 4 q " α 1 `2α 2 `3α 3 `α4 ;
' Λ 4 is stable by W pL 3 , T q :

s 2 pα 1 `2α 2 `2α 3 `α4 q " α 1 `α2 `2α 3 `α4 , s 1 pα 1 `α2 `2α 3 `α4 q " α 2 `2α 3 `α4 ;
' Λ 5 is stable by W pL 3 , T q : s 1 pα 2 `α3 `α4 q " α 1 `α2 `α3 `α4 , s 4 pα 1 `α2 `α3 `α4 q " α 1 `α2 `α3 , s 1 pα 1 `α2 `α3 q " α 2 `α3 , s 2 pα 2 `α3 q " α 3 , s 4 pα 3 q " α 3 `α4 .

Thus, for j " 1, . . . , 5, we have shown that Λ j X Ω 3 ‰ H implies that Λ j Ă Ω 3 . Next, we need to prove the following claims by using Lemma 2.5 on structure constants :

(a) Λ 1 Ă Ω 3 implies that Λ 2 Ă Ω 3 , (b) Λ 2 Ă Ω 3 implies that Λ 1 Ă Ω 3 , (c) Λ 3 Ă Ω 3 implies that Λ 4 Ă Ω 3 , (d) Λ 4 Ă Ω 3 implies that Λ 5 Ă Ω 3 , (e) Λ 5 Ă Ω 3 implies that Λ 4 Ă Ω 3 , (f) Λ 4 Y Λ 5 Ă Ω 3 implies that Λ 3 Ă Ω 3 , (g) Λ 1 Ă Ω 3 implies that Λ 3 Ă Ω 3 .
The parabolic subgroup P being non-reduced by assumption, the set Ω 3 is nonempty hence, once these implications are proved, it must be either all of Γ 3 or Λ 3 Y Λ 4 Y Λ 5 " Γ 3 X Φ ă , which proves (2.12).

(a): By assumption g ´r α Ă Lie P . Set γ " ´r α and δ " α 1 `2α 2 `2α 3 , then γ ´δ " ´3α 1 `5α 2 `6α 3 `2α 4 is not a root hence rX γ , X δ s " ˘X´α 1 ´α2 ´2α 3 ´2α 4 P Lie P so α 1 `α2 `2α 3 `2α 4 P Λ 2 X Ω 3 .

(b): By assumption g ´α1 ´2α 2 ´2α 3 ' g ´α1 ´α2 ´2α 3 ´2α 4 Ă Lie P . Set γ " ´α1 ´2α 2 ´2α 3 and δ " ´α1 ´α2 ´2α 3 ´2α 4 , then γ ´δ " ´α2 `2α 4 is not a root hence rX γ , X δ s " ˘X´r α P Lie P so r α P Λ 1 X Ω 3 . (c): By assumption g ´α1 ´2α 2 ´3α 3 ´2α 4 Ă Lie P . Set γ " ´α1 ´2α 2 ´3α 3 ´2α 4 and δ " α 3 `α4 P Φ `, then γ ´δ " ´α1 ´2α 2 ´4α 3 ´3α 4 is not a root hence rX γ , X δ s " ˘X´α 1 ´2α 2 ´2α 3 ´α4 P Lie P so α 1 `2α 2 `2α 3 `α4 P Λ 4 X Ω 3 .

(d): By assumption g ´α2 ´2α 3 ´α4 Ă Lie P . Set γ " ´α2 ´2α 3 ´α4 and δ " α 3 P Φ `, then γ ´δ " ´α2 ´3α 3 ´α4 is not a root hence rX γ , X δ s " ˘X´α 2 ´α3 ´α4 P Lie P so α 2 `α3 `α4 P Λ 5 X Ω 3 .

(e): By assumption g ´α3 ´α4 ' g ´α2 ´α3 Ă Lie P . Set γ " ´α3 ´α4 and δ " ´α2 ´α3 , then γ ´δ " ´α2 `α4 is not a root hence rX γ , X δ s " ˘X´α 2 ´2α 3 ´α4 P Lie P so α 2 `2α 3 `α4 P Λ 4 X Ω 3 .

(f): By assumption g ´α1 ´α2 ´α3 ´α4 ' g ´α2 ´2α 3 ´α4 Ă Lie P . Set γ " ´α1 ´α2 ´α3 ´α4 and δ " ´α2 ´2α 3 ´α4 , then γ ´δ " ´α1 ´α3 is not a root hence rX γ , X δ s " ˘X´α 1 ´2α 2 ´3α 3 ´2α 4 P Lie P so α 1 `2α 2 `3α 3 `2α 4 P Λ 3 X Ω 3 .

(g): By assumption g ´α1 ´2α 2 ´4α 3 ´2α 4 Ă Lie P . Set γ " ´α1 ´2α 2 ´4α 3 ´2α 4 and δ " α 3 P Φ `, then γ ´δ " ´α1 ´2α 2 ´5α 3 ´2α 4 is not a root hence rX γ , X δ s " ˘X´α 1 ´2α 2 ´3α 3 ´2α 4 P Lie P so α 1 ´2α 2 `3α 3 `2α 4 P Λ 3 X Ω 3 .

Case P red " P 4 . Let us assume that P red " P 4 and fix the analogous notation as above: the Levi subgroup L 4 ¨¨" P 4 X P 4 , which is of type B 3 , acts on

W 4 ¨¨" Lie P { Lie P 4 " à γPΩ 4 g ´γ Ă V 4 ¨¨" Lie G{ Lie P 4 " à γPΓ 4 g ´γ
and its set of weights Ω 4 must be stable under the action of the Weyl group W pL 4 , T q " xs 1 , s 2 , s 3 y. Our aim is to show that

either Ω 4 " Γ 4 X Φ ă or Ω 4 " Γ 4 . (2.13)
Let β ¨¨" α 1 `2α 2 `3α 3 `2α 4 and consider, as in the first case of this proof, the action of W pL 4 , T q on

pΓ 4 X Φ ă qztβ, α 4 u ¨¨" tα 3 `α4 , α 2 `α3 `α4 , α 1 `α2 `α3 `α4 , α 1 `α2 `2α 3 `α4 , α 1 `2α 2 `2α 3 `α4 , α 1 `2α 2 `3α 3 `α4 , α 2 `2α 3 `α4 u,
which is transitive because

s 2 pα 3 `α4 q " α 2 `α3 `α4 s 1 pα 2 `α3 `α4 q " α 1 `α2 `α3 `α4 , s 3 pα 1 `α2 `α3 `α4 q " α 1 `α2 `2α 3 `α4 , s 2 pα 1 `α2 `2α 3 `α4 q " α 1 `2α 2 `2α 3 `α4 , s 1 pα 1 `α2 `2α 3 `α4 q " α 2 `2α 3 `α4 , s 3 pα 1 `2α 2 `2α 3 `α4 q " α 1 `2α 2 `3α 3 `α4 ,
and the same action on

Γ 4 X Φ ą " tα 2 `2α 3 `2α 4 , α 1 `α2 `2α 3 `2α 4 , α 1 `2α 2 `2α 3 `2α 4 , α 1 `2α 2 `4α 3 `2α 4 , α 1 `3α 2 `4α 3 `2α 4 , r αu,
which is also transitive because

s 1 pα 2 `2α 3 `2α 4 q " α 1 `α2 `2α 3 `2α 4 , s 2 pα 1 `α2 `2α 3 `2α 4 q " α 1 `2α 2 `2α 3 `2α 4 , s 3 pα 1 `2α 2 `2α 3 `2α 4 q " α 1 `2α 2 `4α 3 `2α 4 , s 2 pα 1 `2α 2 `4α 3 `2α 4 q " α 1 `3α 2 `4α 3 `2α 4 , s 1 pα 1 `3α 2 `4α 3 `2α 4 q " r α.
Next, we prove the following claims using Lemma 2.5 on structure constants :

(a) Γ 4 X Φ ą Ă Ω 4 implies that β P Ω 4 , (b) β P Ω 4 implies that pΓ 4 X Φ ă qztβ, α 4 u Ă Ω 4 , (c) pΓ 4 X Φ ă qztβ, α 4 u Ă Ω 4 implies that α 4 P Ω 4 , (d) α 4 P Ω 4 implies that pΓ 4 X Φ ă qztβ, α 4 u Ă Ω 4 , (e) pΓ 4 X Φ ă qztβu Ă Ω 4 implies that β Ă Ω 4 .
The parabolic subgroup P being non-reduced by assumption, the set Ω 4 is nonempty hence, once these implications are proved, it must me either all of Γ 4 or Γ 4 X Φ ă , which proves (2.13).

(a): By assumption g ´α2 ´2α 3 ´2α 4 Ă Lie P and g ´α1 ´α2 ´α3 P Lie L 4 Ă Lie P . Set γ " ´α2 ´2α 3 ´2α 4 and δ " ´α1 ´α2 ´α3 , then γ ´δ " α 1 ´α3 ´2α 4 is not a root hence rX γ , X δ s " ˘X´β P Lie P so β P Ω 4 .

(b): By assumption g ´β Ă Lie P . Set γ " ´β and δ " α 1 `α2 `α3 `α4 P Φ `, then γ ´δ " ´2α 1 ´3α 2 ´4α 3 ´3α 4 is not a root hence rX γ , X δ s " ˘X´α 2 ´2α 3 ´α4 P Lie P so α 2 `2α 3 `α4 P ppΓ 4 X Φ ă qztβ, α 4 uq X Ω 4 .

(c): By assumption g ´α3 ´α4 Ă Lie P . Set γ " ´α3 ´α4 and δ " α 3 P Φ `, then γ ´δ " ´2α 3 ´α4 is not a root hence rX γ , X δ s " ˘X´α 4 P Lie P so α 4 P Ω 4 .

(d): By assumption g ´α4 Ă Lie P and g ´α3 Ă Lie L 4 Ă Lie P . Set γ " ´α4 and δ " ´α3 , then γ ´δ " α 3 ´α4 is not a root hence rX γ , X δ s " ˘X´α 3 ´α4 P Lie P so α 3 `α4 P ppΓ 4 X Φ ă qztβ, α 4 uq X Ω 4 .

(e): By assumption g ´α4 ' g ´α1 ´2α 2 ´3α 3 ´α4 Ă Lie P . Set γ " ´α4 and δ " ´α1 ´2α 2 3α

3 ´α4 , then γ ´δ " α 1 `2α 2 `3α 3 is not a root hence rX γ , X δ s " ˘X´β P Lie P so β P Ω 4 .

Conclusion: up to this point all computations hold in both characteristic p " 2 and 3. To conclude our proof when p " 3, one more step -which works simultaneously for all cases i " 1, 2, 3, 4 -is necessary in order to conclude that Ω i " Γ i . That is, we want to show that pΓ i X Φ ă q Ă Ω i implies pΓ i X Φ ą q X Ω i ‰ H. By assumption, g ´α1 ´2α 2 ´3α 3 ´2α 4 Ă Lie P . Set γ " ´α1 ´2α 2 ´3α 3 ´2α 4 and δ " α 3 P Φ `, then γ `δ and γ ´δ are still roots while γ ´2δ " ´α1 ´2α 2 ´5α 3 ´2α 4 is not, hence rX γ , X δ s " ˘2X ´α1 ´2α 2 ´4α 3 ´2α 4 P Lie P hence X ´α1 ´2α 2 ´4α 3 ´2α 4 P Lie P, so that ´α1 ´2α 2 ´4α 3 ´2α 4 P pΓ i X Φ ą q X Ω i as wanted.

Proof. (of Theorem 2.2 in type F 4 ) Let G be simple of type F 4 and X " G{P with a faithful G-action such that P red is maximal and P is nonreduced. When p " 2, Proposition 2.16 implies that g ă Ă Lie P , hence we get Lie N G Ă Lie P and N G Ă P by the equivalence of categories, which is a contradiction by Remark 2.4. When p " 3, the above Proposition implies that Lie P " Lie G, hence the Frobenius kernel satisfies G 1 Ă P , which gives again a contradiction. Therefore in both cases P must be a reduced parabolic.

2.6. Type G 2 . The last non-simply laced Dynkin diagram we have to consider is of type G 2 . In this case, things behave as expected when the reduced parabolic subgroup is P α 2 , the one associated with the long simple root α 2 , or when the characteristic is p " 3: the proof follows the same strategy as in types B n , C n and F 4 . This still leaves out the case of a nonreduced parabolic subgroup satisfying P red " P α 1 in characteristic 2, where α 1 denotes the short simple root. Under such assumptions, we find two maximal p-Lie subalgebras h ¨¨" Lie P α 1 ' g ´2α 1 ´α2 and l ¨¨" Lie P α 1 ' g ´α1 ' g ´α1 ´α2 , containing Lie P α 1 . Let H and L be of height one with Lie algebra respectively equal to g ´2α 1 ´α2 and g ´α1 ' g ´α1 ´α2 , and define P h ¨¨" xH, P α 1 y and P l ¨¨" xL, P α 1 y.

This gives rise to two parabolic subgroups which have as reduced subgroup a maximal one, but cannot be described as pker ϕqP α 1 for some isogeny ϕ with source G. We then move on to investigate the corresponding homogeneous spaces, which we describe by using the Chevalley description of G as automorphism group of an octonion algebra. The main result is the following, which completes the classification of Theorem 1.

Theorem 2.17. Let G be of type G 2 in characteristic two and let P be a nonreduced parabolic subgroup of G having P α 1 as reduced part. Then one of the three following cases holds:

' P is of standard type and X » G{P α 1 is isomorphic to a quadric Q in P 6 ; ' P is obtained from P h by pull back via an iterated Frobenius morphism and X » G{P h is isomorphic to P 5 ; ' P is obtained from P l by pull back via an iterated Frobenius morphism and X » G{P l is isomorphic to a hyperplane section of Sp 6 {P α 3 .

Let us recall for reference the following result: see [9, Theorem 1], reformulated here under the stronger hypothesis of k being an algebraically closed field. It will be needed to conclude the type G 2 case, as well as later on, when dealing with higher Picard ranks. Theorem 2.18. Let H 1 be a semisimple adjoint group over k and Q 1 a reduced parabolic subgroup of H 1 . Then the natural homomorphism

H 1 -H ¨¨" Aut 0 H 1 {Q 1
is an isomorphism in all but the three following cases:

(a) H 1 is of type C n for some n ě 2 and Q 1 " P α 1 is associated to the first short simple root: in this case the automorphism group H is smooth simple adjoint of type A 2n´1 ; (b) H 1 is of type B n for some n ě 2 and Q 1 " P αn is associated to the short simple root: in this case the automorphism group H is smooth simple adjoint of type D n`1 ; (c) H 1 is of type G 2 and Q 1 " P α 1 : in this case the automorphism group H is smooth simple adjoint of type B 3 .

With a slight change of notation compared to Demazure, we call the three pairs pH, Qq in the cases paq, pbq and pcq of the Theorem exceptional, while pH 1 , Q 1 q is called the associated pair to the exceptional one.

