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PROJECTIVE HOMOGENEOUS VARIETIES OF PICARD RANK ONE IN

SMALL CHARACTERISTIC

MATILDE MACCAN

ABsTRACT. We extend to characteristic 2 and 3 the classification of projective homogeneous
varieties of Picard group isomorphic to Z, corresponding to parabolic subgroup schemes with
maximal reduced subgroup. The latter are all obtained as product of a maximal reduced
parabolic with the kernel of a purely inseparable isogeny. This fails in type G2 and charac-
teristic 2, for which we exhibit an explicit counterexample. We then construct a new class of

homogeneous varieties of Picard rank two.
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We work in the setting of affine group schemes of finite type over an algebraically closed field
k. Classifying homogeneous projective varieties over k corresponds to the study of parabolic
subgroups of semisimple groups. In characteristic zero, their structure is well known: fixing
a semisimple group, a Borel subgroup and a maximal torus G > B D T, there is a bijection
between parabolic subgroups containing B and subsets of the set of simple roots of G: it is
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2 MATILDE MACCAN

a classical fact that a parabolic subgroup is determined by the simple roots forming a basis
for the root system of a Levi subgroup. Over a field of positive characteristic, parabolic
subgroups can be nonreduced hence homogeneous spaces might have very different geometric
properties: see for example the computation of the character associated to the canonical bundle
in [Lau93|, which shows that such varieties are in general not Fano. The easiest example is the
hypersurface in P2 x P2 given by the equation zoyh + x1y} + z2yh = 0, which is homogeneous
under PGL3 and not Fano if p > 3.

If the characteristic is equal to at least 5, or if the Dynkin diagram of G is simply laced
(types Ay, Dy, Eg, E7 and Eg), Wenzel [Wen93], Haboush and Lauritzen [HL93] show that
all parabolic subgroups of G can be obtained from reduced ones by fattening with Frobenius
kernels and intersecting. More precisely, they are all of the form

G, P .. Gy, PO,

where G, denotes the kernel of the m-th iterated Frobenius morphism on G and P% denotes
the maximal reduced parabolic subgroup whose Levi subgroup has as basis all simple roots
except for . When no assumption on the characteristic is made, we will call them parabolic
subgroups of Wenzel type. The proof of [Wen93] relies heavily on the structure constants (de-
fined over Z) relative to a Chevalley basis of the Lie algebra of a simply connected semisimple
group. By construction such constant are integers with absolute value strictly less than five:
the hypothesis on the characteristic and on the Dynkin diagram guarantees that they do not
vanish over k. This raises the natural question of how to generalize the classification of para-
bolic subgroups to characteristic two and three.

In this paper we manage to provide an answer to this question concerning the easiest -
combinatorially speaking - class of parabolic subgroups, those having maximal reduced part
equal to P® for some simple root a of G. These subgroups correspond to homogeneous
projective varieties of Picard group isomorphic to Z: as illustrated later in Subsection 3.2, the
Picard group of a homogeneous space G/P is free abelian with rank equal to the number of
simple roots of G not belonging to the root system of a Levi subgroup of the reduced part of
P. Our main result is the following, allowing us to complete the classification in all types and
characteristics but G5 in characteristic 2.

Theorem 1. Let X be a projective algebraic variety over an algebraically closed field of char-
acteristic p > 0, homogeneous under a faithful action of a smooth connected algebraic group
H and having Picard group isomorphic to Z.

Then there is a simple adjoint algebraic group G and a reduced mazimal parabolic subgroup
P c G such that X = G/P, unless p =2 and H is of type G;.

The result fails indeed for G9 in characteristic 2, as shown by an explicit example con-
structed in Subsection 2.6.

