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PROJECTIVE HOMOGENEOUS VARIETIES OF PICARD RANK ONE IN

SMALL CHARACTERISTIC

MATILDE MACCAN

Abstract. We extend to characteristic 2 and 3 the classification of projective homogeneous
varieties of Picard group Z, corresponding to parabolic subgroups with maximal reduced
subgroup. In all types, except for G2 in characteristic 2, the latter are all obtained as product
of a maximal reduced parabolic with the kernel of a purely inseparable isogeny. For the G2

case, we exhibit an explicit counterexample and show it is the only one, thus completing the
classification. We then construct new examples of projective homogeneous varieties of Picard
rank two.
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Introduction

We work in the setting of affine group schemes of finite type over an algebraically closed field
k. Our object of interest are projective varieties over k, homogeneous under their automor-
phism group: a first class of examples is given by flag varieties, whose natural generalisation
are quotients of semisimple groups by parabolic subgroups, which are not necessarily reduced.
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In characteristic zero, the structure of parabolic subgroups is well known: fixing a semisim-
ple group, a Borel subgroup and a maximal torus G Ą B Ą T , there is a bijection between
parabolic subgroups containing B and subsets of the set of simple roots of G: it is a classical
fact that a parabolic subgroup is determined by the simple roots forming a basis for the root
system of a Levi subgroup. Over a field of positive characteristic, parabolic subgroups can be
nonreduced hence homogeneous spaces might have very different geometric properties: see for
example the computation of the character associated to the canonical bundle in [16], which
shows that such varieties are in general not Fano. The easiest example is the hypersurface in
P2 ˆ P2 given by the equation x0y

p
0 ` x1y

p
1 ` x2y

p
2 “ 0, which is homogeneous under PGL3

and not Fano if p ą 3.
If the characteristic is equal to at least 5, or if the Dynkin diagram of G is simply laced (types
An, Dn, E6, E7 and E8), Wenzel [25], Haboush and Lauritzen [11] show that all parabolic
subgroups of G can be obtained from reduced ones by fattening with Frobenius kernels and
intersecting. More precisely, they are all of the form

Gm1
Pα1 X . . . XGmrP

αr ,

where Gm denotes the kernel of the m-th iterated Frobenius morphism on G and Pα denotes
the maximal reduced parabolic subgroup whose Levi subgroup has as basis all simple roots
except for α. When no assumption on the characteristic is made, we will call them parabolic
subgroups of standard type. The proof of [25] relies heavily on the structure constants (defined
over Z) relative to a Chevalley basis of the Lie algebra of a simply connected semisimple group.
By construction such constant are integers with absolute value strictly less than five: the hy-
pothesis on the characteristic and on the Dynkin diagram guarantees that they do not vanish
over k. This raises the natural question of how to generalize the classification of parabolic
subgroups to characteristic two and three.

In this paper we manage to provide an answer to this question concerning the easiest -
combinatorially speaking - class of parabolic subgroups, those having maximal reduced part
equal to Pα for some simple root α of G. These subgroups correspond to homogeneous
projective varieties of Picard group isomorphic to Z: as illustrated later in Subsection 3.2, the
Picard group of a homogeneous space G{P is free abelian with rank equal to the number of
simple roots of G not belonging to the root system of a Levi subgroup of the reduced part of
P . Our main result is the following, allowing us to complete the classification in all types and
characteristics.

Theorem 1. Let X be a homogeneous projective variety, over an algebraically closed field of
any characteristic, with Picard group isomorphic to Z. Then X is either the quotient of a
simple adjoint group by a maximal reduced parabolic subgroup, or it is isomorphic to G2{Pl

(this second case can only arise in characteristic two).

In the above statement, Pl is a certain exotic parabolic subgroup scheme, introduced and
studied in Section 2.6.2 and Section 2.6.4. The proof of Theorem 1 articulates in two different
parts: Theorem 2.1, which treats all cases but G2 in characteristic two, and Theorem 2.17
which completes the classification.

The paper is organized as follows. In Section 1, we build on previous work of Borel and
Tits [2], then completed and re-elaborated in [7], to give a factorisation result for isogenies
with simply connected source. This digression is self-contained but motivated by the fact that
- in Picard rank one - purely inseparable isogenies will generalize the role of the Frobenius
morphism in [25]. An important ingredient is the so-called very special isogeny of a simple
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simply connected group G, which is the quotient

πG : G −! G

by the unique minimal noncentral subgroup of G with trivial Frobenius. It turns out (as
shown in [7]) that when the Dynkin diagram of G has an edge of multiplicity equal to the
characteristic, such a subgroup is strictly contained in the Frobenius kernel. In particular,
πG acts as a Frobenius morphism on root subgroups associated to short roots, while it is
an isomorphism on root subgroups associated to long ones. The factorisation of isogenies
reads as follows, where we denote as FmG : G −! Gpmq the m-th iterated relative Frobenius
homomorphism of G.

Proposition 2. Let G be a simple and simply connected algebraic group over an algebraically
closed field k. Let f : G! G1 be an isogeny.
Then there exists a unique factorisation of f as

f : G G pGqpmq G1,
π

Fm

G ρ

where ρ is a central isogeny and π is either the identity or - when the Dynkin diagram of G
has an edge of multiplicity p - the very special isogeny πG.

We introduce and prove the first part of Theorem 1 in Section 2. As the different behaviour
in type G2 confirms, there is no way to prove this result using general geometric arguments nor
working over Z, so we proceed by a case-by-case analysis. The proof essentially articulates in
three steps: the first one consists of some elementary reductions, showing that it is enough to
prove that if P has maximal reduced subgroup and G acts faithfully on G{P , then P must be
itself reduced. The second step is exploiting the explicit matricial description of the quotient

LieG{LiePred,

seen as a representation of a Levi subgroup of Pred. Finally, the last step involves considering
some of the structure constants (chosen so that they do not vanish, depending on the charac-
teristic) and concluding using the notion of very special isogeny.

Next, we consider the case of characteristic 2 and typeG2, with short simple root α1 and long
simple root α2. Perhaps surprisingly, the analogous strategy of proof works when the reduced
part is Pα2 , but fails when considering Pα1 , due to the vanishing of structure constants.
We deduce that there exist exactly two maximal p-Lie subalgebras h and l of LieG strictly
containing LiePα1 . We describe them explicitly and consider the corresponding subgroups of
height one in G, which give rise to two new parabolic subgroups denoted Ph and Pl. Then
we study the corresponding homogeneous spaces, by means of the description of G2 as the
automorphism group of an octonion algebra, as in [21] and [13]. One turns out to be isomorphic
to the projective space P5, while we realize the other as a hyperplane section of the Sp6-
homogeneous variety of isotropic 3-dimensional subspaces in a 6-dimensional vector space.For
the sake of brevity, computations concerning the group G2 and its root subgroups can be found
in the Appendix [4]. We conclude this part with the following result (see Proposition 2.42 for
a more detailed statement), which allows in particular to end the proof of Theorem 1.

Proposition 3. Let G be of type G2 in characteristic two.
Then the nonreduced parabolic subgroups of G having Pα1 as reduced part are either of standard
type, or obtained from Pl and Ph by pulling back with an iterated Frobenius homomorphism.

We deduce in Section 3 the desired consequence of Theorem 1: the statement focuses ex-
clusively on the classification of parabolic subgroups with maximal reduced part, and requires
no assumptions on the characteristic of the base field.
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Proposition 4. Let G be simple and P be a parabolic subgroup of G such that its reduced
subgroup is Pα for some simple root α.
Then there exists an isogeny ϕ with source G such that

P “ pkerϕqPα,

unless G is of type G2 over a field of characteristic p “ 2 and α is the short simple root.

We prove Proposition 4 as well as a criterion to determine when two projective homogeneous
spaces with Picard group Z are isomorphic as varieties. The remaining part of Section 3 is
devoted to the display of a family of projective homogeneous spaces of Picard rank two, whose
underlying varieties are not of standard type, where the last terminology means not isomorphic
(as a variety) to some quotient with stabilizer a parabolic subgroup of standard type. We follow
the conventions on root systems adopted by Bourbaki [3]. The statement is the following:

Proposition 5. Consider a simple, simply connected group G over an algebraically closed field
of characteristic 2 and distinct simple roots α and β such that: either G is of type Bn or Cn
and the pair pα, βq is of the form pαj , αiq with i ă j ă n or j “ n and i ă n ´ 1, or G is of
type F4 and the pair pα, βq is one among

pα1, α4q, pα2, α1q, pα2, α4q, pα3, α1q, pα3, α4q, pα4, α1q.

Then the homogeneous space X “ G{ppker πGqPα X P βq is not of standard type, where πG
denotes the very special isogeny of G.

The strategy of proof consists first in recalling and precising a few facts on the Białynicki-
Birula decomposition of G-simple projective varieties, following [4]. Next we specialize the
outline of this decomposition to the particular case of homogeneous spaces. This leads to
the description of the Picard group and of the group of 1-cycles on X “ G{P , as well as
the definition of a finite family of contractions on X indexed by the simple roots of G not
belonging to the root system of a Levi subgroup of Pred. More precisely, the contraction asso-
ciated to a root α sends all classes of curves to a point, except for those which are numerically
equivalent to the unique B-invariant curve passing through the image of the base point of
X by the reflection with respect to α in the Weyl group. This construction, together with
the results on automorphism groups in [9], allows us to conclude. We end with a final ques-
tion concerning the more general classification of parabolic subgroups in characteristic 2 and 3.

Acknowledgments. I would like to thank my PhD advisors Michel Brion and Matthieu Ro-
magny for their precious guidance and support, as well as Pierre-Emmanuel Chaput, Philippe
Gille and David Stewart for the useful suggestions.

1. Preliminary work on isogenies

1.1. Setting and notation. In this work, k denotes an algebraically closed field of prime
characteristic p ą 0. When V is a finite-dimensional k-vector space, we adopt the convention
for PpV q to be lines in V . By parabolic subgroup we always mean parabolic subgroup scheme.
Let G Ą B Ą T be respectively a semisimple, simply connected algebraic group over k, a
Borel subgroup and a maximal torus contained in it. Our aim is to classify all homogeneous
projective G-varieties, which are quotients of the form G{P , where P is a parabolic subgroup
of G, not necessarily reduced. By conjugacy of the Borel subgroups, we might restrict ourselves
to those containing the Borel subgroup B, which we call standard parabolic subgroups. From
now on, every parabolic subgroup will be standard, unless otherwise mentioned. Such a
classification has been established in [25] and [11], under the assumption that either p ě 5 or
that the root system of G relative to T is simply laced.
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Let us list the main notations that are fixed throughout the paper, which mostly agree with
those of [25]. Concerning root systems, we follow conventions from Bourbaki [3] :

‚ Φ “ ΦpG,T q is the root system of the pair pG,T q,
‚ Φ` “ ΦpB,T q is the subset of positive roots associated to the Borel subgroup B,
‚ ∆ is the corresponding basis of simple roots,
‚ W “ W pG,T q “ W pΦq is the Weyl group of pG,T q,
‚ sα is the reflection associated to the simple root α P ∆,
‚ Supppγq is the set of simple roots which have a nonzero coefficient in the expression

of γ P Φ as linear combination of simple roots,
‚ B´ is the opposite Borel subgroup, with corresponding set of roots being ΦzΦ`,
‚ Uγ (γ P Φq is the root subgroup associated to γ, with corresponding root homomor-

phism uγ : Ga
„

−! Uγ ,
‚ Pα (α P ∆) is the maximal reduced parabolic subgroup not containing U´α, which is

generated by B and U´β with β P ∆ztαu,

‚ FmG : G −! Gpmq is the m-th iterated relative Frobenius homomorphism of G,
‚ Gm ¨̈“ kerFmG is the m-th Frobenius kernel.

Let us recall that the morphism FmG is an isogeny since it is surjective with finite kernel.
Moreover, the map α 7! Pα defines a bijection between simple roots and maximal reduced
parabolic subgroups. More generally, under the assumptions of [25], there is a bijection

HomSetp∆,N Y t8uq −! tparabolic subgroups G Ą P Ą Bu(1.1)

sending a function ϕ : ∆ ! N Y t8u to the subgroup scheme Pϕ defined by the intersection
of all maximal reduced parabolics fattened by their corresponding Frobenius kernels

Pϕ ¨̈“
č

αP∆

GϕpαqP
α “

č

αP∆: ϕpαq‰8

GϕpαqP
α.

Let us recall that, given a parabolic subgroup P , there is always an associated function
ϕ : Φ`

−! N Y t8u (introduced in [25]) given by the identity

U´γ X P “ u´γpαpϕpγq q, γ P Φ`,

where αp8 is understood to be Ga. For example, the parabolic GmPα defines the function
sending all positive roots to infinity, except for those containing α in their support, which
assume value m.

Theorem 1.1 (Theorem 10, [25]). The parabolic subgroup P is uniquely determined by the
function ϕ, with no assumption on the characteristic or on the Dyinkin diagram of G.

Moreover, when p ě 5 or G is simply laced, the function ϕ is itself uniquely determined by
its values on ∆ via the equality

ϕpγq “ mintϕpαq : α P Supppγqu,

giving the bijection (1.1). See [25, Theorem 14] for more details. As we will see later, the last
statement does not always hold in small characteristic.

The guiding idea is to mimic the known classification - written in terms of Frobenius kernels
- replacing the Frobenius morphism with any noncentral isogeny (see Proposition 3.1). This
motivates the preliminary study and classification of such homomorphisms.
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1.2. Classifying isogenies. We now classify isogenies between simple algebraic groups, first
recalling definitions and the Isogeny Theorem, then introducing the so-called very special
isogeny πG, whose kernel is a certain subgroup of height one defined by short roots - which
only exists when the Dynkin diagram has an edge of multiplicity equal to the characteristic -
and concluding with the following factorisation result: see Proposition 1.12.

Proposition. Let G be a simple and simply connected algebraic group over k. Let f : G! G1

be an isogeny. Then there exists a factorisation of f as

f : G G pGqpmq G1,
π

Fm

G ρ

where ρ is a central isogeny and π is either the identity or - when the Dynkin diagram of G
has an edge of multiplicity p - the very special isogeny πG.

1.2.1. Preliminaries. We shall start by reviewing what isogenies look like, in particular non-
central ones. First, let us recall some notations and the statement of the Isogeny Theorem,
which is proved in detail in [23].

Definition 1.2. Let pG,T q and pG1, T 1q be reductive algebraic groups over k. An isogeny
between them is a surjective homomorphism of algebraic groups f : G ! G1 having finite
kernel, sending the maximal torus T to the maximal torus T 1. The degree of f is the order of
its kernel.

Given an isogeny f , there is an induced map between the character groups

ϕ ¨̈“ Xpf|T q : XpT 1q −! XpT q, χ1
7−! χ1 ˝ f|T ,

satisfying the conditions :

(i) both ϕ : XpT 1q ! XpT q and its dual ϕ_ : X_pT q ! X_pT 1q are injective,
(ii) there exists a bijection Φ ↔ Φ1, denoted α ↔ α1, and integers qpαq which are all

powers of p, such that

ϕpα1q “ qpαqα and ϕ_pα_q “ qpαqα_1 for all α P Φ.

Geometrically, the integers qpαq arise as follows: the image fpUαq is a smooth connected
unipotent algebraic subgroup of G1 which is normalized by T 1 and isomorphic to the additive
group Ga, hence it must be of the form Uα1 for a unique α1 P Φ1. This gives the bijection;
then, using the T -action on those two root subgroups, one finds that there exists a constant
cα P Gm and an integer qpαq P pN such that

fpuαpxqq “ uα1 pcαx
qpαqq(1.2)

for all x P Ga.

Definition 1.3. A homomorphism between character groups ϕ : XpT 1q ! XpT q satisfying
conditions (i) and (ii) is called an isogeny of root data.

Theorem 1.4 (Isogeny Theorem). Let pG,T q and pG1, T 1q be reductive algebraic groups over
k. Assume given an isogeny of root data ϕ : XpT 1q ! XpT q. Then there exists an isogeny
f : pG,T q ! pG1, T 1q inducing ϕ. Moreover, f is unique up to an inner automorphism innptq
for some t P T 1{ZpG1q.

Proof. See [23, 1.5]. �

For instance, an important class of isogenies is given by the ones having central kernel, which
are characterized by the fact that the associated integers qpαq are all equal to 1: these are not
interesting for our purpose of studying parabolic subgroups, since we may restrict ourselves in
the classification to the case of a simply connected group (or an adjoint one, depending on the
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desired properties). The most known example of a noncentral isogeny is an iterated Frobenius
homomorphism Fm, for which α1 “ α and all qpαq are equal to pm. Do other isogenies exist?
We shall now consider this question.

1.2.2. Very special isogenies. From now on we make the assumption that G is simple. The
Weyl group W “ W pG,T q acts on roots leaving the integer q invariant: if the Dynkin diagram
of G is simply laced, then there is only one orbit, hence all qpαq must assume the same value.
This means, by the Isogeny Theorem, that up to inner automorphisms the only noncentral
isogenies with source G are iterated Frobenius homomorphisms.

On the other hand, assume that the Dynkin diagram of G has a multiple edge. In this
setting, there are two distinct orbits under the action of the Weyl group, corresponding to
long and short roots: this allows, considering an isogeny f : pG,T q −! pG1, T 1q, for two
possibly distinct values of qpαq. Let us denote as Φă and Φą the subsets of Φ consisting of
short and long roots respectively, and denote the two integer values as

qă ¨̈“ qpαq pα P Φăq and qą ¨̈“ qpαq pα P Φąq.(1.3)

Analogously, we fix the following notation for the direct sum of root spaces associated to roots
of a fixed length:

gă ¨̈“
à

αPΦă

gα “
à

αPΦă

LieUα and gą ¨̈“
à

αPΦą

gα “
à

αPΦą

LieUα.

We now recall a notion introduced in [7, Section 7.1], based on previous work from Borel
and Tits, and some of its properties. Also, let us remark that the assumption we will make is
stronger than just asking that the group is not simply laced: to define the following notions, the
characteristic needs to be p “ 2 for types Bn, Cn and F4, and p “ 3 in type G2. Equivalently,
the group G has Dynkin diagram having an edge of multiplicity p. From now on, we will call
this the edge hypothesis. The following result is [7, Lemma 7.1.2].

Lemma 1.5. Let G be simply connected satisfying the edge hypothesis. Then the vector sub-
space

nG ¨̈“ xLie γ_pGmq : γ P Φăy ‘ gă

is a p-Lie ideal of LieG. Moreover, every nonzero G-submodule of LieG distinct from LieZpGq
contains nG.

By the equivalence of categories between p-Lie subalgebras of LieG and algebraic subgroups
of G of height one, the p-Lie ideal nG lifts to a unique normal subgroup of G.

Definition 1.6. Let G be simply connected satisfying the edge hypothesis. The algebraic
subgroup of height one having nG as Lie algebra is denoted as NG.

In particular, NG is characterized by being the unique minimal noncentral normal subgroup
of G having trivial Frobenius. For more details see [7, Definition 7.1.3]. Thus, we are led to
consider the homomorphism

πG : G −! G ¨̈“ G{NG.

Let us remark that this is a noncentral isogeny with corresponding values qă “ p and qą “ 1.

Definition 1.7. With the above notations, the homomorphism πG is called the very special
isogeny associated to the simple and simply connected algebraic group G.

The following step towards a better understanding of isogenies is the natural generalization
of the above notion to the non simply connected case.
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Definition 1.8. Let G be simple satisfying the edge hypothesis and let ψ : rG −! G be its

simply connected cover. Let N rG be the kernel of the very special isogeny of rG defined just
above. We denote as :

‚ NG its schematic image via the central isogeny ψ ;
‚ N

m, rG ¨̈“ kerpπ rGpmq ˝ FmrG q “ pFmrG q´1pN rGpmq q, for any m ě 1 ;

‚ Nm,G the schematic image of N
m, rG via the central isogeny ψ.

Let us remark thatNG is nontrivial, noncentral, normal and has trivial Frobenius. Moreover,

it is minimal with such properties: letH Ă NG be another such subgroup, then rH ¨̈“ ψ´1pHqX
N rG is nontrivial, noncentral, normal and of height one, hence by definition contained in N rG.

This shows that NG “ ψpN rGq Ă ψp rHq “ H.
It is now natural to ask ourselves if such a subgroup is unique, or if we can give an example
of it appearing in a natural context. This is shown in Lemma 1.14 and Example 1.15 below.

Up to this point in this section we have assumed that the Dynkin diagram of G has an edge
of multiplicity p. What about the other cases not satisfying the edge hypothesis, in particular
those which are not treated in [25]? Let us assume that either p “ 3 and that the group G is
simple of type Bn, Cn or F4, or that p “ 2 and the group G is simple of type G2. Then an
analogous construction to the subgroup NG cannot be done for the following reason: nontrivial
normal subgroups of height one correspond, under the equivalence of categories, to nonzero
p-Lie ideals of LieG, which do not exist due to the following result (see [24, 4.4]).

Lemma 1.9. Let p “ 3 and G be simple of type Bn, Cn for some n ě 2, or F4, or let p “ 2

and G simple of type G2. Then LieG is simple as a p-Lie algebra.

1.2.3. Factorising isogenies. Let us start by recalling the following result concerning the fac-
torisation of the Frobenius morphism (see [7, Proposition 7.1.5]) :

Proposition 1.10. Let G be simple and simply connected satisfying the edge hypothesis. Then

(a) There is a factorisation of the Frobenius morphism as

FG : pG G Gp1qq
πG π

which is the only nontrivial factorisation into isogenies with first step admitting no
nontrivial factorisation into isogenies.

(b) The root system Φ of G is isomorphic to the dual of the root system of G.
(c) The bijection between Φ and Φ defined by πG exchanges long and short roots: denoting

it as α↔ α, if α is long then α is short and vice-versa.
(d) In the factorisation of point paq, the map π is the very special isogeny of G.

In particular, the restriction pπGq|Uα
: Uα ! Uα gives an isomorphism whenever α is long

and a purely inseparable isogeny of degree p whenever α is short.

Lemma 1.11. Assume f : G ! G1 is a noncentral isogeny with G simply connected and
satisfying the edge hypothesis. If at least one value of qpαq is equal to 1, then necessarily
qą “ 1.

Proof. Let us consider the Lie subalgebra Liepker fq Ă g. This is a proper G-submodule of the
Lie algebra g under the adjoint action, which is not contained in LieZpGq: by Lemma 1.5,
Liepker fq must contain all of gă. This means that if α is a short root, then f|Uα

: Uα ! Uα1

is not an isomorphism: in other words, qă ‰ 1. �
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Proposition 1.12. Let G be a simple and simply connected algebraic group and let f : G! G1

be an isogeny. Then there exists a unique factorisation of f as

f : G G pGqpmq G1,
π

Fm

G ρ

where ρ is a central isogeny and π is either the identity or - when G satisfies the edge hypothesis
- the very special isogeny πG.

Proof. Let us start by considering the bijection Φ ↔ Φ1 and the corresponding integers qpαq
associated to the isogeny f , as recalled in (1.2).
Step 1: is the isogeny central? This is equivalent to asking whether all integers qpαq are equal
to one. If this is the case, then we are done. Next, we will hence assume that at least one
value of q is nontrivial.
Step 2: does p divide qpαq for all roots α? If the group is simply laced this is always the case,
since q is constant. If p “ 3 and the group is of type Bn, Cn or F4, or if p “ 2 and the group
is of type G2, this is also always the case: indeed, there exists at least one γ P Φ such that
qpγq ‰ 1. Equivalently, the corresponding root space satisfies gγ Ă h ¨̈“ Liepker fq. Since h is
a nontrivial p-Lie ideal of LieG, it must coincide with all of LieG thanks to Lemma 1.9.
In general, if the answer is yes, then the root subspace gα is contained in Liepker fq for all
roots. Since the latter is a Lie ideal of LieG, taking brackets implies that the copy of sl2
associated to each root is also contained in Liepker fq, which thus coincides with LieG. This
means in particular that the Frobenius kernel of G is contained in the kernel of f , so we can
factorise by the Frobenius morphism as follows

G Gp1q G1

f

FG f 1

and go back to Step 1 replacing f by f 1. Notice that this is possible, since the group Gp1q is
still simple and simply connected. Moreover, the new integers associated to the isogeny f 1 are
exactly qpαq{p, hence their values strictly decrease. After this step, we can hence assume that
there are two distinct values qă and qą as defined in (1.3). In particular, let us remark that
in this case G is not simply laced.
Step 3: this step only occurs when the Dynkin diagram of G has an edge of multiplicity p;
moreover, by Lemma 1.11 qą “ 1 while qă is divisible by p. This last condition means that
for any short root γ, the root subspaces gγ and g´γ are contained in Liepker fq. This implies
that

psl2qγ “ rgγ , g´γs ‘ gγ ‘ g´γ “ Liepγ_pGmqq ‘ gγ ‘ g´γ Ă Liepker fq,

hence, by definition of the subgroup NG in the simply connected case, we have

xLiepγ_pGmqq : γ P Φăy
à

γPΦă

gγ “: LieNG Ă Liepker fq.

Since NG is of height one, this implies that NG Ă ker f , so we can factorise by the very special
isogeny as follows

G Gp1q G1

f

πG f 1

and go back to Step 1. Notice that this is possible, since by Proposition 1.10, the group G

is still simple and simply connected. Moreover, we know that the bijection Φ ↔ Φ exchanges
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long and short roots and that pπGq|Uα
is an isomorphism for α long and of degree p when α is

short. By denoting as q1p´q the integers associated to the new isogeny f 1, we then have

pq1qă “ q1pαq “ qpαq “ qą “ 1, pα longq

pq1qą “ q1pαq “ qpαq{p “ qă{p, pα shortq

so the nontrivial integer strictly decreases after this step.
Following this procedure, one will necessarily factorise a finite number of times leading finally
to a central isogeny, which is the ρ given in the statement of the proposition. Moreover, we
claim that the Frobenius morphism and the very special isogeny - when it is defined - commute,
in the following sense: if G is simple and simply connected, then

πGp1q ˝ FG “ FG ˝ πG.

To prove this, let us apply the factorisation of the Frobenius morphism given in Proposi-
tion 1.10 twice to get

πGp1q ˝ FG “ πGp1q ˝ pπG ˝ πGq “ pπGp1q ˝ πGq ˝ πG “ FG ˝ πG.