Remark 2.19. In order to be clear let us recall what we mean by automorphism group, both in Theorem 2.18 and in the rest of the paper. For a proper algebraic scheme X over a perfect field k, let us consider the functor Aut X : pSch{kq red -Grp, T -Aut T pX T q, sending a reduced k-scheme T to the group of automorphisms of T -schemes of X ˆk T . By [START_REF] Matsumura | Representability of group functors, and automorphisms of algebraic schemes[END_REF]Theorem 3.6] this functor is represented by a reduced group scheme Aut X which is locally of finite type over k. We denote as Aut 0 X its connected component of the identity, which is a smooth algebraic group. 2.6.1. What works as expected. Let us consider a group G with root system of type G 2 over a field k of characteristic p " 2 or 3. Following notations from [START_REF] Bourbaki | Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines[END_REF], the elements of Φ `are

α 1 , α 1 `α2 , 2α 1 `α2 , 3α 1 `α2 , α 2 , 3α 1 `2α 2 .
In particular, let us consider as elements of the basis ∆ the short root α 1 and the long root α 2 ; then denote P 1 ¨¨" P α 1 and P 2 ¨¨" P α 2 the associated maximal reduced parabolic subgroups.

5π{6 α 1 ´α1 α 2 ´α2 ´3α 1 ´α2 ´2α 1 ´α2 ´α1 ´α2 ´3α 1 ´2α 2
Let us recall that, when p " 3, N G Ă G is in this case the unique subgroup of height one such that

Lie N G " Lie α _ 1 pG m q ' g α 1 ' g ´α1 ' g α 2 `2α 1 ' g ´α2 ´2α 1 ' g α 1 `α2 ' g ´α1 ´α2 .
Proposition 2.20. Assume given a nonreduced parabolic P such that P red " P 1 (with p " 3q or P red " P 2 (with p " 2 or 3). Then Lie P " Lie G or Lie P " Lie P red `gă . If p " 2, then necessarily Lie P " Lie G.

Remark 2.21. We can conclude that Theorem 2.2 holds in this case as follows: let G be simple of type G 2 and X " G{P with a faithful G-action such that P red is maximal, satisfies the hypothesis of Proposition 2.20, and such that P is nonreduced. The above Proposition implies that Lie α _ 1 pG m q ' g ă " Lie N G Ă Lie P, hence we get N G Ă P , which is a contradiction by Remark 2.4. Therefore P must be a smooth parabolic.

Proof. Case P red " P 1 . Let us assume that P red " P 1 and that the characteristic is p " 3. The Levi subgroup L 1 ¨¨" P 1 X P 1 has root system t˘α 2 u and acts on the vector space

V 1 ¨¨" Lie G{ Lie P 1 " g ´α1 ' g ´α1 ´α2 ' g ´2α 1 ´α2 ' g ´3α 1 ´α2 ' g ´3α 1 ´2α 2 .
Now, let us look at the nonzero vector subspace W 1 ¨¨" Lie P { Lie P 1 , which is in particular an L 1 -submodule of V 1 . Thus, the set of its weights must be stable under the reflection s α 2 . This means, by a direct computation, that

g ´3α 1 ´2α 2 Ă W 1 ðñ g ´3α 1 ´α2 Ă W 1 , (2.14) g ´α1 ´α2 Ă W 1 ðñ g ´α1 Ă W 1 . (2.15)
Let us assume first that g ´α1 ´α2 ' g ´α1 Ă W 1 . Then, applying Lemma 2.5 to γ " ´α1 ´α2 and δ " ´α1 gives rX ´α1 ´α2 , X ´α1 s " ˘2X ´2α 1 ´α2 , hence X ´2α 1 ´α2 P Lie P, since γ`δ and γ´δ are roots while γ´2δ " α 1 ´α2 is not. Conversely, assuming g ´2α 1 ´α2 Ă W 1 and considering roots γ " ´2α 1 ´α2 and δ " α 1 yields rX ´2α 1 ´α2 , X α 1 s " ˘2X ´α1 ´α2 , hence X ´α1 ´α2 P Lie P.

In other words, we have showed that whenever a root subspace associated to a short negative root is contained in W 1 , the other two are too. To conclude this first case, it is enough to show that

g ´3α 1 ´2α 2 ' g ´3α 1 ´α2 Ă W 1 implies that g ´2α 1 ´α2 Ă W 1 .
This can be done by considering roots γ " ´3α 1 ´2α 2 and δ " α 1 `α2 , for which γ `δ is a root but γ ´δ " ´4α 1 ´3α 2 is not, hence rX ´3α 1 ´2α 2 , X α 1 `α2 s " ˘X´2α 1 ´α2 P Lie P.

Case P red " P 2 . Moving on to the second case, let us assume that P red " P 2 . The Levi subgroup L 2 ¨¨" P 2 XP 2 has root system t˘α 1 u and acts on the vector space

V 2 ¨¨" Lie G{ Lie P 1 " g ´α2 ' g ´α1 ´α2 ' g ´2α 1 ´α2 ' g ´3α 1 ´α2 ' g ´3α 1 ´2α 2 .
Now, let us look at the nonzero vector subspace W 2 ¨¨" Lie P { Lie P 2 , which is in particular an L 2 -submodule of V 2 . Thus, the set of its weights must be stable under the reflection s α 1 . This means, by a direct computation, that

g ´α1 ´α2 Ă W 2 ðñ g ´2α 1 ´α2 Ă W 2 , (2.16) g ´3α 1 ´α2 Ă W 2 ðñ g ´α1 Ă W 2 .
(2.17)

The equivalence (2.16) already implies that once a root subspace associated to a short negative root is contained in W 2 , the only other one is too. If p " 3, to conclude it suffices to show that g ´γ Ă W 2 for some long root γ P Φ `implies W 2 " V 2 i.e. Lie P " Lie G. First, rX ´3α 1 ´2α 2 , X α 2 s " ˘X´3α 1 ´α2 , because p´3α 1 ´2α 2 q ´α2 is not a root, and conversely rX ´3α 1 ´α2 , X ´α2 s " ˘X´3α 1 ´2α 2 , because p´3α 1 ´α2 q ´p´α 2 q is not a root. Finally, rX ´3α 1 ´α2 , X α 1 s " ˘X´2α 1 ´α2 , because p´3α 1 ´α2 q ´α1 is not a root. This proves that in this case W 2 " V 2 . If p " 2, one more step must be added: assume that g ´2α 1 ´α2 ' g ´α1 ´α2 Ă W 2 , then rX ´2α 1 ´α2 , X ´α1 s " ˘X´3α 1 ´α2 , hence X ´3α 1 ´α2 P Lie P, because p´2α 1 ´α2 q `α1 , p´2α 1 ´α2 q `2α 1 are roots, while p´2α 1 ´α2 q `3α 1 is not. This last remark, together with the above computations shows that when p " 2 necessarily Lie P " Lie G.

First, Lemma 2.5 implies that rg ´α1 , Lie T s " rX ´α1 , Lie T s Ă g ´α1 Ă l ; rg ´α1 ´α2 , Lie T s " rX ´α1 ´α2 , Lie T s Ă g ´α1 ´α2 Ă l.

Moreover, the second and third column in the above table show that rg ´α1 , g γ s " krX ´α1 , X γ s and rg ´α1 ´α2 , g γ s " krX ´α1 ´α2 , X γ s are both subspaces of l, for all roots γ whose root subspace is contained in Lie P α 1 . To conclude there is still left to show that h and l are stable by the p-mapping (recall that by assumption p " 2q, knowing that Lie P α 1 is. In other words, setting Y γ equal to the image of X γ by the p-mapping, we want to prove that Y ´2α 1 ´α2 P h and that Y ´α1 , Y ´α1 ´α2 P l. To do this, let

Y ´2α 1 ´α2 " H `ÿ δPΦ a δ X δ , for some a δ P k, H P Lie T.
It is enough to show that a ´α1 " a ´3α 1 ´α2 " a ´3α 1 ´2α 2 " a ´α1 ´α2 " 0. By the properties of the p-mapping, we have that adpY γ q " ad 2 pX γ q for any root γ. Using that rX ´2α 1 ´α2 , X α 1 s vanishes (see table), we have:

0 " adpX ´2α 1 ´α2 qprX ´2α 1 ´α2 , X α 1 sq " ad 2 pX ´2α 1 ´α2 qpX α 1 q " adpY ´2α 1 ´α2 qpX α 1 q " rH, X α 1 s `ÿ δPΦ a δ rX δ , X α 1 s.
Expanding all brackets using the fourth column of the above table gives that, for some a P k,

0 " aX α 1 `a2α 1 ´α2 X 3α 1 `α2 `aα 2 X α 1 `α2 `a´α 1 H α 1 `a´3α 1 ´α2 X ´2α 1 ´α2 `a´α 1 ´α2 X ´α2 ,
which implies in particular a ´α1 " a ´3α 1 ´α2 " a ´α1 ´α2 " 0. Moreover, rX ´2α 1 ´α2 , X α 1 s also vanishes, hence we have 0 " adpX ´2α 1 ´α2 qprX ´2α 1 ´α2 , X α 1 `α2 sq " ad 2 pX ´2α 1 ´α2 qpX α 1 `α2 q " adpY ´2α 1 ´α2 qpX α 1 `α2 q " rH, X α 1 `α2 s `ÿ δPΦ a δ rX δ , X α 1 `α2 s.

Writing this with respect to the Chevalley basis gives

a ´3α 1 ´2α 2 rX ´3α 1 ´2α 2 , X α 1 `α2 s " a ´3α 1 ´2α 2 X ´2α 1 ´α2
as the only term in X ´2α 1 ´α2 , meaning that the coefficient a ´3α 1 ´2α 2 also vanishes, as wanted: thus we can conclude that h is a p-Lie subalgebra of Lie G. Analogously, let

Y ´α1 " H 1 `ÿ δPΦ b δ X δ , for some b δ P k, H 1 P Lie T,
and as before we aim to show that b ´3α 1 ´α2 " b ´2α 1 ´α2 " b ´3α 1 ´2α 2 " 0. Using that rX ´α1 , X 2α 1 `α2 s vanishes (see table), we have

0 " adpX ´α1 qprX ´α1 , X 2α 1 `α2 sq " ad 2 pX ´α1 qprX ´α1 , X 2α 1 `α2 sq " adpY ´α1 qpX 2α 1 `α2 q " rH 1 , X 2α 1 `α2 s `ÿ δPΦ b δ rX δ , X 2α 1 `α2 s.
Expanding all brackets using the last column of the above table gives that, for some b P k and some H 2 P Lie T ,

0 " bX 2α 1 `α2 `bα 1 X 3α 1 `α2 `bα 1 `α2 X 3α 1 `2α 2 `b´3α 1 ´α2 X ´α1 `b´2α 1 ´α2 H 2 `b´3α 1 ´2α 2 X ´α1 ´α2 .
In particular, this proves that b ´3α 1 ´α2 " b ´3α 1 ´2α 2 " 0. Moreover, rX ´α1 , X ´α1 ´α2 s also vanishes, hence we have 0 " adpX ´α1 qprX ´α1 , X ´α1 ´α2 sq " ad 2 pX ´α1 qprX ´α1 , X ´α1 ´α2 sq " adpY ´α1 qpX ´α1 ´α2 q " rH 1 , X ´α1 ´α2 s `ÿ δPΦ b δ rX δ , X ´α1 ´α2 s.

Expanding this with respect to the Chevalley basis gives b ´2α 1 ´α2 rX ´2α 1 ´α2 , X ´α1 ´α2 s " b ´2α 1 ´α2 X ´3α 1 ´2α 2 X ´3α 1 ´2α 2 as the only term in X ´3α 1 ´2α 2 , meaning that the coefficient b ´2α 1 ´α2 also vanishes: this proves that Y ´α1 P l.

To prove that Y ´α1 ´α2 is also in l, an analogous computation, symmetric with respect to the reflection s α 2 , can be done. Finally, we can conclude that l is a p-Lie subalgebra.

Corollary 2.24. The p-Lie subalgebras of Lie G containing strictly Lie P α 1 are exactly h and l.

Proof. Let us consider a p-Lie subalgebra Lie P α 1 Ĺ s Ă Lie G, meaning that there is some positive root γ ‰ α 1 such that g ´γ is contained in s. By Lemma 2.22, if γ is long then s " Lie G, so we can assume γ to be short. To do this, let us remark that by Lemma 2.5 we have rX ´α1 , X ´2α 1 ´α2 s " X ´3α 1 ´α2 , (2.20) because ´α1 ´p´2α 1 ´α2 qq and ´α1 ´2p´2α 1 ´α2 qq are roots while ´α1 ´3p´2α 1 ´α2 qq is not, hence the structure constant is 3 " 1. If γ " α 1 , by symmetry with respect to the Weyl group t˘s α 2 u of the Levi factor of P α 1 we have that g ´α1 ´α2 is also contained in s, hence either s " l or it also contains g ´2α 1 ´α2 . The equality (2.20) together with Lemma 2.22 then imply s " Lie G. The same reasoning applies when starting by γ " ´α1 ´α2 . On the other hand, starting by γ " 2α 1 `α2 implies that either s " h, or it contains also g ´α1 ' g ´α1 ´α2 , from which we conclude again -by (2.20) and Lemma 2.22 -that s " Lie G. Definition 2.25. Let us fix the following notation for the rest of this Section:

(1) H ¨¨" pU ´2α 1 ´α2 q 1 is the subgroup of height one such that Lie H " g ´2α 1 ´α2 , i.e. h " Lie P α 1 ' Lie H ; (2) L ¨¨" pU ´α1 q 1 ¨pU ´α1 ´α2 q 1 is the subgroup of height one such that Lie L " g ´α1 ' g ´α1 ´α2 , i.e. l " Lie P α 1 ' Lie L ; (3) P h the parabolic subgroup generated by P α 1 and H; (4) P l the parabolic subgroup generated by P α 1 and L.

Let us notice that g ´α1 and g ´α1 ´α2 commute, so that L is the direct product of the Frobenius kernels defining it.

Remark 2.26. The two parabolic subgroups P h and P l are exotic in the sense that they cannot be of the form pker ϕqP α for some isogeny ϕ, since when p " 2 the only noncentral isogenies in type G 2 are iterated Frobenius homomorphisms (see Proposition 1.12).

In the following part we investigate what the homogeneous spaces having as stabilizer respectively P h and P l are isomorphic to, as varieties.

2.6.3. Parabolic P h . Proposition 2.27. Let G be simple of type G 2 in characteristic p " 2 and P h the parabolic subgroup of Definition 2.25. Then the quotient morphism G{P α 1 -G{P h is the natural projection 2 3 `x2 x 4 `x1 x 5 `x0 x 6 " 0u P 5 , rx 0 : . . . : x 6 s rx 0 : x 1 : x 2 : x 4 : x 5 : x 6 s.

P 6 Ą Q ¨¨" tx
In particular, the homogeneous space G{P h is isomorphic as a variety to P 5 " PSp 6 {P α 1 .

In order to construct this morphism, we will see the group G as the automorphism group of an octonion algebra -see the Appendix for more details -which is O " tpu, vq : u, v are 2 ˆ2 matricesu , with basis pe 11 , e 12 , e 21 , e 22 , f 11 , f 12 , f 21 , f 22 q, recalled in Subsection 4.1, with unit e " p1, 0q " e 11 `e22 , and which is equipped with a norm qpu, vq " detpuq `detpvq.