The paper is organized as follows. In Section 1, we build on previous work of Borel and
Tits [BT72], then completed and re-elaborated in [CGP15], to give a factorisation result for
isogenies with simply connected source. This digression is self-contained but motivated by
the fact that - in Picard rank one - purely inseparable isogenies will generalize the role of the
Frobenius morphism in [Wen93]. An important ingredient is the so-called very special isogeny
of a simple simply connected group G, which is the quotient

ma: G — G
by the unique minimal noncentral subgroup of G with trivial Frobenius. It turns out (as
shown in [CGP15]) that when the Dynkin diagram of G has an edge of multiplicity equal to
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the characteristic, such a subgroup is strictly contained in the Frobenius kernel. In particular,
mg acts as a Frobenius morphism on root subgroups associated to short roots, while it is
an isomorphism on root subgroups associated to long ones. The factorisation of isogenies
reads as follows, where we denote as F': G — G(™) the m-th iterated relative Frobenius
homomorphism of G.

Proposition 2. Let G be a simple and simply connected algebraic group over an algebraically
closed field k. Let f: G — G’ be an isogeny.
Then there exists a unique factorisation of f as

m

— Pz —
f: G T G < L @)m L

where p is a central isogeny and 7 is either the identity or - when the Dynkin diagram of G
has an edge of multiplicity p - the very special isogeny m¢.

We introduce and prove Theorem 1 in Section 2. As the exception in type G confirms,
there is no way to prove this result using general geometric arguments nor working over Z,
so we proceed by a case-by-case analysis. The proof essentially articulates in three steps: the
first one consists of some elementary reductions, showing that it is enough to prove that if P
has maximal reduced subgroup and G acts faithfully on G/P, then P must be itself reduced.
The second step is exploiting the explicit matricial description of the quotient

Lie G/ Lie Pyeq,

seen as a representation of a Levi subgroup of P.eq. Finally, the last step involves considering
some of the structure constants (chosen so that they do not vanish, depending on the charac-
teristic) and concluding using the notion of very special isogeny.

Next, we consider the case of characteristic 2 and type Ga, with short simple root « and
long simple root «y. Perhaps surprisingly, the analogous strategy of proof works when the re-
duced part is P2, but fails when considering P*!, due to the vanishing of structure constants.
We deduce that there exist exactly two p-Lie subalgebras of Lie G strictly containing Lie P!,
which are furthermore not p-Lie ideals of Lie G. We describe them explicitly and consider the
corresponding subgroups of height one in GG, which give rise to two new parabolic subgroups.
Then we study the corresponding homogeneous spaces, by means of the description of Gs
as the automorphism group of an octonion algebra, as in [SV00| and [He08|. One turns out
to be isomorphic to the projective space P, while we realize the other as a divisor in the
SO7-homogeneous variety of isotropic 3-planes in a 7-dimensional vector space. For the sake
of brevity, computations concerning the group G and its root subgroups can be found in the
Appendix [4].

We deduce in Section 3 the desired consequence of Theorem 1: the statement focuses ex-
clusively on the classification of parabolic subgroups with maximal reduced part, and requires
no assumptions on the characteristic of the base field.

Proposition 3. Let G be simple and P be a parabolic subgroup of G such that its reduced
subgroup is P for some simple root . Then there exists an isogeny @ with source G such
that

P = (ker p)P“,
unless G is of type Go over a field of characteristic p = 2 and « is the short simple root.

We prove Proposition 3 as well as a criterion to determine when two projective homogeneous
spaces with Picard group Z are isomorphic as varieties. The remaining part of Section 3 is
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devoted to the display of a family of projective homogeneous spaces of Picard rank two, whose
underlying varieties are not of Wenzel type, where the last terminology means not isomorphic
(as a variety) to some quotient with stabilizer a parabolic subgroup of Wenzel type. We will
follow the conventions on root systems adopted by Bourbaki [Bou68|. The statement is the
following;:

Proposition 4. Consider a simple, simply connected group G over an algebraically closed field
of characteristic 2 and distinct simple roots o and B such that: either G is of type By, or C,
and the pair (o, ) is of the form (o, ;) withi < j <mn orj=n andi<n—1, or G is of
type Fy and the pair (o, B) is one among

(011,014), (042,041), (Oég,Oé4), (043,041), (013,044), (Oé4,0£1).

Then the homogeneous space X = G/((ker mg)P* n PP) is not of Wenzel type, where mg
denotes the very special isogeny of G.