This means that we can commute π with the Frobenius and assume that it is the first morphism
(or the middle one, which gives another unique factorisation) in the expression f “ ρ ˝ Fm ˝
π. �

Remark 1.13. The above Proposition allows us to associate to any isogeny f : G ! G1

between simple algebraic groups a diagram of the form

G G1

rG ĂG1

f

Fm˝π

ψ ρ

where ψ is the simply connected cover of G and ρ is central. In particular, notice that the

group p rGqpmq, which is the target of the morphism Fm˝π, is simply connected and ρ is central,
thus this group is the simply connected cover of G1.

The first immediate consequence of this factorisation result is the uniqueness of the subgroup
NG.

Lemma 1.14. Let G be simple satisfying the edge hypothesis and H Ă G a normal, noncentral
subgroup of height one. Then H contains the subgroup NG. In particular, such a subgroup is
unique.

Proof. The conclusion clearly holds when H equals the Frobenius kernel of G, hence we can
assume that H ‰ G1. To prove that NG Ă H it is enough to show that fpNGq is trivial, where
f is the isogeny G! G{H. Consider the associated diagram given in Remark 1.13 :

G G{H

rG ĆG{H

f

Fm˝π

ψ ρ

where π is either the identity or the very special isogeny of G. We want to show that the
bottom arrow is necessarily the very special isogeny π rG. First, the subgroup H is noncentral
hence if m “ 0 then π “ π rG, otherwise the bottom row would be the identity and f would be

central. Moreover, H Ĺ G1 “ kerpF : G ! Gp1qq hence the factorisation of the isogeny f ˝ ψ
given in Proposition 1.12 does not contain any Frobenius morphism : this means that m “ 0
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so necessarily π is the very special isogeny of rG. Thus, we can conclude that f ˝ ψ “ ρ ˝ π rG
and

fpNGq “ fpψpN rGqq “ ρpπ rGpN rGqq “ 1

as wanted. �

Example 1.15. Let us assume p “ 2 and consider the group G “ SO2n`1 “ SOpk2n`1q in
type Bn with n ě 2, defined as being relative to the quadratic form

Qpxq “ x2n `
n´1ÿ

i“0

xix2n´i

and G1 “ Sp2n “ Sppk2nq relative to the skew form

bpy, y1q “
nÿ

i“1

yiy
1
2n`1´i ´ y2n`1´iy

1
i.

Since G fixes the middle vector of the canonical basis en, it acts on k2n “ k2n`1{ken and this
gives an isogeny

ϕ : G “ SO2n`1 −! Sp2n “ G1,

of degree 22n. Since the target of the isogeny is already simply connected, the diagram of
Remark 1.13 is as follows :

SO2n`1 Sp2n

Spin2n`1

ϕ

ψ

Fm˝π

In particular, since ψ is central - identifying the root systems of a group and of its simply
connected cover - the integers qp´q associated to the isogeny ϕ must be the same as those
associated to the composition Fm ˝ π. In particular, this implies m “ 0; hence the subgroup

NSO2n`1
“ kerϕ “ ψpker πq “ ψpNSpin

2n`1
q,

which appears in this natural construction, coincides with the one just defined above. In
particular, in this case

LieNSpin2n`1
“ Liepε_

n pGmqq
à

γPΦă

gγ “ Liepε_
n pGmqq

à

1ďiďn

pg´εi ‘ gεi.q

To conclude this example, let us determine explicitly the subgroup NSO2n`1
“ kerϕ and its

Lie algebra, which will be needed later on. A matrix in kerϕ is of the form

A “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

a0

1n
... 0n

an´1

b0 . . . bn´1 an bn`1 . . . b2n
an`1

0n
... 1n
a2n

˛
‹‹‹‹‹‹‹‹‹‹‚
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and the condition for A to be in SO2n`1 gives

QpAxq “ a2nxn `
ÿ

j‰n

b2jx
2
j `

n´1ÿ

i“0

pxix2n´i ` a2n´ixixn ` aix2n´ixnq

“Qpxq “ x2n `
n´1ÿ

i“0

xix2n´i,

which is equivalent to ai “ 0 for all i ‰ n, a2n “ 1 and b2i “ 0 for all i. Moreover, under these
conditions detA “ an “ 1, thus we have

NSO2n`1
“ kerϕ “

$
&
%

¨
˝

1 0 0

b0 . . . bn´1 1 bn`1 . . . b2n
0 0 1

˛
‚P GL2n`1 : bi P αp

,
.
- » α2n

p .

Finally, using the equalities in Remark 2.11 concerning short roots, we can conclude that
LieNSO2n`1

“ gă.

2. Case of Picard rank one

Let us recall that we are working with a semisimple algebraic group G Ą B Ą T over an
algebraically closed field k of characteristic p ą 0, together with a fixed Borel subgroup and a
maximal torus contained in it. Our aim is to prove that all projective homogeneous varieties
under a G-action having Picard group of rank one are isomorphic (as varieties) to homogeneous
spaces having reduced stabilizers, in every type except G2 when the characteristic is p “ 2.
Let us remark that, since the Picard rank of X “ G{P is equal to the number of simple
roots of G not contained in the root system of a Levi subgroup of P , such spaces are realized
as quotients G{P such that the reduced subgroup of the stabilizer P is maximal. For a full
justification of this assertion, see Section 3.2.
The main result is the following :

Theorem 2.1. Let X be a projective algebraic variety over an algebraically closed field of
characteristic p ą 0, homogeneous under a faithful action of a smooth connected algebraic
group H and having Picard group isomorphic to Z.
Then there is a simple adjoint algebraic group G and a reduced maximal parabolic subgroup
P Ă G such that X “ G{P , unless p “ 2 and H is of type G2.

The purpose of this Section is to prove the above Theorem: the idea is to do it explicitly
case by case, since there seems to be no easy general geometric argument, as the case of type
G2 in characteristic two confirms. We proceed as follows: in Section 2.1 we perform elementary
reductions to the case where X “ G{P with G simple and the characteristic is 2 or 3, and we
recall some notation and results used in the proof. In Section 2.2 we illustrate the strategy of
the proof in the simplest case of type An´1. In Sections 2.3 to 2.5 we implement the argument
in types Bn, Cn and F4. The case of G2, for which the above Theorem fails in characteristic
2, is then studied separately in Section 2.6.

2.1. Reductions and notation. Let us place ourselves under the hypothesis of Theorem 2.1
and denote as Haff the largest connected affine normal subgroup of H. By [6, Theorem 4.1.1],
there is a canonical isomorphismX » AˆY , where A is an abelian variety and Y is a projective
homogeneous variety under a faithful Haff action. Moreover, Haff is semisimple and of adjoint
type. Under our assumptions, the abelian variety must be a point because otherwise the Picard
group of X would not be discrete; more precisely, the hypothesis PicX “ Z implies - by the
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combinatorial description of the Białynicki-Birula decomposition of homogeneous spaces given
in Theorem 3.12 - that we can assume H to be simple.

After such reductions, it is thus enough to prove the following statement.

Theorem 2.2. Let G be a simple adjoint group, not of type G2 when the characteristic is 2,
and P a parabolic subgroup such that Pred is maximal. If G acts faithfully on X “ G{P , then
P is a reduced parabolic subgroup.

Let us keep notations from Subsection 1.1 and recall for reference the statement of [25,
Theorem 14].

Theorem 2.3. There is an injective map

HomSetp∆,N Y t8uq −! tparabolic subgroups G Ą P Ą Bu

ϕ 7−!

č

αP∆: ϕpαq‰8

GϕpαqP
α.

Moreover, if p ě 5 or the Dynkin diagram of G is simply laced, this map is also surjective.

Remark 2.4. Let us start by taking a projective variety X which is homogeneous under the
action of a simple group H. By replacing such a group with the image G of the morphism
H ! AutX (see Remark 2.19 concerning the notation on automorphism groups) we may
assume that the action is faithful. In particular, this means that there is no normal algebraic
subgroup of G contained in P . However, we need to be careful in the case-by-case proof because
this additional assumption - which is not restrictive on the varieties considered - forces the
group G to be of adjoint type.

Let us place ourselves in the setting of Theorem 2.2 and sketch the strategy of the proof:
let P be a nonreduced parabolic subgroup such that

Pred “ Pα

for some simple positive root α P ∆; consider Pα Ĺ P Ă G, inducing the corresponding
inclusions on Lie algebras:

LiePα Ĺ LieP Ă LieG.

Since we do not have any information a priori on P , we study the quotient

Vα ¨̈“ LieG{LiePα,

considered as a Lα-module under the representation given by the adjoint action, where Lα

denotes the Levi subgroup defined as the intersection Pα X pPαq´ with the corresponding
opposite parabolic subgroup.
Let us fix some notation and state a Lemma on structure constants which will be repeatedly
used in what follows :

‚ the decomposition of the Lie algebra in weight spaces under the T -action is

g “ LieG “ LieT
à

γPΦ

gγ ,

‚ when G is simply connected, a Chevalley basis of LieG is denoted as tXγ ,HαuγPΦ,αP∆.

In particular, gγ “ LieUγ “ kXγ and Xγ “ duγp1q, where uγ is the root homomorphism

Ga
„

−! Uγ . Whenever the Dynkin diagram of G is not simply laced,

‚ Φă Ă Φ and Φą Ă Φ denote respectively the subsets of short and long roots, whenever
a multiple edge appears in the Dynkin diagram,
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‚ when G is simply connected and satisfies the edge hypothesis (see Section 1.2.2), NG

denotes the finite group scheme of height one whose Lie algebra is given by

LieNG “ xLiepγ_pGmqq : γ P Φă y
à

γPΦă

gγ ,

as recalled in Definition 1.8.
‚ when G is not simply connected and satisfies the edge hypothesis, NG denotes the

schematic image ofN rG via the universal covering map, where rG is the simply connected
cover of G - see again Definition 1.8.

Let us recall the following Lemma - see [14, Chapter VII, 25.2] - which allows us to calculate
all structure constants with respect to a Chevalley basis of the Lie algebra LieG, where G is
simple and simply connected.

Lemma 2.5 (Chevalley). Let tXγ : γ P Φ, Hα : α P ∆u be a Chevalley basis for LieG, where
G is simple and simply connected. Then the resulting structure constants satisfy

(a) rHα,Hβs “ 0 for all α, β P ∆ ;
(b) rHα,Xγs “ xα, γyXγ for all α P ∆, γ P Φ ;
(c) rX´γ ,Xγ s is a linear combination with integer coefficients of the Hα’s ;
(d) rXγ ,Xδs “ ˘pr ` 1qXγ`δ for all δ ‰ ˘γ roots such that the δ-string through γ goes

from γ ´ rδ to γ ` qδ with q ě 1, i.e. such that γ ` δ is still a root ;
(e) rXγ ,Xδs “ 0 for all roots δ ‰ ˘γ such that γ ` δ is not a root.

In particular, the Chevalley relation we use the most frequently is pdq: it is important to
recall that structure constants appearing in such equations are among ˘1,˘2,˘3,˘4, which
indicates why problems arise in characteristic 2 and 3.

The main line of argument to prove Theorem 2.2 is the following: we start by considering
X “ G{P with G adjoint acting faithfully and P nonreduced. Then with some computation
on Lie algebras, we show that - when it is defined - NG Ă P , while otherwise G1 Ă P . In both
cases this gives a normal algebraic subgroup of G contained in the stabilizer P , which cannot
exist due to Remark 2.4.

2.2. Type An´1. We start with a case whose classification is already covered by [25] - without
needing any assumption on the characteristic of the base field - but which is useful in order to
explain the approach used in the other cases below.
Let us consider the reductive group G “ GLn in type An´1, its maximal torus T given by
diagonal matrices of the form

t “ diagpt1, . . . , tnq P GLn

and the Borel subgroup B of upper triangular matrices. Let us denote as εi P XpT q the
character sending t 7! ti, for i “ 1, . . . , n. Then the root system Φ “ ΦpG,T q is given by

Φ` “ tεi ´ εj , 1 ď i ă j ď nu,

with basis ∆ consisting of the following roots :

α1 “ ε1 ´ ε2, . . . , αn´1 “ εn´1 ´ εn.

Finally, assume given a nonreduced parabolic subgroup P such that Pred “ Pm, where Pm ¨̈“
Pαm denotes the maximal reduced parabolic subgroup associated to the simple positive root
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αm for a fixed 1 ď m ă n. Thus, the Levi subgroup Lm of this reduced parabolic subgroup is
a product of a reductive group of type Am´1 and one of type An´m´1 :

Lm “

"ˆ
˚ 0

0 ˚

˙*
» GLm ˆGLn´m,

and the two factors have as basis of simple roots tα1, . . . , αm´1u and tαm`1, . . . , αn´1u respec-
tively.
Now, let us consider the vector space Vm “ LieG{LiePm. Since

tγ P Φ` : αm P Supppγqu “ tεi ´ εj , i ď m ă ju,

the root spaces in Vm are of the form g´εi`εj “ kEji, for i ď m ă j, where Eji denotes the
square matrix of order n having all zero entries except the pj, iq-th entry which is equal to 1.
Concretely, Vm consists as Lm-module of all matrices M of size pn ´ mq ˆ m. The action of
Lm on Vm is given by

pA,Bq ¨M “

ˆ
A 0

0 B

˙ ˆ
0 0

M 0

˙ ˆ
A´1 0

0 B´1

˙
“

ˆ
0 0

BMA´1 0

˙
“ BMA´1,

for all A P GLm, B P GLn´m. This just corresponds to the natural action of GLm ˆGLn´m

on Homkpkm, kn´mq. In particular, Vm is an irreducible Lm-module.
Since LieP {LiePm is an Lm-submodule of Vm and we assumed P to be nonreduced, this
implies LieP “ LieG hence G1 Ă P . Under our assumptions, by Remark 2.4 we get a
contradiction. In other words, under the hypothesis of maximality of the reduced subgroup,
we find that there are no new varieties other than those of the known classification. In the
following subsections we will treat the other cases - not included in Wenzel’s article - where
two different root lengths are involved.

Remark 2.6. What does this case correspond to, geometrically, on the level of varieties? We
know by [25] that Pred “ Pαm implies P “ GrPαm for some r ě 0, hence

X “ G{GrPαm » Gprq{pPαmqprq » G{Pαm “ Grassm,n

is isomorphic to the Grassmannian of m-th dimensional vector subspaces in kn, equipped with
the natural G “ GLn-action, twisted by the r-th iterated Frobenius morphism. In particular,
assuming faithfulness of the action implies r “ 0.

2.3. Type Cn. Let us consider the group rG “ Sp2n in type Cn, with n ě 2 in characteristic

p “ 2 or 3. Defining rG as relative to the skew form bpx, yq “
řn
i“1 xiy2n`1´i ´ x2n`1´iyi on

k2n, one has

rG “

"
X P GL2n :

tX

ˆ
0 Ωn

´Ωn 0

˙
X “

ˆ
0 Ωn

´Ωn 0

˙*
, where Ωn “

¨
˚̋
0 0 1

0 . .
.

0

1 0 0

˛
‹‚.

Deriving this condition gives as Lie algebra

Lie rG “

"
M P gl2n :

tM

ˆ
0 Ωn

´Ωn 0

˙
`

ˆ
0 Ωn

´Ωn 0

˙
M “ 0

*

“

"ˆ
A B

C ´A7

˙
P gl2n : B “ B7 and C “ C7

*
,

where for any square matrix X of order n we denote as X7 the matrix Ωn
tXΩn, i.e.

pX7qi,j “ Xn`1´j,n`1´i.(2.1)
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Remark 2.7. Next, let us consider as maximal torus T the one given by diagonal matrices of
the form

t “ diagpt1, . . . , tn, t
´1
n , . . . , t´1

1 q P GL2n

and denote as εi P X˚pT q the character sending t 7! ti, for i “ 1, . . . , n. A direct computation

gives the following root spaces in Lie rG:

g2εi “ k

ˆ
0 Ei,n`1´i

0 0

˙
“ k

ˆ
0 EiiΩn
0 0

˙

g´2εi “ k

ˆ
0 0

En`1´i,i 0

˙
“ k

ˆ
0 0

ΩnEii 0

˙
, 1 ď i ď n,

gεi`εj “ k

ˆ
0 Ei,n`1´j ` Ej,n`1´i

0 0

˙
“ k

ˆ
0 pEij ` EjiqΩn
0 0

˙
,

g´εi´εj “ k

ˆ
0 0

En`1´i,j ` En`1´j,i 0

˙
“ k

ˆ
0 0

ΩnpEij ` Ejiq 0

˙
, i ă j,

gεi´εj “ k

ˆ
Eij 0

0 ´En`1´j,n`1´i

˙
“ k

ˆ
Eij 0

0 ´E7
ij

˙
,

g´εi`εj “ k

ˆ
Eji 0

0 ´En`1´i,n`1´j

˙
k

ˆ
Eji 0

0 ´E7
ji

˙
, i ă j,

where Eij denotes the square matrix of order n with zero entries except for the pi, jq-th which
is equal to one.

The root system Φ “ Φp rG,T q is thus indeed

Φ` “ tεi ´ εj , εi ` εj , 1 ď i ă j ď nu Y t2εi, 1 ď i ď nu,

having chosen as Borel subgroup the one given by all upper triangular matrices in rG Ă GL2n.
The corresponding basis ∆ consists of the following roots :

α1 “ ε1 ´ ε2, . . . , αn´1 “ εn´1 ´ εn, αn “ 2εn.(2.2)

2.3.1. Reduced parabolic Pn. Still considering the group rG “ Sp2n, denote as Pn the maximal
reduced parabolic subgroup associated to the long simple positive root αn: in a more intrinsic
way, this subgroup is the stabilizer of an isotropic vector subspace W Ă V of dimension

n, where rG “ SppV q. In particular, W is the span of e1, . . . , en, where peiq
2n
i“1 denotes the

standard basis of k2n. Moreover, let us denote as P´
n the opposite parabolic subgroup and as

Ln their common Levi subgroup, so that

Pn “ StabpW Ă V q

P´
n “ StabpW ˚ Ă V q

Ln “ Pn X P´
n “ GLpW q » GLn,

where W ‘W ˚ “ V . Let us also remark that L has root system Ψ given by

Ψ` “ tεi ´ εj , 1 ď i ă j ď nu,

corresponding to a reductive group of type An´1 having as basis α1, . . . , αn´1. This can be
visualized in the following block decomposition :

Ln “

"ˆ
A 0

0 ´pA´1q7

˙
: A P GLpW q » GLn

*
Ă rG.
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First, the Lie algebra of Pn is

LiePn “ LieB
à
iăj

g´εi`εj “
à
iăj

`
gεi´εj ‘ g´εi`εj

˘ à
iăj

gεi`εj
à
i

g2εi .

For our purposes it is useful to study the Ln-action on the vector space

Vn ¨̈“ Lie rG{LiePn “
à

iăj

g´εi´εj

à

i

g´2εi .

Lemma 2.8. The Ln-module Vn is isomorphic to the dual of the standard representation of
GLn on Sym2pknq.

Proof. Indeed, the root spaces we are interested in have been computed in Remark 2.7. Those
equalities imply that a matrix in Vn is of the form

ˆ
0 0

ΩnX 0

˙
, with X P Sym2pknq,

thus the dual action of A P GLn » Ln can be computed as follows:

tA´1 ¨ X »

ˆ
tA´1 0

0 ´ptAq7

˙ ˆ
0 0

ΩnX 0

˙ ˆ
tA 0

0 ´ptA´1q7

˙
“

ˆ
0 0

´ΩnAX
tA 0

˙
» AX tA.

This gives the desired isomorphism between the two GLn-modules.
Let us remark that if we are working over a field of characteristic p “ 2, the Ln-module Vn
contains a simple Ln-quotient, namely

$
’’’’’&
’’’’’%

¨
˚̊
˚̊
˚̋

0 0

c1

. .
.

cn 0

˛
‹‹‹‹‹‚
, ci P k

,
/////.
/////-

“
nà
i“1

g´2εi ,

which is isomorphic to the dual of the standard representation of GLn on kn, twisted once by
the Frobenius morphism. �

Proposition 2.9. Assume given a nonreduced parabolic subgroup P such that Pred “ Pn.

Then LieP “ Lie rG or LieP “ LiePn ` gă. If p “ 3, then necessarily LieP “ Lie rG.

Proof. Let us assume that p “ 2 and consider the nonzero vector space LieP {LiePn, which
is an Ln-submodule of Vn. The latter being isomorphic to Sym2pknq˚ by Lemma 2.8, we have
that

(a) either LieP {LiePn contains all of the weight spaces g´2εi associated to long negative
roots,

(b) or it does not contain any of them.

Let us start by (a) and assume g´2εi Ă LieP for all i. In order to prove that LieP “ Lie rG,
it is enough to show that for any i ă j, the Chevalley vector X´εi´εj also belongs to LieP .
For this, let us consider roots

γ “ εi ´ εj , satisfying Xγ P LieLn Ă LieP,

δ “ ´2εi, satisfying Xδ P LieP by our last assumption.

Thus, γ` δ “ ´εi ´ εj is still a root while δ´ γ “ ´3εi ´ εj is not: applying Lemma 2.5 gives

rXεi´εj ,X´2εis “ ˘X´εi´εj P LieP

as wanted.
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Let us place ourselves in the hypothesis of (b) and assume that no root subspace associated
to a negative long root is in LieP . Since by assumption P is nonreduced, LiePn Ĺ LieP so
there must be at least one short root of the form ´εi ´ εj satisfying X´εi´εj P LieP . We will
now prove that this implies all short roots ´εl ´ εm for l ă m belong to LieP , hence showing
LieP “ LiePn ` gă.
First, assume l ‰ i, j and consider roots

γ “ ´εi ´ εj , satisfying Xγ P LieP by assumption,

δ “ ´εl ` εi, satisfying Xδ P LieLn Ă LieP.

In this case, γ ` δ “ ´εl ´ εj is still a root while δ ´ γ “ ´εl ` 2εi ` εj is not: applying
Lemma 2.5 gives

rX´εi´εj ,X´εl`εis “ ˘X´εl´εj P LieP.

Now, let us fix any l ă m satisfying l,m ‰ j and consider roots

γ “ εj ´ εm, satisfying Xγ P LieLn Ă LieP,

δ “ ´εl ´ εj , satisfying Xδ P LieP by the last step.

Thus, γ` δ “ ´εl ´ εm is still a root while δ´γ “ ´εl ´2εj ` εm is not: applying Lemma 2.5
gives

rXεj´εm ,X´εl´εj s “ ˘X´εl´εm P LieP.

If we are working over a field of characteristic p “ 3, the representation of GLn acting on
Sym2pknq is already an irreducible one: this means that Vn is an irreducible Ln-module. Hence

the nonzero submodule LieP {LiePn must coincide with all of Vn; equivalently, LieP “ Lie rG
as wanted. �

Proof. (of Theorem 2.2 in type Cn when Pred “ Pn)
LetG be simple adjoint of type Cn andX “ G{P with a faithfulG-action such that Pred “ Pαn

and P is nonreduced. Define rP Ă rG “ Sp2n as being the preimage of P in the simply connected

cover: it is a nonreduced parabolic subgroup satisfying rPred “ Pn. When p “ 2, the above
Proposition implies that

xLiepγ_pGmqq : γ P Φă y ‘ gă “ LieN rG Ă Lie rP ,

hence by considering the image in the adjoint quotient we get NG Ă P , which is a contradiction

by Remark 2.4. If p “ 3 then the above Proposition implies that Lie rP “ Lie rG, hence the

Frobenius kernel satisfies rG1 Ă rP , and its image in the adjoint quotient is a normal subgroup
of G contained in P , which gives again a contradiction. Therefore in both cases P must be a
smooth parabolic. �

2.3.2. Reduced parabolic Pm, m ă n. Let us consider again a k-vector space V of dimension

2n and denote as rG the group Sp2n “ SppV q, of type Cn with n ě 2 and k of characteristic
p “ 2 or 3. Its root system has been recalled in (2.2). Let us fix an integer 1 ď m ă n

and consider - keeping the notation recalled at the beginning of this subsection - the maximal
reduced parabolic

Pm ¨̈“ Pαm ,

associated to the short simple root αm, which is the subgroup scheme stabilizing an isotropic
vector subspace of dimension m: let us denote the latter as W . Then, Pm also stabilizes its
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orthogonal with respect to the symplectic form on V : denoting as P´
m the opposite parabolic

subgroup and as Lm their common Levi subgroup, one finds

Pm “ StabpW Ă WK Ă V q “ StabpW Ă W ‘ U Ă V q

P´
m “ StabpW ˚ Ă pW ˚qK Ă V q “ StabpW Ă W ˚ ‘ U Ă V q

Lm “ Pm X P´
m “ GLpW q ˆ SppUq » GLm ˆ Sp2n´2m .

In other words, the choice of such a Levi subgroup corresponds to fixing a vector subspace U
satisfying V “ W ‘ U ‘W ˚. Let us also remark that L has root system Ψ given by

Ψ` “ tεi ´ εj , i ă j ď mu Y tεi ´ εj , εi ` εj , m ă i ă ju Y t2εj , m ă ju.

This can be visualized in the following block decomposition :

Lm “

$
&
%

¨
˝
A 0 0

0 B 0

0 0 ´pA´1q7

˛
‚: A P GLpW q, B P SppUq

,
.
- Ă Pm “

$
&
%

¨
˝

˚ ˚ ˚
0 ˚ ˚
0 0 ˚

˛
‚

,
.
-

Proposition 2.10. Assume given a nonreduced parabolic subgroup P such that Pred “ Pm.

Then LieP “ Lie rG or LieP “ LiePm ` gă. If p “ 3, then necessarily LieP “ Lie rG.

Proof. The Lie algebra of Pm contains all root subspaces except for those associated to negative
roots containing αm in their support, hence

Vm ¨̈“ Lie rG{LiePm “

˜
à

iăjďm

g´εi´εj

à

jďm

g´2εj

¸
à

iďmăj

`
g´εi´εj ‘ g´εi`εj

˘

More concretely, since Lm “ StabpW q X StabpW ˚q, the Levi subgroup acts on Vm as follows.
First, a matrix in

˜
à

iăjďm

g´εi´εj

à

jďm

g´2εj

¸
(2.3)

is of the form ¨
˝

0 0 0

0 0 0

ΩmX 0 0

˛
‚

with X P Sym2pW q, and the Lm-action on it is given by

pA,Bq ¨X »

¨
˝
A 0 0

0 B 0

0 0 ´pA´1q7

˛
‚

¨
˝

0 0 0

0 0 0

X 0 0

˛
‚

¨
˝
A´1 0 0

0 B´1 0

0 0 ´A7

˛
‚

“

¨
˝

0 0 0

0 0 0

´ΩmptA´1XA´1q 0 0

˛
‚» tA´1XA´1,

hence this Lm-module is isomorphic to the dual of the standard representation of GLm acting
on Sym2pkmq.