An embedding of the group G 2 into Sp 6 can be seen as follows: let us consider its action on the vector space V ¨¨" e K " tpu, vq : detp1 `uq `detpuq " 1u as in (4.2). Since p " 2, we have that e P V hence the group G also acts on the quotient W ¨¨" V {ke, which has dimension 6. By (4.4) in the Appendix, a maximal torus T of G -with respect to the basis pf 12 , f 11 , e 12 , e 21 , f 22 , f 21 q of W -is given by

G m 2 Q pa, bq -diagpa, a ´1b ´1, a 2 b, a ´2b ´1, ab, a ´1q " t P T Ă GL 6 .
Let us recall that the basis of simple roots we fix is α 1 ptq ¨¨" a and α 2 ptq ¨¨" b, hence V has the following decomposition in weight spaces :

V 0 " ke, V α 1 " kf 12 , V ´α1 " kf 21 , V α 1 `α2 " kf 22 , V ´α1 ´α2 " kf 11 , V 2α 1 `α2 " ke 12 , V ´2α 1 ´α2 " ke 21 .
This way, T can be identified with the maximal torus in [13, page 13]: in Heinloth's description of the embedding G Ă Sp 6 in characteristic 2, given by the action on

W " V {ke " W α 1 ' W ´α1 ´α2 ' W 2α 1 `α2 ' W ´2α 1 ´α2 ' W α 1 `α2 ' W ´α1 ,
the group G is generated by the two following copies of GL 2 :

θ 1 : A -¨A A p1q det A ´1 A ' and θ 2 : B - ¨det B ´1 B B det B ‹ ‹ ' ,
where A p1q denotes the Frobenius twist applied to A.

Lemma 2.28. When considering the action of G on PpV q " P 6 , we have

Stab G prV 2α 1 `α2 sq " P α 1 .
Proof. First, let us prove that P α 1 , which is generated by T , U ˘α2 and U α 1 , fixes V 2α 1 `α2 " ke 12 . Clearly the torus does; moreover, the computation of the respective actions of u ´α2 pλq, u α 2 pλq and u α 1 pλq on V , done in Remark 4.2, shows that all three fix re 12 s " r0 : 0 : 1 : 0 : 0 : 0 : 0s.

This proves that P α 1 Ă S ¨¨" Stab G prV 2α 1 `α2 sq. To prove the reverse inclusion, let us remark that no nontrivial subgroup of U ´α1 and of U ´2α 1 ´α2 fixes re 12 s: again by Remark 4.2, we have u ´α1 pλq ¨e12 " e 12 `λf 22 and u ´2α 1 ´α2 pλq ¨e12 " e 12 `λ2 e 21 , thus U ´α1 X S " U ´2α 1 ´α2 X S " 1. At this point, we know that Lie P α 1 Ă S, hence by Corollary 2.24, Lie S is either equal to Lie P α 1 , to h, to l or to Lie G. However, U α 1 XS " 1 means g ´α1 is not contained in Lie S, hence the latter cannot be equal to l nor to Lie G. Analogously, U ´2α 1 ´α2 X S " 1 means g 2α 1 `α2 is not contained in Lie S, hence Lie S cannot be equal to h. This means that Lie S " Lie P α 1 hence S " P α 1 as wanted.

We can now conclude part of the proof of Proposition 2.27. First, let us recall that we are working with the basis pf 12 , f 11 , e 12 , e, e 21 , f 22 , f 21 q on V , giving homogeneous coordinates rx 0 : ¨¨¨: x 6 s on PpV q: the norm q hence becomes qpxq " x 2 3 `x2 x 4 `x1 x 5 `x0 x 6 , and its zero locus in P 6 is the quadric Q of the Proposition. The point re 12 s belongs to Q while res does not, and the quotient W " V {ke corresponds to the projection P 6 ztresu -P 5 . Moreover, we have

G{P α 1 " G{ Stab G prV 2α 1 `α2 sq " G ¨re 12 s Q
Since both are smooth irreducible projective of dimension 5, they coincide. In particular,

Aut 0 G{P α 1 " Aut 0 Q " SOpV q " SO 7 is of type B 3 , as stated in Theorem 2.18.
What is left to prove is that G{P h » P 5 : to do this, we look at the action of G on W . Lemma 2.29. When considering the action of G on PpW q " P 5 , we have

Stab G prW 2α 1 `α2 sq " P h .
Proof. Let S 1 be the stabilizer. From the above Lemma we know that P α 1 fixes rV 2α 1 `α2 s, hence it also fixes rW 2α 1 `α2 s. Moreover, by Remark (4.2) we have u ´2α 1 ´α2 pλq ¨re 12 s " r0 : 0 : 1 : λ 2 : 0 : 0s and u ´α1 pλq ¨re 12 s " r0 : 0 : 1 : 0 : λ : 0s, meaning that U ´α1 X S 1 " 1, while

H " u ´2α 1 ´α2 pα p q " U ´2α 1 ´α2 X S 1 .
In particular, this yields that on one side, P h Ă S 1 hence h Ă Lie S, and on the other side, g ´α1 is not contained in Lie S 1 . In particular by Corollary 2.24 Lie S 1 " h and the only positive root γ satisfying 1 Ĺ U ´γ X S 1 Ĺ U ´γ is ´2α 1 ´α2 , hence by [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF] U Ś1 " ź

γPΦ `: U ´γ ĆS 1 pU ´γ X S 1 q " U ´2α 1 ´α2 X S 1 " H,
where U Ṕ -following Wenzel's notation -denotes the infinitesimal unipotent subgroup given by the intersection of a parabolic subgroup P with the unipotent radical of the opposite of P red with respect to the Borel B. Thus, we can conclude that S 1 " U Ś1 ¨S1 red " H ¨P α 1 , and the latter must coincide with P h by definition.

Corollary 2.30. We have P h " H ¨P α 1 . More precisely,

U Ṕh " P h X R ú pP α 1 q " P h X U ´2α 1 ´α2 " H.

Now, let us consider the embedding

G{P h " G{ Stab G prW 2α 1 `α2 sq " G ¨re 12 s
PpW q " P 5 .

As before, since both are smooth irreducible projective of dimension 5, they coincide. This gives as quotient map

G{P α 1 " Q -G{pH ¨P α 1 q " P 5 (2.21)
the projection from res, which has degree 2 equal to the order of H. 2.6.4. Parabolic P l . Let us consider the homogeneous space G{P l and show that one can realize it in a concrete way using octonions. More precisely, considering the action of G 2 Ă Sp 6 on W " V {ke, the parabolic subgroup P l is the stabilizer of a 3-dimensional isotropic vector subspace of W , spanned by the root spaces associated to the short positive roots (see Proposition 2.34). To do this, let us consider η ¨¨" f 12 ^f22 ^e12 as element of PpΛ 3 V q and η the element of PpΛ 3 W q given by the images in W of the three vectors.

Lemma 2.31. Let G be simple of type G 2 in characteristic p " 2 and P l the parabolic subgroup of Definition 2.25. When considering the action of G on PpΛ 3 V q and PpΛ 3 W q respectively, we have

Stab G pηq " P α 1 and Stab G pηq " P l .

Proof. Let us denote as S and S 2 the above stabilizers. First, let us prove that P α 1 , which is generated by , U ˘α2 and U α 1 , fixes the subspace kf 12 'kf 22 'ke 12 Ă V , whose elements are of the form pw 0 , 0, w 2 , 0, 0, w 5 , 0q. The computations of Remark 4.2 in the Appendix give us the following : u α 2 pλq ¨pw 0 , 0, w 2 , 0, 0, w 5 , 0q " pw 0 , 0, w 2 , 0, 0, λw 0 `w5 , 0q, u ´α2 pλq ¨pw 0 , 0, w 2 , 0, 0, w 5 , 0q " pw 0 `λw 5 , 0, w 2 , 0, 0, w 5 , 0q u α 1 pλq ¨pw 0 , 0, w 2 , 0, 0, w 5 , 0q " pw 0 , 0, w 2 `λw 5 , 0, 0, w 5 , 0q, meaning that P α 1 Ă S. Moreover, considering the action of the root subgroups associated to ´α1 , ´2α 1 ´α2 and ´α1 ´α2 , we have the following : u ´α1 pλq ¨pw 0 , 0, w 2 , 0, 0, w 5 , 0q " pw 0 , 0, w 2 , λw 0 , 0, λw 2 `w5 , λ 2 w 0 q, u ´2α 1 ´α2 pλq ¨pw 0 , 0, w 2 , 0, 0, w 5 , 0q " pw 0 , λw 0 , w 2 , λw 2 , λ 2 w 2 , w 5 , λw 5 q, u ´α1 ´α2 pλq ¨pw 0 , 0, w 2 , 0, 0, w 5 , 0q " pw 0 `λw 2 , λ 2 w 5 , w 2 , λw 5 , 0, w 5 , 0q.

These computations imply that Lie S has trivial intersection with the root subspaces associated to short negative roots. Thus by Corollary 2.24 Lie S " Lie P α 1 , which allows to conclude that S " P α 1 .

Next, let us consider the action of G on the quotient W " V {ke. The second computation just above yields that the intersection U ´2α 2 ´α1 X S 2 is trivial, hence g ´2α 1 ´α2 is not contained in Lie S 2 and the latter cannot be equal to Lie G nor to h. The other two equalities imply that U ´α1 X S 2 " u ´α1 pα p q and U ´α1 ´α2 X S 2 " u ´α1 ´α2 pα p q, meaning that Lie S 2 " l. In particular, the positive roots γ satisfying 1 Ĺ U ´γ X S 1 Ĺ U ´γ are α 1 and α 1 `α2 : by [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF], we have

U Ś2 " ź γPΦ `: U ´γ ĆS 2
pU ´γ X S 2 q " pU ´α1 ´α2 X S 2 q ¨pU ´α1 X S 2 q " L.

Thus, we can conclude that S 2 " U Ś2 ¨S2 red " L ¨P α 1 , and the latter must coincide with P l by definition.

Corollary 2.32. We have P l " L ¨P α 1 . More precisely, U Ṕl " P l X R ú pP α 1 q " pP l X U ´α1 ´α2 q ¨pP l X U ´α1 q " L.

Next, let us realise the variety Q as a hyperplane section of the SO 7 -homogeneous variety of isotropic 3-dimensional subspaces of V : this will help us describe X ¨¨" G{P l geometrically. Recall that -keeping the notation from Proposition 2.12 -the reduced parabolic subgroup associated to the short root α 3 in type B 3 , which is denoted P 3 " P α 3 Ă SO 7 , is the stabilizer of an isotropic subspace of dimension 3, hence

P α 1 " Stab G pηq " G X P 3 " G X Stab SO 7 pηq.
This gives the following embedding, where we denote as L the unique (very) ample generator of the Picard group of Y .

Q " G{P α 1 ã-Y ¨¨" SO 7 {P 3 ã-PpH 0 pY, Lq _ q (2.22)
Lemma 2.33. The variety Q is a hyperplane section of Y relative to the ample line bundle L.

Proof. Let us express Y as a quotient of Spin 7 by the maximal reduced parabolic Q 3 associated to the short simple root. Since Spin 7 is simply connected, the Picard group of Y identifies with the group of characters of Q 3 . Under this identification, the embedding (2.22) is given by the representation of Spin 7 acting on U ¨¨" H 0 pY, Lq, whose associated weight ̟ is the third fundamental weight in type B 3 . This weight is minuscule: by the Weyl character formula, the weights of the diagonal maximal torus (2.4) of SO 7 in U are

1 2 p˘ε 1 ˘ε2 ˘ε3 q . (2.23)
In particular, U has dimension 8, so that (2. 22) is a codimension one embedding of Y into PpU _ q. Moreover, by [START_REF] Ramanathan | Equations defining Schubert varieties and Frobenius splitting of diagonals[END_REF]Theorem 3.11], the homogeneous ideal of Y is generated by degree 2 elements, hence there is some non-degenerate quadratic form q on U of which Y is the zero locus. Next, let us restrict the representation to G: the maximal torus T we consider is the one given in (4.4), hence (2.23) gives as T -weights of U the six short roots ˘α1 , ˘pα 1 `α2 q, ˘p2α 1 `α2 q, together with twice the zero weight. In particular, U admits, as a G-module, only two irreducible quotients, the trivial representation and the simple module W which has as weights the six short roots. Moreover, the quadratic form q provides an isomorphism between U and its dual as G modules: in particular, there exists some linear form h on U invariant by G. Since the base point of Q corresponds to a B-stable line in U with weight ̟, h must vanish on it and therefore there is an inclusion of Q into the hyperplane H " ph " 0q. Finally, the intersection H X Y has dimension 5, contains Q and is a complete intersection because h is linear and q non-degenerate, hence it must coincide with Q and we are done.

The above description of the variety Q holds in any characteristic. The case of characteristic two is peculiar because there exists an embedding of G 2 into Sp 6 , together with the very special isogeny described in Example 1.15. We will now use these two ingredients to get a geometric description of X, starting from the above realisation of the variety Q and the natural quotient morphism Q X, induced by the inclusion of P α 1 " pP l q red into P l .

Let us consider the following commutative diagram, which is induced by the quotient W " V {ke and the associated purely inseparable isogeny ϕ : SOpV q " SO 7 Sp 6 " SppW q, with kernel N ¨¨" N SO 7 . Let us recall that, by Lemma 2.31, Q is the G 2 -orbit of the 3-dimensional subspace defined by the short positive root vectors in Λ 3 V , while X is the G 2 -orbit of the 3-dimensional subspace defined by the short positive root vectors in

Λ 3 W . Q " G 2 {P α 1 X " G 2 {P l Y ¨¨" SO 7 {P 3 Z ¨¨" Sp 6 {P 1 3 " SO 7 {pN P 3 q PpΛ 3 V q PpΛ 3 W q g f
Proposition 2.34. The line bundle O Z pXq satisfies the equality Pic Z " Z O Z pXq. In particular, X is a hyperplane section of Z with respect to the unique (very) ample generator of Pic Z.

Proof. By Lemma 2.33, the Picard group of Y is generated by O Y pQq, hence Q satisfies Q ¨r C " 1, where we denote respectively as r C and C the Schubert curves (associated to the short simple root α 3 in type B 3 and the long simple root α 1 3 in type C 3 ) in Y and in Z. The morphism f is finite locally free of degree 8, which corresponds to the order of N P 3 {P 3 " N {pN X P 3 q.

Indeed, as seen in Example 1.15, the subgroup N Ă SO 7 has height one and Lie algebra n " g ă of dimension 6, hence the order of N is 2 6 . On the other hand, the order of N X P 3 is 2 3 because LiepN X P 3 q " n X Lie P 3 " g ´ε1 ´ε2 ' g ´ε1 ´ε3 ' g ´ε2 ´ε3 has dimension 3. In particular, this means that f ˚f ˚X " 8X seen as elements of Pic Z. On the other hand, g is finite locally free of degree 4: the latter is the order of L, the unipotent infinitesimal part of P l . Thus we also have f ˚Q " 4X : putting the two equalities together implies f ˚X " 2Q in the Picard group of Y . Next we notice that α 3 is a short root in type B 3 , hence the very special isogeny acts as a Frobenius morphism on the corresponding copy of the additive group in SO 7 . In other words, the set theoretic equality f p r

Cq " C becomes f ˚r C " 2C on 1-cycles. In particular,

2 " 2Q ¨r C " f ˚X ¨r C " X ¨f˚r C " 2X ¨C.
This last computation together with the fact that Pic Z » Z allows to conclude that the line bundle associated to X generates the Picard group of Z.

Up to this point we have realized the variety X " G{P l using octonions. In particular, this construction provides a new example (besides projective spaces and quadrics) of a hyperplane section X of a homogeneous variety pZ, M q, such that X is also homogeneous and M generates the Picard group of Z. One might ask whether Theorem 2.1 still holds for the variety X. Actually this is not the case, as illustrated in the following result. Proposition 2.35. Let G be simple of type G 2 in characteristic p " 2 and P l the parabolic subgroup of Definition 2.25. Then G{P l is not isomorphic, as a variety, to a quotient of the form G 1 {P α for any G 1 simple and α P ∆pG 1 q.