The strategy of proof consists first in recalling and precising a few facts on the Bialtynicki-
Birula decomposition of G-simple projective varieties, following [Bri02]. Next we specialize
the outline of this decomposition to the particular case of homogeneous spaces. This leads
to the description of the Picard group and of the group of 1-cycles on X = G/P, as well as
the definition of a finite family of contractions on X indexed by the simple roots of G not
belonging to the root system of a Levi subgroup of P,.q. More precisely, the contraction asso-
ciated to a root « sends all classes of curves to a point, except for those which are numerically
equivalent to the unique B-invariant curve passing through the image of the base point of X
by the reflection with respect to « in the Weyl group. This construction, together with the
results on automorphism groups in [Dem77|, allows us to conclude. We end with a final ques-
tion concerning the more general classification of parabolic subgroups in characteristic 2 and 3.

Acknowledgments I would like to thank my PhD advisors Michel Brion and Matthieu
Romagny for their precious guidance and support, as well as David Stewart and Philippe Gille
for the useful suggestions.

1. PRELIMINARY WORK ON ISOGENIES

1.1. Setting and notation. In this work, k& denotes an algebraically closed field of prime
characteristic p > 0.

Let G © B o T be respectively a semisimple, simply connected algebraic group over k, a
Borel subgroup and a maximal torus contained in it. Our aim is to classify all homogeneous
projective G-varieties, which are quotients of the form G/P, where P is a parabolic subgroup
of G, not necessarily reduced. By conjugacy of the Borel subgroups, we might restrict ourselves
to those containing the Borel subgroup B, which we call standard parabolic subgroups. From
now on, every parabolic subgroup will be standard, unless otherwise mentioned. Such a
classification has been established in [Wen93| and [HL93|, under the assumption that either
p = 5 or that the root system of G relative to T' is simply laced.

Let us list the main notations that are fixed throughout the paper, which mostly agree with
those of [Wen93|. Concerning root systems, we follow conventions from Bourbaki [Bou68] :

® = &(G,T) is the root system of the pair (G,T),

&t = ®(B,T) is the subset of positive roots associated to the Borel subgroup B,

A is the corresponding basis of simple roots,

W =W(G,T) = W(®) is the Weyl group of (G,T),

Sq is the reflection associated to the simple root o € A,
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e Supp(7) is the set of simple roots which have a nonzero coefficient in the expression
of v € ® as linear combination of simple roots,

e B~ is the opposite Borel subgroup, with corresponding set of roots being ®\®*,

o U, (v € ®) is the root subgroup associated to v, with corresponding root homomor-
phism u,: G, — U,,

e P% (€ A) is the maximal reduced parabolic subgroup not containing U_, which is
generated by B and U_g with 8 € A\{a},

o [ G — G™) is the m-th iterated relative Frobenius homomorphism of G,

o G, := ker ' is the m-th Frobenius kernel.

Let us recall that the morphism F7' is an isogeny since it is surjective with finite kernel.
Moreover, the map o — P defines a bijection between simple roots and maximal reduced
parabolic subgroups. More generally, under the assumptions of [Wen93|, there is a bijection

(1.1) Homge (A, N U {o0}) — {parabolic subgroups G > P > B}

sending a function ¢: A — N u {0} to the subgroup scheme P, defined by the intersection
of all maximal reduced parabolics fattened by their corresponding Frobenius kernels

Poi= [ GoaP* = (] G P
aEeA aeA: p(a)7#0
Let us recall that, given a parabolic subgroup P, there is always an associated function

p: @t — N u {00} (introduced in [Wen93]) given by the identity
U—'y NP = u—'y<ap¢(’y))a Y€ (I)+7

where a,» is understood to be G,. For example, the parabolic G, P* defines the function
sending all positive roots to infinity, except for those containing « in their support, which
assume value m.

Theorem 1.1 (Theorem 10, [Wen93]). The parabolic subgroup P is uniquely determined by
the function @, with no assumption on the characteristic or on the Dyinkin diagram of G.