Let us assume that the characteristic of the base field is p “ 2: then the dual of Sym2pW q has
an irreducible Lm-quotient given by ‘jďmg´2εj : this proves that, once such a root subspace
is contained in LieP for some j ď m, then all root subspaces associated to long negative roots
are. If p “ 3, then Sym2pW q_ is already irreducible itself, hence either all subspaces in (2.3)



20 MATILDE MACCAN

are contained in LieP , or none of them is.
On the other hand, by Remark 2.7, an element of the quotient

à

iďmăj

`
g´εi´εj ‘ g´εi`εj

˘
“:M

is of the form ¨
˝

0 0 0

Y 0 0

0 Y 5 0

˛
‚, where Y 5 ¨̈“ Ωm

tY

ˆ
0 Ωn´m

Ωn´m 0

˙

with Y P HomkpW,Uq. This gives the following Lm-action on M

pA,Bq ¨ Y »

¨
˝
A 0 0

0 B 0

0 0 ´pA´1q7

˛
‚

¨
˝

0 0 0

Y 0 0

0 Y 5 0

˛
‚

¨
˝
A´1 0 0

0 B´1 0

0 0 ´A7

˛
‚» BY A´1,

because B being an element of SppUq implies

pA´1q7Y 5B´1 “ Ωm
tA´1 tY tB

ˆ
0 Ωn´m

´Ωn´m 0

˙
“ pBY A´1q5.

Thus, M is isomorphic as an Lm-module to the representation

GLm ˆ Sp2n´2m ñ Homkpkm, k2n´2mq, pA,Bq ¨ Y “ BY A´1

This means in particular that M is an irreducible Lm-module, since the Weyl group acts tran-
sitively on the set of its weights.
Now, let us go back to the parabolic subgroup P : being nonreduced, LieP {LiePm is a non-
trivial Lm-submodule of Vm. We already know that assuming such a quotient to contain g´2εj

implies it contains all of them, thus we still need three claims to conclude the proof:

(a) assuming LieP {LiePm to contain a subspace associated to a long negative root implies
it also contains a subspace associated to a short negative root;

(b) assuming it to contain a subspace associated to a short negative root implies it contains
all of them;

(c) when p “ 3, assuming it to contain a subspace associated to a short negative root
implies it also contains a subspace associated to a long negative root.

For (a), assume g´2εj Ă LieP for some j ď m, then consider roots

γ “ ´2εj , satisfying Xγ P LieP

δ “ εj ´ εn, satisfying Xδ P LieB Ă LieP.

Since γ ` δ is a root and δ ´ γ is not, Lemma 2.5 yields

rX´2εj ,Xεj´εns “ ˘X´εj´εn P LieP.

Let us remark that (a) is automatically true when p “ 3 due to the irreducibility of the Lm-
module Sym2pW q, without needing to consider any structure constant.
For (b), first assume some gη Ă M is also contained in LieP . Then M Ă LieP because of its
irreducibility as Lm-quotient of Vm. Moreover, fixing i ă j ď m and applying Lemma 2.5 to
γ “ ´εi ´ εn and δ “ ´εj ` εn, satisfying Xγ ,Xδ P M , we obtain

rX´εi´εj ,X´εj`εns “ ˘X´εi´εj P LieP.

Thus (b) holds in this case. On the other hand, let us start by assuming that g´εi´εj Ă LieP

for some i ă j ď m. Then, applying Lemma 2.5 to γ “ ´εi ´ εj and δ “ εj ´ εn P Φ` yields

rX´εi´εj ,Xεj´εns “ ˘X´εi´εn P LieP
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so we conclude that some gν Ă M is contained in LieP and conclude by the beginning of the
proof of (b).
For (c) it is enough to use (b) and the irreducibility of Sym2pW q when p “ 3. �

Proof. (of Theorem 2.2 in type Cn when Pred “ Pm)
Let G be simple adjoint of type Cn and X “ G{P with a faithful G-action such that Pred “

Pαm and P is nonreduced. Define rP Ă rG “ Sp2n as being the preimage of P in the simply

connected cover: it is a nonreduced parabolic subgroup satisfying rPred “ Pm. When p “ 2,
Proposition 2.10 implies that

xLiepγ_pGmqq : γ P Φă y ‘ gă “ LieN rG Ă Lie rP ,

hence by considering the image in the adjoint quotient we get NG Ă P , which is a contradiction

by Remark 2.4. If p “ 3 then Proposition 2.10 implies that Lie rP “ Lie rG, hence the Frobenius

kernel satisfies rG1 Ă rP , and its image in the adjoint quotient is a normal subgroup of G
contained in P , which gives again a contradiction. Therefore in both cases P must be a
smooth parabolic. �

2.4. Type Bn. The aim of this subsection is to get the same results for the group of type
Bn, with the help of some of the computations involving structure constants, which we have
already done in case of type Cn.

2.4.1. Lie algebra of SO2n`1. Before continuing with our proof, let us compute what LieG

looks like, where G “ SO2n`1 “ SOpk2n`1q is defined as being relative to the quadratic form

Qpxq “ x2n `
n´1ÿ

i“0

xix2n´i,

in order to determine all its root spaces and be able to make explicit computations with them.
To do this, let us consider as maximal torus T Ă G the one given by diagonal matrices of the
form

t “ diagpt1, . . . , tn, 1, t
´1
n , . . . , t´1

1 q P GL2n`1,(2.4)

while the Borel subgroup is given by upper triangular matrices in G. The Lie algebra is given
by all matrices of the form

M “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

f0

A “ paijq
n
i,j“1

... B “ pbijq
n
i,j“1

fn´1

g0 . . . gn´1 h gn`1 . . . g2n
fn`1

C “ pcijq
n
i,j“1

... D “ pdijq
n
i,j“1

f2n

˛
‹‹‹‹‹‹‹‹‹‹‚

P g2n`1
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satisfying Qpp1 ` ǫMqxq “ Qpxq for all x P k2n`1, where ǫ2 “ 0. Let us compute

Qpp1 ` ǫMqxq “ pxn ` ǫpg0x0 ` . . . ` gn´1xn´1 ` hxn ` gn`1xn`1 ` . . . g2nx2nqq2

`
n´1ÿ

i“0

˜
xi ` ǫ

˜
n´1ÿ

j“0

aijxj ` fixn `
n´1ÿ

m“0

bi,n`1´mx2n´m

¸¸

¨

˜
x2n´i ` ǫ

˜
n´1ÿ

r“0

cn`1´i,rxr ` f2n´ixn `
n´1ÿ

l“0

dn`1´i,n`1´lx2n´l

¸¸

“ Qpxq ` ǫr2hx2n `
n´1ÿ

i“0

pf2n´i ` 2giqxixn `
n´1ÿ

i“0

pfi ` 2g2n´iqxnx2n´i

`
n´1ÿ

i,m“0

bi,n`1´mx2n´mx2n´i `
n´1ÿ

i,r“0

cn`1´i,rxixr `
n´1ÿ

i,j“0

paij ` dn`1´j,n`1´iqxjx2n´is

Asking the above quantity to be equal to Qpxq gives the following conditions:

2h “ 0, fi “ ´2g2n´i, f2n´i “ gi, D “ ´A7, C “ ´C7, B “ ´B7,

where we keep the notation (2.1). Moreover, the matrices ΩnB and ΩnC have zero diagonal.
Since the group considered is special orthogonal, the last condition on the determinant implies
that the trace of the matrix must be zero hence h “ 0 also in characteristic 2. The result is
thus

Lie SO2n`1 “

$
&
%

¨
˝
A ´2Ωnw B
tv 0 tw

C ´2Ωnv ´A7

˛
‚P gl2n`1 : C “ ´C7, B “ ´B7, cn`1´i,i “ bn`1´i,i “ 0

,
.
-

Remark 2.11. Denoting, analogously to the type Cn, as εi P XpT q the character t 7! ti for
1 ď i ď n, the root spaces are the following :

g´εi “ k

¨
˝

0 0 0
tei 0 0

0 ´2en`1´i 0

˛
‚,

gεi “ k

¨
˝
0 ´2ei 0

0 0 ten`1´i

0 0 0

˛
‚, 1 ď i ď n,

gεi`εj “ k

¨
˝
0 0 pEij ` EjiqΩn
0 0 0

0 0 0

˛
‚,

g´εi´εj “ k

¨
˝

0 0 0

0 0 0

ΩnpEij ` Ejiq 0 0

˛
‚, i ă j,

gεi´εj “ k

¨
˝
Eij 0 0

0 0 0

0 0 ´E7
ij

˛
‚,

g´εi`εj “ k

¨
˝
Eji 0 0

0 0 0

0 0 ´E7
ji

˛
‚, i ă j,
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where ei denotes the standard basis of kn and Eij the square matrix of order n with all zero
entries except for the pi, jq-th which is equal to one.

We thus verify that the root system Φ “ ΦpG,T q is given by

Φ` “ tεi ´ εj , εi ` εj , 1 ď i ă j ď nu Y tεi, 1 ď i ď nu,

with basis ∆ consisting of the following roots :

α1 “ ε1 ´ ε2, . . . , αn´1 “ εn´1 ´ εn, αn “ εn.(2.5)

2.4.2. Reduced parabolic Pn. Going back to our setting, let us consider the maximal reduced
parabolic subgroup Pn “ Pαn associated to the short simple root αn, i.e. the stabilizer of the
isotropic vector subspace W “ ke0 ‘ ¨ ¨ ¨ ‘ ken´1 Ă V of dimension n, where G “ SOpV q and
peiq

2n
i“0 denotes the standard basis of k2n`1. Since its Levi subgroup Ln “ Pn X P´

n stabilizes
both W and its dual W ˚ “ ken`1 ‘ ¨ ¨ ¨ ‘ ke2n, we conclude that it is of the form

Ln “

$
&
%

¨
˝
A 0 0

0 1 0

0 0 pA´1q7

˛
‚: A P GLpW q » GLn

,
.
- Ă Pn “

$
&
%

¨
˝

˚ ˚ ˚
0 ˚ ˚
0 0 ˚

˛
‚

,
.
- Ă G,

where V “ W ‘ ken ‘W ˚. In particular, Ln is isomorphic to GLn, with root system Ψ given
by

Ψ` “ tεi ´ εj , 1 ď i ă j ď nu.

Proposition 2.12. Assume given a nonreduced parabolic subgroup P such that Pred “ Pn.
Then LieP “ LieG or LieP “ LiePn ` gă. If p “ 3, then necessarily LieP “ LieG.

Proof. First, by definition of Pn its Lie algebra is given by

LiePn “ LieLn
à

iăj

gεi`εj
à

i

gεi ,

Since P is assumed to be nonreduced, LiePn Ĺ LieP hence :

p1q either there is some i such that g´εi Ă LieP ,
p2q or there is some i ă j such that g´εi´εj Ă LieP .

Let us start by assuming p1q and fix such an index i. To show that all other g´εj are then
contained in LieP , let us consider the Ln-module

Vn ¨̈“ LieG{LiePn “
à
iăj

g´εi´εj

à
i

g´εi .

By Remark 2.11, a matrix in
Àn

i“1 g´εi is of the form
¨
˝

0 0 0
tv 0 0

0 ´2Ωnv 0

˛
‚

for v P kn, and the dual Ln-action on it is given by

tA´1 ¨ v “

¨
˝
tA´1 0 0

0 1 0

0 0 tA7

˛
‚

¨
˝

0 0 0
tv 0 0

0 ´2Ωnv 0

˛
‚

¨
˝
tA 0 0

0 1 0

0 0 ptA´1q7

˛
‚(2.6)

“

¨
˝

0 0 0
tpAvq 0 0

0 ´2ΩnAv 0

˛
‚» Av(2.7)

In particular,
Àn

i“1 g´εi is a simple Ln-module, isomorphic to the dual of the standard repre-
sentation of GLn on kn. Thus, if a root subspace associated to some ´εi is contained in LieP ,
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all of the g´εj are too.
Let us assume instead that p2q holds: then, by repeating the same exact reasoning done in
case (b) of the preceding subsection, we show that LieP contains all weight spaces associated
to long roots. This is due to the fact that the argument above only involves roots of the form
˘pεl ˘ εmq. Moreover, assume i ‰ n and consider roots

γ “ εn, satisfying Xγ P LieLn Ă LieP

δ “ ´εi ´ εn, satisfying Xδ P LieP by our last assumption.

Thus, γ ` δ “ ´εi is still a root while δ ´ γ “ ´εi ´ 2εn is not: applying Lemma 2.5 gives

rXεn ,X´εi´εns “ ˘X´εi P LieP.

In conclusion, when p “ 2 we have shown that condition p2q implies LieP “ LieG, while
assuming condition p1q to be true and p2q to be false implies LieP “ LiePn ` gă.
If p “ 3 then the above reasoning still holds; the only remark that we need to add is that
gă Ă LieP implies that there is a long negative root ν satisfying gν Ă LieP {LiePn. For this,
let us consider roots

γ “ ´ε1 and δ “ ´εn, satisfying Xγ ,Xδ P LieP by our last assumption.

Thus, γ ` δ “ ´ε1 ´ εn is still a root, γ ´ δ “ ´ε1 ` εn is too, while γ ´ 2δ “ ´ε1 ` 2εn is
not: applying Lemma 2.5 gives

rX´ε1 ,X´εns “ ˘2X´ε1´εn , hence X´ε1´εn P LieP.

Clearly, this last step of the proof would not work under the hypothesis p “ 2. �

Proof. (of Theorem 2.2 in type Bn when Pred “ Pn)
Let G be simple adjoint of type Bn and X “ G{P with a faithful G-action such that Pred “
Pn “ Pαn and P is nonreduced. When p “ 2, the above Proposition, together with the
computation of Example 1.15, imply that

gă “ LieNG Ă LieP,

hence we get NG Ă P , which is a contradiction by Remark 2.4. When p “ 3, the above
Proposition implies that LieP “ LieG, hence the Frobenius kernel satisfies G1 Ă P , which
gives again a contradiction. Therefore in both cases P must be a smooth parabolic. �

Remark 2.13. A small additional remark is needed in order to have a uniform statement
later on, since this is the only case where the group G is not simply connected: let ψ : rG “
Spin2n`1 −! G “ SO2n`1 be the quotient morphism and consider a nonreduced parabolic

subgroup P Ă rG such that Pred “ Pαn . The above reasoning implies that ψpP q either contains
NG - when such a subgroup is defined - or it contains the Frobenius kernel G1. In particular,
P contains a normal noncentral subgroup of height one, namely P Xψ´1pNGq or P Xψ´1pG1q.

2.4.3. Reduced parabolic Pm, m ă n. Let us consider again a k-vector space V of dimension
2n ` 1 and denote as G the group SO2n`1 “ SOpV q, of type Bn with n ě 2 and k of
characteristic p “ 2 or 3. Moreover, let us consider the maximal reduced parabolic subgroup

Pm ¨̈“ Pαm

associated to a long simple root αm for some m ă n, keeping notations from (2.5). This
subgroup is the stabilizer of an isotropic vector subspace W “ ke0 ‘ ¨ ¨ ¨ ‘ kem´1 Ă V of
dimension m, where peiq

2n
i“0 denotes the standard basis of k2n`1. Since its Levi subgroup



PROJECTIVE HOMOGENEOUS VARIETIES OF PICARD RANK ONE IN SMALL CHARACTERISTIC 25

Lm “ Pm XP´
m stabilizes both W and its dual W ˚ “ ke2n´m`1 ‘ ¨ ¨ ¨ ‘ ke2n, we conclude that

it is of the form

Lm “

$
&
%

¨
˝
A 0 0

0 B 0

0 0 pA´1q7

˛
‚: A P GLpW q, B P SOpUq

,
.
- Ă Pm “

$
&
%

¨
˝

˚ ˚ ˚
0 ˚ ˚
0 0 ˚

˛
‚

,
.
-

where V “ W ‘ U ‘ W ˚. In particular, Lm » GLm ˆ SO2n´2m`1 with root system Ψ given
by

Ψ` “ tεi ´ εj , i ă j ď mu Y tεi ´ εj , εi ` εj , m ă i ă ju Y tεj , m ă ju.

Proposition 2.14. Assume given a nonreduced parabolic subgroup P such that Pred “ Pm.
Then LieP “ LieG or LieP “ LiePm ` gă. If p “ 3, then necessarily LieP “ LieG.

Proof. The Lie algebra of Pm contains all root subspaces except for those associated to negative
roots containing αm in their support, hence

Vm ¨̈“ LieG{LiePm “

˜
à

iăjďm

g´εi´εj

à
jďm

g´εj

¸
à

iďmăj

`
g´εi´εj ‘ g´εi`εj

˘

The analogous computations as those in the proofs of Proposition 2.10 and (2.6) imply that,
as Lm-modules,

(1)
À

jďm g´εj is isomorphic to the dual of the standard representation of GLn on km,
hence it is in particular a simple Lm-quotient of Vm ;

(2)
À

iďmăj

`
g´εi´εj ‘ g´εi`εj

˘
is isomorphic to the following representation, which gives

a second irreducible Lm-quotient of Vm :

GLm ˆ SO2n´2m`1 ñ Homkpkm, k2n´2m`1q, pA,Bq ¨ Y “ BYA´1.

Now, first assume g´εl Ă LieP for some l ď m. Then
À

jďm g´εj is contained in LieP , since

LieP {LiePm is a nontrivial Lm-submodule of Vm. Hence in this case gă Ă LieP .
The only other possibility is to start by assuming that gγ Ă LieP for some long negative root
γ containing αm in its support. Then one can repeat the same exact reasoning of point (b) in
the proof of Proposition 2.10, since it involves only roots of the form ˘pεl˘εmq with l ă m, to
conclude that all root subspaces associated to long negative roots are also contained in LieP .
To conclude that, in this case, LieP “ LieG, it suffices to apply Lemma 2.5 to γ “ ´ε1 ´ εm
and δ “ εm, which gives

rX´ε1´εm ,Xεms “ ˘X´ε1 P LieP

as wanted.
Up to this point everything holds in both characteristic p “ 2 and 3. To conclude it is enough
to show that, when p “ 3, if gă Ă LieP then there is a long negative root ν satisfying
gν Ă LieP {LiePm. For this, let us consider roots

γ “ ´ε1 and δ “ ´εn, satisfying Xγ ,Xδ P LieP by our last assumption.

Thus, γ ` δ “ ´ε1 ´ εn is still a root, γ ´ δ “ ´ε1 ` εn is too, while γ ´ 2δ “ ´ε1 ` 2εn is
not: applying Lemma 2.5 gives

rX´ε1 ,X´εns “ ˘2X´ε1´εn , hence X´ε1´εn P LieP

as wanted. �

Proof. (of Theorem 2.2 in type Bn when Pred “ Pm)
Let G be simple adjoint of type Bn and X “ G{P with a faithful G-action such that Pred “
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Pαm and P is nonreduced. When p “ 2 the above Proposition, together with Example 1.15,
imply that

gă “ LieNG Ă LieP,

hence we get NG Ă P , which is a contradiction by Remark 2.4. When p “ 3, the above
Proposition implies that LieP “ LieG, hence the Frobenius kernel satisfies G1 Ă P , which
gives again a contradiction. Therefore in both cases P must be a smooth parabolic. �

Remark 2.15. As in Remark 2.13 above, we can conclude that if P Ă Spin2n`1 is a nonre-
duced parabolic subgroup satisfying Pred “ Pαm , then it contains a normal noncentral sub-
group of height one.

2.5. Type F4. Let us consider a simple group G with root system F4 over an algebraically
closed field k of characteristic p “ 2 or 3. Following notations from [3], a basis ∆ of its root
system Φ is given by

α1 “ ε2 ´ ε3, α2 “ ε3 ´ ε4, α3 “ ε4, α4 “
1

2
pε1 ´ ε2 ´ ε3 ´ ε4q,

satisfying the relations

||α1||2 “ ||α2||2 “ 2, ||α3||2 “ ||α4||2 “ 1

and

pα1, α2q “ pα2, α3q “ ´1, pα1, α3q “ pα1, α4q “ pα2, α4q “ 0, pα3, α4q “ ´
1

2
.(2.8)

Let us denote the associated maximal reduced parabolic subgroups as Pi ¨̈“ Pαi , for i P
t1, 2, 3, 4u. Let us also recall that, when p “ 2, NG Ă G is the unique subgroup of height one
such that

LieNG “ Lieα_
3 pGmq ‘ Lieα_

4 pGmq ‘ gă,

where the short positive roots are

α3, α4, α2 ` α3, α3 ` α4, α1 ` α2 ` α3, α2 ` 2α3 ` α4,

α2 ` α3 ` α4, α1 ` 2α2 ` 3α3 ` 2α4, α1 ` α2 ` α3 ` α4,

α1 ` α2 ` 2α3 ` α4, α1 ` 2α2 ` 2α3 ` α4, α1 ` 2α2 ` 3α3 ` α4.

Proposition 2.16. Assume given a nonreduced parabolic subgroup P such that Pred “ Pi for
some i. Then LieP “ LieG or LieP “ LiePi ` gă. If p “ 3, then necessarily LieP “ LieG.

Proof. Before starting a case-by-case analysis, let us denote as si, for i “ 1, 2, 3, 4, the reflection
associated to the simple root αi, i.e.

sipγq “ γ ´ 2
pαi, γq

pαi, αiq
αi, for all γ P Φ.(2.9)

Case Pred “ P1.
Let us assume that Pred “ P1 and denote as L1 ¨̈“ P1 XP´

1 the Levi subgroup: its root system
is of type C3 with basis consisting of short roots α4, α3 and the long root α2. Moreover, L1

acts on the vector space
V1 ¨̈“ LieG{LieP1 “

à

γPΓ1

g´γ ,

where Γ1 is the subset of all positive roots satisfying α1 P Supppγq. As usual, let us consider
the nonzero vector subspace W1 ¨̈“ LieP {LieP1, which is a L1-submodule of V1: the set of
its weights, which we denote Ω1, must be stable under the reflections s2, s3 and s4. Our aim
is to show that

either Ω1 “ Γ1 X Φă or Ω1 “ Γ1 :(2.10)
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in other words, either W1 “ ‘γPΓ1XΦăg´γ or W1 “ V1.
First, let us show that the Weyl group W pL1, T q “ xs2, s3, s4y acts transitively on

Γ1 X Φă “ tα1 ` α2 ` α3, α1 ` α2 ` α3 ` α4, α1 ` α2 ` 2α3 ` α4, α1 ` 2α2 ` 2α3 ` α4,

α1 ` 2α2 ` 3α3 ` α4, α1 ` 2α2 ` 3α3 ` 2α4u :

this implies that either Γ1 X Φă Ă Ω1 or pΓ1 X Φăq X Ω1 “ H. The following computations
follow directly from (2.8) and (2.9) :

s4pα1 ` α2 ` α3q “ α1 ` α2 ` α3 ` α4,

s3pα1 ` α2 ` α3 ` α4q “ α1 ` α2 ` 2α3 ` α4,

s2pα1 ` α2 ` 2α3 ` α4q “ α1 ` 2α2 ` 2α3 ` α4,

s3pα1 ` 2α2 ` 2α3 ` α4q “ α1 ` 2α2 ` 3α3 ` α4,

s4pα1 ` 2α2 ` 3α3 ` α4q “ α1 ` 2α2 ` 3α3 ` 2α4.

Next, let us show that W pL1, T q acts transitively on

pΓ1 X Φąqztrαu “ tα1, α1 ` α2, α1 ` α2 ` 2α3, α1 ` 2α2 ` 2α3, α1 ` α2 ` 2α3 ` 2α4,

α1 ` 2α2 ` 2α3 ` 2α4, α1 ` 2α2 ` 4α3 ` 2α4, α1 ` 3α2 ` 4α3 ` 2α4u,

where rα ¨̈“ 2α1 ` 3α2 ` 4α3 ` 2α4 is the highest root. Let us remark that rα is indeed fixed
by the Weyl group of L1: this is due to the fact that it is the only root whose coefficient of α1

is 2 instead of 1. Again, the transitivity of the action is proved by direct computation :

s2pα1q “ α1 ` α2,

s3pα1 ` α2q “ α1 ` α2 ` 2α3,

s2pα1 ` α2 ` 2α3q “ α1 ` 2α2 ` 2α3,

s4pα1 ` 2α2 ` 2α3q “ α1 ` 2α2 ` 2α3 ` 2α4,

s3pα1 ` 2α2 ` 2α3 ` 2α4q “ α1 ` 2α2 ` 4α3 ` 2α4,

s1pα1 ` 2α2 ` 2α3 ` 2α4q “ α1 ` α2 ` 2α3 ` 2α4,

s2pα1 ` 2α2 ` 4α3 ` 2α4q “ α1 ` 3α2 ` 4α3 ` 2α4.

Thus, either pΓ1 X Φąqztrαu Ă Ω1 or ppΓ1 X Φąqztrαuq X Ω1 “ H. Next, we show that rα P Ω1

if and only if pΓ1 X Φąqztrαu Ă Ω1.

‚ Assume that g´rα Ă W1. Then applying Lemma 2.5 to γ “ ´rα and δ “ α1 `2α2 `2α3

give

rX´rα,Xα1`2α2`2α3
s “ ˘X´α1´α2´2α3´2α4

P LieP,

since γ ` δ is a root while γ ´ δ “ ´3α1 ´ 5α2 ´ 6α3 ´ 2α4 is not. This implies that
the long root α1 ` α2 ` 2α3 ` 2α4 belongs to Ω1

‚ Assume that pΓ1 X Φąqztrαu Ă Ω1. In particular,

g´α1´2α2´2α3
‘ g´α1´α2´2α3´2α4

Ă LieP.

Thus, we can apply Lemma 2.5 to γ “ ´α1 ´2α2 ´2α3 and δ “ ´α1 ´α2 ´2α3 ´2α4

to get

rX´α1´2α2´2α3
,X´α1´α2´2α3´2α4

s “ ˘X´rα P LieP,

since γ ` δ is a root while γ ´ δ “ ´α2 ` 2α4 is not.

The last step in order to prove (2.10) consists in showing that pΓ1 X Φąq Ă Ω1 implies
pΓ1 X Φăq X Ω1 ‰ H which, by the above reasoning, means Γ1 “ Ω1. By our assumption, the
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long root γ “ ´α1 ´ 2α2 ´ 2α3 ´ 2α4 satisfies gγ Ă LieP . Setting δ “ ´α3 and applying
Lemma 2.5 gives

rX´α1´2α2´2α3´2α4
,X´α3

s “ ˘X´α1´2α2´3α3´2α4
P LieP,

since γ ` δ is a root while γ ´ δ “ ´α1 ´ 2α2 ´α3 ´ 2α4 is not. This concludes the first case.