In particular, this means that Theorem 2.1 does not hold in this case.

Lemma 2.36. Let G 1 be simple and let α be a simple root of G 1 . If dimpG 1 {P α q " 5, then such a variety is either isomorphic to Q Ă P 6 , to P 5 or to G{P α 2 where G is of type G 2 and α 2 is the long root.

Proof. Let us recall that dimpG 1 {P α q " |Φ `pGq| ´|Φ `pL α q|, where L α " P α X pP α q ´is a Levi subgroup, hence so we can compute this quantity explicitly in each case. Type A n´1 : for 1 ď m ď n ´1, dimpG 1 {P αm q " mpn ´mq " 5 when pn, mq " p6, 5q or p6, 1q. In that case, G 1 {P α 1 " G 1 {P α 5 » P 5 . Type B n : the number of positive roots is n 2 . ' For 1 ď m ď n ´1, the Levi subgroup P αm X pP αm q ´is of type A m´1 ˆBn´m , so

dimpG 1 {P αm q " n 2 ´mpm ´1q 2 ´pn ´mq 2 " m ˆ1 ´m 2 `2n ´m˙" 5 
which only has as positive integer solution the pairs pn, mq " p4, 5q, which is absurd, and pn, mq " p3, 1q. In that case, G 1 " SO 7 and by Theorem 2.18 and Proposition 2.27 we have

SO 7 {P α 1 » G{P α 1 » Q Ă P 6 .
' Considering the last simple root, P αn X pP αn q ´is of type A n´1 and dimpG 1 {P αn q " n 2 ´npn ´1q 2 " npn `1q 2 is never equal to 5. Type C n : the same computations as in type B n give pn, mq " p3, 1q, meaning G 1 " PSp 6 and -again by Theorem 2.18 -we have PSp 6 {P α 1 " PSL 6 {P α 1 » P 5 . Type D n : the number of positive roots is npn ´1q. ' For 1 ď m ď n ´4, the Levi subgroup is of type A m´1 ˆDn´m , so

dimpG 1 {P αm q " npn ´1q ´mpm ´1q 2 ´pn ´mqpn ´m ´1q " m ˆ1 ´m 2 `2n ´m ´1˙" 5 
which has no positive integer solutions pn, mq. ' For m " n ´3, the Levi subgroup is of type A n´4 ˆA3 , so dimpG 1 {P αm q " npn ´1q ´pn ´3qpn ´4q 2 ´6 " 5, which gives n 2 `5n " 34 hence no integer solutions. ' For m " n ´2, the Levi subgroup is of type A n´3 ˆA1 ˆA1 , so dimpG 1 {P αm q " npn ´1q ´pn ´2qpn ´3q 2 ´1 ´1 " 5, which gives n 2 `3n " 20 hence no integer solutions. ' For m " n ´1 or m " n, the Levi subgroup is of type A n´1 , so

dimpG 1 {P αm q " npn ´1q ´npn ´1q 2 " npn ´1q 2 " 5,
which is never equal to 5. Type E 6 : the number of positive roots is 36, and the following table shows that the desired quantity is never equal to 5. Type E 7 : the number of positive roots is 63 and the following table shows that the desired quantity is never equal to 5.

E 6 α 1 α 2 α 3 α 4 α 5 α 6 L α D 5 A 4 ˆA1 ˆA1 A 2 ˆA2 ˆA1 A 4 ˆA1 D 5 A 5 |Φ `pL α q| 20 
E 7 α 1 α 2 α 3 α 4 α 5 α 6 α 7 L α D 6 A 5 ˆA1 A 1 ˆA2 ˆA3 A 4 ˆA2 D 5 ˆA1 E 6 A 6 |Φ `pL
Type E 8 : the number of positive roots is 120 and the following table shows that the desired quantity is never equal to 5.

E 8 α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 L α D 7 A 6 ˆA1 A 1 ˆA2 ˆA4 A 4 ˆA3 D 5 ˆA2 E 6 ˆA1 E 7 A 7 |Φ `pL
Type F 4 : a direct computation -see Subsection 2.5 -gives dimpG 1 {P α 1 q " dimpG 1 {P α 4 q " 15 and dimpG 1 {P α 2 q " dimpG 1 {P α 3 q " 20.

Type G 2 : as we already know, both G{P α 1 " Q and G{P α 2 have dimension 5.

Lemma 2.37. The variety X " G{P l is not isomorphic to P 5 nor to Q.

Proof. Let us consider the quotient map f : G{P α 1 -G{P l . By Corollary 2.32 we have P l " L ¨P α 1 , hence the morphism f is finite, purely inseparable and of degree 4. Assume X » P 5 , then we get f : Q -P 5 . Considering the line bundle O Q p1q " O P 6 p1q |Q , we have that Pic Q " Z ¨OQ p1q and f ˚OP 5 p1q " O Q pmq for some m ą 0, since it has sections. Taking degrees, this gives on the left hand side

f ˚OP 5 p1q ¨f ˚OP 5 p1q ¨f ˚OP 5 p1q ¨f ˚OP 5 p1q ¨f ˚OP 5 p1q
"pdeg f q pO P 5 p1q ¨OP 5 p1q ¨OP 5 p1q ¨OP 5 p1q ¨OP 5 p1qq " deg f, so we get deg f " 4. On the right hand side, this equals O Q pmq ¨OQ pmq ¨OQ pmq ¨OQ pmq ¨OQ pmq " ρ ˚OP 5 pmq ¨ρ˚O P 5 pmq ¨ρ˚O P 5 pmq ¨ρ˚O P 5 pmq ¨ρ˚O P 5 pmq " pdeg ρqpO P 5 pmq ¨OP 5 pmq ¨OP 5 pmq ¨OP 5 pmq ¨OP 5 pmqq " pdeg ρ ¨m5 q, which has degree 2m 5 , where ρ is the projection of Proposition 2.27. Comparing degrees one gets 4 " 2m 5 , which is absurd. Now, let us assume instead that X » Q, then f : Q -Q is of degree 4 and again f ˚OQ p1q " O Q prq for some r ą 0: the analogous computation of degrees yields 8 " 2r 5 , which is again absurd.

Lemma 2.38. The variety X " G{P l is not isomorphic to G{P α 2 .

Proof. Assume X » G{P α 2 , then the G-action on X is given by a morphism θ : G Aut 0 G{P α 2 , the latter being equal to G by Theorem 2.18. In particular, θ is an isogeny which satisfies θ ´1pP α 2 q " P l . This means that there is some g P Gpkq such that pker θq ¨gP α 2 g ´1 " P l .

Since ker θ is finite, taking the connected component of the identity and the reduced subscheme on both sides implies that P α 2 and P α 1 are conjugate in G, which is a contradiction.

The above study of P h and P l does not complete the classification (in characteristic 2) of homogeneous spaces having as stabilizer a parabolic subgroup whose reduced part is equal to P α 1 . Let us consider a simple group G of type G 2 and a nonreduced parabolic subgroup P Ă G satisfying P red " P α 1 , in characteristic p " 2. Moreover, let us assume that Lie P ‰ Lie G, i.e. that Lie P is equal to h (resp. l) and let us write it as P " U Ṕ ¨Pred , where U Ṕ " P XR ú pP red q: in particular, it is contained in U ´2α 1 ´α2 (resp. in U ´α1 ¨U´α 1 ´α2 ) and its order is |U Ṕ | " 2 n for some n ě 2, the case n " 1 being P h treated above. 2.6.5. End of classification. Recall that we follow here the notation from [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF] : for a parabolic subgroup P , we denote as U Ṕ the intersection of P with the unipotent radical of the opposite of P red . Lemma 2.39. Let P be a parabolic subgroup such that Lie P " h. Then its unipotent infinitesimal part U Ṕ has height one.

Proof. The reduced part of P is P α 1 , hence U Ṕ must be of the form u ´2α 1 ´α2 pα p n q for some n. Let us assume that n is at least equal to 2. This means that there is some λ P G a such that λ 2 ‰ 0 and u ´2α 1 ´α2 pλq P P . Let us consider µ P G a and compute the following commutator, which gives an element of P :

pu ´2α 1 ´α2 pλq, u α 1 pµqq " u ´2α 1 ´α2 pλqu α 1 pµqu ´2α 1 ´α2 p´λqu α 1 p´µq " pu ´2α 1 ´α2 pλqu α 1 pµqq 2 " ¨¨1 0 0 0 0 0 λ 1 0 0 0 0 0 0 1 0 0 0 0 0 λ 2 1 0 0 0 0 0 0 1 0 0 0 0 0 λ 1 ‹ ‹ ‹ ‹ ‹ ‹ ' ¨¨1 0 0 0 0 µ 2 0 1 0 µ 0 0 0 0 1 0 µ 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 ‹ ‹ ‹ ‹ ‹ ‹ ' ‹ ‹ ‹ ‹ ‹ ‹ ' 2 " ¨1 0 0 0 λµ 2 0 0 1 µλ 2 0 0 λµ 2 0 0 1 0 0 0 0 0 0 1 µλ 2 0 0 0 0 0 1 0 0 0 0 0 0 1 ‹ ‹ ‹ ‹ ‹ ‹ ' .
The last quantity, when assuming µ 2 " 0, coincides with u ´3α 1 ´2α 2 pµλ 2 q, which is a contradiction with the fact that Lie P " h does not intersect the root subspace associated to the root ´3α 1 ´2α 2 .

Lemma 2.40. Let P be a parabolic subgroup such that Lie P " l. Then its unipotent infinitesimal part U Ṕ has height one.

Proof. As before, the reduced part of P is P α 1 . Moreover, the unipotent part U Ṕ has nontrivial and finite intersection with U ´α1 and U ´α1 ´α2 , of height m 1 and m 2 respectively. Assuming the height of U Ṕ to be at least equal to 2 means we have (up to a reflection by s α 2 ) that m 2 ě 2. Thus, let λ P G a such that λ 2 ‰ 0 and µ P α p , so that u ´α1 pµq P P . Then the following commutator also belongs to P : pu ´α1 ´α2 pλq, u ´α1 pµqq " u ´α1 ´α2 pλqu ´α1 pµqu ´α1 ´α2 p´λqu ´α1 p´µq " pu ´α1 ´α2 pλqu ´α1 pµqq 2 " ¨¨1 0 λ 0 0 0 0 1 0 0 λ 2 0 0 0 1 0 0 0 0 0 0 1 0 λ 0 0 0 0 1 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ' ¨¨1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 µ 0 1 0 0 0 0 µ 0 1 0 µ 2 0 0 0 0 1 ‹ ‹ ‹ ‹ ‹ ‹ ' ‹ ‹ ‹ ‹ ‹ ‹ ' 2 "
¨1 0 0 0 0 0 0 1 µλ 2 0 0 0 0 0 1 0 0 0 λµ 2 0 0 1 µλ 2 0 0 0 0 0 1 0 0 0 λµ 2 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ' .
The last quantity coincides again with u ´3α 1 ´2α 2 pµλ 2 q, so we conclude as before.

Definition 2.41. For an integer m ě 0, we denote as H m and L m the pull-back respectively of the subgroups H and L under an m-th iterated Frobenius morphism.

Proposition 2.42. Let G be of type G 2 in characteristic two.

Then the nonreduced parabolic subgroups of G having P α 1 as reduced part are all of the form G m P α 1 , H m P α 1 or L m P α 1 for some m ě 0.

Proof. Let us consider such a subgroup P : its Lie algebra contains strictly Lie P α 1 , hence by Corollary 2.24 it is either equal to Lie G, to h or to l. If Lie P " Lie G, then there is a unique integer m ě 1 such that the Frobenius kernel G m is contained in P while G m`1 is not.

Considering the quotient P 1 ¨¨" P {G m allows to assume that the Lie algebra of P 1 is strictly contained in the one of G. Next, if Lie P 1 " h (resp. l), by Lemma 2.39 and Lemma 2.40, we have that P 1 " P h (resp. P l ). Thus, the parabolic P is obtained from P α 1 , P h or P l by pulling back with an iterated Frobenius morphism, and we are done.

This completes the proof of Theorem 2.17 and thus gives a complete classification of homogeneous varieties with Picard group Z, which ends the proof of Theorem 1.

Remark 2.43. The last result, together with Proposition 2.34, has as consequence the fact that any ample line bundle on an homogeneous variety of Picard rank one is very ample, without any assumption of type nor characteristic.

Remark 2.44. Let us cite a reason why the geometry of a general projective homogeneous variety of Picard rank one may differ from the one of a generalized flag variety. This comes from the following generalization of a question of Lazarsfeld (see the end of [START_REF] Lazarsfeld | Some applications of the theory of positive vector bundles[END_REF]): if X " G{P has Picard group isomorphic to Z and there is some surjective morphism f : X Y , then is Y isomorphic to X? First, the iterated Frobenius morphisms G{P G{G m P do not give a counterexample. However, the maps

G{P α -G{N G P α and G 2 {P α 1 -G 2 {P l ,
defined respectively under the edge hypothesis and in characteristic 2, are counterexamples. Both these examples are purely inseparable surjective morphisms: the next natural step would be adding the hypothesis for the morphism f to be generically étale.

Consequences and higher Picard ranks

We state here -in all types but G 2 -the desired modification of Wenzel's description of parabolic subgroups having as reduced subgroup a maximal one: they are all obtained by fattening the reduced part with the kernel of a noncentral isogeny, which generalizes to this setting the role of the Frobenius in characteristic p ě 5. We then give a criterion to determine when two homogeneous spaces with Picard rank one have the same underlying variety. Moving on to a different setting, we consider spaces G{P with higher Picard ranks. First, using the Białynicki-Birula decomposition allows us to describe explicitly classes of curves and divisors on such varieties. This description is then used to establish a family of examples -in Picard rank two -of homogeneous spaces which are not isomorphic as varieties to those having a stabilizer a parabolic subgroup of standard type, i.e. of the form G m 1 P α 1 X . . . X G mr P αr for some integers m i and simple roots α i .

3.1. Consequences in rank one. In the following Subsection we complete the study in the case of Picard rank one. Due to Proposition 2.35, let us make the assumption that the group G is not of type G 2 in characteristic two.

3.1.1. Classification of parabolics with maximal reduced subgroup. The results in the preceding Section allow us to complete the classification of parabolic subgroups having as reduced subgroup a maximal one. Let us recall that, by [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF], if the Dynkin diagram of G is simply laced or if p ą 3, then such subgroups are of the form P " G m P α " pker F m G qP α . Proposition 3.1. Let G be simple and P be a parabolic subgroup of G such that its reduced subgroup is maximal i.e. of the form P red " P α for some simple root α. Then there exists an isogeny ϕ with source G such that P " pker ϕqP α , unless G is of type G 2 over a field of characteristic p " 2 and α is the simple short root.