Moreover, when p = 5 or G is simply laced, the function ¢ is itself uniquely determined by
its values on A via the equality

¢(v) = min{p(a): a € Supp(v)},

giving the bijection (1.1). See [Wen93, Theorem 14| for more details. As we will see later, the
last statement does not always hold in small characteristic.

The guiding idea is to mimic the known classification - written in terms of Frobenius kernels
- replacing the Frobenius morphism with any noncentral isogeny (see Proposition 3.1). This
motivates the preliminary study and classification of such homomorphisms.

1.2. Classifying isogenies. We now classify isogenies between simple algebraic groups, first
recalling definitions and the Isogeny Theorem, then introducing the so-called wvery special
isogeny Tq, whose kernel is a certain subgroup of height one defined by short roots - which
only exists when the Dynkin diagram has an edge of multiplicity equal to the characteristic -
and concluding with the following factorisation result: see Proposition 1.12.

Proposition. Let G be a simple and simply connected algebraic group over k. Let f: G — G’
be an isogeny. Then there exists a factorisation of f as

m

_ JL _
f: G LSS ¢ 5 @GHm —r @,

where p is a central isogeny and 7 is either the identity or - when the Dynkin diagram of G
has an edge of multiplicity p - the very special isogeny m¢.
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1.2.1. Preliminaries. We shall start by reviewing what isogenies look like, in particular non-
central ones. First, let us recall some notations and the statement of the Isogeny Theorem,
which is proved in detail in [Ste99].

Definition 1.2. Let (G,T) and (G',T’) be reductive algebraic groups over k. An isogeny
between them is a surjective homomorphism of algebraic groups f: G — G’ having finite
kernel, sending the maximal torus T to the maximal torus 7”. The degree of f is the order of
its kernel.

Given an isogeny f, there is an induced map between the character groups
= X(fir): X(T') — X(T), ¥+ X'o fir.
satisfying the conditions :
(i) both ¢: X(T") — X (T) and its dual ¢V : XV(T) — XV (T") are injective,
(ii) there exists a bijection ® « @' denoted o « o/, and integers g(«) which are all
powers of p, such that

o) =q(a)a and ¢Y(av) =q(a)a¥’ forall a€ .
Geometrically, the integers g(«) arise as follows: the image f(U,) is a smooth connected
unipotent algebraic subgroup of G’ which is normalized by T” and isomorphic to the additive
group G, hence it must be of the form U, for a unique o/ € ®'. This gives the bijection;

then, using the T-action on those two root subgroups, one finds that there exists a constant
Ca € Gy, and an integer g(a) € p™N such that

(1'2) f(ua(x)) = Uy (CQZEQ(Q))

for all z € G,.

Definition 1.3. A homomorphism between character groups ¢: X(T") — X(T) satisfying
conditions (i) and (ii) is called an isogeny of root data.

Theorem 1.4 (Isogeny Theorem). Let (G,T) and (G',T") be reductive algebraic groups over
k. Assume given an isogeny of root data p: X(T') — X(T'). Then there exists an isogeny
f: (G, T)— (G',T) inducing . Moreover, f is unique up to an inner automorphism inn(t)

for some te T'/Z(G').
Proof. See [Ste99, 1.5]. O

For instance, an important class of isogenies is given by the ones having central kernel, which
are characterized by the fact that the associated integers g(«) are all equal to 1: these are not
interesting for our purpose of studying parabolic subgroups, since we may restrict ourselves in
the classification to the case of a simply connected group (or an adjoint one, depending on the
desired properties). The most known example of a noncentral isogeny is an iterated Frobenius
homomorphism F™, for which o/ = v and all g(«) are equal to p™. Do other isogenies exist?
We shall now consider this question.

1.2.2. Very special isogenies. From now on we make the assumption that G is simple. The
Weyl group W = W (G, T) acts on roots leaving the integer ¢ invariant: if the Dynkin diagram
of G is simply laced, then there is only one orbit, hence all g(«) must assume the same value.
This means, by the Isogeny Theorem, that up to inner automorphisms the only noncentral
isogenies with source G are iterated Frobenius homomorphisms.