Case Pred “ P2.
Let us assume that Pred “ P2 and fix the analogous notation as above: L2 ¨̈“ P2 XP´

2 acts on

W2 ¨̈“ LieP {LieP2 “
à

γPΩ2

g´γ Ă V2 ¨̈“ LieG{LieP2 “
à

γPΓ2

g´γ

and its set of weights Ω2 must be stable under the action of the Weyl group W pL2, T q “
xs1, s3, s4y. Our aim is to show that

either Ω2 “ Γ2 X Φă or Ω2 “ Γ2.(2.11)

First, let us consider the partition of Γ2 as disjoint union of the following subsets :

Σ1 ¨̈“ tα1 ` 3α2 ` 4α3 ` 2α4, rαu,

Σ2 ¨̈“ tα1 ` 2α2 ` 2α3, α1 ` 2α2 ` 2α3 ` 2α4, α1 ` 2α2 ` 4α3 ` 2α4u,

Σ3 ¨̈“ tα1 ` 2α2 ` 2α3 ` α4, α1 ` 2α2 ` 3α3 ` α4, α1 ` 2α2 ` 3α3 ` 2α4u,

Σ4 ¨̈“ tα2 ` α3, α1 ` α2 ` α3, α1 ` α2 ` α3 ` α4, α1 ` α2 ` 2α3 ` α4,

α2 ` 2α3 ` α4, α2 ` α3 ` α4u,

Σ5 ¨̈“ tα2 ` 2α3 ` α4, α2 ` 2α3, α1 ` α2, α2, α1 ` α2 ` 2α3, α1 ` α2 ` 2α3 ` 2α4u.

Notice that Σ1 Y Σ2 Y Σ5 “ Γ2 X Φą and Σ3 Y Σ4 “ Γ2 X Φă, so the root lengths once
again come into play. Moreover, Σ1, Σ2 Y Σ3 and Σ4 Y Σ5 are indeed stable under the action
of W pL2, T q, since their elements have coefficient 3, 2 and 1 respectively with respect to the
simple root α2. Now, the following computations prove that :

‚ Σ1 is stable by W pL2, T q :

s1pα1 ` 3α2 ` 4α3 ` 2α4q “ rα;

‚ Σ2 is stable by W pL2, T q :

s4pα1 ` 2α2 ` 2α3q “ α1 ` 2α2 ` 2α3 ` 2α4,

s3pα1 ` 2α2 ` 2α3 ` 2α4q “ α1 ` 2α2 ` 4α3 ` 2α4;

‚ Σ3 is stable by W pL2, T q:

s3pα1 ` 2α2 ` 2α3 ` α4q “ α1 ` 2α2 ` 3α3 ` α4,

s4pα1 ` 2α2 ` 3α3 ` 2α4q “ α1 ` 2α2 ` 3α3 ` 2α4;

‚ Σ4 is stable by W pL2, T q :

s1pα2 ` α3q “ α1 ` α2 ` α3,

s4pα1 ` α2 ` α3q “ α1 ` α2 ` α3 ` α4,

s1pα1 ` α2 ` α3 ` α4q “ α2 ` α3 ` α4,

s3pα2 ` α3 ` α4q “ α2 ` 2α3 ` α4,

s1pα2 ` 2α3 ` α4q “ α1 ` α2 ` 2α3 ` α4;
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‚ Σ5 is stable by W pL2, T q :

s4pα2 ` 2α3 ` 2α4q “ α2 ` 2α3,

s3pα2 ` 2α3q “ α1 ` α2,

s1pα1 ` α2q “ α2 and s3pα1 ` α2q “ α1 ` α2 ` 2α3,

s4pα1 ` α2 ` 2α3q “ α1 ` α2 ` 2α3 ` 2α4.

Thus, for j “ 1, . . . , 5, we have shown that Σj X Ω2 ‰ H implies that Σj Ă Ω2. Next, we
prove the following claims by using Lemma 2.5 on structure constants :

(a) Σ1 Ă Ω2 implies that Σ2 Ă Ω2,
(b) Σ2 Ă Ω2 implies that Σ5 Ă Ω2,
(c) Σ5 Ă Ω2 implies that Σ2 Ă Ω2,
(d) Σ2 Y Σ5 Ă Ω2 implies that Σ1 Ă Ω2,
(e) Σ3 Ă Ω2 implies that Σ4 Ă Ω2,
(f) Σ4 Ă Ω2 implies that Σ3 Ă Ω2,
(g) Σ2 Ă Ω2 implies that Σ3 Ă Ω2.

The parabolic subgroup P being non-reduced by assumption, the set Ω2 is nonempty hence,
once these implications are proved, it must be either all of Γ2 or Σ3 Y Σ4 “ Γ2 X Φă, which
proves (2.11).

(a): By assumption g´α1´3α2´4α3´2α4
Ă LieP . Set γ “ ´α1 ´3α2 ´4α3 ´2α4 and δ “ α2,

then γ ´ δ “ ´α1 ´ 4α2 ´ 4α3 ´ 2α4 is not a root hence

rXγ ,Xδs “ ˘X´α1´2α2´4α3´2α4
P LieP

so α1 ` 2α2 ` 4α3 ` 2α4 P Σ2 X Ω2.
(b): By assumption g´α1´2α2´4α3´2α4

Ă LieP . Set γ “ ´α1 ´ 2α2 ´ 4α3 ´ 2α4 and
δ “ α2 ` 2α3, then γ ´ δ “ ´α1 ´ 3α2 ´ 6α3 ´ 2α4 is not a root hence

rXγ ,Xδs “ ˘X´α1´α2´2α3´2α4
P LieP

so α1 ` α2 ` 2α3 ` 2α4 P Σ5 X Ω2.
(c): By assumption g´α1´α2

‘ g´α2´2α3
Ă LieP . Set γ “ ´α1 ´ α2 and δ “ ´α2 ´ 2α3,

then γ ´ δ “ ´α1 ´ 2α3 is not a root hence

rXγ ,Xδs “ ˘X´α1´2α2´2α3
P LieP

so α1 ` 2α2 ` 2α3 P Σ2 X Ω2.
(d): By assumption g´α1´α2´2α3´2α4

‘g´α1´2α2´2α3
Ă LieP . Set γ “ ´α1´α2´2α3´2α4

and δ “ ´α1 ´ 2α2 ´ 2α3, then γ ´ δ “ α2 ´ 2α4 is not a root hence

rXγ ,Xδs “ ˘X´rα P LieP

so rα P Σ1 X Ω2.
(e): By assumption g´α1´2α2´2α3´α4

Ă LieP . Set γ “ ´α1 ´ 2α2 ´ 2α3 ´ α4 and δ “ α2,
then γ ´ δ “ ´α1 ´ 3α2 ´ 2α3 ´ α4 is not a root hence

rXγ ,Xδs “ ˘X´α1´α2´2α3´α4
P LieP

so α1 ` α2 ` 2α3 ` α4 P Σ4 X Ω2.
(f): By assumption g´α1´α2´α3´α4

‘ g´α2´2α3´α4
Ă LieP . Set γ “ ´α1 ´ α2 ´ α3 ´ α4

and δ “ ´α2 ´ 2α3 ´ α4, then γ ´ δ “ ´α1 ` α3 is not a root hence

rXγ ,Xδs “ ˘X´α1´2α2´3α3´2α4
P LieP

so α1 ` 2α2 ` 3α3 ` 2α4 P Σ3 X Ω2.
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(g): By assumption g´α1´2α2´2α3´2α4
Ă LieP . Set γ “ ´α1´2α2´2α3´2α4 and δ “ ´α3,

then γ ´ δ “ ´α1 ´ 2α2 ´ α3 ´ 2α4 is not a root hence

rXγ ,Xδs “ ˘X´α1´2α2´3α3´2α4
P LieP

so α1 ` 2α2 ` 3α3 ` 2α4 P Σ3 X Ω2.

Case Pred “ P3.
Let us assume that Pred “ P3 and fix the analogous notation as above: L3 ¨̈“ P3 XP´

3 acts on

W3 ¨̈“ LieP {LieP3 “
à

γPΩ3

g´γ Ă V3 ¨̈“ LieG{LieP3 “
à

γPΓ3

g´γ

and its set of weights Ω3 must be stable under the action of the Weyl group W pL3, T q “
xs1, s2, s4y. Our aim is to show that

either Ω3 “ Γ3 X Φă or Ω3 “ Γ3.(2.12)

First, let us consider the partition of Γ3 as disjoint union of the following subsets :

Λ1 ¨̈“tα1 ` 2α2 ` 4α3 ` 2α4, α1 ` 3α2 ` 4α3 ` 2α4, rαu,

Λ2 ¨̈“tα1 ` 2α2 ` 2α3, α1 ` 2α2 ` 2α3 ` 2α4, α1 ` α2 ` 2α3 ` 2α4, α2 ` 2α3 ` 2α4,

α2 ` 2α3, α1 ` α2 ` 2α3u,

Λ3 ¨̈“tα1 ` 2α2 ` 3α3 ` 2α4, α1 ` 2α2 ` 3α3 ` α4u,

Λ4 ¨̈“tα1 ` 2α2 ` 2α3 ` α4, α1 ` α2 ` 2α3 ` α4, α2 ` 2α3 ` α4u,

Λ5 ¨̈“tα2 ` α3 ` α4, α1 ` α2 ` α3 ` α4, α1 ` α2 ` α3, α2 ` α3, α3, α3 ` α4u.

Notice that Λ1 Y Λ2 “ Γ3 X Φą and Λ3 Y Λ4 Y Λ5 “ Γ3 X Φă; moreover, as in the preceding
case, let us remark that Λ1, Λ3, Λ2 Y Λ4 and Λ5 are stable under W pL3, T q because their
elements have as coefficient respectively 4, 3, 2 and 1 with respect to the simple root α3. Now
let us prove by direct computation that :

‚ Λ1 is stable by W pL3, T q :

s2pα1 ` 2α2 ` 4α3 ` 2α4q “ α1 ` 3α2 ` 4α3 ` 2α4,

s1pα1 ` 3α2 ` 4α3 ` 2α4q “ rα;

‚ Λ2 is stable by W pL3, T q :

s4pα1 ` 2α2 ` 2α3q “ α1 ` 2α2 ` 2α3 ` 2α4,

s2pα1 ` 2α2 ` 2α3 ` 2α4q “ α1 ` α2 ` 2α3 ` 2α4,

s1pα1 ` α2 ` 2α3 ` 2α4q “ α2 ` 2α3 ` 2α4,

s4pα2 ` 2α3 ` 2α4q “ α2 ` 2α3,

s1pα2 ` 2α3q “ α1 ` α2 ` 2α3;

‚ Λ3 is stable by W pL3, T q :

s4pα1 ` 2α2 ` 3α3 ` 2α4q “ α1 ` 2α2 ` 3α3 ` α4;

‚ Λ4 is stable by W pL3, T q :

s2pα1 ` 2α2 ` 2α3 ` α4q “ α1 ` α2 ` 2α3 ` α4,

s1pα1 ` α2 ` 2α3 ` α4q “ α2 ` 2α3 ` α4;
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‚ Λ5 is stable by W pL3, T q :

s1pα2 ` α3 ` α4q “ α1 ` α2 ` α3 ` α4,

s4pα1 ` α2 ` α3 ` α4q “ α1 ` α2 ` α3,

s1pα1 ` α2 ` α3q “ α2 ` α3,

s2pα2 ` α3q “ α3,

s4pα3q “ α3 ` α4.

Thus, for j “ 1, . . . , 5, we have shown that Λj XΩ3 ‰ H implies that Λj Ă Ω3. Next, we need
to prove the following claims by using Lemma 2.5 on structure constants :

(a) Λ1 Ă Ω3 implies that Λ2 Ă Ω3,
(b) Λ2 Ă Ω3 implies that Λ1 Ă Ω3,
(c) Λ3 Ă Ω3 implies that Λ4 Ă Ω3,
(d) Λ4 Ă Ω3 implies that Λ5 Ă Ω3,
(e) Λ5 Ă Ω3 implies that Λ4 Ă Ω3,
(f) Λ4 Y Λ5 Ă Ω3 implies that Λ3 Ă Ω3,
(g) Λ1 Ă Ω3 implies that Λ3 Ă Ω3.

The parabolic subgroup P being non-reduced by assumption, the set Ω3 is nonempty hence,
once these implications are proved, it must be either all of Γ3 or Λ3 Y Λ4 Y Λ5 “ Γ3 X Φă,
which proves (2.12).

(a): By assumption g´rα Ă LieP . Set γ “ ´rα and δ “ α1 ` 2α2 ` 2α3, then γ ´ δ “
´3α1 ` 5α2 ` 6α3 ` 2α4 is not a root hence

rXγ ,Xδs “ ˘X´α1´α2´2α3´2α4
P LieP

so α1 ` α2 ` 2α3 ` 2α4 P Λ2 X Ω3.
(b): By assumption g´α1´2α2´2α3

‘ g´α1´α2´2α3´2α4
Ă LieP . Set γ “ ´α1 ´ 2α2 ´ 2α3

and δ “ ´α1 ´ α2 ´ 2α3 ´ 2α4, then γ ´ δ “ ´α2 ` 2α4 is not a root hence

rXγ ,Xδs “ ˘X´rα P LieP

so rα P Λ1 X Ω3.
(c): By assumption g´α1´2α2´3α3´2α4

Ă LieP . Set γ “ ´α1 ´ 2α2 ´ 3α3 ´ 2α4 and
δ “ α3 ` α4 P Φ`, then γ ´ δ “ ´α1 ´ 2α2 ´ 4α3 ´ 3α4 is not a root hence

rXγ ,Xδs “ ˘X´α1´2α2´2α3´α4
P LieP

so α1 ` 2α2 ` 2α3 ` α4 P Λ4 X Ω3.
(d): By assumption g´α2´2α3´α4

Ă LieP . Set γ “ ´α2 ´ 2α3 ´ α4 and δ “ α3 P Φ`, then
γ ´ δ “ ´α2 ´ 3α3 ´ α4 is not a root hence

rXγ ,Xδs “ ˘X´α2´α3´α4
P LieP

so α2 ` α3 ` α4 P Λ5 X Ω3.
(e): By assumption g´α3´α4

‘ g´α2´α3
Ă LieP . Set γ “ ´α3 ´α4 and δ “ ´α2 ´α3, then

γ ´ δ “ ´α2 ` α4 is not a root hence

rXγ ,Xδs “ ˘X´α2´2α3´α4
P LieP

so α2 ` 2α3 ` α4 P Λ4 X Ω3.
(f): By assumption g´α1´α2´α3´α4

‘ g´α2´2α3´α4
Ă LieP . Set γ “ ´α1 ´ α2 ´ α3 ´ α4

and δ “ ´α2 ´ 2α3 ´ α4, then γ ´ δ “ ´α1 ´ α3 is not a root hence

rXγ ,Xδs “ ˘X´α1´2α2´3α3´2α4
P LieP

so α1 ` 2α2 ` 3α3 ` 2α4 P Λ3 X Ω3.
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(g): By assumption g´α1´2α2´4α3´2α4
Ă LieP . Set γ “ ´α1 ´ 2α2 ´ 4α3 ´ 2α4 and

δ “ α3 P Φ`, then γ ´ δ “ ´α1 ´ 2α2 ´ 5α3 ´ 2α4 is not a root hence

rXγ ,Xδs “ ˘X´α1´2α2´3α3´2α4
P LieP

so α1 ´ 2α2 ` 3α3 ` 2α4 P Λ3 X Ω3.

Case Pred “ P4.
Let us assume that Pred “ P4 and fix the analogous notation as above: the Levi subgroup
L4 ¨̈“ P4 X P´

4 , which is of type B3, acts on

W4 ¨̈“ LieP {LieP4 “
à

γPΩ4

g´γ Ă V4 ¨̈“ LieG{LieP4 “
à

γPΓ4

g´γ

and its set of weights Ω4 must be stable under the action of the Weyl group W pL4, T q “
xs1, s2, s3y. Our aim is to show that

either Ω4 “ Γ4 X Φă or Ω4 “ Γ4.(2.13)

Let β ¨̈“ α1 ` 2α2 ` 3α3 ` 2α4 and consider, as in the first case of this proof, the action of
W pL4, T q on

pΓ4 X Φăqztβ, α4u ¨̈“ tα3 ` α4, α2 ` α3 ` α4, α1 ` α2 ` α3 ` α4, α1 ` α2 ` 2α3 ` α4,

α1 ` 2α2 ` 2α3 ` α4, α1 ` 2α2 ` 3α3 ` α4, α2 ` 2α3 ` α4u,

which is transitive because

s2pα3 ` α4q “ α2 ` α3 ` α4

s1pα2 ` α3 ` α4q “ α1 ` α2 ` α3 ` α4,

s3pα1 ` α2 ` α3 ` α4q “ α1 ` α2 ` 2α3 ` α4,

s2pα1 ` α2 ` 2α3 ` α4q “ α1 ` 2α2 ` 2α3 ` α4,

s1pα1 ` α2 ` 2α3 ` α4q “ α2 ` 2α3 ` α4,

s3pα1 ` 2α2 ` 2α3 ` α4q “ α1 ` 2α2 ` 3α3 ` α4,

and the same action on

Γ4 X Φą “ tα2 ` 2α3 ` 2α4, α1 ` α2 ` 2α3 ` 2α4, α1 ` 2α2 ` 2α3 ` 2α4,

α1 ` 2α2 ` 4α3 ` 2α4, α1 ` 3α2 ` 4α3 ` 2α4, rαu,

which is also transitive because

s1pα2 ` 2α3 ` 2α4q “ α1 ` α2 ` 2α3 ` 2α4,

s2pα1 ` α2 ` 2α3 ` 2α4q “ α1 ` 2α2 ` 2α3 ` 2α4,

s3pα1 ` 2α2 ` 2α3 ` 2α4q “ α1 ` 2α2 ` 4α3 ` 2α4,

s2pα1 ` 2α2 ` 4α3 ` 2α4q “ α1 ` 3α2 ` 4α3 ` 2α4,

s1pα1 ` 3α2 ` 4α3 ` 2α4q “ rα.
Next, we prove the following claims using Lemma 2.5 on structure constants :

(a) Γ4 X Φą Ă Ω4 implies that β P Ω4,
(b) β P Ω4 implies that pΓ4 X Φăqztβ, α4u Ă Ω4,
(c) pΓ4 X Φăqztβ, α4u Ă Ω4 implies that α4 P Ω4,
(d) α4 P Ω4 implies that pΓ4 X Φăqztβ, α4u Ă Ω4,
(e) pΓ4 X Φăqztβu Ă Ω4 implies that β Ă Ω4.
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The parabolic subgroup P being non-reduced by assumption, the set Ω4 is nonempty hence,
once these implications are proved, it must me either all of Γ4 or Γ4 XΦă, which proves (2.13).

(a): By assumption g´α2´2α3´2α4
Ă LieP and g´α1´α2´α3

P LieL4 Ă LieP . Set γ “
´α2 ´ 2α3 ´ 2α4 and δ “ ´α1 ´ α2 ´ α3, then γ ´ δ “ α1 ´ α3 ´ 2α4 is not a root hence

rXγ ,Xδs “ ˘X´β P LieP

so β P Ω4.
(b): By assumption g´β Ă LieP . Set γ “ ´β and δ “ α1 ` α2 ` α3 ` α4 P Φ`, then

γ ´ δ “ ´2α1 ´ 3α2 ´ 4α3 ´ 3α4 is not a root hence

rXγ ,Xδs “ ˘X´α2´2α3´α4
P LieP

so α2 ` 2α3 ` α4 P ppΓ4 X Φăqztβ, α4uq X Ω4.
(c): By assumption g´α3´α4

Ă LieP . Set γ “ ´α3 ´ α4 and δ “ α3 P Φ`, then γ ´ δ “
´2α3 ´ α4 is not a root hence

rXγ ,Xδs “ ˘X´α4
P LieP

so α4 P Ω4.
(d): By assumption g´α4

Ă LieP and g´α3
Ă LieL4 Ă LieP . Set γ “ ´α4 and δ “ ´α3,

then γ ´ δ “ α3 ´ α4 is not a root hence

rXγ ,Xδs “ ˘X´α3´α4
P LieP

so α3 ` α4 P ppΓ4 X Φăqztβ, α4uq X Ω4.
(e): By assumption g´α4

‘ g´α1´2α2´3α3´α4
Ă LieP . Set γ “ ´α4 and δ “ ´α1 ´ 2α2 ´

3α3 ´ α4, then γ ´ δ “ α1 ` 2α2 ` 3α3 is not a root hence

rXγ ,Xδs “ ˘X´β P LieP

so β P Ω4.
Conclusion: up to this point all computations hold in both characteristic p “ 2 and 3.

To conclude our proof when p “ 3, one more step - which works simultaneously for all cases
i “ 1, 2, 3, 4 - is necessary in order to conclude that Ωi “ Γi. That is, we want to show that
pΓi X Φăq Ă Ωi implies pΓi X Φąq X Ωi ‰ H. By assumption, g´α1´2α2´3α3´2α4

Ă LieP . Set
γ “ ´α1 ´ 2α2 ´ 3α3 ´ 2α4 and δ “ α3 P Φ`, then γ ` δ and γ ´ δ are still roots while
γ ´ 2δ “ ´α1 ´ 2α2 ´ 5α3 ´ 2α4 is not, hence

rXγ ,Xδs “ ˘2X´α1´2α2´4α3´2α4
P LieP hence X´α1´2α2´4α3´2α4

P LieP,

so that ´α1 ´ 2α2 ´ 4α3 ´ 2α4 P pΓi X Φąq X Ωi as wanted. �

Proof. (of Theorem 2.2 in type F4)
Let G be simple of type F4 and X “ G{P with a faithful G-action such that Pred is maximal
and P is nonreduced. When p “ 2, Proposition 2.16 implies that gă Ă LieP , hence we
get LieNG Ă LieP and NG Ă P by the equivalence of categories, which is a contradiction
by Remark 2.4. When p “ 3, the above Proposition implies that LieP “ LieG, hence the
Frobenius kernel satisfies G1 Ă P , which gives again a contradiction. Therefore in both cases
P must be a reduced parabolic. �

2.6. Type G2. The last non-simply laced Dynkin diagram we have to consider is of type G2.
In this case, things behave as expected when the reduced parabolic subgroup is Pα2 , the one
associated with the long simple root α2, or when the characteristic is p “ 3: the proof follows
the same strategy as in types Bn, Cn and F4.
This still leaves out the case of a nonreduced parabolic subgroup satisfying Pred “ Pα1 in
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characteristic 2, where α1 denotes the short simple root. Under such assumptions, we find two
maximal p-Lie subalgebras

h ¨̈“ LiePα1 ‘ g´2α1´α2
and l ¨̈“ LiePα1 ‘ g´α1

‘ g´α1´α2
,

containing LiePα1 . Let H and L be of height one with Lie algebra respectively equal to
g´2α1´α2

and g´α1
‘ g´α1´α2

, and define

Ph ¨̈“ xH,Pα1y and Pl ¨̈“ xL,Pα1y.

This gives rise to two parabolic subgroups which have as reduced subgroup a maximal one,
but cannot be described as pkerϕqPα1 for some isogeny ϕ with source G. We then move on to
investigate the corresponding homogeneous spaces, which we describe by using the Chevalley
description of G as automorphism group of an octonion algebra.
The main result is the following, which completes the classification of Theorem 1.

Theorem 2.17. Let G be of type G2 in characteristic two and let P be a nonreduced parabolic
subgroup of G having Pα1 as reduced part.
Then one of the three following cases holds:

‚ P is of standard type and X » G{Pα1 is isomorphic to a quadric Q in P6;
‚ P is obtained from Ph by pull back via an iterated Frobenius morphism and X » G{Ph

is isomorphic to P5;
‚ P is obtained from Pl by pull back via an iterated Frobenius morphism and X » G{Pl

is isomorphic to a hyperplane section of Sp6 {Pα3 .

Let us recall for reference the following result: see [9, Theorem 1], reformulated here under
the stronger hypothesis of k being an algebraically closed field. It will be needed to conclude
the type G2 case, as well as later on, when dealing with higher Picard ranks.

Theorem 2.18. Let H 1 be a semisimple adjoint group over k and Q1 a reduced parabolic
subgroup of H 1. Then the natural homomorphism

H 1
−! H ¨̈“ Aut0H 1{Q1

is an isomorphism in all but the three following cases:

(a) H 1 is of type Cn for some n ě 2 and Q1 “ Pα1 is associated to the first short simple
root: in this case the automorphism group H is smooth simple adjoint of type A2n´1;

(b) H 1 is of type Bn for some n ě 2 and Q1 “ Pαn is associated to the short simple root:
in this case the automorphism group H is smooth simple adjoint of type Dn`1;

(c) H 1 is of type G2 and Q1 “ Pα1 : in this case the automorphism group H is smooth
simple adjoint of type B3.

With a slight change of notation compared to Demazure, we call the three pairs pH,Qq in
the cases paq, pbq and pcq of the Theorem exceptional, while pH 1, Q1q is called the associated
pair to the exceptional one.

Remark 2.19. In order to be clear let us recall what we mean by automorphism group, both
in Theorem 2.18 and in the rest of the paper. For a proper algebraic scheme X over a perfect
field k, let us consider the functor

AutX : pSch{kqred −! Grp, T 7−! AutT pXT q,

sending a reduced k-scheme T to the group of automorphisms of T -schemes of X ˆk T . By
[18, Theorem 3.6] this functor is represented by a reduced group scheme AutX which is locally
of finite type over k. We denote as Aut0X its connected component of the identity, which is a
smooth algebraic group.
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2.6.1. What works as expected. Let us consider a group G with root system of type G2 over a
field k of characteristic p “ 2 or 3. Following notations from [3], the elements of Φ` are

α1, α1 ` α2, 2α1 ` α2, 3α1 ` α2, α2, 3α1 ` 2α2.

In particular, let us consider as elements of the basis ∆ the short root α1 and the long root α2;
then denote P1 ¨̈“ Pα1 and P2 ¨̈“ Pα2 the associated maximal reduced parabolic subgroups.