Proof. First, Propositions 2.9, 2.10, 2.20, 2.16 and Remarks 2.13 and 2.15 imply that if G is simple and P red is a maximal reduced parabolic subgroup, then either P is reduced, or there exists a nontrivial noncentral normal subgroup of height one contained in P . This subgroup is either H " N G -when it is defined -or the image of the Frobenius kernel of the simply connected cover of G. Now, let us consider the given parabolic P . If it is reduced, then there is nothing to prove. If it is nonreduced, then there is a noncentral subgroup H p1q Ă P normalized by G and of height one. Let us denote as

ϕ 1 : G -G{H p1q ": G p1q
the quotient morphism and replace the pair pG, P q with pG p1q , P p1q q, where P p1q ¨¨" P {H p1q . This gives again a parabolic subgroup whose reduced subgroup is maximal, hence either P p1q is reduced or we can repeat the same reasoning to get an isogeny

ϕ 2 : G -G{H p1q -G{H p2q ": G p2q .
Setting P p2q ¨¨" G{H p2q we repeat the same reasoning again. This gives a sequence pG pmq , P pmq q which ends with a reduced parabolic subgroup in a finite number of steps : indeed, P {P red is finite so it is not possible to have an infinite sequence

P red Ĺ H p1q P red Ĺ ¨¨¨Ĺ H pmq P red Ĺ ¨¨¨Ĺ P.
Thus, let us set H ¨¨" H pmq for m big enough and ϕ ¨¨" ϕ m . Then we claim that P " HP α " pker ϕqP α . Both H and P α are subgroups of P by construction, hence HP α Ă P . Quotienting by H then gives HP α {H " P α {pH X P α q Ă P {H " P pmq .

Since both are reduced and have the same underlying topological space, they must coincide hence HP α " P .

In particular, using our previous results on factorisation of isogenies, we can give a very explicit description of the kernels involved in the classification. Corollary 3.2. Keeping the above notation and the ones given in Definition 1.8, in the equality P " pker ϕqP α , there are only the two following options:

(a) either ker ϕ " ker F m G " G m is the Frobenius kernel, (b) or, when such a subgroup is defined, ker ϕ " kerpπ G pmq ˝F m G q " N m,G . Proof. Let us first assume G to be simply connected and consider the factorisation of the isogeny ϕ given by Proposition 1.12

ϕ : G G 2 G 1 , σ ρ
where σ " π ˝F m and ρ is central. Let α, α 2 and α 1 be simple roots of G, G 2 and G 1 respectively, defined by the equalities P red " P α , σpP α q " P α 2 , ρpP α 2 q " P α 1 .

Then P " pker ρσqP α " pρσq ´1pP α 1 q " σ ´1pP α 2 q " pker σqP α , hence replacing ϕ by σ and G 1 by G 2 gives one of the cases paq and pbq. If G is not simply connected, then we can consider the pull-back r P ¨¨" ψ ´1pP q Ă r G in the simply connected cover. Applying the above reasoning to r P yields either P " ψp r P q " ψp r G m P α q " G m P α , or P " ψp r P q " ψpN m, r G P α q " N m,G P α and we are done. where x P X is a closed point and where we keep as notation for the automorphism group the same as in Remark 2.19. Since the radical of G 0 is solvable and acts on the projective variety X, it has a fixed point: being normal in G 0 , it is trivial. Analogously, the center of G 0 -which is contained in a maximal torus -is trivial. Moreover, the hypothesis Pic X " Z together with Theorem 3.12 imply that G 0 is simple. So the group G 0 is simple adjoint and uniquely determined by the variety X, while P 0 is a parabolic subgroup whose reduced subgroup is maximal. Its conjugacy class is uniquely determined by X up to an automorphism of the Dynkin diagram of G 0 . Moreover, since the action of G 0 on X is faithful, by Theorem 2.2 we have that P 0 is reduced, hence of the form P 0 " P α for a simple root α. Now, let us consider the action of G on X: we want to relate in all possible cases the pair pG, P q to the pair pG 0 , P 0 q. This will give us a way to determine, given two homogeneous spaces G{P and G 1 {P 1 , whether they are isomorphic as varieties.

Proposition 3.3. If the pair pG 0 , P 0 q is not exceptional in the sense of Demazure, then one of the following two cases holds : (a) G " G 0 and P " G m P α , where P α " P 0 up to an automorphism of the Dynkin diagram of G, (b) G " pG 0 q ad and P " N m,G P α , where P α " π G 0 pP 0 q{ZpG 0 q up to an automorphism of the Dynkin diagram of G. If pG 0 , P 0 q is exceptional, then there are two additional possibilities -denoting as pG 1 0 , P 1 0 q the associated pair in the sense of Demazure :

(a') G " G 1 0 and P " G m P α , where P α " P 1 0 up to an automorphism of the Dynkin diagram of G, (b') G " pG 1 0 q ad and P " N m,G P α , where P α " π G 1 0 pP 1 0 q{ZpG 1 0 q up to an automorphism of the Dynkin diagram of G.

Proof. Let us start by assuming that pG 0 , P 0 q is not exceptional in the sense of Demazure. By Corollary 3.2, either P " G m P α or P " N m,G P α for some α. In the first case, X " G{G m P α " G pmq {pP α q pmq » G{P α as varieties, hence by Theorem 2.18 this implies G " Aut 0 X " G 0 and P α " P 0 , leading to paq. In the second case, X " G{N m,G P α " G pmq {pP α q pmq » G{P α " G ad { `P α {ZpGq ȃs varieties, hence by Theorem 2.18 again G ad " Aut 0 X " G 0 and P 0 " P α {ZpGq. Considering their respective images by the very special isogeny of G ad gives pbq. If pG 0 , P 0 q is exceptional in the sense of Demazure, Theorem 2.18 allows for two additional cases: to get the conclusion it is enough to repeat the same reasoning by replacing pG 0 , P 0 q with pG 1 0 , P 1 0 q.

3.2.

Curves and divisors on flag varieties. We give here an explicit basis for 1-cycles and divisors modulo numerical equivalence on a flag variety X " G{P of any Picard rank, with stabilizer P not necessarily reduced. We do so by describing the cells of an appropriate Białynicki-Birula decomposition of X in terms of the root system of G and of the root system of a Levi subgroup of the reduced part of P .

3.2.1. Białynicki-Birula decomposition of a G-simple projective variety. Flag varieties are normal, projective and equipped with a G-action with a unique closed orbit, hence they form a particular class of simple G-projective varieties (for short, G-simple varieties), as in [START_REF] Brion | The cone of effective one-cycles of certain G-varieties. A tribute to[END_REF]. Let us review here the main definitions and results concerning the Białynicki-Birula decomposition of such varieties, then specialize to flag varieties. The original work on the subject is [START_REF] Bialynicki-Birula | Some theorems on actions of algebraic groups[END_REF]; for a scheme-theoretic statement see [START_REF] Milne | Algebraic groups: the theory of group schemes of finite type over a field[END_REF]Theorem 13.47].

Let us consider a G-simple variety X and fix a cocharacter λ : G m T such that B " tg P G : lim

t 0 λptqgλpt ´1q exists in Gu,
which is equivalent to the condition that xγ, λy ą 0 for all γ P Φ `. This implies in particular that the set of fixed points under the G m -action induced by λ coincides with the set X T of T -fixed points. Recall that the fixed-point scheme X T is smooth, see for example [START_REF] Milne | Algebraic groups: the theory of group schemes of finite type over a field[END_REF]Theorem 13.1]. For any connected component Y Ă X T there are an associated positive and a negative stratum, defined as X `pY q ¨¨" tx P X : lim

t 0
λptq ¨x P Y u and X ´pY q ¨¨" tx P X : lim t 0 λpt ´1q ¨x P Y u, equipped with morphisms

p `: X `pY q Y, x lim t 0 λptq ¨x, p ´: X ´pY q Y, x lim t 0 λpt ´1q ¨x.
Theorem 3.4 (Białynicki-Birula decomposition). Let X be a normal G-simple projective variety. Then the following hold: ' The variety X is the disjoint union of the positive (resp. negative) strata as Y ranges over the connected components of X T . ' The morphisms p `and p ´are affine bundles. ' The strata X `pY q and X ´pY q intersect transversally along Y .

Let us remark that the assumption on λ implies that positive strata are B-invariant, while negative strata are B ´-invariant. In particular, the unique open positive stratum X `is equal to X `px `q where x `is the unique B ´-fixed point, and analogously the unique open negative stratum X ´is equal to X ´px ´q where x ´is the unique B-fixed point. Let us recall here the main results from [START_REF] Brion | The cone of effective one-cycles of certain G-varieties. A tribute to[END_REF] in the case where X is smooth. Theorem 3.5. Let X be a smooth G-simple projective variety, x ´its B-fixed point, X

´" X ´px ´q the open negative cell and D 1 , . . . , D r the irreducible components of XzX

´.

(1) D 1 , . . . , D r are globally generated Cartier divisors, whose linear equivalence classes form a basis of PicpXq. (2) Every ample (resp. nef ) divisor on X is linearly equivalent to a unique linear combination of D 1 , . . . , D r with positive (resp. non-negative) integer coefficients. In particular, rational and numerical equivalence coincide on X i.e. the natural map PicpXq N 1 pXq is an isomorphism. (3) There is a unique T -fixed point x í such that D i is the closure of X ´px í q. Moreover,

x í is isolated. (4) Consider the B-invariant curve C i ¨¨" B ¨xí . Then

D i ¨Cj " δ ij ,
meaning that C j intersects transversally D j and no other D i .

(5) The convex cone of curves NEpXq is generated by the classes of C 1 , . . . , C r , which form a basis of the rational vector space N 1 pXq Q .

3.2.2.

Białynicki-Birula decomposition of flag varieties. Let us now specialize to our case i.e. interpret the results of the above Section in terms of root systems. The first step consists in recalling the Bruhat decomposition of a flag variety with reduced stabilizer, i.e. X " G{P I where I Ă ∆ is a basis for the root system of a Levi subgroup of P I . In particular, for a simple root α the subgroup P α -which has been widely used in the previous Sections -coincides with P ∆ztαu . Let us fix a set of representatives 9 w P N G pT q, for w P W " W pG, T q and let us recall the following (see [22, 8.3]).

Theorem 3.6 (Bruhat decomposition). Let G Ą B Ą T be a reductive group, a Borel subgroup and a maximal torus, and W W pG, T q. Then the following hold.

(1) G is the disjoint union of the double cosets BwB, for w P W .

(2) Let Φ w be the set of positive roots γ such that w ´1γ is negative. Then

U w ¨¨" ź γPΦw U γ
is a subgroup of the unipotent radical of B, with the product being taken in any order. (3) The map U w ˆB BwB given by pu, bq u 9 wb is an isomorphism of varieties.

This gives a decomposition of G{B into the disjoint union of the cells BwB{B, which are isomorphic to U w i.e. to affine spaces of dimension equal to the length of w. Since we want to work with G{P I instead of G{B, we shall not consider the whole Weyl group but its quotient by the subgroup W I generated by the reflections corresponding to simple roots in I. Lemma 3.7. In any left coset of W I in W there is a unique element w characterized by the fact that wI Ă Φ `or by the fact that the element w is of minimal length in wW I .

Proof. See [2, Proposition 3.9].

We denote the set of such representatives as W I . In particular, denoting w 0 and w 0,I the element of longest length of W and W I respectively, then w I 0 ¨¨" w 0 w 0,I is the element of longest length in W I . Proposition 3.8 (Generalized Bruhat decomposition). For a fixed I Ă ∆, the group G is the disjoint union of the double cosets BwP I , where w ranges over the set W I .

In order to get a similar statement as p3q in Theorem 3.6, let us consider for any w P W I the sets because σ is an homeomorphism. Remark 3.11. How can we visualize the morphism σ on cells? By Proposition 3.8, the Bruhat cell associated to w P W I in r X is an affine space of dimension l, equal to the cardinality of Φ I w " tγ 1 , . . . , γ l u. Let us consider the integers n i , which we recall are associated to the roots in Φ I w via the equality U ´γi X P " u ´γi pα p n i q. If we denote as Y i the coordinate on the affine line given by U γ i , then the morphism σ acts on such a line as an n i -th iterated Frobenius morphism, hence its behavior on the cell Bwõ " r X ẁ can be summarized in the following diagram

Φ I w ¨¨" tγ P Φ `: w ´1γ R Φ `and w ´1γ R Φ I u, (3.1) Φ w,I ¨¨" Φ w zΦ I w " Φ w X Φ Ì . ( 3 
U I w » r X ẁ " Spec krY 1 , . . . , Y l s » A l G{P I X ẁ " Spec krY p n 1 1 , . . . , Y p n l l s » A l G{P σ σ
We reinterpret all the ingredients of Theorem 3.5 in order to specialize and state it in the case of flag varieties. First, X " G{P is indeed smooth, projective and G-simple. Its unique B-fixed point is x ´" o the base point, which gives as open cell B ´o " Bw 0 o " Bw I 0 o " X ẁI 0 .

Moreover, the irreducible components of XzX w I 0 are the closures of the strata of codimension one, i.e. the cells Bwo with w P W I of length lpwq " lpw I 0 q ´1. Those are exactly of the form w " w 0 s α w 0,I for α P ∆zI, since for α P I we have that w 0 s α is in the same left coset as w I 0 . In particular, the divisors in the statement of Theorem 3.5 are D α " Bw 0 s α w 0,I o " Bw 0 s α o " B ´sα o, for α P ∆zI, hence the unique T -fixed point x ά such that D α is the closure of X ´px ά q is x ά " s α o, and we are led to consider the B-invariant curves C α " Bx ά " Bs α o.

We are now able to reformulate the results of Section 3.2.1 in the following: Theorem 3.12. Let us consider a sequence G Ą P Ą P red " P I Ą B Ą T and let X " G{P with base point o and open cell X ´" B ´o. Then the following hold:

(1) The irreducible components of XzX ´are the closures D α of the negative cells associated to the points s α o for α P ∆zI. Moreover, they are globally generated Cartier divisors, whose linear equivalence classes form a basis for PicpXq. (2) Every ample (resp. nef ) divisor on X is linearly equivalent to a unique linear combination of the D α 's with positive (resp. non-negative) integer coefficients. In particular, the natural map PicpXq N 1 pXq is an isomorphism. (3) Considering the B-invariant curves C α 's defined above, the intersection numbers satisfy D α ¨Cβ " δ αβ . (4) The convex cone of curves NEpXq is generated by the classes of the C α 's, which form a basis of the rational vector space N 1 pXq Q .

3.2.3. Contractions. Theorem 3.12 tells us in particular that the Picard group of a flag variety X " G{P is a free Z-module of rank the number of simple roots not belonging to the root system of a Levi factor of P red . This gives a motivation to the study, done in Section 2, of parabolic subgroups having maximal reduced part. In order to move on to higher ranks by exploiting the previous results in rank one, we adopt the following strategy : we define a finite collection of morphisms which behave nicely, arise naturally from the variety X, and whose targets are homogeneous spaces of Picard rank one. As a first step towards such a construction, we recall the notion of a contraction between varieties and some of its properties.

Definition 3.13. Let X and Y be varieties over an algebraically closed field k. A contraction between them is a proper morphism f : X Y such that f # : O Y -f ˚OX is an isomorphism.

We will make use of the following results (stated here for reference).

Theorem 3.14. Let f : X Y be a contraction between projective varieties over k. Then f is uniquely determined, up to isomorphism, by the convex subcone NEpf q of NEpXq generated by the classes of curves which it contracts. Moreover, if Y 1 is a third projective variety and

f 1 : X Y 1 satisfies NEpf q Ă NEpf 1 q, then there is a unique morphism ψ : Y Y 1 such that f 1 " ψ ˝f . X Y Y 1 f f 1 ψ Proof. See [8, Proposition 1.14].
Theorem 3.15 (Blanchard's Lemma). Let f : X Y be a contraction between projective varieties over k. Assume that X is equipped with an action of a connected algebraic group G. Then there exists a unique G-action on Y such that the morphism f is G-equivariant.