On the other hand, assume that the Dynkin diagram of G has a multiple edge. In this
setting, there are two distinct orbits under the action of the Weyl group, corresponding to
long and short roots: this allows, considering an isogeny f: (G,T) — (G',T"), for two
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possibly distinct values of g(«). Let us denote as @ and ®- the subsets of & consisting of
short and long roots respectively, and denote the two integer values as

(1.3) g< =q(a) (@€ P<) and g :=q(a)(ae ).
Analogously, we fix the following notation for the direct sum of root spaces associated to roots
of a fixed length:
g< = (—B Oo = (—B LieU, and g~ := (—B Oo = (—B Lie U,.
aced - oaced - acd~ acd~

We now recall a notion introduced in [CGP15, Section 7.1], based on previous work from
Borel and Tits, and some of its properties. Also, let us remark that the assumption we will
make is stronger than just asking that the group is not simply laced: to define the following
notions, the characteristic needs to be p = 2 for types B,,, C, and Fy, and p = 3 in type Gs.
Equivalently, the group G has Dynkin diagram having an edge of multiplicity p. From now
on, we will call this the edge hypothesis. The following result is [CGP15, Lemma 7.1.2].

Lemma 1.5. Let G be simply connected satisfying the edge hypothesis. Then the vector sub-
space

ng :=(Liev" (Gp): 7P )Dg<
is a p-Lie ideal of Lie G. Moreover, every nonzero G-submodule of Lie G distinct from Lie Z(G)
contains ng.

By the equivalence of categories between p-Lie subalgebras of Lie G and algebraic subgroups
of G of height one, the p-Lie ideal ng lifts to a unique normal subgroup of G.

Definition 1.6. Let G be simply connected satisfying the edge hypothesis. The algebraic
subgroup of height one having ng as Lie algebra is denoted as Ng.

In particular, N¢ is characterized by being the unique minimal noncentral normal subgroup
of G having trivial Frobenius. For more details see [CGP15, Definition 7.1.3]. Thus, we are
led to consider the homomorphism

ng: G — G := G/Ng.
Let us remark that this is a noncentral isogeny with corresponding values g~ = p and ¢~ = 1.

Definition 1.7. With the above notations, the homomorphism 7 is called the very special
isogeny associated to the simple and simply connected algebraic group G.

The following step towards a better understanding of isogenies is the natural generalization
of the above notion to the non simply connected case.

Definition 1.8. Let G be simple satisfying the edge hypothesis and let : G — G be its
simply connected cover. Let Ng be the kernel of the very special isogeny of G defined just
above. We denote as :

e Ng its schematic image via the central isogeny v ;

o N, &i=ker(mzm o Fé”) = (ng)*l(Ném)), for any m > 1 ;

e N,, ¢ the schematic image of Nm7 & via the central isogeny 9.

Let us remark that N¢ is nontrivial, noncentral, normal and has trivial Frobenius. Moreover,
it is minimal with such properties: let H < Ng be another such subgroup, then H:= v H)N
Ng is nontrivial, noncentral, normal and of height one, hence by definition contained in Ng.
This shows that Ng = ¥(Ng) W(H) = H.
It is now natural to ask ourselves if such a subgroup is unique, or if we can give an example
of it appearing in a natural context. This is shown in Lemma 1.14 and Example 1.15 below.
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Up to this point in this section we have assumed that the Dynkin diagram of G has an edge
of multiplicity p. What about the other cases not satisfying the edge hypothesis, in particular
those which are not treated in [Wen93|? Let us assume that either p = 3 and that the group
G is simple of type B,,, C), or Fy, or that p = 2 and the group G is simple of type G2. Then an
analogous construction to the subgroup Ng cannot be done for the following reason: nontrivial
normal subgroups of height one correspond, under the equivalence of categories, to nonzero
p-Lie ideals of Lie G, which do not exist due to the following result (see [Str04, 4.4]).

Lemma 1.9. Let p = 3 and G be simple of type B,,, C,, for somen = 2, or Fy, or let p = 2
and G simple of type Go. Then Lie G is simple as a p-Lie algebra.