5π{6
α1´α1

α2

´α2´3α1 ´ α2
´2α1 ´ α2 ´α1 ´ α2

´3α1 ´ 2α2

Let us recall that, when p “ 3, NG Ă G is in this case the unique subgroup of height one
such that

LieNG “ Lieα_
1 pGmq ‘ gα1

‘ g´α1
‘ gα2`2α1

‘ g´α2´2α1
‘ gα1`α2

‘ g´α1´α2
.

Proposition 2.20. Assume given a nonreduced parabolic P such that Pred “ P1 (with p “ 3q
or Pred “ P2 (with p “ 2 or 3). Then LieP “ LieG or LieP “ LiePred ` gă. If p “ 2, then
necessarily LieP “ LieG.

Remark 2.21. We can conclude that Theorem 2.2 holds in this case as follows: let G be
simple of type G2 and X “ G{P with a faithful G-action such that Pred is maximal, satisfies
the hypothesis of Proposition 2.20, and such that P is nonreduced. The above Proposition
implies that

Lieα_
1 pGmq ‘ gă “ LieNG Ă LieP,

hence we get NG Ă P , which is a contradiction by Remark 2.4. Therefore P must be a smooth
parabolic.

Proof. Case Pred “ P1.
Let us assume that Pred “ P1 and that the characteristic is p “ 3. The Levi subgroup
L1 ¨̈“ P1 X P´

1 has root system t˘α2u and acts on the vector space

V1 ¨̈“ LieG{LieP1 “ g´α1
‘ g´α1´α2

‘ g´2α1´α2
‘ g´3α1´α2

‘ g´3α1´2α2
.

Now, let us look at the nonzero vector subspace W1 ¨̈“ LieP {LieP1, which is in particular an
L1-submodule of V1. Thus, the set of its weights must be stable under the reflection sα2

. This
means, by a direct computation, that

g´3α1´2α2
Ă W1 ðñ g´3α1´α2

Ă W1,(2.14)

g´α1´α2
Ă W1 ðñ g´α1

Ă W1.(2.15)
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Let us assume first that g´α1´α2
‘g´α1

Ă W1. Then, applying Lemma 2.5 to γ “ ´α1 ´α2

and δ “ ´α1 gives

rX´α1´α2
,X´α1

s “ ˘2X´2α1´α2
, hence X´2α1´α2

P LieP,

since γ`δ and γ´δ are roots while γ´2δ “ α1´α2 is not. Conversely, assuming g´2α1´α2
Ă W1

and considering roots γ “ ´2α1 ´ α2 and δ “ α1 yields

rX´2α1´α2
,Xα1

s “ ˘2X´α1´α2
, hence X´α1´α2

P LieP.

In other words, we have showed that whenever a root subspace associated to a short negative
root is contained in W1, the other two are too.
To conclude this first case, it is enough to show that

g´3α1´2α2
‘ g´3α1´α2

Ă W1 implies that g´2α1´α2
Ă W1.

This can be done by considering roots γ “ ´3α1 ´ 2α2 and δ “ α1 ` α2, for which γ ` δ is a
root but γ ´ δ “ ´4α1 ´ 3α2 is not, hence

rX´3α1´2α2
,Xα1`α2

s “ ˘X´2α1´α2
P LieP.

Case Pred “ P2.
Moving on to the second case, let us assume that Pred “ P2. The Levi subgroup L2 ¨̈“ P2XP´

2

has root system t˘α1u and acts on the vector space

V2 ¨̈“ LieG{LieP1 “ g´α2
‘ g´α1´α2

‘ g´2α1´α2
‘ g´3α1´α2

‘ g´3α1´2α2
.

Now, let us look at the nonzero vector subspace W2 ¨̈“ LieP {LieP2, which is in particular an
L2-submodule of V2. Thus, the set of its weights must be stable under the reflection sα1

. This
means, by a direct computation, that

g´α1´α2
Ă W2 ðñ g´2α1´α2

Ă W2,(2.16)

g´3α1´α2
Ă W2 ðñ g´α1

Ă W2.(2.17)

The equivalence (2.16) already implies that once a root subspace associated to a short negative
root is contained in W2, the only other one is too.
If p “ 3, to conclude it suffices to show that g´γ Ă W2 for some long root γ P Φ` implies
W2 “ V2 i.e. LieP “ LieG. First,

rX´3α1´2α2
,Xα2

s “ ˘X´3α1´α2
,

because p´3α1 ´ 2α2q ´ α2 is not a root, and conversely

rX´3α1´α2
,X´α2

s “ ˘X´3α1´2α2
,

because p´3α1 ´ α2q ´ p´α2q is not a root. Finally,

rX´3α1´α2
,Xα1

s “ ˘X´2α1´α2
,

because p´3α1 ´ α2q ´ α1 is not a root. This proves that in this case W2 “ V2.
If p “ 2, one more step must be added: assume that g´2α1´α2

‘ g´α1´α2
Ă W2, then

rX´2α1´α2
,X´α1

s “ ˘X´3α1´α2
, hence X´3α1´α2

P LieP,

because p´2α1 ´ α2q ` α1, p´2α1 ´ α2q ` 2α1 are roots, while p´2α1 ´ α2q ` 3α1 is not.
This last remark, together with the above computations shows that when p “ 2 necessarily
LieP “ LieG. �
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2.6.2. What does not. The only case yet to consider is the following: the characteristic is p “ 2,
the group G is of type G2 and P is a nonreduced parabolic subgroup satisfying Pred “ Pα1 , the
reduced parabolic associated to the short simple root, whose Levi subgroup has root system
t˘α2u. Let us place ourselves in this setting: by repeating the same reasoning as above, we
can conclude only a weaker statement.

Lemma 2.22. Assume that one of the two root subspaces associated to ´3α1 ´ 2α2 and
´3α1 ´ α2 is contained in LieP . Then LieP “ LieG.

Proof. By (2.14), we have that both root subspaces are in LieP . Then considering roots
γ “ ´3α1 ´ 2α2, δ “ α1 ` α2 and δ1 “ 2α1 ` α2 yields

rXγ ,Xδs “ ˘X´2α1´α2
P LieP and rXγ ,Xδ1 s “ ˘X´α1´α2

P LieP,

because γ ´ δ and γ ´ δ1 are not roots. This means that if one long root is added then we
have to add everything else. �

The same reasoning applied to short roots fails, due to the vanishing of structure constants
in characteristic 2. More precisely, we can identify two Lie subalgebras strictly containing
LiePα1 , which cannot be Lie ideals since LieG is a simple p-Lie algebra (see Lemma 1.9) as
follows: define the following vector subspaces

h ¨̈“ LiePα1 ‘ g´2α1´α2
“ LieB ‘ g´α2

‘ g´2α1´α2
;(2.18)

l ¨̈“ LiePα1 ‘ g´α1
‘ g´α1´α2

“ LieB ‘ g´α2
‘ g´α1

‘ g´α1´α2
.(2.19)

Lemma 2.23. With the above notation, h and l are two p-Lie subalgebras of LieG.

Proof. Let tXγ : γ P Φ,Hα1
,Hα2

u be a Chevalley basis of LieG. First, using Lemma 2.5 we
can calculate a few structure constants which are then useful in the rest of the proof:

adpX´2α1´α2
q adpX´α1

q adpX´α1´α2q adpXα1
q adpX2α1`α2

q
Xα1

0 P LieT X´α2
0 X3α1`α2

X3α1`α2
Xα1

X2α1`α2
0 0 0

X2α1`α2
P LieT 0 0 X3α1`α2

0

X3α1`2α2
Xα1`α2

0 X2α1`α2
0 0

Xα1`α2
0 Xα2

P LieT 0 X3α1`2α2

Xα2
0 0 X´α1

Xα1`α2
0

X´α1
X´3α1´α2

0 0 P LieT 0

X´3α1´α2
0 0 0 X´2α1´α2

X´α1

X´2α1´α2
0 X´3α1´α2

X´3α1´2α2
0 P LieT

X´3α1´2α2
0 0 0 0 X´α1´α2

X´α1´α2
X´3α1´2α2

0 0 X´α2
0

X´α2
0 X´α1´α2

0 0 0

Let us verify that h is a Lie subalgebra. Since we know that LiePα1 is one, it is enough to
show that rg´2α1´α2

,LiePα1s Ă h. Lemma 2.5 implies that

rg´2α1´α2
,LieT s “ rX´2α1´α2

,LieT s Ă g´2α1´α2
Ă h.

Moreover, the first column of the above table shows that

rg´2α1´α2
, gγs “ krX´2α1´α2

,Xγs Ă h,

for all roots γ whose root subspace is contained in LiePα1 .
Analogously, let us prove that l is a Lie subalgebra: for this, it is enough to show that

rg´α1
,LiePα1s, rg´α1´α2

,LiePα1s, rg´α1
, g´α1´α2

s Ă l.
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First, Lemma 2.5 implies that

rg´α1
,LieT s “ rX´α1

,LieT s Ă g´α1
Ă l ;

rg´α1´α2
,Lie T s “ rX´α1´α2

,LieT s Ă g´α1´α2
Ă l.

Moreover, the second and third column in the above table show that

rg´α1
, gγs “ krX´α1

,Xγs and rg´α1´α2
, gγs “ krX´α1´α2

,Xγs

are both subspaces of l, for all roots γ whose root subspace is contained in LiePα1 .
To conclude there is still left to show that h and l are stable by the p-mapping (recall that by
assumption p “ 2q, knowing that LiePα1 is. In other words, setting Yγ equal to the image of
Xγ by the p-mapping, we want to prove that Y´2α1´α2

P h and that Y´α1
, Y´α1´α2

P l.
To do this, let

Y´2α1´α2
“ H `

ÿ

δPΦ

aδXδ, for some aδ P k, H P LieT.

It is enough to show that a´α1
“ a´3α1´α2

“ a´3α1´2α2
“ a´α1´α2

“ 0. By the properties of
the p-mapping, we have that adpYγq “ ad2pXγq for any root γ. Using that rX´2α1´α2

,Xα1
s

vanishes (see table), we have:

0 “ adpX´2α1´α2
qprX´2α1´α2

,Xα1
sq “ ad2pX´2α1´α2

qpXα1
q

“ adpY´2α1´α2
qpXα1

q “ rH,Xα1
s `

ÿ

δPΦ

aδrXδ ,Xα1
s.

Expanding all brackets using the fourth column of the above table gives that, for some a P k,

0 “ aXα1
` a2α1´α2

X3α1`α2
` aα2

Xα1`α2
` a´α1

Hα1
` a´3α1´α2

X´2α1´α2
` a´α1´α2

X´α2
,

which implies in particular a´α1
“ a´3α1´α2

“ a´α1´α2
“ 0. Moreover, rX´2α1´α2

,Xα1
s also

vanishes, hence we have

0 “ adpX´2α1´α2
qprX´2α1´α2

,Xα1`α2
sq “ ad2pX´2α1´α2

qpXα1`α2
q

“ adpY´2α1´α2
qpXα1`α2

q “ rH,Xα1`α2
s `

ÿ

δPΦ

aδrXδ ,Xα1`α2
s.

Writing this with respect to the Chevalley basis gives

a´3α1´2α2
rX´3α1´2α2

,Xα1`α2
s “ a´3α1´2α2

X´2α1´α2

as the only term in X´2α1´α2
, meaning that the coefficient a´3α1´2α2

also vanishes, as wanted:
thus we can conclude that h is a p-Lie subalgebra of LieG.
Analogously, let

Y´α1
“ H 1 `

ÿ

δPΦ

bδXδ, for some bδ P k,H 1 P LieT,

and as before we aim to show that b´3α1´α2
“ b´2α1´α2

“ b´3α1´2α2
“ 0. Using that

rX´α1
,X2α1`α2

s vanishes (see table), we have

0 “ adpX´α1
qprX´α1

,X2α1`α2
sq “ ad2pX´α1

qprX´α1
,X2α1`α2

sq

“ adpY´α1
qpX2α1`α2

q “ rH 1,X2α1`α2
s `

ÿ

δPΦ

bδrXδ ,X2α1`α2
s.

Expanding all brackets using the last column of the above table gives that, for some b P k and
some H2 P LieT ,

0 “ bX2α1`α2
` bα1

X3α1`α2
` bα1`α2

X3α1`2α2
` b´3α1´α2

X´α1
` b´2α1´α2

H2

` b´3α1´2α2
X´α1´α2

.
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In particular, this proves that b´3α1´α2
“ b´3α1´2α2

“ 0. Moreover, rX´α1
,X´α1´α2

s also
vanishes, hence we have

0 “ adpX´α1
qprX´α1

,X´α1´α2
sq “ ad2pX´α1

qprX´α1
,X´α1´α2

sq

“ adpY´α1
qpX´α1´α2

q “ rH 1,X´α1´α2
s `

ÿ

δPΦ

bδrXδ,X´α1´α2
s.

Expanding this with respect to the Chevalley basis gives b´2α1´α2
rX´2α1´α2

,X´α1´α2
s “

b´2α1´α2
X´3α1´2α2

X´3α1´2α2
as the only term in X´3α1´2α2

, meaning that the coefficient
b´2α1´α2

also vanishes: this proves that Y´α1
P l.

To prove that Y´α1´α2
is also in l, an analogous computation, symmetric with respect to the

reflection sα2
, can be done. Finally, we can conclude that l is a p-Lie subalgebra. �

Corollary 2.24. The p-Lie subalgebras of LieG containing strictly LiePα1 are exactly h and
l.

Proof. Let us consider a p-Lie subalgebra LiePα1 Ĺ s Ă LieG, meaning that there is some
positive root γ ‰ α1 such that g´γ is contained in s. By Lemma 2.22, if γ is long then
s “ LieG, so we can assume γ to be short. To do this, let us remark that by Lemma 2.5 we
have

rX´α1
,X´2α1´α2

s “ X´3α1´α2
,(2.20)

because ´α1 ´ p´2α1 ´α2qq and ´α1 ´2p´2α1 ´α2qq are roots while ´α1 ´3p´2α1 ´α2qq is
not, hence the structure constant is 3 “ 1. If γ “ α1, by symmetry with respect to the Weyl
group t˘sα2

u of the Levi factor of Pα1 we have that g´α1´α2
is also contained in s, hence

either s “ l or it also contains g´2α1´α2
. The equality (2.20) together with Lemma 2.22 then

imply s “ LieG. The same reasoning applies when starting by γ “ ´α1 ´ α2. On the other
hand, starting by γ “ 2α1 ` α2 implies that either s “ h, or it contains also g´α1

‘ g´α1´α2
,

from which we conclude again - by (2.20) and Lemma 2.22 - that s “ LieG. �

Definition 2.25. Let us fix the following notation for the rest of this Section:

(1) H ¨̈“ pU´2α1´α2
q1 is the subgroup of height one such that LieH “ g´2α1´α2

, i.e.
h “ LiePα1 ‘ LieH ;

(2) L ¨̈“ pU´α1
q1 ¨ pU´α1´α2

q1 is the subgroup of height one such that LieL “ g´α1
‘

g´α1´α2
, i.e. l “ LiePα1 ‘ LieL ;

(3) Ph the parabolic subgroup generated by Pα1 and H;
(4) Pl the parabolic subgroup generated by Pα1 and L.

Let us notice that g´α1
and g´α1´α2

commute, so that L is the direct product of the
Frobenius kernels defining it.

Remark 2.26. The two parabolic subgroups Ph and Pl are exotic in the sense that they
cannot be of the form pkerϕqPα for some isogeny ϕ, since when p “ 2 the only noncentral
isogenies in type G2 are iterated Frobenius homomorphisms (see Proposition 1.12).

In the following part we investigate what the homogeneous spaces having as stabilizer re-
spectively Ph and Pl are isomorphic to, as varieties.

2.6.3. Parabolic Ph.

Proposition 2.27. Let G be simple of type G2 in characteristic p “ 2 and Ph the parabolic
subgroup of Definition 2.25. Then the quotient morphism G{Pα1

−! G{Ph is the natural
projection

P6 Ą Q ¨̈“ tx23 ` x2x4 ` x1x5 ` x0x6 “ 0u ! P5, rx0 : . . . : x6s 7! rx0 : x1 : x2 : x4 : x5 : x6s.
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In particular, the homogeneous space G{Ph is isomorphic as a variety to P5 “ PSp6 {Pα1 .

In order to construct this morphism, we will see the group G as the automorphism group
of an octonion algebra - see the Appendix for more details - which is

O “ tpu, vq : u, v are 2 ˆ 2 matricesu ,

with basis pe11, e12, e21, e22, f11, f12, f21, f22q, recalled in Subsection 4.1, with unit e “ p1, 0q “
e11 ` e22, and which is equipped with a norm

qpu, vq “ detpuq ` detpvq.

An embedding of the group G2 into Sp6 can be seen as follows: let us consider its action on
the vector space

V ¨̈“ eK “ tpu, vq : detp1 ` uq ` detpuq “ 1u

as in (4.2). Since p “ 2, we have that e P V hence the group G also acts on the quotient
W ¨̈“ V {ke, which has dimension 6. By (4.4) in the Appendix, a maximal torus T of G - with
respect to the basis pf12, f11, e12, e21, f22, f21q of W - is given by

Gm
2 Q pa, bq 7−! diagpa, a´1b´1, a2b, a´2b´1, ab, a´1q “ t P T Ă GL6 .

Let us recall that the basis of simple roots we fix is α1ptq ¨̈“ a and α2ptq ¨̈“ b, hence V has
the following decomposition in weight spaces :

V0 “ ke, Vα1
“ kf12, V´α1

“ kf21, Vα1`α2
“ kf22,

V´α1´α2
“ kf11, V2α1`α2

“ ke12, V´2α1´α2
“ ke21.

This way, T can be identified with the maximal torus in [13, page 13]: in Heinloth’s description
of the embedding G Ă Sp6 in characteristic 2, given by the action on

W “ V {ke “ Wα1
‘W´α1´α2

‘W2α1`α2
‘W´2α1´α2

‘Wα1`α2
‘W´α1

,

the group G is generated by the two following copies of GL2 :

θ1 : A 7−!

¨
˝
A

Ap1q detA´1

A

˛
‚ and θ2 : B 7−!

¨
˚̊
˝

detB´1

B

B

detB

˛
‹‹‚,

where Ap1q denotes the Frobenius twist applied to A.

Lemma 2.28. When considering the action of G on PpV q “ P6, we have

StabGprV2α1`α2
sq “ Pα1 .

Proof. First, let us prove that Pα1 , which is generated by T , U˘α2
and Uα1

, fixes V2α1`α2
“

ke12. Clearly the torus does; moreover, the computation of the respective actions of u´α2
pλq,

uα2
pλq and uα1

pλq on V , done in Remark 4.2, shows that all three fix

re12s “ r0: 0: 1: 0: 0: 0: 0s.

This proves that Pα1 Ă S ¨̈“ StabGprV2α1`α2
sq. To prove the reverse inclusion, let us remark

that no nontrivial subgroup of U´α1
and of U´2α1´α2

fixes re12s: again by Remark 4.2, we
have

u´α1
pλq ¨ e12 “ e12 ` λf22 and u´2α1´α2

pλq ¨ e12 “ e12 ` λ2e21,

thus U´α1
X S “ U´2α1´α2

X S “ 1.
At this point, we know that LiePα1 Ă S, hence by Corollary 2.24, LieS is either equal to
LiePα1 , to h, to l or to LieG. However, Uα1

XS “ 1 means g´α1
is not contained in LieS, hence

the latter cannot be equal to l nor to LieG. Analogously, U´2α1´α2
X S “ 1 means g2α1`α2



PROJECTIVE HOMOGENEOUS VARIETIES OF PICARD RANK ONE IN SMALL CHARACTERISTIC 41

is not contained in LieS, hence LieS cannot be equal to h. This means that LieS “ LiePα1

hence S “ Pα1 as wanted. �

We can now conclude part of the proof of Proposition 2.27. First, let us recall that we
are working with the basis pf12, f11, e12, e, e21, f22, f21q on V , giving homogeneous coordinates
rx0 : ¨ ¨ ¨ : x6s on PpV q: the norm q hence becomes

qpxq “ x23 ` x2x4 ` x1x5 ` x0x6,

and its zero locus in P6 is the quadric Q of the Proposition. The point re12s belongs to Q
while res does not, and the quotient W “ V {ke corresponds to the projection P6ztresu −! P5.
Moreover, we have

G{Pα1 “ G{StabGprV2α1`α2
sq “ G ¨ re12s Q

Since both are smooth irreducible projective of dimension 5, they coincide. In particular,

Aut0G{Pα1
“ Aut0Q “ SOpV q “ SO7

is of type B3, as stated in Theorem 2.18.
What is left to prove is that G{Ph » P5: to do this, we look at the action of G on W .

Lemma 2.29. When considering the action of G on PpW q “ P5, we have

StabGprW2α1`α2
sq “ Ph.

Proof. Let S1 be the stabilizer. From the above Lemma we know that Pα1 fixes rV2α1`α2
s,

hence it also fixes rW2α1`α2
s. Moreover, by Remark (4.2) we have

u´2α1´α2
pλq ¨ re12s “ r0: 0: 1: λ2 : 0 : 0s and u´α1

pλq ¨ re12s “ r0: 0: 1: 0: λ : 0s,

meaning that U´α1
X S1 “ 1, while

H “ u´2α1´α2
pαpq “ U´2α1´α2

X S1.

In particular, this yields that on one side, Ph Ă S1 hence h Ă LieS, and on the other side, g´α1

is not contained in LieS1. In particular by Corollary 2.24 LieS1 “ h and the only positive
root γ satisfying 1 Ĺ U´γ X S1 Ĺ U´γ is ´2α1 ´ α2, hence by [25]

U´
S1 “

ź

γPΦ` : U´γĆS1

pU´γ X S1q “ U´2α1´α2
X S1 “ H,

where U´
P - following Wenzel’s notation - denotes the infinitesimal unipotent subgroup given

by the intersection of a parabolic subgroup P with the unipotent radical of the opposite of
Pred with respect to the Borel B. Thus, we can conclude that S1 “ U´

S1 ¨ S1
red

“ H ¨ Pα1 , and
the latter must coincide with Ph by definition. �

Corollary 2.30. We have Ph “ H ¨ Pα1 . More precisely,

U´
Ph

“ Ph XR´
u pPα1q “ Ph X U´2α1´α2

“ H.

Now, let us consider the embedding

G{Ph “ G{StabGprW2α1`α2
sq “ G ¨ re12s PpW q “ P5 .

As before, since both are smooth irreducible projective of dimension 5, they coincide. This
gives as quotient map

G{Pα1 “ Q −! G{pH ¨ Pα1q “ P5(2.21)

the projection from res, which has degree 2 equal to the order of H.
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2.6.4. Parabolic Pl. Let us consider the homogeneous space G{Pl and show that one can
realize it in a concrete way using octonions. More precisely, considering the action of G2 Ă
Sp6 on W “ V {ke, the parabolic subgroup Pl is the stabilizer of a 3-dimensional isotropic
vector subspace of W , spanned by the root spaces associated to the short positive roots (see
Proposition 2.34). To do this, let us consider η ¨̈“ f12 ^ f22 ^ e12 as element of PpΛ3V q and
η the element of PpΛ3W q given by the images in W of the three vectors.

Lemma 2.31. Let G be simple of type G2 in characteristic p “ 2 and Pl the parabolic subgroup
of Definition 2.25. When considering the action of G on PpΛ3V q and PpΛ3W q respectively,
we have

StabGpηq “ Pα1 and StabGpηq “ Pl.

Proof. Let us denote as S and S2 the above stabilizers.
First, let us prove that Pα1 , which is generated by T , U˘α2

and Uα1
, fixes the subspace

kf12‘kf22‘ke12 Ă V , whose elements are of the form pw0, 0, w2, 0, 0, w5, 0q. The computations
of Remark 4.2 in the Appendix give us the following :

uα2
pλq ¨ pw0, 0, w2, 0, 0, w5, 0q “ pw0, 0, w2, 0, 0, λw0 ` w5, 0q,

u´α2
pλq ¨ pw0, 0, w2, 0, 0, w5, 0q “ pw0 ` λw5, 0, w2, 0, 0, w5, 0q

uα1
pλq ¨ pw0, 0, w2, 0, 0, w5, 0q “ pw0, 0, w2 ` λw5, 0, 0, w5, 0q,

meaning that Pα1 Ă S. Moreover, considering the action of the root subgroups associated to
´α1, ´2α1 ´ α2 and ´α1 ´ α2, we have the following :

u´α1
pλq ¨ pw0, 0, w2, 0, 0, w5, 0q “ pw0, 0, w2, λw0, 0, λw2 ` w5, λ

2w0q,

u´2α1´α2
pλq ¨ pw0, 0, w2, 0, 0, w5, 0q “ pw0, λw0, w2, λw2, λ

2w2, w5, λw5q,

u´α1´α2
pλq ¨ pw0, 0, w2, 0, 0, w5, 0q “ pw0 ` λw2, λ

2w5, w2, λw5, 0, w5, 0q.

These computations imply that LieS has trivial intersection with the root subspaces associated
to short negative roots. Thus by Corollary 2.24 LieS “ LiePα1 , which allows to conclude
that S “ Pα1 .
Next, let us consider the action of G on the quotient W “ V {ke. The second computation just
above yields that the intersection U´2α2´α1

X S2 is trivial, hence g´2α1´α2
is not contained

in LieS2 and the latter cannot be equal to LieG nor to h. The other two equalities imply
that U´α1

X S2 “ u´α1
pαpq and U´α1´α2

X S2 “ u´α1´α2
pαpq, meaning that LieS2 “ l. In

particular, the positive roots γ satisfying 1 Ĺ U´γ X S1 Ĺ U´γ are α1 and α1 ` α2 : by [25],
we have

U´
S2 “

ź

γPΦ` : U´γĆS2

pU´γ X S2q “ pU´α1´α2
X S2q ¨ pU´α1

X S2q “ L.

Thus, we can conclude that S2 “ U´
S2 ¨S2

red
“ L ¨Pα1 , and the latter must coincide with Pl by

definition. �

Corollary 2.32. We have Pl “ L ¨ Pα1 . More precisely,

U´
Pl

“ Pl XR´
u pPα1q “ pPl X U´α1´α2

q ¨ pPl X U´α1
q “ L.

Next, let us realise the variety Q as a hyperplane section of the SO7-homogeneous variety
of isotropic 3-dimensional subspaces of V : this will help us describe X ¨̈“ G{Pl geometrically.
Recall that - keeping the notation from Proposition 2.12 - the reduced parabolic subgroup
associated to the short root α3 in type B3, which is denoted P3 “ Pα3 Ă SO7, is the stabilizer
of an isotropic subspace of dimension 3, hence

Pα1 “ StabGpηq “ G X P3 “ GX StabSO7
pηq.
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This gives the following embedding, where we denote as L the unique (very) ample generator
of the Picard group of Y .