Proof. See [5, 7.2].

The following construction is done here for any globally generated line bundle and is then applied to O X pD α q to define the desired family of contractions. Lemma 3.16. Let X be a projective variety over k and L a line bundle over X which is generated by its global sections. Then (a) There is a well-defined contraction

f : X -Y ¨¨" Proj 8 à n"0
H 0 pX, L bn q.

(b) A curve C in X is contracted by f if and only if L ¨C " 0.

Proof. paq : Let us denote as S the graded ring on the right hand side and denote as S d " H 0 pX, L bd q its homogeneous part of degree d. assume the open set on which it does not vanish is affine i.e. X s " Spec O X pX s q. Recall that we have the trivialization L |Xs » sO Xs , so considering sections over X s gives

H 0 pX s , f ˚OY p1qq " ˜8 ď n"0 S n`1 s n ¸bŤ 8 n"0 Sn s n O X pX s q " s n`1 O X pX s q s n " H 0 pX s , Lq.
By covering X with the open sets X s as s ranges over the global sections, this gives the condition f ˚OY p1q " L, hence

H 0 pX, Lq " H 0 pX, f ˚OY p1qq " H 0 pY, f ˚f ˚OY p1qq " H 0 pY, O Y p1q b O Y f ˚OX q " H 0 pY, O Y p1qq,
where the last equality comes from f being a contraction. 

G ˆH1 {H G G{H G{H 1 pr G m q 1 f
Since q 1 is faithfully flat and pr G is obtained as base change of f via such a morphism, f being proper is equivalent to pr G being proper; now, the latter is obtained as base change of H 1 {H Spec k via the structural morphism of G, which is also fppf, hence it is proper if and only if H 1 {H is proper over k. This shows the first condition. Moreover, the formation of the direct image of sheaves also commutes with fppf extensions: more precisely, applying this to the structural sheaves in our case yields

pq 1 q ˚f˚OG{H " ppr G q ˚OGˆH 1 {H " O G b O H 1 {H pH 1 {Hq,
hence by taking q 1 ˚on both sides one gets

f ˚OG{H " O G{H 1 ðñ O H 1 {H pH 1 {Hq " k,
which gives the second condition.

Remark 3.18. Let us consider again a fixed parabolic subgroup P . We now construct a collection of morphisms f α : X G{Q α , for α P ∆zI, such that (1) the target G{Q α is defined in a concrete geometrical way, (2) each f α is a contraction, (3) the stabilizer Q α coincides with the smallest subgroup scheme of G containing both P and P α : in particular, pQ α q red is a maximal reduced parabolic subgroup, (4) the collection pf α q αP∆zI "tells us a lot" about the variety X.

The reason why Q α is not directly defined as being the algebraic subgroup generated by P and P α is that this notion does not behave well since P is nonreduced in general. Let us apply Lemma 3.16 to the variety X " G{P and the line bundle L " O X pD α q, which can be done thanks to Theorem 3.12. This gives a contraction

f α : X -Y α ¨¨" Proj 8 à n"0 H 0 pX, O X pnD α qq. (3.4)
By Theorem 3.15, there is a unique G-action on Y α such that f α is equivariant. Moreover, since f α is a dominant morphism between projective varieties, it is surjective, hence the target must be of the form Y α " G{Q α for some subgroup scheme P Ď Q α Ĺ G. We take this construction as the definition of the subgroup Q α , so that conditions p1q and p2q are already satisfied. Moreover, by Theorem 3.12 and Lemma 3.16, a curve C is contracted by f α if and only if D α ¨C " 0, meaning that this map contracts all C β for β ‰ α while it restricts to a finite morphism on C α . This leaves one more condition to show. Lemma 3.19. The smallest subgroup scheme of G containing both P and P α is Q α .

Proof. By definition of Y α we have the inclusion P Ă Q α . Let H be the subgroup scheme of G generated by P and P α . Since P red " P I " č αP∆zI P α , the subgroup generated by P red and P α is just P α . Next, consider the quotient map r π : r X G{P α and the composition f α ˝σ : r X G{Q α : the latter contracts, by the above discussions, all curves r C β for β ‰ α, hence NEpr πq Ă NEpf α ˝σq. Moreover, r π is a contraction by Lemma 3.17, because its fiber at the base point is P α {P I which is proper and has no nonconstant global regular functions. By Theorem 3.14, there exists a unique morphism ϕ making the diagram

r X " G{P red G{P α X " G{P G{Q α σ r π ϕ fα commute: this shows P α Ă Q α hence H Ă Q α .
Conversely, let us consider the projection π : X G{H. We already know by Theorem 3.12 that r π contracts all r C β for β ‰ α; moreover, the square on the left in the following diagram is commutative and its horizontal arrows are both homeomorphisms. This implies that π contracts all C β for β ‰ α. In other words, the inclusion NEpf α q Ă NEpπq holds.

r X X G{Q α G{P α G{H σ r π fα π ψ
Since f α is a contraction by definition, this gives a factorisation by ψ -again by Theorem 3.14 -which means that Q α Ă H.

Remark 3.20. The homogeneous space X is now equipped with a finite number of contractions f α such that the target of each morphism has Picard group Z, with a unique canonical ample generator, corresponding to the image of D α . The inclusion

P Ď č αP∆ Q α (3.5)
holds by definition of Q α . If the characteristic is p ě 5, by [START_REF] Wenzel | Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field[END_REF] there are nonnegative integers m α for α P ∆zI such that P is the intersection of the G mα P α , hence P Ă Q α Ă G mα P α and the inclusion (3.5) becomes an equality. Geometrically, this corresponds to saying that the product map

f ¨¨" ź αP∆ f α : X - ź αP∆ G{Q α
is a closed immersion, realizing X as the unique closed orbit of the G-action on the target. and the pair pα, βq is of the form pα j , α i q with i ă j ă n or j " n and i ă n ´1, or G is of type F 4 and the pair pα, βq is one among pα 1 , α 4 q, pα 2 , α 1 q, pα 2 , α 4 q, pα 3 , α 1 q, pα 3 , α 4 q, pα 4 , α 1 q.

Then the homogeneous space X " G{pN r,G P α X P β q is not of standard type.

First, we give a motivation to the fact that we look for an example in rank two, then we prove Proposition 3.21 in two consecutive steps.

Let us fix a simple root α P ∆. In order to find a parabolic subgroup not of standard type, the easiest and more natural idea is to consider the very special isogeny π G : G -G and the subgroup P ¨¨" N G P α . Its reduced part P red " P α is maximal, but P is not of the form G m P α for any m. Indeed, its associated function ϕ P : Φ ` N Y t8u is given by γ -8 if α R Supppγq γ -0 if α P Supppγq and γ P Φ ą γ -1 if α P Supppγq and γ P Φ ă while the function associated to a parabolic subgroup of standard type satisfies ϕ G m P α pγq " m for all roots γ containing α in their support, regardless of their length. There always exist both a short and a long root containing any simple root α in their support, namely ' in type B n , Supppε 1 q " Supppε 1 `ε2 q " ∆;

(3.6) ' in type C n , Suppp2ε 1 q " Supppε 1 `ε2 q " ∆; (3.7) ' in type F 4 , Supppα 1 `2α 2 `3α 3 `2α 4 q " Supppα 1 `2α 2 `4α 3 `2α 4 q " ∆; (3.8)
' in type G 2 , Suppp2α 1 `α2 q " Suppp3α 1 `2α 2 q " ∆. (3.9) γ " α " ε j ´εj`1 is as wanted, while if j " n then γ " ε n´1 `εn " α n `2α n´1 satisfies the condition when i ă n ´1, while if i " n ´1 then there is no such γ. ' If G is of type C n , let α " α j and β " α i for some 1 ď i, j ď n. A positive long root is of the form 2ε m " 2pα m `. . . `αn´1 `αn q for m ă n or 2ε n " α n : hence if j ă i then a long root containing α in its support also contains β. Let us then assume i ă j: in this case γ " 2ε j satisfies the condition. Moving on to short roots, if i ă j ă n then γ " α " ε j ´εj`1 is as wanted, while if j " n then γ " ε n´1 `εn " α n `αn´1 satisfies the condition when i ă n ´1, while if i " n ´1 then there is no such γ. This completes condition piq. ' If G is of type F 4 , there is no short root containing α 1 (resp. α 1 , resp. α 2 ) in its support and not containing α 2 (resp. α 3 , resp. α 3 ); moreover, there is no long root containing α 3 (resp. α 4 , resp. α 4 ) in its support and not containing α 2 (resp. α 2 , resp. α 3 ). This can be by directly looking at the list of positive roots in such a system, recalled at the beginning of Subsection 2.5. The remaining pairs are listed below, which gives condition piiq.

α β a short γ : α P Supppγq, β R Supppγq a long γ : α P Supppγq, β R Supppγq

α 1 α 4 α 1 `α2 `α3 α 1 α 2 α 1 α 2 `α3 α 2 α 2 α 4 α 2 `α3 α 2 α 3 α 1 α 3 α 2 `2α 3 α 3 α 4 α 3 α 2 `2α 3 α 4 α 1 α 4 α 2 `2α 3 `2α 4
Up to this point we have only shown that the parabolic P is not of standard type if and only if conditions piq or piiq are satisfied. Now, let us consider the pull-back π ´1 G pP q " π ´1 G pN r,G P α X P β q " G r`1 P α X N G P β and compare it with Q " G m P α X G n P β , analogously as before. This gives in particular, considering a root γ P Φ `satisfying α, β P Supppγq, that ϕ Q pγq " minpm, nq for all γ, while ϕ π ´1pP q pγq is equal to 1 if γ is short, and equal to 0 if γ is long. To show that those two parabolics can never coincide it is enough to have both such a long and a short root. This is always the case, as recalled at the beginning of this Subsection in (3.6)-(3.8), hence this concludes the proof.

Lemma 3.23. Keeping the above notations, consider two distinct simple positive roots α and β satisfying one of the conditions of Lemma 3.22. Then the parabolic P ¨¨" N r,G P α X P β gives a variety X ¨¨" G{P which is not of standard type.

Proof. The reduced part of the parabolic subgroup P is P red " P α X P β : by Theorem 3.12, the convex cone of curves of the variety X is generated by the classes of the curves

C α " Bs α o and C β " Bs β o.
Next, let us consider the two contractions f α : X -G{Q α and f β : X -G{Q β defined by (3.4). Clearly, Q β " xQ, P β y " P β is smooth because P Ă P β . On the other hand, let us show that Q α " N r,G P α . Since both P and P α are subgroups of the right hand term, the inclusion Q α Ă N r,G P α holds. To prove the other inclusion, let us notice that the hypothesis on α and β, as shown in the proof of Lemma 3.22, guarantees the existence of some short positive root γ containing α and not β in its support. In particular, this implies that P X U ´γ " pN r,G P α X U ´γ q X pP β X U ´γ q " u ´γ pα p r`1 q, hence Q α X U ´γ is the image of a Frobenius kernel of height at least equal to r `1. By the factorisation of isogenies in Proposition 1.12, the only two possibilities are thus Q α " G r`1 P α and Q α " N r,G P α , which allows to conclude that Q α " N r,G P α . This means that the product of the contractions

f " f α ˆfβ : X X α ˆXβ
is a closed immersion, where X α (resp. X β ) is the underlying variety of G{N G P α (resp. G{P β ). Moreover, these maps are -up to a permutation -uniquely determined by the variety X, because the monoid NC α ' NC β Ă N 1 pXq of effective 1-cycles does not depend on the group action on it: the two contractions are uniquely determined by its two generators and by the fact that the first is a nonsmooth morphism while the second is smooth.

The following step consists in studying the automorphisms of the varieties X and X β . First, we can apply Theorem 2.18 to the variety X β " G{P β since its stabilizer is smooth and since by Lemma 3.22 the pair pG ad , P β {ZpGqq is not associated to any of the exceptional pairs, except in the case of G " Sp 2n and pα, βq " pα j , α 1 q, which we treat later. This implies

Aut 0 X β " G ad .
Next, let us consider the group Aut 0 X : its natural action on X gives, applying Theorem 3.15 to the contraction f β : X -X β , an action on X β i.e. a morphism Aut 0 X Aut 0 X β " G ad .

ξ

In particular, the isogeny ξ is a section of the natural morphism given by the action of G ad on X, thus giving a semidirect product Aut 0 X " G ad ¸ker ξ. Since Aut 0 X is reduced, ker ξ must be finite, smooth and connected, so it is trivial and we conclude that Aut 0 X " G ad . Finally, let us consider another action of a semisimple, simply connected G 1 onto the variety X; realizing it as a quotient G 1 {P 1 for some parabolic subgroup P 1 . Since it is simply connected, G 1 is either simple or the direct product G p1q ˆ¨¨¨ˆG plq where each G piq is simple. ' If G 1 is simple, then its action on X induces a morphism G 1 -Aut 0 X " G ad , which is in particular an isogeny. By Proposition 1.12, this morphism can be factorised as

G 1 G Aut 0 X or G 1 G Aut 0 X , F m F m ˝π
where the second possibility only can happen whenever G satisfies the edge hypothesis. The stabilizer of the G 1 -action is the preimage of the stabilizer of the G-action via such an isogeny, hence it is either of the form G m P for some m or of the form G m π ´1pP q. Now, a parabolic Q is of standard type if and only if G m Q is for any integer m, since the associated functions satisfy ϕ Q pγq `m " ϕ G m Q pγq. This means that P 1 is of standard type if and only if P (resp. π ´1pP q) is. This remark, together with Lemma 3.22 allows us to conclude that, due to our choice of roots α and β, P 1 is still a parabolic subgroup not of standard type. If G " Sp 2n and P β " P α 1 , then Theorem 2.18 yields Aut 0 X β " PGL 2n . Repeating the above reasoning implies that Aut 0 X " PGL 2n as well, hence the isogeny with source G 1 is necessarily the composition of an iterated Frobenius and a central isogeny. This implies that the stabilizer of the G 1 -action is of the form P 1 " G m P hence still not of standard type. G piq ˆK, for some K Ă ZpG pi 0 q q, thus K is trivial because the quotient G is also simply connected. In particular, denoting as P pi 0 q ¨¨" P 1 X G pi 0 q , we have

X " G 1 {P 1 " G 1 { ˜ź i‰i 0
G piq ˆPpi 0 q ¸" G pi 0 q {P pi 0 q

Applying the reasoning above to G pi 0 q instead of G 1 leads to the conclusion that the associated function of P pi 0 q is not of standard type, hence the same is true for the stabilizer P 1 " ś i‰i 0 G piq ˆPpi 0 q . Notice that, except for the group of type G 2 in characteristic 2, Lemma 3.23 covers the classification of all homogeneous spaces of Picard rank two that "we know the existence of" i.e. those of the form G{P with P " pker ϕqP α X pker ψqP β for a couple of isogenies ϕ and ψ with source G. Indeed, Proposition 1.12 implies that one of the two kernels must be contained in the other, hence up to permuting α and β the inclusion ker ψ Ă ker ϕ holds. Taking the quotient by ker ψ allows to assume either P " G r P α X P β , which is the standard type case, or P " N r,G P α X P β for some r ě 0. The latter gives a variety not of standard type if and only if p " 2 and the above hypothesis on roots is satisfied.

Problem: Let us consider a simple group and a parabolic subgroup P Ă G with reduced part P red " P I which is not maximal. The associated family of contractions give a natural inclusion P Ă č αP∆zI Q β .