Q “ G{Pα1 ã−! Y ¨̈“ SO7 {P3 ã−! PpH0pY,Lq_q(2.22)

Lemma 2.33. The variety Q is a hyperplane section of Y relative to the ample line bundle L.

Proof. Let us express Y as a quotient of Spin7 by the maximal reduced parabolic Q3 associated
to the short simple root. Since Spin7 is simply connected, the Picard group of Y identifies
with the group of characters of Q3. Under this identification, the embedding (2.22) is given by
the representation of Spin7 acting on U ¨̈“ H0pY,Lq, whose associated weight ̟ is the third
fundamental weight in type B3. This weight is minuscule: by the Weyl character formula, the
weights of the diagonal maximal torus (2.4) of SO7 in U are

1

2
p˘ε1 ˘ ε2 ˘ ε3q .(2.23)

In particular, U has dimension 8, so that (2.22) is a codimension one embedding of Y into
PpU_q. Moreover, by [20, Theorem 3.11], the homogeneous ideal of Y is generated by degree
2 elements, hence there is some non-degenerate quadratic form q on U of which Y is the zero
locus.
Next, let us restrict the representation to G: the maximal torus T we consider is the one given
in (4.4), hence (2.23) gives as T -weights of U the six short roots

˘α1, ˘pα1 ` α2q, ˘p2α1 ` α2q,

together with twice the zero weight. In particular, U admits, as a G-module, only two irre-
ducible quotients, the trivial representation and the simple module W which has as weights
the six short roots. Moreover, the quadratic form q provides an isomorphism between U and
its dual as G modules: in particular, there exists some linear form h on U invariant by G.
Since the base point of Q corresponds to a B-stable line in U with weight ̟, h must vanish
on it and therefore there is an inclusion of Q into the hyperplane H “ ph “ 0q. Finally, the
intersection H X Y has dimension 5, contains Q and is a complete intersection because h is
linear and q non-degenerate, hence it must coincide with Q and we are done. �

The above description of the variety Q holds in any characteristic. The case of charac-
teristic two is peculiar because there exists an embedding of G2 into Sp6, together with the
very special isogeny described in Example 1.15. We will now use these two ingredients to get
a geometric description of X, starting from the above realisation of the variety Q and the
natural quotient morphism Q! X, induced by the inclusion of Pα1 “ pPlqred into Pl.

Let us consider the following commutative diagram, which is induced by the quotient W “
V {ke and the associated purely inseparable isogeny ϕ : SOpV q “ SO7 ! Sp6 “ SppW q, with
kernel N ¨̈“ NSO7

. Let us recall that, by Lemma 2.31, Q is the G2-orbit of the 3-dimensional
subspace defined by the short positive root vectors in Λ3V , while X is the G2-orbit of the
3-dimensional subspace defined by the short positive root vectors in Λ3W .

Q “ G2{Pα1 X “ G2{Pl

Y ¨̈“ SO7 {P3 Z ¨̈“ Sp6 {P 1
3 “ SO7 {pNP3q

PpΛ3V q PpΛ3W q

g

f
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Proposition 2.34. The line bundle OZpXq satisfies the equality PicZ “ ZOZpXq. In par-
ticular, X is a hyperplane section of Z with respect to the unique (very) ample generator of
PicZ.

Proof. By Lemma 2.33, the Picard group of Y is generated by OY pQq, hence Q satisfies

Q ¨ rC “ 1, where we denote respectively as rC and C the Schubert curves (associated to the
short simple root α3 in type B3 and the long simple root α1

3 in type C3) in Y and in Z.
The morphism f is finite locally free of degree 8, which corresponds to the order of

NP3{P3 “ N{pN X P3q.

Indeed, as seen in Example 1.15, the subgroup N Ă SO7 has height one and Lie algebra n “ gă

of dimension 6, hence the order of N is 26. On the other hand, the order of N X P3 is 23

because
LiepN X P3q “ n X LieP3 “ g´ε1´ε2 ‘ g´ε1´ε3 ‘ g´ε2´ε3

has dimension 3. In particular, this means that f˚f
˚X “ 8X seen as elements of PicZ.

On the other hand, g is finite locally free of degree 4: the latter is the order of L, the unipotent
infinitesimal part of Pl. Thus we also have f˚Q “ 4X : putting the two equalities together
implies f˚X “ 2Q in the Picard group of Y .
Next we notice that α3 is a short root in type B3, hence the very special isogeny acts as a
Frobenius morphism on the corresponding copy of the additive group in SO7. In other words,

the set theoretic equality fp rCq “ C becomes f˚
rC “ 2C on 1-cycles. In particular,

2 “ 2Q ¨ rC “ f˚X ¨ rC “ X ¨ f˚
rC “ 2X ¨ C.

This last computation together with the fact that PicZ » Z allows to conclude that the line
bundle associated to X generates the Picard group of Z. �

Up to this point we have realized the variety X “ G{Pl using octonions. In particular, this
construction provides a new example (besides projective spaces and quadrics) of a hyperplane
section X of a homogeneous variety pZ,Mq, such that X is also homogeneous and M generates
the Picard group of Z. One might ask whether Theorem 2.1 still holds for the variety X.
Actually this is not the case, as illustrated in the following result.

Proposition 2.35. Let G be simple of type G2 in characteristic p “ 2 and Pl the parabolic
subgroup of Definition 2.25. Then G{Pl is not isomorphic, as a variety, to a quotient of the
form G1{Pα for any G1 simple and α P ∆pG1q.

In particular, this means that Theorem 2.1 does not hold in this case.

Lemma 2.36. Let G1 be simple and let α be a simple root of G1. If dimpG1{Pαq “ 5, then
such a variety is either isomorphic to Q Ă P6, to P5 or to G{Pα2 where G is of type G2 and
α2 is the long root.

Proof. Let us recall that dimpG1{Pαq “ |Φ`pGq| ´ |Φ`pLαq|, where Lα “ Pα X pPαq´ is a
Levi subgroup, hence so we can compute this quantity explicitly in each case.
Type An´1: for 1 ď m ď n´ 1,

dimpG1{Pαmq “ mpn´mq “ 5

when pn,mq “ p6, 5q or p6, 1q. In that case, G1{Pα1 “ G1{Pα5 » P5.
Type Bn: the number of positive roots is n2.
‚ For 1 ď m ď n´ 1, the Levi subgroup Pαm X pPαmq´ is of type Am´1 ˆBn´m, so

dimpG1{Pαmq “ n2 ´
mpm ´ 1q

2
´ pn´mq2 “ m

ˆ
1 ´m

2
` 2n ´m

˙
“ 5



PROJECTIVE HOMOGENEOUS VARIETIES OF PICARD RANK ONE IN SMALL CHARACTERISTIC 45

which only has as positive integer solution the pairs pn,mq “ p4, 5q, which is absurd, and
pn,mq “ p3, 1q. In that case, G1 “ SO7 and by Theorem 2.18 and Proposition 2.27 we have
SO7 {Pα1 » G{Pα1 » Q Ă P6.
‚ Considering the last simple root, Pαn X pPαnq´ is of type An´1 and

dimpG1{Pαnq “ n2 ´
npn´ 1q

2
“
npn` 1q

2

is never equal to 5.
Type Cn: the same computations as in type Bn give pn,mq “ p3, 1q, meaning G1 “ PSp6 and
- again by Theorem 2.18 - we have PSp6 {Pα1 “ PSL6 {Pα1 » P5.
Type Dn: the number of positive roots is npn´ 1q.
‚ For 1 ď m ď n´ 4, the Levi subgroup is of type Am´1 ˆDn´m, so

dimpG1{Pαmq “ npn´ 1q ´
mpm´ 1q

2
´ pn´mqpn´m´ 1q “ m

ˆ
1 ´m

2
` 2n ´m´ 1

˙
“ 5

which has no positive integer solutions pn,mq.
‚ For m “ n´ 3, the Levi subgroup is of type An´4 ˆA3, so

dimpG1{Pαmq “ npn´ 1q ´
pn´ 3qpn ´ 4q

2
´ 6 “ 5,

which gives n2 ` 5n “ 34 hence no integer solutions.
‚ For m “ n´ 2, the Levi subgroup is of type An´3 ˆA1 ˆA1, so

dimpG1{Pαmq “ npn´ 1q ´
pn´ 2qpn´ 3q

2
´ 1 ´ 1 “ 5,

which gives n2 ` 3n “ 20 hence no integer solutions.
‚ For m “ n´ 1 or m “ n, the Levi subgroup is of type An´1, so

dimpG1{Pαmq “ npn´ 1q ´
npn´ 1q

2
“
npn´ 1q

2
“ 5,

which is never equal to 5.
Type E6: the number of positive roots is 36, and the following table

E6 α1 α2 α3 α4 α5 α6

Lα D5 A4 ˆA1 ˆA1 A2 ˆA2 ˆA1 A4 ˆA1 D5 A5

|Φ`pLαq| 20 11 7 11 20 15

dimpG{Pαq 16 25 29 25 16 21

shows that the desired quantity is never equal to 5.
Type E7: the number of positive roots is 63 and the following table

E7 α1 α2 α3 α4 α5 α6 α7

Lα D6 A5 ˆA1 A1 ˆA2 ˆA3 A4 ˆA2 D5 ˆA1 E6 A6

|Φ`pLαq| 30 16 10 13 21 36 21

dimpG{Pαq 33 47 53 50 42 27 42

shows that the desired quantity is never equal to 5.
Type E8: the number of positive roots is 120 and the following table

E8 α1 α2 α3 α4 α5 α6 α7 α8

Lα D7 A6 ˆA1 A1 ˆA2 ˆA4 A4 ˆA3 D5 ˆA2 E6 ˆA1 E7 A7

|Φ`pLαq| 42 22 14 16 23 37 63 28

dimpG{Pαq 78 98 106 104 97 83 57 92
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shows that the desired quantity is never equal to 5.
Type F4: a direct computation - see Subsection 2.5 - gives

dimpG1{Pα1q “ dimpG1{Pα4q “ 15 and dimpG1{Pα2q “ dimpG1{Pα3q “ 20.

Type G2: as we already know, both G{Pα1 “ Q and G{Pα2 have dimension 5. �

Lemma 2.37. The variety X “ G{Pl is not isomorphic to P5 nor to Q.

Proof. Let us consider the quotient map f : G{Pα1
−! G{Pl. By Corollary 2.32 we have

Pl “ L ¨ Pα1 , hence the morphism f is finite, purely inseparable and of degree 4. Assume
X » P5, then we get f : Q −! P5. Considering the line bundle OQp1q “ OP6p1q|Q, we have

that PicQ “ Z ¨OQp1q and f˚OP5p1q “ OQpmq for some m ą 0, since it has sections. Taking
degrees, this gives on the left hand side

f˚
OP5p1q ¨ f˚

OP5p1q ¨ f˚
OP5p1q ¨ f˚

OP5p1q ¨ f˚
OP5p1q

“pdeg fq pOP5p1q ¨ OP5p1q ¨ OP5p1q ¨ OP5p1q ¨ OP5p1qq “ deg f,

so we get deg f “ 4. On the right hand side, this equals

OQpmq ¨ OQpmq ¨ OQpmq ¨ OQpmq ¨ OQpmq

“ ρ˚
OP5pmq ¨ ρ˚

OP5pmq ¨ ρ˚
OP5pmq ¨ ρ˚

OP5pmq ¨ ρ˚
OP5pmq

“ pdeg ρqpOP5pmq ¨ OP5pmq ¨ OP5pmq ¨ OP5pmq ¨ OP5pmqq “ pdeg ρ ¨m5q,

which has degree 2m5, where ρ is the projection of Proposition 2.27. Comparing degrees one
gets 4 “ 2m5, which is absurd.

Now, let us assume instead that X » Q, then f : Q −! Q is of degree 4 and again
f˚OQp1q “ OQprq for some r ą 0: the analogous computation of degrees yields 8 “ 2r5,
which is again absurd. �

Lemma 2.38. The variety X “ G{Pl is not isomorphic to G{Pα2 .

Proof. AssumeX » G{Pα2 , then the G-action onX is given by a morphism θ : G! Aut0G{Pα2
,

the latter being equal to G by Theorem 2.18. In particular, θ is an isogeny which satisfies
θ´1pPα2q “ Pl. This means that there is some g P Gpkq such that

pker θq ¨ gPα2g´1 “ Pl.

Since ker θ is finite, taking the connected component of the identity and the reduced subscheme
on both sides implies that Pα2 and Pα1 are conjugate in G, which is a contradiction. �

The above study of Ph and Pl does not complete the classification (in characteristic 2) of
homogeneous spaces having as stabilizer a parabolic subgroup whose reduced part is equal to
Pα1 . Let us consider a simple group G of type G2 and a nonreduced parabolic subgroup P Ă G

satisfying Pred “ Pα1 , in characteristic p “ 2. Moreover, let us assume that LieP ‰ LieG, i.e.
that LieP is equal to h (resp. l) and let us write it as P “ U´

P ¨Pred, where U´
P “ PXR´

u pPredq:

in particular, it is contained in U´2α1´α2
(resp. in U´α1

¨U´α1´α2
) and its order is |U´

P | “ 2n

for some n ě 2, the case n “ 1 being Ph treated above.

2.6.5. End of classification. Recall that we follow here the notation from [25] : for a parabolic
subgroup P , we denote as U´

P the intersection of P with the unipotent radical of the opposite
of Pred.

Lemma 2.39. Let P be a parabolic subgroup such that LieP “ h. Then its unipotent infini-
tesimal part U´

P has height one.
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Proof. The reduced part of P is Pα1 , hence U´
P must be of the form u´2α1´α2

pαpnq for some
n. Let us assume that n is at least equal to 2. This means that there is some λ P Ga such that
λ2 ‰ 0 and u´2α1´α2

pλq P P . Let us consider µ P Ga and compute the following commutator,
which gives an element of P :

pu´2α1´α2
pλq, uα1

pµqq “ u´2α1´α2
pλquα1

pµqu´2α1´α2
p´λquα1

p´µq “ pu´2α1´α2
pλquα1

pµqq2

“

¨
˚̊
˚̊
˚̊
˝

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

λ 1 0 0 0 0

0 0 1 0 0 0

0 0 λ2 1 0 0

0 0 0 0 1 0

0 0 0 0 λ 1

˛
‹‹‹‹‹‹‚

¨

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 µ2

0 1 0 µ 0 0

0 0 1 0 µ 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚

˛
‹‹‹‹‹‹‚

2

“

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 λµ2 0

0 1 µλ2 0 0 λµ2

0 0 1 0 0 0

0 0 0 1 µλ2 0

0 0 0 0 1 0

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚
.

The last quantity, when assuming µ2 “ 0, coincides with u´3α1´2α2
pµλ2q, which is a contra-

diction with the fact that LieP “ h does not intersect the root subspace associated to the
root ´3α1 ´ 2α2. �

Lemma 2.40. Let P be a parabolic subgroup such that LieP “ l. Then its unipotent infini-
tesimal part U´

P has height one.

Proof. As before, the reduced part of P is Pα1 . Moreover, the unipotent part U´
P has nontrivial

and finite intersection with U´α1
and U´α1´α2

, of height m1 and m2 respectively. Assuming
the height of U´

P to be at least equal to 2 means we have (up to a reflection by sα2
) that

m2 ě 2. Thus, let λ P Ga such that λ2 ‰ 0 and µ P αp, so that u´α1
pµq P P . Then the

following commutator also belongs to P :

pu´α1´α2
pλq, u´α1

pµqq “ u´α1´α2
pλqu´α1

pµqu´α1´α2
p´λqu´α1

p´µq “ pu´α1´α2
pλqu´α1

pµqq2

“

¨
˚̊
˚̊
˚̊
˝

¨
˚̊
˚̊
˚̊
˝

1 0 λ 0 0 0

0 1 0 0 λ2 0

0 0 1 0 0 0

0 0 0 1 0 λ

0 0 0 0 1 0

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚

¨

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 µ 0 1 0 0

0 0 µ 0 1 0

µ2 0 0 0 0 1

˛
‹‹‹‹‹‹‚

˛
‹‹‹‹‹‹‚

2

“

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

0 1 µλ2 0 0 0

0 0 1 0 0 0

λµ2 0 0 1 µλ2 0

0 0 0 0 1 0

0 0 λµ2 0 0 1

˛
‹‹‹‹‹‹‚
.

The last quantity coincides again with u´3α1´2α2
pµλ2q, so we conclude as before. �

Definition 2.41. For an integer m ě 0, we denote as Hm and Lm the pull-back respectively
of the subgroups H and L under an m-th iterated Frobenius morphism.

Proposition 2.42. Let G be of type G2 in characteristic two.
Then the nonreduced parabolic subgroups of G having Pα1 as reduced part are all of the form
GmPα1 , HmP

α1 or LmP
α1 for some m ě 0.

Proof. Let us consider such a subgroup P : its Lie algebra contains strictly LiePα1 , hence
by Corollary 2.24 it is either equal to LieG, to h or to l. If LieP “ LieG, then there is a
unique integer m ě 1 such that the Frobenius kernel Gm is contained in P while Gm`1 is not.
Considering the quotient P 1 ¨̈“ P {Gm allows to assume that the Lie algebra of P 1 is strictly
contained in the one of G. Next, if LieP 1 “ h (resp. l), by Lemma 2.39 and Lemma 2.40, we
have that P 1 “ Ph (resp. Pl). Thus, the parabolic P is obtained from Pα1 , Ph or Pl by pulling
back with an iterated Frobenius morphism, and we are done. �

This completes the proof of Theorem 2.17 and thus gives a complete classification of homo-
geneous varieties with Picard group Z, which ends the proof of Theorem 1.
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Remark 2.43. The last result, together with Proposition 2.34, has as consequence the fact
that any ample line bundle on an homogeneous variety of Picard rank one is very ample,
without any assumption of type nor characteristic.

Remark 2.44. Let us cite a reason why the geometry of a general projective homogeneous
variety of Picard rank one may differ from the one of a generalized flag variety. This comes
from the following generalization of a question of Lazarsfeld (see the end of [17]): if X “ G{P
has Picard group isomorphic to Z and there is some surjective morphism f : X ! Y , then is
Y isomorphic to X? First, the iterated Frobenius morphisms G{P ! G{GmP do not give a
counterexample. However, the maps

G{Pα −! G{NGP
α and G2{Pα1

−! G2{Pl,

defined respectively under the edge hypothesis and in characteristic 2, are counterexamples.
Both these examples are purely inseparable surjective morphisms: the next natural step would
be adding the hypothesis for the morphism f to be generically étale.

3. Consequences and higher Picard ranks

We state here - in all types but G2 - the desired modification of Wenzel’s description of
parabolic subgroups having as reduced subgroup a maximal one: they are all obtained by
fattening the reduced part with the kernel of a noncentral isogeny, which generalizes to this
setting the role of the Frobenius in characteristic p ě 5. We then give a criterion to determine
when two homogeneous spaces with Picard rank one have the same underlying variety. Moving
on to a different setting, we consider spaces G{P with higher Picard ranks. First, using the
Białynicki-Birula decomposition allows us to describe explicitly classes of curves and divisors
on such varieties. This description is then used to establish a family of examples - in Picard
rank two - of homogeneous spaces which are not isomorphic as varieties to those having a
stabilizer a parabolic subgroup of standard type, i.e. of the form Gm1

Pα1 X . . .XGmrP
αr for

some integers mi and simple roots αi.

3.1. Consequences in rank one. In the following Subsection we complete the study in the
case of Picard rank one. Due to Proposition 2.35, let us make the assumption that the group
G is not of type G2 in characteristic two.

3.1.1. Classification of parabolics with maximal reduced subgroup. The results in the preceding
Section allow us to complete the classification of parabolic subgroups having as reduced sub-
group a maximal one. Let us recall that, by [25], if the Dynkin diagram of G is simply laced
or if p ą 3, then such subgroups are of the form P “ GmPα “ pkerFmG qPα.

Proposition 3.1. Let G be simple and P be a parabolic subgroup of G such that its reduced
subgroup is maximal i.e. of the form Pred “ Pα for some simple root α. Then there exists an
isogeny ϕ with source G such that

P “ pkerϕqPα,

unless G is of type G2 over a field of characteristic p “ 2 and α is the simple short root.

Proof. First, Propositions 2.9, 2.10, 2.20, 2.16 and Remarks 2.13 and 2.15 imply that if G is
simple and Pred is a maximal reduced parabolic subgroup, then either P is reduced, or there
exists a nontrivial noncentral normal subgroup of height one contained in P . This subgroup
is either H “ NG - when it is defined - or the image of the Frobenius kernel of the simply
connected cover of G.
Now, let us consider the given parabolic P . If it is reduced, then there is nothing to prove. If
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it is nonreduced, then there is a noncentral subgroup Hp1q Ă P normalized by G and of height
one. Let us denote as

ϕ1 : G −! G{Hp1q “: Gp1q

the quotient morphism and replace the pair pG,P q with pGp1q, Pp1qq, where Pp1q ¨̈“ P {Hp1q.
This gives again a parabolic subgroup whose reduced subgroup is maximal, hence either Pp1q

is reduced or we can repeat the same reasoning to get an isogeny

ϕ2 : G −! G{Hp1q −! G{Hp2q “: Gp2q.

Setting Pp2q ¨̈“ G{Hp2q we repeat the same reasoning again. This gives a sequence pGpmq, Ppmqq
which ends with a reduced parabolic subgroup in a finite number of steps : indeed, P {Pred is
finite so it is not possible to have an infinite sequence

Pred Ĺ Hp1qPred Ĺ ¨ ¨ ¨ Ĺ HpmqPred Ĺ ¨ ¨ ¨ Ĺ P.

Thus, let us set H ¨̈“ Hpmq for m big enough and ϕ ¨̈“ ϕm. Then we claim that P “ HPα “
pkerϕqPα.
Both H and Pα are subgroups of P by construction, hence HPα Ă P . Quotienting by H then
gives

HPα{H “ Pα{pH X Pαq Ă P {H “ Ppmq.

Since both are reduced and have the same underlying topological space, they must coincide
hence HPα “ P . �

In particular, using our previous results on factorisation of isogenies, we can give a very
explicit description of the kernels involved in the classification.

Corollary 3.2. Keeping the above notation and the ones given in Definition 1.8, in the equality
P “ pkerϕqPα, there are only the two following options:

(a) either kerϕ “ kerFmG “ Gm is the Frobenius kernel,
(b) or, when such a subgroup is defined, kerϕ “ kerpπGpmq ˝ FmG q “ Nm,G.

Proof. Let us first assume G to be simply connected and consider the factorisation of the
isogeny ϕ given by Proposition 1.12

ϕ : G G2 G1,
σ ρ

where σ “ π ˝ Fm and ρ is central. Let α, α2 and α1 be simple roots of G, G2 and G1

respectively, defined by the equalities

Pred “ Pα, σpPαq “ Pα
2
, ρpPα

2
q “ Pα

1
.

Then

P “ pker ρσqPα “ pρσq´1pPα
1
q “ σ´1pPα

2
q “ pker σqPα,

hence replacing ϕ by σ and G1 by G2 gives one of the cases paq and pbq.

If G is not simply connected, then we can consider the pull-back rP ¨̈“ ψ´1pP q Ă rG in the

simply connected cover. Applying the above reasoning to rP yields

either P “ ψp rP q “ ψp rGmPαq “ GmPα, or P “ ψp rP q “ ψpN
m, rGP

αq “ Nm,GP
α

and we are done. �
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3.1.2. Comparing varieties of Picard rank one. Let us start by considering a homogeneous
variety X “ G{P under the action of a simple adjoint group G, having Picard group of rank
one. Then set

G0 ¨̈“ Aut0X and P0 ¨̈“ Stabpxq Ă G0,

where x P X is a closed point and where we keep as notation for the automorphism group the
same as in Remark 2.19. Since the radical of G0 is solvable and acts on the projective variety
X, it has a fixed point: being normal in G0, it is trivial. Analogously, the center of G0 - which
is contained in a maximal torus - is trivial. Moreover, the hypothesis PicX “ Z together
with Theorem 3.12 imply that G0 is simple. So the group G0 is simple adjoint and uniquely
determined by the variety X, while P0 is a parabolic subgroup whose reduced subgroup is
maximal. Its conjugacy class is uniquely determined by X up to an automorphism of the
Dynkin diagram of G0. Moreover, since the action of G0 on X is faithful, by Theorem 2.2 we
have that P0 is reduced, hence of the form P0 “ Pα for a simple root α.
Now, let us consider the action of G on X: we want to relate in all possible cases the pair
pG,P q to the pair pG0, P0q. This will give us a way to determine, given two homogeneous
spaces G{P and G1{P 1, whether they are isomorphic as varieties.

Proposition 3.3. If the pair pG0, P0q is not exceptional in the sense of Demazure, then one
of the following two cases holds :

(a) G “ G0 and P “ GmPα, where Pα “ P0 up to an automorphism of the Dynkin
diagram of G,

(b) G “ pG0qad and P “ Nm,GP
α, where Pα “ πG0

pP0q{ZpG0q up to an automorphism of
the Dynkin diagram of G.

If pG0, P0q is exceptional, then there are two additional possibilities - denoting as pG1
0, P

1
0q the

associated pair in the sense of Demazure :

(a’) G “ G1
0 and P “ GmPα, where Pα “ P 1

0 up to an automorphism of the Dynkin
diagram of G,

(b’) G “ pG1
0qad and P “ Nm,GP

α, where Pα “ πG1
0
pP 1

0q{ZpG1
0q up to an automorphism of

the Dynkin diagram of G.