The question whether there exist a parabolic subgroup P for which the inclusion is strict is still open. At this point, we are neither able to exclude their existence nor to exhibit an explicit example.

Appendix

Let us resume here a short description of the Chevalley embedding of the group of type G 2 , which holds in any characteristic. We will then specialize to characteristic two which is the interesting one for our purposes. First we describe its action on the algebra of octonions, then we use it to compute some of the root subgroups of such a group, which are fundamental in order to study the parabolic subgroups P h and P l (see Definition 2.25).

4.1. The Chevalley embedding of G 2 . Let G be the simple group of type G 2 in characteristic p ą 0. It can be viewed -as illustrated in [START_REF] Springer | Octonions, Jordan Algebras and Exceptional Groups[END_REF], from which we will keep most of the notation -as the automorphism group of an octonion algebra. The latter is the algebra O " tpu, vq : u, v are 2 ˆ2 matricesu , with basis An embedding of the group G 2 into SO 7 -which gives an irreducible representation in all characteristics but two -can be seen as follows: let us consider its action on the vector space V ¨¨" e K " tpu, vq : detp1 `uq ´detpuq " 1u " tpu, vq : u 11 `u22 " 0u. Let us re-parameterize it with ξ " a, η " ab, this gives the torus G m 2 Q pa, bqdiagpa 2 b, a ´2b ´1, a ´1b ´1, 1, a, a ´1, abq ": t P GL 7 , and the basis of simple roots we fix is α 1 ptq ¨¨" a and α 2 ptq ¨¨" b. Such a torus acts on V with the following weight spaces :

V 0 " kpe 11 ´e22 q, V α 1 " kf 12 , V ´α1 " kf 21 , V α 1 `α2 " kf 22 , V ´α1 ´α2 " kf 11 , V 2α 1 `α2 " ke 12 , V ´2α 1 ´α2 " ke 21 , which correspond to 0 and the short roots. Re-arranging V as

V " kp´f 12 q ' kf 11 ' ke 12 ' kpe 11 ´e22 q ' ke 21 ' kf 22 ' kf 21 (4.3) gives the maximal torus T G m 2 Q pa, bqdiagpa, a ´1b ´1, a 2 b, 1, a ´2b ´1, ab, a ´1q " t P T Ă GL 7 . (4.4)

This way, T can be identified with the maximal torus in [13, page 13]: in his description of the embedding G Ă GL 7 , the group G is generated by the two following copies of GL 2 , However, in characteristic p " 2, due to the fact that e P V and that G acts on the quotient W " V {ke, these become the following two copies embedded in GLpW q " GL 6 :

θ 1 : A -¨A A p1q det A ´1 A ' and θ 2 : B - ¨det B ´1 B B det B ‹ ‹ ' ,
where A p1q denotes the Frobenius twist applied to A.

Lemma 4.1. The subgroups θ 1 pGL 2 q and θ 2 pGL 2 q have root system with positive root respectively β 1 ¨¨" 2α 1 `α2 and β 2 ¨¨" ´3α 1 ´2α 2 .

Proof. See the computation of the root homomorphisms associated respectively to β 1 and β 2 , done in Remark 4.2: these are respectively the intersection of θ 1 pGL 2 q and θ 2 pGL 2 q with the upper triangular matrices of GL 7 .

Let us remark that tβ 1 , β 2 u is indeed a basis for the root system of type G 2 , with corresponding set of positive roots being ´3α 1 ´2α 2 , α 1 ´α2 , ´α2 , α 2 , 3α 1 `α2 , 2α 1 `α2 and with Borel subgroup given by the intersection of G with the upper triangular matrices in GL 7 . 4.2. Root subgroups. Let us move on to the explicit computation of some of the root subgroups in type G 2 . As before, we will do everything considering the action on a 7-dimensional vector space -the orthogonal of the identity element of O -so that the computations hold in any characteristic, then at the end we will summarize what we get in characteristic 2.

Let us consider the group G acting on the vector space V arranged as in (4.3). Denoting as x 0 , . . . , x 6 the coordinates on V , the norm becomes qpxq " ´x2 3 ´x2 x 4 ´x1 x 5 ´x0 x 6 , (4.5) while the maximal torus T given in (4.4) The idea is the following: we know that -for any root γ P Φ -the root subgroup U γ Ă G is determined by being the unique subgroup of GLpV q (resp. GLpW q in characteristic 2), which is smooth, unipotent, is acted on by T via the character γ, and whose elements are automorphisms of octonions. We will impose some of these necessary condition -such as u γ pλq being an isometry for any λ P G a -to determine the root homomorphism u γ : G a -U γ . ' First, let us consider the root α 1 . By (4.6) and the condition for u α 1 to be a group homomorphism, there exist some constants η 1 , . . . , η 5 P k such that for any λ P G a , u α 1 pλq acts on V as ¨1 0 0 η 1 λ 0 0 η 5 λ 2 0 1 0 0 η 2 λ 0 0 0 0 1 0 0 η 3 λ 0 0 0 0 1 0 0 η 4 λ 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
.

Moreover, u α 1 pλq being an isometry means, by (4.5), that qpxq " qpu α 1 pλq ¨xq " qpx 0 `η1 λx 3 `η5 λ 2 x 6 , x 1 `η2 λx 4 , x 2 `η3 λx 5 , x 3 `η4 λx 6 , x 4 , x 5 , x 6 q " qpxq `´p2η 4 `η1 qλx 3 x 6 `´pη 5 `η2 4 qλ 2 x 2 6 ´pη 3 `η2 qλx 4 x 5 , hence η 1 " ´2η 4 , η 5 " ´η2 4 and η 2 " ´η3 . This still leaves two independent parameters η 3 and η 4 instead of one, so let us also impose the condition of u α 1 pλq respecting the product e 12 f 21 " f 22 -see (4.1) : pu α 1 pλq ¨e12 qpu α 1 pλq ¨f21 q " u α 1 pλq ¨pf 22 q e 12 pη 2 4 λ 2 f 12 `η4 pe 11 ´e22 q `f21 q " η 3 λe 12 `f22 ´η4 λe 12 `f22 " η 3 λe 12 `f22 , implying η 3 " ´η4 . Let us reparametrise the root homomorphism such that η 4 " 1: this, together with an analogous computation for ´α1 , gives the desired representations, of the form u α 1 : λ ¨1 0 0 ´2λ 0 0 ´λ2 0 1 0 0 λ 0 0 0 0 1 0 0 ´λ 0 0 0 0 1 0 0 λ 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, u ´α1 : λ ¨1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 λ 0 0 1 0 0 0 0 ´λ 0 0 1 0 0 0 0 λ 0 0 1 0 ´λ2 0 0 ´2λ 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
' Let us consider the root α 2 . By (4.6) and the condition for u α 2 to be a group homomorphism, there exist some constants η 1 and η 2 P k such that for any λ P G a , u α 2 pλq acts on V as u α 2 pλq ¨x " px 0 , x 1 , x 2 , x 3 , x 4 , η 1 λx 0 x 5 , η 2 λx 1 `x6 q. Moreover, the isometry condition means that qpxq " qpu α 2 pλq ¨xq " ´x2 3 ´x2 x 4 ´η1 λx 0 x 1 ´x1 x 5 ´η2 λx 0 x 1 ´x0 x 6 " qpxq ´pη 2 `η1 qλx 0 x 1 , hence η 1 " ´η2 . As before, we can conclude that the associated root subgroups are of the form u α 2 : λ ¨1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 ´λ 0 0 0 0 1 0 0 λ 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, u ´α2 : λ ¨1 0 0 0 0 λ 0 0 1 0 0 0 0 ´λ 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
. ' Let us consider the root 2α 1 `α2 . By (4.6) and the condition for u 2α 1 `α2 to be a group homomorphism, there exist some constants η 1 , . . . , η 5 P k such that for any λ P G a , u 2α 1 `α2 pλq acts on V as ¨1 η 1 λ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 η 2 λ η 5 λ 2 0 0 0 0 0 1 η 3 λ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 η 4 λ 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
Moreover, the isometry condition implies qpu 2α 1 `α2 pλq ¨xq " qpx 0 `η1 λx 1 , x 1 , x 2 `η2 λx 3 `η5 λ 2 x 4 , x 3 `η3 λx 4 , x 4 , x 5 `η4 λx 6 , x 6 q " qpxq ´pη 1 `η4 qλx 1 x 6 ´pη 2 3 `η5 qλ 2 x 2 4 ´p2η 3 `η2 qλx 3 x 4 " qpxq, hence η 1 " ´η4 , η 5 " ´η2

3 and η 2 " ´2η 3 . This still leaves two independent parameters η 3 and η 4 instead of one, so let us also impose the condition of u 2α 1 `α2 pλq respecting the product f 22 e 21 " ´f21 : pu 2α 1 `α2 pλq ¨f22 qpu 2α 1 `α2 pλq ¨e21 q " u 2α 1 `α2 pλq ¨p´f 21 q f 22 p´η 2 3 λ 2 e 12 `η3 λpe 11 ´e22 q `e21 q " ´η4 λf 22 ´f21 η 3 λf 22 ´f21 " ´η4 λf 22 ´f21 , hence η 2 " ´η1 and we can conclude that the root subgroups have the following form : u ´3α 1 ´2α 2 : λ ¨1 0 0 0 0 0 0 0 1 λ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ´λ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ '
, u 3α 1 `2α 2 : λ ¨1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ´λ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 λ 1 0 0 0 0 0 0 0 1 u α 1 pλq " ¨1 0 0 0 0 λ 2 0 1 0 λ 0 0 0 0 1 0 λ 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
‹ ‹ ‹ ‹ ‹ ‹ '
, u ´α1 pλq " ¨1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 λ 0 1 0 0 0 0 λ 0 1 0 λ 2 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ' u α 2 pλq "
¨1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 λ 0 0 0 1 0 0 λ 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ' , u ´α2 pλq "
¨1 0 0 0 λ 0 0 1 0 0 0 λ 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ' u 2α 1 `α2 pλq "
¨1 λ 0 0 0 0 0 1 0 0 0 0 0 0 1 λ 2 0 0 0 0 0 1 0 0 0 0 0 0 1 λ 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ '
, u ´2α 1 ´α2 pλq " ¨1 0 0 0 0 0 λ 1 0 0 0 0 0 0 1 0 0 0 0 0 λ 2 1 0 0 0 0 0 0 1 0 0 0 0 0 λ 1

‹ ‹ ‹ ‹ ‹ ‹ '
u α 1 `α2 pλq " ¨1 0 0 0 0 0 0 1 0 0 0 0 λ 0 1 0 0 0 0 0 0 1 0 0 0 λ 2 0 0 1 0 0 0 0 λ 0 1

‹ ‹ ‹ ‹ ‹ ‹ '
, u ´α1 ´α2 pλq " ¨1 0 λ 0 0 0 0 1 0 0 λ 2 0 0 0 1 0 0 0 0 0 0 1 0 λ 0 0 0 0 1 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ' u 3α 1 `2α 2 pλq "
¨1 0 0 0 0 0 0 1 0 0 0 0 0 λ 1 0 0 0 0 0 0 1 0 0 0 0 0 λ 1 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ ' , u ´3α 1 ´2α 2 pλq "
¨1 0 0 0 0 0 0 1 λ 0 0 0 0 0 1 0 0 0 0 0 0 1 λ 0 0 0 0 0 1 0 0 0 0 0 0 1

‹ ‹ ‹ ‹ ‹ ‹ '

1. 2 . 3 .

 23 Factorising isogenies. Let us start by recalling the following result concerning the factorisation of the Frobenius morphism (see [7, Proposition 7.1.5]) : Proposition 1.10. Let G be simple and simply connected satisfying the edge hypothesis. Then (a) There is a factorisation of the Frobenius morphism as

3. 1 . 2 .

 12 Comparing varieties of Picard rank one. Let us start by considering a homogeneous variety X " G{P under the action of a simple adjoint group G, having Picard group of rank one. Then set G 0 ¨¨" Aut 0 X and P 0 ¨¨" Stabpxq Ă G 0 ,

. 2 ) 3 . 9 .U

 239 Lemma With the above notation, let us fix w P W I .(1) The groups U γ , with γ ranging over Φ I w (resp. Φ w,I ) generate two subgroups of the unipotent radical of B, γ and U w,I " źγPΦ w,I U γ ,with the product being taken in any order. (2) The product map U I w ˆPI BwP I given by pu, hq u 9 wh an isomorphism of varieties.

21 ,

 21 Lemma 2.3.1], a maximal torus of G -with respect to the basis pe 12 , e 21 , f 11 , e 11 é22 , ´f12 , f 21 , f 22 q of W -acts on V as G m 2 Q pξ, ηqdiagpξη, ξ ´1η ´1, η ´1, 1, ξ, ξ ´1, ηq P GL 7

θ 1 :

 1 A -¨A Sym 2 pAq det A ´1 A ' and θ 2 : B -¨det B

(4. 7 ) 4 . 2 .

 742 Remark Let us recall that in characteristic 2 the group G acts on W " V {ke, giving an embedding G Ă Sp 6 : we list below what the root subspaces we need become in that case.

  Theorem 2.2. Let G be a simple adjoint group, not of type G 2 when the characteristic is 2, and P a parabolic subgroup such that P red is maximal. If G acts faithfully on X " G{P , then P is a reduced parabolic subgroup. Moreover, if p ě 5 or the Dynkin diagram of G is simply laced, this map is also surjective.

		Let us keep notations from Subsection 1.1 and recall for reference the statement of [25,
	Theorem 14].
	Theorem 2.3. There is an injective map
		Hom Set p∆, N Y t8uq -tparabolic subgroups G Ą P Ą Bu ϕ -č G ϕpαq P α .
		αP∆ : ϕpαq‰8
	Remark 2.4. Let us start by taking a projective variety X which is homogeneous under the
	action of a simple group H. By replacing such a group with the image G of the morphism
	H	Aut X (see Remark 2.

  Whenever the Dynkin diagram of G is not simply laced, ' Φ ă Ă Φ and Φ ą Ă Φ denote respectively the subsets of short and long roots, whenever a multiple edge appears in the Dynkin diagram, ' when G is simply connected and satisfies the edge hypothesis (see Section 1.2.2), N G denotes the finite group scheme of height one whose Lie algebra is given by Lie N G " x Liepγ _ pG m qq : γ P Φ ă y à Let tX γ : γ P Φ, H α : α P ∆u be a Chevalley basis for Lie G, where G is simple and simply connected. Then the resulting structure constants satisfy (a) rH α , H β s " 0 for all α, β P ∆ ; (b) rH α , X γ s " xα, γyX γ for all α P ∆, γ P Φ ; (c) rX ´γ , X γ s is a linear combination with integer coefficients of the H α 's ;

	g γ ,
	γPΦă
	as recalled in Definition 1.8.
	' when G is not simply connected and satisfies the edge hypothesis, N G denotes the schematic image of N r G is the simply connected G via the universal covering map, where r cover of G -see again Definition 1.8.
	Let us recall the following Lemma -see [14, Chapter VII, 25.2] -which allows us to calculate
	all structure constants with respect to a Chevalley basis of the Lie algebra Lie G, where G is
	simple and simply connected.
	Lemma 2.5 (Chevalley).