Proof. Let us start by assuming that pG0, P0q is not exceptional in the sense of Demazure. By
Corollary 3.2, either P “ GmPα or P “ Nm,GP

α for some α. In the first case,

X “ G{GmPα “ Gpmq{pPαqpmq » G{Pα

as varieties, hence by Theorem 2.18 this implies G “ Aut0X “ G0 and Pα “ P 0, leading to
paq. In the second case,

X “ G{Nm,GP
α “ G

pmq
{pPαqpmq » G{Pα “ Gad{

`
Pα{ZpGq

˘

as varieties, hence by Theorem 2.18 again Gad “ Aut0X “ G0 and P0 “ Pα{ZpGq. Considering
their respective images by the very special isogeny of Gad gives pbq.
If pG0, P0q is exceptional in the sense of Demazure, Theorem 2.18 allows for two additional
cases: to get the conclusion it is enough to repeat the same reasoning by replacing pG0, P0q
with pG1

0, P
1
0q. �

3.2. Curves and divisors on flag varieties. We give here an explicit basis for 1-cycles
and divisors modulo numerical equivalence on a flag variety X “ G{P of any Picard rank,
with stabilizer P not necessarily reduced. We do so by describing the cells of an appropriate
Białynicki-Birula decomposition of X in terms of the root system of G and of the root system
of a Levi subgroup of the reduced part of P .
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3.2.1. Białynicki-Birula decomposition of a G-simple projective variety. Flag varieties are nor-
mal, projective and equipped with a G-action with a unique closed orbit, hence they form a
particular class of simple G-projective varieties (for short, G-simple varieties), as in [4]. Let us
review here the main definitions and results concerning the Białynicki-Birula decomposition
of such varieties, then specialize to flag varieties. The original work on the subject is [1]; for
a scheme-theoretic statement see [19, Theorem 13.47].

Let us consider a G-simple variety X and fix a cocharacter λ : Gm ! T such that

B “ tg P G : lim
t!0

λptqgλpt´1q exists in Gu,

which is equivalent to the condition that xγ, λy ą 0 for all γ P Φ`. This implies in particular
that the set of fixed points under the Gm-action induced by λ coincides with the set XT of
T -fixed points. Recall that the fixed-point scheme XT is smooth, see for example [19, Theorem
13.1]. For any connected component Y Ă XT there are an associated positive and a negative
stratum, defined as

X`pY q ¨̈“ tx P X : lim
t!0

λptq ¨ x P Y u and X´pY q ¨̈“ tx P X : lim
t!0

λpt´1q ¨ x P Y u,

equipped with morphisms

p` : X`pY q ! Y, x 7! lim
t!0

λptq ¨ x,

p´ : X´pY q ! Y, x 7! lim
t!0

λpt´1q ¨ x.

Theorem 3.4 (Białynicki-Birula decomposition). Let X be a normal G-simple projective
variety. Then the following hold:

‚ The variety X is the disjoint union of the positive (resp. negative) strata as Y ranges
over the connected components of XT .

‚ The morphisms p` and p´ are affine bundles.
‚ The strata X`pY q and X´pY q intersect transversally along Y .

Let us remark that the assumption on λ implies that positive strata are B- invariant, while
negative strata are B´-invariant. In particular, the unique open positive stratum X` is equal
to X`px`q where x` is the unique B´-fixed point, and analogously the unique open negative
stratum X´ is equal to X´px´q where x´ is the unique B-fixed point. Let us recall here the
main results from [4] in the case where X is smooth.

Theorem 3.5. Let X be a smooth G-simple projective variety, x´ its B-fixed point, X´ “
X´px´q the open negative cell and D1, . . . ,Dr the irreducible components of XzX´.

(1) D1, . . . ,Dr are globally generated Cartier divisors, whose linear equivalence classes
form a basis of PicpXq.

(2) Every ample (resp. nef) divisor on X is linearly equivalent to a unique linear combi-
nation of D1, . . . ,Dr with positive (resp. non-negative) integer coefficients. In partic-
ular, rational and numerical equivalence coincide on X i.e. the natural map PicpXq !
N1pXq is an isomorphism.

(3) There is a unique T -fixed point x´
i such that Di is the closure of X´px´

i q. Moreover,
x´
i is isolated.

(4) Consider the B-invariant curve Ci ¨̈“ B ¨ x´
i . Then

Di ¨ Cj “ δij ,

meaning that Cj intersects transversally Dj and no other Di.
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(5) The convex cone of curves NEpXq is generated by the classes of C1, . . . , Cr, which form
a basis of the rational vector space N1pXqQ.

3.2.2. Białynicki-Birula decomposition of flag varieties. Let us now specialize to our case i.e.
interpret the results of the above Section in terms of root systems. The first step consists in
recalling the Bruhat decomposition of a flag variety with reduced stabilizer, i.e. X “ G{PI
where I Ă ∆ is a basis for the root system of a Levi subgroup of PI . In particular, for a simple
root α the subgroup Pα - which has been widely used in the previous Sections - coincides with
P∆ztαu. Let us fix a set of representatives 9w P NGpT q, for w P W “ W pG,T q and let us recall
the following (see [22, 8.3]).

Theorem 3.6 (Bruhat decomposition). Let G Ą B Ą T be a reductive group, a Borel subgroup
and a maximal torus, and W “ W pG,T q. Then the following hold.

(1) G is the disjoint union of the double cosets BwB, for w P W .
(2) Let Φw be the set of positive roots γ such that w´1γ is negative. Then

Uw ¨̈“
ź

γPΦw

Uγ

is a subgroup of the unipotent radical of B, with the product being taken in any order.
(3) The map Uw ˆB ! BwB given by pu, bq 7! u 9wb is an isomorphism of varieties.

This gives a decomposition of G{B into the disjoint union of the cells BwB{B, which are
isomorphic to Uw i.e. to affine spaces of dimension equal to the length of w. Since we want to
work with G{PI instead of G{B, we shall not consider the whole Weyl group but its quotient
by the subgroup WI generated by the reflections corresponding to simple roots in I.

Lemma 3.7. In any left coset of WI in W there is a unique element w characterized by the
fact that wI Ă Φ` or by the fact that the element w is of minimal length in wWI .

Proof. See [2, Proposition 3.9]. �

We denote the set of such representatives as W I . In particular, denoting w0 and w0,I the

element of longest length of W and WI respectively, then wI0 ¨̈“ w0w0,I is the element of
longest length in W I .

Proposition 3.8 (Generalized Bruhat decomposition). For a fixed I Ă ∆, the group G is the
disjoint union of the double cosets BwPI , where w ranges over the set W I .

In order to get a similar statement as p3q in Theorem 3.6, let us consider for any w P W I

the sets

ΦIw ¨̈“ tγ P Φ` : w´1γ R Φ` and w´1γ R ΦIu,(3.1)

Φw,I ¨̈“ ΦwzΦIw “ Φw X Φ`
I .(3.2)

Lemma 3.9. With the above notation, let us fix w P W I .

(1) The groups Uγ , with γ ranging over ΦIw (resp. Φw,I) generate two subgroups of the
unipotent radical of B,

U Iw “
ź

γPΦI
w

Uγ and Uw,I “
ź

γPΦw,I

Uγ ,

with the product being taken in any order.
(2) The product map U Iw ˆ PI ! BwPI given by pu, hq 7! u 9wh is an isomorphism of

varieties.
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Proof. To prove p1q, let us recall that for any pair of roots γ, δ P Φ there exist constants cij
such that

puγpxq, uδpyqq “
ź

i,ją0, iγ`jδPΦ

uiγ`jδpcijx
iyjq, for all x, y P Ga

(see [22, Proposition 8.2.3]). If γ and δ are both in ΦIw, then w´1piγ ` jδq is still negative and
not belonging to ΦI , hence by Equation (3.1) the product of the root subgroups with roots
ranging over ΦIw is a group. The same reasoning holds for the second product.
Moving on to p2q, let us consider an element x P BwPI . Let us fix an order on ΦIw “ tγ1, . . . , γlu
and on Φw,I “ tδ1, . . . , δmu . By Theorem 3.6, there are a unique w1 P WI , a unique u “
uγ1px1q ¨ . . . ¨ uγlpxlq P U Iw, a unique u1 “ uδ1py1q ¨ . . . ¨ uδmpymq P Uw,I and a unique b P B such
that x “ uu1 9w 9w1b P Bww1B. Moreover, by [22, 8.1.12(2)], there exist constants ci P k such
that

u1 9w “

˜
mź

i“1

uδipyiq

¸
9w “ 9w

˜
mź

i“1

9w´1uδipyiq 9w

¸
“ 9w

mź

i“1

uw´1δipciyiq “: 9wu2

Since w´1δi is in ΦI for all i, the product u2 is an element of PI , as well as h ¨̈“ u2 9w1b because
w1 P WI . This gives a unique way to write x as product u 9wh for some u P U Iw and h P PI . �

Next, let us go back to our original setting: consider a sequence G Ą P Ą Pred “ PI Ą B Ą
T and look at the map

rX ¨̈“ G{PI G{P “: X,
σ

in order to relate the geometry of X to that of rX . The morphism σ is finite, purely inseparable
and hence a homeomorphism between the underlying topological spaces. Let us denote as

õ P rX and o P X the respective base points.

The decomposition of Proposition 3.8 allows us to express the variety rX as the disjoint
union of the cells BwPI{PI “ Bwõ as w P W I . Let us remark that W I corresponds to the set
of isolated points under the T -action, i.e. that

p rXqT “ twõ : w P W {WIu

and the same holds for X. It is hence natural if such a decomposition coincides with the
Białynicki-Birula decomposition of Theorem 3.4. This is useful because the advantage of the
first one is that it is more explicit and easier to manipulate, while the second can be defined

also on X, independently of the smoothness of the stabilizer. Let us denote as rX`
w (resp. X`

w )
the positive Białynicki-Birula strata associated to the T -fixed point wõ (resp. wo), and the
analogous notation for negative strata.

Lemma 3.10. For any w P W {WI , we have

Bwõ “ rX`
w and Bwo “ X`

w .

Proof. For the first equality, wõ belongs to rX`
w because it is a T -fixed point. Moreover, positive

strata are B-invariant which means that Bwõ Ď rX`
w . The other inclusion comes from the fact

that rX can be expressed as the disjoint union of both the strata of the two decompositions
with the same index set.
Next, let us consider Bwo “ σpBwõq, which equals σp rX`

w q by what we just proved. The

inclusion σp rX`
w q Ă X`

w comes from the fact that σ being T -equivariant respects the Białynicki-
Birula decomposition, while the other inclusion is due to the fact that

ğ

wPW I

Bwo “ X “
ğ

wPW I

X`
w .
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because σ is an homeomorphism. �

Remark 3.11. How can we visualize the morphism σ on cells? By Proposition 3.8, the Bruhat

cell associated to w P W I in rX is an affine space of dimension l, equal to the cardinality of
ΦIw “ tγ1, . . . , γlu. Let us consider the integers ni, which we recall are associated to the roots
in ΦIw via the equality

U´γi X P “ u´γipαpni q.

If we denote as Yi the coordinate on the affine line given by Uγi , then the morphism σ acts on

such a line as an ni-th iterated Frobenius morphism, hence its behavior on the cell Bwõ “ rX`
w

can be summarized in the following diagram

U Iw » rX`
w “ SpeckrY1, . . . , Yls » Al G{PI

X`
w “ SpeckrY pn1

1 , . . . , Y
pnl

l s » Al G{P

σ σ

We reinterpret all the ingredients of Theorem 3.5 in order to specialize and state it in the
case of flag varieties. First, X “ G{P is indeed smooth, projective and G-simple. Its unique
B-fixed point is x´ “ o the base point, which gives as open cell B´o “ Bw0o “ BwI0o “ X`

wI
0

.

Moreover, the irreducible components of XzXwI
0

are the closures of the strata of codimension

one, i.e. the cells Bwo with w P W I of length lpwq “ lpwI0q ´ 1. Those are exactly of the form
w “ w0sαw0,I for α P ∆zI, since for α P I we have that w0sα is in the same left coset as wI0.
In particular, the divisors in the statement of Theorem 3.5 are

Dα “ Bw0sαw0,Io “ Bw0sαo “ B´sαo, for α P ∆zI,

hence the unique T -fixed point x´
α such that Dα is the closure of X´px´

α q is x´
α “ sαo, and

we are led to consider the B-invariant curves

Cα “ Bx´
α “ Bsαo.

We are now able to reformulate the results of Section 3.2.1 in the following:

Theorem 3.12. Let us consider a sequence G Ą P Ą Pred “ PI Ą B Ą T and let X “ G{P
with base point o and open cell X´ “ B´o. Then the following hold:

(1) The irreducible components of XzX´ are the closures Dα of the negative cells asso-
ciated to the points sαo for α P ∆zI. Moreover, they are globally generated Cartier
divisors, whose linear equivalence classes form a basis for PicpXq.

(2) Every ample (resp. nef) divisor on X is linearly equivalent to a unique linear combina-
tion of the Dα’s with positive (resp. non-negative) integer coefficients. In particular,
the natural map PicpXq ! N1pXq is an isomorphism.

(3) Considering the B-invariant curves Cα’s defined above, the intersection numbers satisfy
Dα ¨ Cβ “ δαβ .

(4) The convex cone of curves NEpXq is generated by the classes of the Cα’s, which form
a basis of the rational vector space N1pXqQ.

3.2.3. Contractions. Theorem 3.12 tells us in particular that the Picard group of a flag variety
X “ G{P is a free Z-module of rank the number of simple roots not belonging to the root
system of a Levi factor of Pred. This gives a motivation to the study, done in Section 2, of
parabolic subgroups having maximal reduced part. In order to move on to higher ranks by
exploiting the previous results in rank one, we adopt the following strategy : we define a finite
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collection of morphisms which behave nicely, arise naturally from the variety X, and whose
targets are homogeneous spaces of Picard rank one. As a first step towards such a construction,
we recall the notion of a contraction between varieties and some of its properties.

Definition 3.13. Let X and Y be varieties over an algebraically closed field k. A contrac-
tion between them is a proper morphism f : X ! Y such that f# : OY −! f˚OX is an
isomorphism.

We will make use of the following results (stated here for reference).

Theorem 3.14. Let f : X ! Y be a contraction between projective varieties over k. Then f

is uniquely determined, up to isomorphism, by the convex subcone NEpfq of NEpXq generated
by the classes of curves which it contracts. Moreover, if Y 1 is a third projective variety and
f 1 : X ! Y 1 satisfies NEpfq Ă NEpf 1q, then there is a unique morphism ψ : Y ! Y 1 such that
f 1 “ ψ ˝ f .

X Y

Y 1

f

f 1

ψ

Proof. See [8, Proposition 1.14]. �

Theorem 3.15 (Blanchard’s Lemma). Let f : X ! Y be a contraction between projective
varieties over k. Assume that X is equipped with an action of a connected algebraic group G.
Then there exists a unique G-action on Y such that the morphism f is G-equivariant.

Proof. See [5, 7.2]. �

The following construction is done here for any globally generated line bundle and is then
applied to OXpDαq to define the desired family of contractions.

Lemma 3.16. Let X be a projective variety over k and L a line bundle over X which is
generated by its global sections. Then

(a) There is a well-defined contraction

f : X −! Y ¨̈“ Proj
8à
n“0

H0pX,Lbnq.

(b) A curve C in X is contracted by f if and only if L ¨ C “ 0.

Proof. paq : Let us denote as S the graded ring on the right hand side and denote as Sd “
H0pX,Lbdq its homogeneous part of degree d. The schemes X and Y “ ProjS are covered
by the open subset

Dptq “ Spec

˜
8ď

n“0

H0pX,Lbnq

tn

¸
and Xt ¨̈“ tx P X, tx R mxLxu “ XzZptq,

for t homogeneous in ‘dě1Sd, because by hypothesis L is globally generated. This allows to
define f via the inclusion

8ď

n“0

H0pX,Lbndq

tn
Ă OXpXtq, for t P Sd.(3.3)

Moreover, [12, II, Lemma 5.14] - applied to the coherent sheaf OX and the line bundle Lbnd

- implies that (3.3) is an equality, which gives the condition f˚OX » OY .
pbq : Let us consider the sheaf OY p1q defined as in [12, II, Proposition 5.11], fix some global
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section s P H0pX,Lq and assume the open set on which it does not vanish is affine i.e.
Xs “ SpecOXpXsq. Recall that we have the trivialization L|Xs

» sOXs , so considering
sections over Xs gives

H0pXs, f
˚
OY p1qq “

˜
8ď

n“0

Sn`1

sn

¸
bŤ8

n“0

Sn
sn

OXpXsq “
sn`1OXpXsq

sn
“ H0pXs, Lq.

By covering X with the open sets Xs as s ranges over the global sections, this gives the
condition f˚OY p1q “ L, hence

H0pX,Lq “ H0pX, f˚
OY p1qq “ H0pY, f˚f

˚
OY p1qq “ H0pY,OY p1q bOY

f˚OXq

“ H0pY,OY p1qq,

where the last equality comes from f being a contraction. In particular, OY p1q is ample over
Y , thus it must have strictly positive intersection with any effective 1-cycle by Kleinman’s
criterion. In other words, given a nonzero class C P NEpXq, f˚C “ 0 if and only if

0 “ OY p1q ¨ f˚C “ f˚
OY p1q ¨ C “ L ¨ C,

by the projection formula, and we are done. �

Before going back to our particular case, let us prove a criterion for a morphism between
homogeneous spaces to be a contraction.

Lemma 3.17. Consider a chain of algebraic groups H Ă H 1 Ă G over k. The morphism
f : G{H −! G{H 1 is a contraction if and only if H 1{H is proper over k and OpH 1{Hq “ k.

Proof. Let us consider q : G! G{H and q1 : G! G{H 1 to be the quotient maps and m : Gˆ
H{H 1

! G{H the morphism given by the group multiplication and then by quotienting by
H: by [19, Proposition 7.15] we have a cartesian square

GˆH 1{H G

G{H G{H 1

prG

m q1

f

Since q1 is faithfully flat and prG is obtained as base change of f via such a morphism, f
being proper is equivalent to prG being proper; now, the latter is obtained as base change of
H 1{H ! Spec k via the structural morphism of G, which is also fppf, hence it is proper if and
only if H 1{H is proper over k. This shows the first condition.
Moreover, the formation of the direct image of sheaves also commutes with fppf extensions:
more precisely, applying this to the structural sheaves in our case yields

pq1q˚f˚OG{H “ pprGq˚OGˆH 1{H “ OG b OH 1{HpH 1{Hq,

hence by taking q1
˚ on both sides one gets

f˚OG{H “ OG{H 1 ðñ OH 1{HpH 1{Hq “ k,

which gives the second condition. �

Remark 3.18. Let us consider again a fixed parabolic subgroup P . We now construct a
collection of morphisms fα : X ! G{Qα, for α P ∆zI, such that

(1) the target G{Qα is defined in a concrete geometrical way,
(2) each fα is a contraction,
(3) the stabilizer Qα coincides with the smallest subgroup scheme of G containing both P

and Pα: in particular, pQαqred is a maximal reduced parabolic subgroup,
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(4) the collection pfαqαP∆zI "tells us a lot" about the variety X.

The reason why Qα is not directly defined as being the algebraic subgroup generated by P
and Pα is that this notion does not behave well since P is nonreduced in general.
Let us apply Lemma 3.16 to the variety X “ G{P and the line bundle L “ OXpDαq, which
can be done thanks to Theorem 3.12. This gives a contraction

fα : X −! Yα ¨̈“ Proj
8à
n“0

H0pX,OX pnDαqq.(3.4)

By Theorem 3.15, there is a unique G-action on Yα such that fα is equivariant. Moreover,
since fα is a dominant morphism between projective varieties, it is surjective, hence the target
must be of the form Yα “ G{Qα for some subgroup scheme P Ď Qα Ĺ G. We take this
construction as the definition of the subgroup Qα, so that conditions p1q and p2q are already
satisfied. Moreover, by Theorem 3.12 and Lemma 3.16, a curve C is contracted by fα if and
only if Dα ¨ C “ 0, meaning that this map contracts all Cβ for β ‰ α while it restricts to a
finite morphism on Cα. This leaves one more condition to show.

Lemma 3.19. The smallest subgroup scheme of G containing both P and Pα is Qα.

Proof. By definition of Yα we have the inclusion P Ă Qα.
Let H be the subgroup scheme of G generated by P and Pα. Since

Pred “ PI “
č

αP∆zI

Pα,

the subgroup generated by Pred and Pα is just Pα. Next, consider the quotient map rπ : rX !

G{Pα and the composition fα ˝ σ : rX ! G{Qα: the latter contracts, by the above discus-

sions, all curves rCβ for β ‰ α, hence NEprπq Ă NEpfα ˝ σq. Moreover, rπ is a contraction by
Lemma 3.17, because its fiber at the base point is Pα{PI which is proper and has no noncon-
stant global regular functions. By Theorem 3.14, there exists a unique morphism ϕ making
the diagram

rX “ G{Pred G{Pα

X “ G{P G{Qα

σ

rπ

ϕ

fα

commute: this shows Pα Ă Qα hence H Ă Qα.
Conversely, let us consider the projection π : X ! G{H. We already know by Theorem 3.12

that rπ contracts all rCβ for β ‰ α; moreover, the square on the left in the following diagram
is commutative and its horizontal arrows are both homeomorphisms. This implies that π
contracts all Cβ for β ‰ α. In other words, the inclusion NEpfαq Ă NEpπq holds.

rX X G{Qα

G{Pα G{H

σ

rπ

fα

π
ψ

Since fα is a contraction by definition, this gives a factorisation by ψ - again by Theorem 3.14
- which means that Qα Ă H. �

Remark 3.20. The homogeneous space X is now equipped with a finite number of contrac-
tions fα such that the target of each morphism has Picard group Z, with a unique canonical
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ample generator, corresponding to the image of Dα. The inclusion

P Ď
č

αP∆

Qα(3.5)

holds by definition of Qα. If the characteristic is p ě 5, by [25] there are nonnegative integers
mα for α P ∆zI such that P is the intersection of the GmαP

α, hence P Ă Qα Ă GmαP
α and

the inclusion (3.5) becomes an equality. Geometrically, this corresponds to saying that the
product map

f ¨̈“
ź

αP∆

fα : X −!

ź

αP∆

G{Qα

is a closed immersion, realizing X as the unique closed orbit of the G-action on the target.

3.3. Examples in Picard rank two. Let us consider a simple simply connected algebraic
group G over k, having Dynkin diagram with an edge of multiplicity equal to the characteristic
p P t2, 3u, so that the definitions and properties of Subsection 1.2.2 apply. In what follows,
we call a parabolic subgroup of standard type if it is of the form Gm1

Pα1 X . . . XGmrP
αr for

some integers mi and simple roots αi, while a homogeneous space is said to be of standard
type its underlying variety is isomorphic to some G1{P 1, where P 1 is a parabolic subgroup of
standard type.
The main result in this part is the following, which provides us with a first family of homoge-
neous projective varieties (in types Bn, Cn and F4) which are not of standard type.

Proposition 3.21. Let p “ 2 and consider a simple, simply connected group G and two
distinct simple roots α and β such that: either G is of type Bn or Cn and the pair pα, βq is of
the form pαj , αiq with i ă j ă n or j “ n and i ă n´ 1, or G is of type F4 and the pair pα, βq
is one among

pα1, α4q, pα2, α1q, pα2, α4q, pα3, α1q, pα3, α4q, pα4, α1q.

Then the homogeneous space X “ G{pNr,GP
α X P βq is not of standard type.

First, we give a motivation to the fact that we look for an example in rank two, then we
prove Proposition 3.21 in two consecutive steps.

Let us fix a simple root α P ∆. In order to find a parabolic subgroup not of standard type,
the easiest and more natural idea is to consider the very special isogeny πG : G −! G and
the subgroup P ¨̈“ NGP

α. Its reduced part Pred “ Pα is maximal, but P is not of the form
GmPα for any m. Indeed, its associated function ϕP : Φ`

! N Y t8u is given by

γ 7−! 8 if α R Supppγq

γ 7−! 0 if α P Supppγq and γ P Φą

γ 7−! 1 if α P Supppγq and γ P Φă

while the function associated to a parabolic subgroup of standard type satisfies ϕGmPαpγq “ m

for all roots γ containing α in their support, regardless of their length. There always exist
both a short and a long root containing any simple root α in their support, namely

‚ in type Bn, Supppε1q “ Supppε1 ` ε2q “ ∆;(3.6)

‚ in type Cn, Suppp2ε1q “ Supppε1 ` ε2q “ ∆;(3.7)

‚ in type F4, Supppα1 ` 2α2 ` 3α3 ` 2α4q “ Supppα1 ` 2α2 ` 4α3 ` 2α4q “ ∆;(3.8)

‚ in type G2, Suppp2α1 ` α2q “ Suppp3α1 ` 2α2q “ ∆.(3.9)



PROJECTIVE HOMOGENEOUS VARIETIES OF PICARD RANK ONE IN SMALL CHARACTERISTIC 59

Let us remark that the above roots can be constructed in a uniform way: they are respectively
the highest short root and the highest (long) root. Thus, we can conclude that ϕP ‰ ϕGmQ

for all m, proving that P is a parabolic subgroup not of standard type. However, X “ G{P is
isomorphic as a variety to G{Pα, hence the homogeneous space X is still of standard type.
The same reasoning applies when one considers the product of a parabolic subgroup of stan-
dard type and of a kernel of a noncentral isogeny with source G: this might define a new
parabolic subgroup, but an homogeneous space which is still of standard type. Together with
Proposition 3.1, this implies that it is not possible to find examples of homogeneous spaces not
of standard type having Picard rank one, when the characteristic satisfies the edge hypothesis
(see Section 1.2.2). This provides a motivation to the study of the rank two case, which means
considering parabolic subgroups whose reduced part is of the form Pα X P β for two distinct
simple roots α and β. In such a context we are able to find the desired class of examples.

Lemma 3.22. Let us consider a simple, simply connected group G having Dynkin diagram
with an edge of multiplicity p, fix two distinct simple roots α and β and an integer r ě 0. Both
the parabolic

P ¨̈“ Nr,GP
α X P β

and its pull-back via the very special isogeny πG : G! G are not of standard type if and only
if one of the following conditions is satisfied :

(i) G is of type Bn or Cn and the pair pα, βq is of the form pαj , αiq with i ă j ă n or
j “ n and i ă n´ 1 ;

(ii) G is of type F4 and the pair pα, βq is one amongst

pα1, α4q, pα2, α1q, pα2, α4q, pα3, α1q, pα3, α4q, pα4, α1q.

In particular, this situation can only happen when p “ 2.

Proof. Let us take a look at the function ϕP : Φ`
! N Y t8u associated to the parabolic P -

recall that it is determined by the equality

U´γ X P “ u´γpαpϕpγq q, γ P Φ`

- and let us compare it to the one associated to some Q “ GmPα XGnP β (i.e. a parabolic of
standard type), which is necessarily of this form because Qred “ Pred “ Pα X P β . Our aim is
to find in which cases there is a contradiction with the equality P “ Q. First of all, assuming
ϕP pβq “ ϕQpβq leads to n “ 0. Now, let us write down the values that ϕP and ϕQ assume on
all positive roots in the following table.

α, β P Supppγq α P Supppγq,

β R Supppγq, γ short

α P Supppγq,

β R Supppγq, γ long

β P Supppγq

ϕQpγq 8 m m 0

ϕP pγq 8 r ` 1 r 0

Thus, the two functions can never coincide if and only if there exist at least one long root and
one short root containing α and not β in their respective supports. Let us examine each root
system to determine when this is the case.

‚ If G is of type G2 in characteristic p “ 3, then all roots distinct from α1 and α2 contain
both simple roots in their support, hence the desired condition is never satisfied. Thus
from now on we can assume that p “ 2.

‚ If G is of type Bn, let α “ αj and β “ αi for some 1 ď i, j ď n. A positive short root
is of the form εm “ αm ` . . . ` αn´1 ` 2αn for m ă n or εn “ αn: hence if j ă i then
a short root containing α in its support also contains β. Let us then assume i ă j: in
this case γ “ εj satisfies the condition. Moving on to long roots, if i ă j ă n then
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γ “ α “ εj ´ εj`1 is as wanted, while if j “ n then γ “ εn´1 ` εn “ αn ` 2αn´1

satisfies the condition when i ă n´ 1, while if i “ n´ 1 then there is no such γ.
‚ If G is of type Cn, let α “ αj and β “ αi for some 1 ď i, j ď n. A positive long root

is of the form 2εm “ 2pαm ` . . . ` αn´1 ` αnq for m ă n or 2εn “ αn: hence if j ă i

then a long root containing α in its support also contains β. Let us then assume i ă j:
in this case γ “ 2εj satisfies the condition. Moving on to short roots, if i ă j ă n

then γ “ α “ εj ´ εj`1 is as wanted, while if j “ n then γ “ εn´1 ` εn “ αn ` αn´1

satisfies the condition when i ă n´ 1, while if i “ n´ 1 then there is no such γ. This
completes condition piq.

‚ If G is of type F4, there is no short root containing α1 (resp. α1, resp. α2) in its
support and not containing α2 (resp. α3, resp. α3); moreover, there is no long root
containing α3 (resp. α4, resp. α4) in its support and not containing α2 (resp. α2,
resp. α3). This can be seen by directly looking at the list of positive roots in such
a system, recalled at the beginning of Subsection 2.5. The remaining pairs are listed
below, which gives condition piiq.

α β a short γ : α P Supppγq, β R Supppγq a long γ : α P Supppγq, β R Supppγq
α1 α4 α1 ` α2 ` α3 α1

α2 α1 α2 ` α3 α2

α2 α4 α2 ` α3 α2

α3 α1 α3 α2 ` 2α3

α3 α4 α3 α2 ` 2α3

α4 α1 α4 α2 ` 2α3 ` 2α4

Up to this point we have only shown that the parabolic P is not of standard type if and only
if conditions piq or piiq are satisfied. Now, let us consider the pull-back

π´1

G
pP q “ π´1

G
pNr,GP

α X P βq “ Gr`1P
α XNGP

β

and compare it with Q “ GmP
α X GnP

β, analogously as before. This gives in particular,
considering a root γ P Φ` satisfying α, β P Supppγq, that ϕQpγq “ minpm,nq for all γ, while
ϕπ´1pP qpγq is equal to 1 if γ is short, and equal to 0 if γ is long. To show that those two
parabolics can never coincide it is enough to have both such a long and a short root. This
is always the case, as recalled at the beginning of this Subsection in (3.6)- (3.8), hence this
concludes the proof. �

Lemma 3.23. Keeping the above notations, consider two distinct simple positive roots α and
β satisfying one of the conditions of Lemma 3.22. Then the parabolic P ¨̈“ Nr,GP

αXP β gives
a variety X ¨̈“ G{P which is not of standard type.

Proof. The reduced part of the parabolic subgroup P is Pred “ Pα X P β: by Theorem 3.12,
the convex cone of curves of the variety X is generated by the classes of the curves

Cα “ Bsαo and Cβ “ Bsβo.

Next, let us consider the two contractions

fα : X −! G{Qα and fβ : X −! G{Qβ

defined by (3.4). Clearly, Qβ “ xQ,P βy “ P β is smooth because P Ă P β. On the other
hand, let us show that Qα “ Nr,GP

α. Since both P and Pα are subgroups of the right hand
term, the inclusion Qα Ă Nr,GP

α holds. To prove the other inclusion, let us notice that the
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hypothesis on α and β, as shown in the proof of Lemma 3.22, guarantees the existence of some
short positive root γ containing α and not β in its support. In particular, this implies that

P X U´γ “ pNr,GP
α X U´γq X pP β X U´γq “ u´γpαpr`1q,

hence Qα X U´γ is the image of a Frobenius kernel of height at least equal to r ` 1. By the
factorisation of isogenies in Proposition 1.12, the only two possibilities are thus Qα “ Gr`1P

α

and Qα “ Nr,GP
α, which allows to conclude that Qα “ Nr,GP

α. This means that the product
of the contractions

f “ fα ˆ fβ : X Xα ˆXβ

is a closed immersion, where Xα (resp. Xβ) is the underlying variety of G{NGP
α (resp.

G{P β). Moreover, these maps are - up to a permutation - uniquely determined by the variety
X, because the monoid NCα ‘ NCβ Ă N1pXq of effective 1-cycles does not depend on the
group action on it: the two contractions are uniquely determined by its two generators and
by the fact that the first is a nonsmooth morphism while the second is smooth.
The following step consists in studying the automorphisms of the varieties X and Xβ . First,

we can apply Theorem 2.18 to the variety Xβ “ G{P β since its stabilizer is smooth and since

by Lemma 3.22 the pair pGad, P
β{ZpGqq is not associated to any of the exceptional pairs,

except in the case of G “ Sp2n and pα, βq “ pαj , α1q, which we treat later. This implies

Aut0Xβ
“ Gad.

Next, let us consider the group Aut0X : its natural action on X gives, applying Theorem 3.15
to the contraction fβ : X −! Xβ , an action on Xβ i.e. a morphism

Aut0X Aut0Xβ
“ Gad.

ξ

In particular, the isogeny ξ is a section of the natural morphism given by the action of Gad on
X, thus giving a semidirect product Aut0X “ Gad ¸ ker ξ. Since Aut0X is reduced, ker ξ must
be finite, smooth and connected, so it is trivial and we conclude that Aut0X “ Gad.

Finally, let us consider another action of a semisimple, simply connected G1 onto the variety X;
realizing it as a quotient G1{P 1 for some parabolic subgroup P 1. Since it is simply connected,
G1 is either simple or the direct product Gp1q ˆ ¨ ¨ ¨ ˆGplq where each Gpiq is simple.

‚ If G1 is simple, then its action on X induces a morphism G1
−! Aut0X “ Gad, which is in

particular an isogeny. By Proposition 1.12, this morphism can be factorised as

G1 G Aut0X or G1 G Aut0X ,
Fm Fm˝π

where the second possibility only can happen whenever G satisfies the edge hypothesis. The
stabilizer of the G1-action is the preimage of the stabilizer of the G-action via such an isogeny,
hence it is either of the form GmP for some m or of the form Gmπ

´1pP q. Now, a parabolic
Q is of standard type if and only if GmQ is for any integer m, since the associated functions
satisfy ϕQpγq `m “ ϕGmQpγq. This means that P 1 is of standard type if and only if P (resp.
π´1pP q) is. This remark, together with Lemma 3.22 allows us to conclude that, due to our
choice of roots α and β, P 1 is still a parabolic subgroup not of standard type.
If G “ Sp2n and P β “ Pα1 , then Theorem 2.18 yields Aut0Xβ

“ PGL2n. Repeating the above

reasoning implies that Aut0X “ PGL2n as well, hence the isogeny with source G1 is necessarily
the composition of an iterated Frobenius and a central isogeny. This implies that the stabilizer
of the G1-action is of the form P 1 “ GmP hence still not of standard type.
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‚ If G1 “ Gp1q ˆ ¨ ¨ ¨ ˆGplq is not simple, consider the morphism

Gp1q ˆ ¨ ¨ ¨ ˆGplq G Gad

φ

determined by the action: then H ¨̈“ ker φ is a normal subgroup of G1 and the image of φ is
simple, thus H is necessarily of the form

H “
ź

i‰i0

Gpiq ˆK, for some K Ă ZpGpi0qq,

thus K is trivial because the quotient G is also simply connected. In particular, denoting as
Ppi0q ¨̈“ P 1 XGpi0q, we have

X “ G1{P 1 “ G1{

˜
ź

i‰i0

Gpiq ˆ Ppi0q

¸
“ Gpi0q{Ppi0q

Applying the reasoning above to Gpi0q instead of G1 leads to the conclusion that the asso-
ciated function of Ppi0q is not of standard type, hence the same is true for the stabilizer

P 1 “
ś
i‰i0

Gpiq ˆ Ppi0q. �

Notice that, except for the group of type G2 in characteristic 2, Lemma 3.23 covers the
classification of all homogeneous spaces of Picard rank two that "we know the existence of"
i.e. those of the form G{P with P “ pkerϕqPα X pkerψqP β for a couple of isogenies ϕ and ψ
with source G.
Indeed, Proposition 1.12 implies that one of the two kernels must be contained in the other,
hence up to permuting α and β the inclusion kerψ Ă kerϕ holds. Taking the quotient by kerψ

allows to assume either P “ GrPαXP β, which is the standard type case, or P “ Nr,GP
αXP β

for some r ě 0. The latter gives a variety not of standard type if and only if p “ 2 and the
above hypothesis on roots is satisfied.

Problem: Let us consider a simple group and a parabolic subgroup P Ă G with reduced
part Pred “ PI which is not maximal. The associated family of contractions give a natural
inclusion

P Ă
č

αP∆zI

Qβ.

The question whether there exist a parabolic subgroup P for which the inclusion is strict is still
open. At this point, we are neither able to exclude their existence nor to exhibit an explicit
example.
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4. Appendix

Let us resume here a short description of the Chevalley embedding of the group of type G2,
which holds in any characteristic. We will then specialize to characteristic two which is the
interesting one for our purposes. First we describe its action on the algebra of octonions, then
we use it to compute some of the root subgroups of such a group, which are fundamental in
order to study the parabolic subgroups Ph and Pl (see Definition 2.25).

4.1. The Chevalley embedding of G2. Let G be the simple group of type G2 in charac-
teristic p ą 0. It can be viewed - as illustrated in [21], from which we will keep most of the
notation - as the automorphism group of an octonion algebra. The latter is the algebra

O “ tpu, vq : u, v are 2 ˆ 2 matricesu ,

with basis

e11 “

ˆˆ
1 0

0 0

˙
,

ˆ
0 0

0 0

˙˙
, e12 “

ˆˆ
0 1

0 0

˙
,

ˆ
0 0

0 0

˙˙
,

e21 “

ˆˆ
0 0

1 0

˙
,

ˆ
0 0

0 0

˙˙
, e22 “

ˆˆ
0 0

0 1

˙
,

ˆ
0 0

0 0

˙˙
,

f11 “

ˆˆ
0 0

0 0

˙
,

ˆ
1 0

0 0

˙˙
, f12 “

ˆˆ
0 0

0 0

˙
,

ˆ
0 1

0 0

˙˙
,

f21 “

ˆˆ
0 0

0 0

˙
,

ˆ
0 0

1 0

˙˙
, f22 “

ˆˆ
0 0

0 0

˙
,

ˆ
0 0

0 1

˙˙
,

unit e “ p1, 0q “ e11 ` e22, and which is equipped with a norm

qpu, vq “ detpuq ´ detpvq.

Let us write here for reference a table of products of the basis vectors :

å e11 e21 e12 e22 f11 f21 f12 f22
e11 e11 0 e12 0 f11 f21 0 0

e21 e21 0 e22 0 0 0 f11 f21
e12 0 e11 0 e12 f12 f22 0 0

e22 0 e21 0 e22 0 0 f12 f22
f11 0 0 ´f12 f11 0 ´e21 0 e11
f21 0 0 ´f22 f21 e21 0 ´e11 0

f12 f12 ´f11 0 0 0 ´e22 0 e12
f22 f22 ´f21 0 0 e22 0 ´e12 0

(4.1)

An embedding of the group G2 into SO7 - which gives an irreducible representation in all
characteristics but two - can be seen as follows: let us consider its action on the vector space

V ¨̈“ eK “ tpu, vq : detp1 ` uq ´ detpuq “ 1u “ tpu, vq : u11 ` u22 “ 0u.(4.2)

By [21, Lemma 2.3.1], a maximal torus of G - with respect to the basis pe12, e21, f11, e11 ´
e22,´f12, f21, f22q of W - acts on V as

Gm
2 Q pξ, ηq 7−! diagpξη, ξ´1η´1, η´1, 1, ξ, ξ´1, ηq P GL7

Let us re-parameterize it with ξ “ a, η “ ab, this gives the torus

Gm
2 Q pa, bq 7−! diagpa2b, a´2b´1, a´1b´1, 1, a, a´1, abq “: t P GL7,
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and the basis of simple roots we fix is α1ptq ¨̈“ a and α2ptq ¨̈“ b. Such a torus acts on V with
the following weight spaces :

V0 “ kpe11 ´ e22q, Vα1
“ kf12, V´α1

“ kf21, Vα1`α2
“ kf22,

V´α1´α2
“ kf11, V2α1`α2

“ ke12, V´2α1´α2
“ ke21,

which correspond to 0 and the short roots. Re-arranging V as

V “ kp´f12q ‘ kf11 ‘ ke12 ‘ kpe11 ´ e22q ‘ ke21 ‘ kf22 ‘ kf21(4.3)

gives the maximal torus T

Gm
2 Q pa, bq 7−! diagpa, a´1b´1, a2b, 1, a´2b´1, ab, a´1q “ t P T Ă GL7 .(4.4)

This way, T can be identified with the maximal torus in [13, page 13]: in his description of
the embedding G Ă GL7, the group G is generated by the two following copies of GL2,

θ1 : A 7−!

¨
˝
A

Sym2pAqdetA´1

A

˛
‚ and θ2 : B 7−!

¨
˚̊
˚̊
˝

detB´1

rB
1

B

detB

˛
‹‹‹‹‚
,

where

rA “

ˆ
0 1

1 0

˙
tA´1

ˆ
0 1

1 0

˙
.

However, in characteristic p “ 2, due to the fact that e P V and that G acts on the quotient
W “ V {ke, these become the following two copies embedded in GLpW q “ GL6:

θ1 : A 7−!

¨
˝
A

Ap1q detA´1

A

˛
‚ and θ2 : B 7−!

¨
˚̊
˝

detB´1

B

B

detB

˛
‹‹‚,

where Ap1q denotes the Frobenius twist applied to A.

Lemma 4.1. The subgroups θ1pGL2q and θ2pGL2q have root system with positive root respec-
tively β1 ¨̈“ 2α1 ` α2 and β2 ¨̈“ ´3α1 ´ 2α2.

Proof. See the computation of the root homomorphisms associated respectively to β1 and β2,
done in Remark 4.2: these are respectively the intersection of θ1pGL2q and θ2pGL2q with the
upper triangular matrices of GL7. �

Let us remark that tβ1, β2u is indeed a basis for the root system of type G2, with corre-
sponding set of positive roots being

´3α1 ´ 2α2, α1 ´ α2, ´α2, α2, 3α1 ` α2, 2α1 ` α2

and with Borel subgroup given by the intersection of G with the upper triangular matrices in
GL7.
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4.2. Root subgroups. Let us move on to the explicit computation of some of the root sub-
groups in type G2. As before, we will do everything considering the action on a 7-dimensional
vector space - the orthogonal of the identity element of O - so that the computations hold in
any characteristic, then at the end we will summarize what we get in characteristic 2.

Let us consider the group G acting on the vector space V arranged as in (4.3). Denoting
as x0, . . . , x6 the coordinates on V , the norm becomes

qpxq “ ´x23 ´ x2x4 ´ x1x5 ´ x0x6,(4.5)

while the maximal torus T given in (4.4) acts on V through this table of characters

1 a2b a´1b´1 a a3b b´1 a2

a´2b´1 1 a´3b´2 a´1b´1 a a´2b´2 b´1

ab a3b2 1 a2b a4b2 a a3b

a´1 ab a´2b´1 1 a2b a´1b´1 a

a´3b´1 a´1 a´4b´2 a´2b´1 1 a´3b´2 a´1b´1

b a2b2 a´1 ab a3b2 1 a2b

a´2 b a´3b´1 a´1 ab a´2b´1 1

(4.6)

The idea is the following: we know that - for any root γ P Φ - the root subgroup Uγ Ă G

is determined by being the unique subgroup of GLpV q (resp. GLpW q in characteristic 2),
which is smooth, unipotent, is acted on by T via the character γ, and whose elements are
automorphisms of octonions. We will impose some of these necessary condition - such as uγpλq
being an isometry for any λ P Ga - to determine the root homomorphism uγ : Ga −! Uγ .

‚ First, let us consider the root α1. By (4.6) and the condition for uα1
to be a group

homomorphism, there exist some constants η1, . . . , η5 P k such that for any λ P Ga, uα1
pλq

acts on V as ¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 η1λ 0 0 η5λ
2

0 1 0 0 η2λ 0 0

0 0 1 0 0 η3λ 0

0 0 0 1 0 0 η4λ

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

.

Moreover, uα1
pλq being an isometry means, by (4.5), that

qpxq “ qpuα1
pλq ¨ xq “ qpx0 ` η1λx3 ` η5λ

2x6, x1 ` η2λx4, x2 ` η3λx5, x3 ` η4λx6, x4, x5, x6q

“ qpxq ` ´p2η4 ` η1qλx3x6 ` ´pη5 ` η24qλ2x26 ´ pη3 ` η2qλx4x5,

hence η1 “ ´2η4, η5 “ ´η24 and η2 “ ´η3. This still leaves two independent parameters η3
and η4 instead of one, so let us also impose the condition of uα1

pλq respecting the product
e12f21 “ f22 - see (4.1) :

puα1
pλq ¨ e12qpuα1

pλq ¨ f21q “uα1
pλq ¨ pf22q

e12pη24λ
2f12 ` η4pe11 ´ e22q ` f21q “ η3λe12 ` f22

´η4λe12 ` f22 “ η3λe12 ` f22,

implying η3 “ ´η4. Let us reparametrise the root homomorphism such that η4 “ 1: this,
together with an analogous computation for ´α1, gives the desired representations, of the
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form

uα1
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 ´2λ 0 0 ´λ2

0 1 0 0 λ 0 0

0 0 1 0 0 ´λ 0

0 0 0 1 0 0 λ

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

, u´α1
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

λ 0 0 1 0 0 0

0 ´λ 0 0 1 0 0

0 0 λ 0 0 1 0

´λ2 0 0 ´2λ 0 0 1

˛
‹‹‹‹‹‹‹‹‚

.

‚ Let us consider the root α2. By (4.6) and the condition for uα2
to be a group homomor-

phism, there exist some constants η1 and η2 P k such that for any λ P Ga, uα2
pλq acts on V

as

uα2
pλq ¨ x “ px0, x1, x2, x3, x4, η1λx0x5, η2λx1 ` x6q.

Moreover, the isometry condition means that

qpxq “ qpuα2
pλq ¨ xq “ ´x23 ´ x2x4 ´ η1λx0x1 ´ x1x5 ´ η2λx0x1 ´ x0x6

“ qpxq ´ pη2 ` η1qλx0x1,

hence η1 “ ´η2. As before, we can conclude that the associated root subgroups are of the
form

uα2
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

´λ 0 0 0 0 1 0

0 λ 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

, u´α2
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 λ 0

0 1 0 0 0 0 ´λ
0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

.

‚ Let us consider the root 2α1 ` α2. By (4.6) and the condition for u2α1`α2
to be a group

homomorphism, there exist some constants η1, . . . , η5 P k such that for any λ P Ga, u2α1`α2
pλq

acts on V as ¨
˚̊
˚̊
˚̊
˚̊
˝

1 η1λ 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 η2λ η5λ
2 0 0

0 0 0 1 η3λ 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 η4λ

0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

.

Moreover, the isometry condition implies

qpu2α1`α2
pλq ¨ xq “ qpx0 ` η1λx1, x1, x2 ` η2λx3 ` η5λ

2x4, x3 ` η3λx4, x4, x5 ` η4λx6, x6q

“ qpxq ´ pη1 ` η4qλx1x6 ´ pη23 ` η5qλ2x24 ´ p2η3 ` η2qλx3x4 “ qpxq,

hence η1 “ ´η4, η5 “ ´η23 and η2 “ ´2η3. This still leaves two independent parameters η3
and η4 instead of one, so let us also impose the condition of u2α1`α2

pλq respecting the product
f22e21 “ ´f21 :

pu2α1`α2
pλq ¨ f22qpu2α1`α2

pλq ¨ e21q “u2α1`α2
pλq ¨ p´f21q

f22p´η23λ
2e12 ` η3λpe11 ´ e22q ` e21q “ ´ η4λf22 ´ f21

η3λf22 ´ f21 “ ´ η4λf22 ´ f21,
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implying η3 “ ´η4, so we can conclude that the associated root subgroups are of the form

u2α1`α2
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 ´λ 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 2λ ´λ2 0 0

0 0 0 1 ´λ 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 λ

0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

, u´2α1´α2
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0 0

λ 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 ´λ 1 0 0 0

0 0 ´λ2 2λ 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 ´λ 1

˛
‹‹‹‹‹‹‹‹‚

.

‚ Let us consider the root α1 ` α2. By (4.6) and the condition for uα1`α2
to be a group

homomorphism, there exist some constants η1, . . . , η5 P k such that for any λ P Ga, uα1`α2
pλq

acts on V as ¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

η1λ 0 1 0 0 0 0

0 η2λ 0 1 0 0 0

0 0 0 0 1 0 0

0 η5λ
2 0 η3λ 0 1 0

0 0 0 0 η4λ 0 1

˛
‹‹‹‹‹‹‹‹‚

.

Moreover, the isometry condition implies

qpxq “qpuα1`α2
pλq ¨ xq “ qpx0, x1, η1λx0 ` x2, η2λx1 ` x3, x4, η5λ

2x1 ` η3λx3 ` x5, η4λx4 ` x6q

“qpxq ´ p2η2 ` η3qλx1x3 ´ pη4 ` η1qλx0x4 ´ pη22 ` η5qλ2x21,

hence η3 “ ´2η2, η1 “ ´η4 and η5 “ ´η22. Reasoning as in the above cases, let us also impose
the condition of uα1`α2

pλq respecting the product f11f21 “ ´e21 :

puα1`α2
pλq ¨ f11qpuα1`α2

pλq ¨ f21q “ uα1`α2
pλq ¨ p´e21q

pf11 ` η2λpe11 ´ e22q ´ η22λ
2f22qf21 “ ´e21 ´ η4λf21

´e21 ` η2λf21 “ ´e21 ´ η4λf21,

implying η2 “ ´η4. Reparametrizing and doing an analogous computation for the negative
root allows to conclude that the root subgroups are as follows :

uα1`α2
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

´λ 0 1 0 0 0 0

0 ´λ 0 1 0 0 0

0 0 0 0 1 0 0

0 ´λ2 0 2λ 0 1 0

0 0 0 0 λ 0 1

˛
‹‹‹‹‹‹‹‹‚

, u´α1´α2
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 λ 0 0 0 0

0 1 0 2λ 0 ´λ2 0

0 0 1 0 0 0 0

0 0 0 1 0 ´λ 0

0 0 0 0 1 0 ´λ
0 0 0 0 0 1 0

0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

.

‚ As last computation, let us consider the root ´3α1 ´ 2α2. By (4.6) and the condition for
u´3α1´2α2

to be a group homomorphism, there exist some constants η1 and η2 P k such that
for any λ P Ga, u´3α1´2α2

pλq acts on V as

u´3α1´2α2
pλq ¨ x “ px0, x1 ` η1λx2, x2, x3, x4 ` η2λx5, x5, x6q.

The isometry condition implies

qpxq “ qpu´3α1´2α2
pλq ¨ xq “ ´x23 ´ x2x4 ´ η2λx2x5 ´ x1x5 ´ η1λx2x5 ´ x0x6

“ qpxq ´ pη2 ` η1qλx2x5,
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hence η2 “ ´η1 and we can conclude that the root subgroups have the following form :

u´3α1´2α2
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0 0

0 1 λ 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 ´λ 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

, u3α1`2α2
: λ 7!

¨
˚̊
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 ´λ 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 λ 1 0

0 0 0 0 0 0 1

˛
‹‹‹‹‹‹‹‹‚

.

(4.7)

Remark 4.2. Let us recall that in characteristic 2 the group G acts on W “ V {ke, giving an
embedding G Ă Sp6: we list below what the root subspaces we need become in that case.

uα1
pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 λ2

0 1 0 λ 0 0

0 0 1 0 λ 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚
, u´α1

pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 λ 0 1 0 0

0 0 λ 0 1 0

λ2 0 0 0 0 1

˛
‹‹‹‹‹‹‚

uα2
pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

λ 0 0 0 1 0

0 λ 0 0 0 1

˛
‹‹‹‹‹‹‚
, u´α2

pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 λ 0

0 1 0 0 0 λ

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚

u2α1`α2
pλq “

¨
˚̊
˚̊
˚̊
˝

1 λ 0 0 0 0

0 1 0 0 0 0

0 0 1 λ2 0 0

0 0 0 1 0 0

0 0 0 0 1 λ

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚
, u´2α1´α2

pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

λ 1 0 0 0 0

0 0 1 0 0 0

0 0 λ2 1 0 0

0 0 0 0 1 0

0 0 0 0 λ 1

˛
‹‹‹‹‹‹‚

uα1`α2
pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

0 1 0 0 0 0

λ 0 1 0 0 0

0 0 0 1 0 0

0 λ2 0 0 1 0

0 0 0 λ 0 1

˛
‹‹‹‹‹‹‚
, u´α1´α2

pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 λ 0 0 0

0 1 0 0 λ2 0

0 0 1 0 0 0

0 0 0 1 0 λ

0 0 0 0 1 0

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚

u3α1`2α2
pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

0 1 0 0 0 0

0 λ 1 0 0 0

0 0 0 1 0 0

0 0 0 λ 1 0

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚
, u´3α1´2α2

pλq “

¨
˚̊
˚̊
˚̊
˝

1 0 0 0 0 0

0 1 λ 0 0 0

0 0 1 0 0 0

0 0 0 1 λ 0

0 0 0 0 1 0

0 0 0 0 0 1

˛
‹‹‹‹‹‹‚
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