  The schemes X and Y " Proj S are covered by the open subset ¨¨" tx P X, t x R m x L x u " XzZptq, for t homogeneous in ' dě1 S d , because by hypothesis L is globally generated. This allows to define f via the inclusion II, Lemma 5.14] -applied to the coherent sheaf O X and the line bundle L bnd -implies that(3.3) is an equality, which gives the condition f ˚OX » O Y . pbq : Let us consider the sheaf O Y p1q defined as in [12, II, Proposition 5.11], fix some global section s P H 0 pX, Lq and

	(3.3)	Dptq " Spec	˜8 ď n"0 n"0 H 0 pX, L bn q t n ¸and X t 8 ď H 0 pX, L bnd q t n Ă O X pX t q, for t P S d .
	Moreover, [12,	

  In particular, O Y p1q is ample over Y , thus it must have strictly positive intersection with any effective 1-cycle by Kleinman's criterion. In other words, given a nonzero class C P NEpXq, f ˚C " 0 if and only if0 " O Y p1q ¨f˚C " f ˚OY p1q ¨C " L ¨C,by the projection formula, and we are done.Before going back to our particular case, let us prove a criterion for a morphism between homogeneous spaces to be a contraction. Lemma 3.17. Consider a chain of algebraic groups H Ă H 1 Ă G over k. The morphism f : G{H -G{H 1 is a contraction if and only if H 1 {H is proper over k and OpH 1 {Hq " k.

Proof. Let us consider q : G G{H and q 1 : G G{H 1 to be the quotient maps and m : G Ĥ{H 1 G{H the morphism given by the group multiplication and then by quotienting by H: by

[START_REF] Milne | Algebraic groups: the theory of group schemes of finite type over a field[END_REF] Proposition 7.15] 

we have a cartesian square

  3.3.Examples in Picard rank two. Let us consider a simple simply connected algebraic group G over k, having Dynkin diagram with an edge of multiplicity equal to the characteristic p P t2, 3u, so that the definitions and properties of Subsection 1.2.2 apply. In what follows, we call a parabolic subgroup of standard type if it is of the form G m 1 P α 1 X . . . X G mr P αr for some integers m i and simple roots α i , while a homogeneous space is said to be of standard type its underlying variety is isomorphic to some G 1 {P 1 , where P 1 is a parabolic subgroup of standard type. The main result in this part is the following, which provides us with a first family of homogeneous projective varieties (in types B n , C n and F 4 ) which are not of standard type.

Proposition 3.21. Let p " 2 and consider a simple, simply connected group G and two distinct simple roots α and β such that: either G is of type B n or C n

'

  If G 1 " G p1q ˆ¨¨¨ˆG plq is not simple, consider the morphism G p1q ˆ¨¨¨ˆG plq G G ad φdetermined by the action: then H ¨¨" ker φ is a normal subgroup of G 1 and the image of φ is simple, thus H is necessarily of the form

	H "	ź
		i‰i 0

  Let us write here for reference a table of products of the basis vectors : å e 11 e 21 e 12 e 22 f 11 f 21 f 12 f 22 e 11 e 11

			0	e 12	0 f 11 f 21	0	0
		e 21 e 21	0	e 22	0	0	0	f 11 f 21
		e 12 0	e 11	0	e 12 f 12 f 22	0	0
	(4.1)	e 22 0	e 21	0	e 22 0	0	f 12 f 22
		f 11 0	0	´f12 f 11 0 ´e21	0	e 11
		f 21 0	0	´f22 f 21 e 21	0	´e11 0
		f 12 f 12 ´f11	0	0	0 ´e22	0	e 12
		f 22 f 22 ´f21	0	0 e 22	0	´e12 0

˙˙,

unit e " p1, 0q " e 11 `e22 , and which is equipped with a norm qpu, vq " detpuq ´detpvq.

  acts on V through this table of characters

		1	a 2 b a ´1b ´1	a	a 3 b	b ´1	a 2
		a ´2b ´1	1	a ´3b ´2 a ´1b ´1	a	a ´2b ´2	b ´1
		ab	a 3 b 2	1	a 2 b	a 4 b 2	a	a 3 b
	(4.6)	a ´1	ab a ´2b ´1	1	a 2 b a ´1b ´1	a
		a ´3b ´1 a ´1 a ´4b ´2 a ´2b ´1	1	a ´3b ´2 a ´1b ´1
		b	a 2 b 2	a ´1	ab	a 3 b 2	1	a 2 b
		a ´2	b	a ´3b ´1	a ´1	ab a ´2b ´1	1

Acknowledgments. I would like to thank my PhD advisors Michel Brion and Matthieu Romagny for their precious guidance and support, as well as Pierre-Emmanuel Chaput, Philippe Gille and David Stewart for the useful suggestions.

2.6.2. What does not. The only case yet to consider is the following: the characteristic is p " 2, the group G is of type G 2 and P is a nonreduced parabolic subgroup satisfying P red " P α 1 , the reduced parabolic associated to the short simple root, whose Levi subgroup has root system t˘α 2 u. Let us place ourselves in this setting: by repeating the same reasoning as above, we can conclude only a weaker statement. Lemma 2.22. Assume that one of the two root subspaces associated to ´3α 1 ´2α 2 and ´3α 1 ´α2 is contained in Lie P . Then Lie P " Lie G.

Proof. By (2.14), we have that both root subspaces are in Lie P . Then considering roots γ " ´3α 1 ´2α 2 , δ " α 1 `α2 and δ 1 " 2α 1 `α2 yields rX γ , X δ s " ˘X´2α 1 ´α2 P Lie P and rX γ , X δ 1 s " ˘X´α 1 ´α2 P Lie P, because γ ´δ and γ ´δ1 are not roots. This means that if one long root is added then we have to add everything else.

The same reasoning applied to short roots fails, due to the vanishing of structure constants in characteristic 2. More precisely, we can identify two Lie subalgebras strictly containing Lie P α 1 , which cannot be Lie ideals since Lie G is a simple p-Lie algebra (see Lemma 1.9) as follows: define the following vector subspaces Proof. Let tX γ : γ P Φ, H α 1 , H α 2 u be a Chevalley basis of Lie G. First, using Lemma 2.5 we can calculate a few structure constants which are then useful in the rest of the proof: adpX ´2α 1 ´α2 q adpX ´α1 q adpX ´α1 ´α2 q adpX α 1 q adpX 2α 1 `α2 q

Let us verify that h is a Lie subalgebra. Since we know that Lie P α 1 is one, it is enough to show that rg ´2α 1 ´α2 , Lie P α 1 s Ă h. Lemma 2.5 implies that

Moreover, the first column of the above table shows that rg ´2α 1 ´α2 , g γ s " krX ´2α 1 ´α2 , X γ s Ă h, for all roots γ whose root subspace is contained in Lie P α 1 . Analogously, let us prove that l is a Lie subalgebra: for this, it is enough to show that rg ´α1 , Lie P α 1 s, rg ´α1 ´α2 , Lie P α 1 s, rg ´α1 , g ´α1 ´α2 s Ă l.

Proof. To prove p1q, let us recall that for any pair of roots γ, δ P Φ there exist constants c ij such that pu γ pxq, u δ pyqq " ź i,ją0, iγ`jδPΦ u iγ`jδ pc ij x i y j q, for all x, y P G a (see [START_REF] Springer | Linear algebraic groups[END_REF]Proposition 8.2.3]). If γ and δ are both in Φ I w , then w ´1piγ `jδq is still negative and not belonging to Φ I , hence by Equation (3.1) the product of the root subgroups with roots ranging over Φ I w is a group. The same reasoning holds for the second product. Moving on to p2q, let us consider an element x P BwP I . Let us fix an order on Φ I w " tγ 1 , . . . , γ l u and on Φ w,I " tδ 1 , . . . , δ m u . By Theorem 3.6, there are a unique w 1 P W I , a unique u " u γ 1 px 1 q ¨. . . ¨uγ l px l q P U I w , a unique u 1 " u δ 1 py 1 q ¨. . . ¨uδm py m q P U w,I and a unique b P B such that x " uu 1 9 w 9 w 1 b P Bww 1 B. Moreover, by [22, 8.1.12(2)], there exist constants c i P k such that

Since w ´1δ i is in Φ I for all i, the product u 2 is an element of P I , as well as h ¨¨" u 2 9 w 1 b because w 1 P W I . This gives a unique way to write x as product u 9

wh for some u P U I w and h P P I . Next, let us go back to our original setting: consider a sequence G Ą P Ą P red " P I Ą B Ą T and look at the map r X ¨¨" G{P I G{P ": X, σ in order to relate the geometry of X to that of r X. The morphism σ is finite, purely inseparable and hence a homeomorphism between the underlying topological spaces. Let us denote as õ P r X and o P X the respective base points. The decomposition of Proposition 3.8 allows us to express the variety r X as the disjoint union of the cells BwP I {P I " Bwõ as w P W I . Let us remark that W I corresponds to the set of isolated points under the T -action, i.e. that p r Xq T " twõ : w P W {W I u and the same holds for X. It is hence natural if such a decomposition coincides with the Białynicki-Birula decomposition of Theorem 3.4. This is useful because the advantage of the first one is that it is more explicit and easier to manipulate, while the second can be defined also on X, independently of the smoothness of the stabilizer. Let us denote as r X ẁ (resp. X ẁ ) the positive Białynicki-Birula strata associated to the T -fixed point wõ (resp. wo), and the analogous notation for negative strata. Lemma 3.10. For any w P W {W I , we have Bwõ " r X ẁ and Bwo " X ẁ .

Proof. For the first equality, wõ belongs to r X ẁ because it is a T -fixed point. Moreover, positive strata are B-invariant which means that Bwõ Ď r X ẁ . The other inclusion comes from the fact that r X can be expressed as the disjoint union of both the strata of the two decompositions with the same index set. Next, let us consider Bwo " σpBwõq, which equals σp r X ẁ q by what we just proved. The inclusion σp r X ẁ q Ă X ẁ comes from the fact that σ being T -equivariant respects the Białynicki-Birula decomposition, while the other inclusion is due to the fact that ğ

Let us remark that the above roots can be constructed in a uniform way: they are respectively the highest short root and the highest (long) root. Thus, we can conclude that ϕ P ‰ ϕ G m Q for all m, proving that P is a parabolic subgroup not of standard type. However, X " G{P is isomorphic as a variety to G{P α , hence the homogeneous space X is still of standard type. The same reasoning applies when one considers the product of a parabolic subgroup of standard type and of a kernel of a noncentral isogeny with source G: this might define a new parabolic subgroup, but an homogeneous space which is still of standard type. Together with Proposition 3.1, this implies that it is not possible to find examples of homogeneous spaces not of standard type having Picard rank one, when the characteristic satisfies the edge hypothesis (see Section 1.2.2). This provides a motivation to the study of the rank two case, which means considering parabolic subgroups whose reduced part is of the form P α X P β for two distinct simple roots α and β. In such a context we are able to find the desired class of examples.

Lemma 3.22. Let us consider a simple, simply connected group G having Dynkin diagram with an edge of multiplicity p, fix two distinct simple roots α and β and an integer r ě 0. Both the parabolic P ¨¨" N r,G P α X P β and its pull-back via the very special isogeny π G : G G are not of standard type if and only if one of the following conditions is satisfied :

(i) G is of type B n or C n and the pair pα, βq is of the form pα j , α i q with i ă j ă n or j " n and i ă n ´1 ; (ii) G is of type F 4 and the pair pα, βq is one amongst pα 1 , α 4 q, pα 2 , α 1 q, pα 2 , α 4 q, pα 3 , α 1 q, pα 3 , α 4 q, pα 4 , α 1 q.

In particular, this situation can only happen when p " 2.

Proof. Let us take a look at the function ϕ P : Φ ` N Y t8u associated to the parabolic Precall that it is determined by the equality U ´γ X P " u ´γ pα p ϕpγq q, γ P Φ and let us compare it to the one associated to some Q " G m P α X G n P β (i.e. a parabolic of standard type), which is necessarily of this form because Q red " P red " P α X P β . Our aim is to find in which cases there is a contradiction with the equality P " Q. First of all, assuming ϕ P pβq " ϕ Q pβq leads to n " 0. Now, let us write down the values that ϕ P and ϕ Q assume on all positive roots in the following table.

α, β P Supppγq α P Supppγq, β R Supppγq, γ short

Thus, the two functions can never coincide if and only if there exist at least one long root and one short root containing α and not β in their respective supports. Let us examine each root system to determine when this is the case. ' If G is of type G 2 in characteristic p " 3, then all roots distinct from α 1 and α 2 contain both simple roots in their support, hence the desired condition is never satisfied. Thus from now on we can assume that p " 2. ' If G is of type B n , let α " α j and β " α i for some 1 ď i, j ď n. A positive short root is of the form ε m " α m `. . . `αn´1 `2α n for m ă n or ε n " α n : hence if j ă i then a short root containing α in its support also contains β. Let us then assume i ă j: in this case γ " ε j satisfies the condition. Moving on to long roots, if i ă j ă n then implying η 3 " ´η4 , so we can conclude that the associated root subgroups are of the form u 2α 1 `α2 : λ ¨1 ´λ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2λ ´λ2 0 0 0 0 0 1 ´λ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 λ 0 0 0 0 0 0 1

, u ´2α 1 ´α2 : λ ¨1 0 0 0 0 0 0 λ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ´λ 1 0 0 0 0 0 ´λ2 2λ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ´λ 1

' Let us consider the root α 1 `α2 . By (4.6) and the condition for u α 1 `α2 to be a group homomorphism, there exist some constants η 1 , . . . , η 5 P k such that for any λ P G a , u α 1 `α2 pλq acts on V as ¨1 0 0 0 0 0 0 0 1 0 0 0 0 0

Moreover, the isometry condition implies

Reasoning as in the above cases, let us also impose the condition of u α 1 `α2 pλq respecting the product f 11 f 21 " ´e21 : pu α 1 `α2 pλq ¨f11 qpu α 1 `α2 pλq ¨f21 q " u α 1 `α2 pλq ¨p´e 21 q pf 11 `η2 λpe 11 ´e22 q ´η2 2 λ 2 f 22 qf 21 " ´e21 ´η4 λf 21 ´e21 `η2 λf 21 " ´e21 ´η4 λf 21 , implying η 2 " ´η4 . Reparametrizing and doing an analogous computation for the negative root allows to conclude that the root subgroups are as follows : u α 1 `α2 : λ ¨1 0 0 0 0 0 0 0 1 0 0 0 0 0 ´λ 0 1 0 0 0 0 0 ´λ 0 1 0 0 0 0 0 0 0 1 0 0 0 ´λ2 0 2λ 0 1 0 0 0 0 0 λ 0 1

, u ´α1 ´α2 : λ ¨1 0 λ 0 0 0 0 0 1 0 2λ 0 ´λ2 0 0 0 1 0 0 0 0 0 0 0 1 0 ´λ 0 0 0 0 0 1 0 ´λ 0 0 0 0 0 1 0 0 0 0 0 0 0 1

.

' As last computation, let us consider the root ´3α 1 ´2α 2 . By (4.6) and the condition for u ´3α 1 ´2α 2 to be a group homomorphism, there exist some constants η 1 and η 2 P k such that for any λ P G a , u ´3α 1 ´2α 2 pλq acts on V as u ´3α 1 ´2α 2 pλq ¨x " px 0 , x 1 `η1 λx 2 , x 2 , x 3 , x 4 `η2 λx 5 , x 5 , x 6 q.

The isometry condition implies qpxq " qpu ´3α 1 ´2α 2 pλq ¨xq " ´x2 3 ´x2 x 4 ´η2 λx 2 x 5 ´x1 x 5 ´η1 λx 2 x 5 ´x0 x 6 " qpxq ´pη 2 `η1 qλx 2 x 5 ,