1.2.3. Factorising isogenies. Let us start by recalling the following result concerning the fac-
torisation of the Frobenius morphism (see [CGP15, Proposition 7.1.5]) :

Proposition 1.10. Let G be simple and simply connected satisfying the edge hypothesis. Then

(a) There is a factorisation of the Frobenius morphism as

Fg: (G Uic G L a)

which is the only nontrivial factorisation into isogenies with first step admitting no
nontrivial factorisation into isogenies.

(b) The root system ® of G is isomorphic to the dual of the root system of G.

(c) The bijection between ® and ® defined by Tg exchanges long and short roots: denoting
it as a <« @, if a is long then & is short and vice-versa.

(d) In the factorisation of point (a), the map T is the very special isogeny of G.

In particular, the restriction (7‘('(;)‘[]&: U, — Ugz gives an isomorphism whenever « is long
and a purely inseparable isogeny of degree p whenever « is short.

Lemma 1.11. Assume f: G — G’ is a noncentral isogeny with G simply connected and
satisfying the edge hypothesis. If at least one value of q(a) is equal to 1, then necessarily

g =1.

Proof. Let us consider the Lie subalgebra Lie(ker f) < g. This is a proper G-submodule of the
Lie algebra g under the adjoint action, which is not contained in Lie Z(G): by Lemma 1.5,
Lie(ker f) must contain all of g—. This means that if « is a short root, then Jiva: Ua — Us
is not an isomorphism: in other words, g # 1. O

Proposition 1.12. Let G be a simple and simply connected algebraic group and let f: G — G’
be an isogeny. Then there exists a unique factorisation of f as

m

_ JuL _
f: G LSS S 5 @m —r @,

where p is a central isogeny and w is either the identity or - when G satisfies the edge hypothesis
- the very special isogeny mg.

Proof. Let us start by considering the bijection ® < ®" and the corresponding integers g(«)
associated to the isogeny f, as recalled in (1.2).

Step 1: is the isogeny central? This is equivalent to asking whether all integers ¢(«) are equal
to one. If this is the case, then we are done. Next, we will hence assume that at least one
value of ¢ is nontrivial.

Step 2: does p divide g(«) for all roots a? If the group is simply laced this is always the case,
since ¢ is constant. If p = 3 and the group is of type B,,, Cy or Fy, or if p = 2 and the group
is of type Ga, this is also always the case: indeed, there exists at least one v € ® such that
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q(y) # 1. Equivalently, the corresponding root space satisfies g, < b := Lie(ker f). Since b is
a nontrivial p-Lie ideal of Lie GG, it must coincide with all of Lie G thanks to Lemma 1.9.

In general, if the answer is yes, then the root subspace g, is contained in Lie(ker f) for all
roots. Since the latter is a Lie ideal of Lie G, taking brackets implies that the copy of sl
associated to each root is also contained in Lie(ker f), which thus coincides with Lie G. This
means in particular that the Frobenius kernel of G is contained in the kernel of f, so we can
factorise by the Frobenius morphism as follows

f

¢ e Lqn I X

and go back to Step 1 replacing f by f’. Notice that this is possible, since the group G is
still simple and simply connected. Moreover, the new integers associated to the isogeny f’ are
exactly g(a)/p, hence their values strictly decrease. After this step, we can hence assume that
there are two distinct values ¢~ and ¢~ as defined in (1.3). In particular, let us remark that
in this case G is not simply laced.

Step 3: this step only occurs when the Dynkin diagram of G has an edge of multiplicity p;
moreover, by Lemma 1.11 g= = 1 while ¢ is divisible by p. This last condition means that
for any short root v, the root subspaces g, and g_, are contained in Lie(ker f). This implies
that

(s12)y = [0y, 0] ® gy D gy = Lie(7" (Gn)) ® 9, ® g < Lie(ker f),
hence, by definition of the subgroup N¢ in the simply connected case, we have
(Lie(7"(Gm)): e <)y @ gy =: Lie N¢ < Lie(ker f).
7€P<

Since N¢ is of height one, this implies that Ng < ker f, so we can factorise by the very special
isogeny as follows
f

G- a0 %/ G’

and go back to Step 1. Notice that this is possible, since by Proposition 1.10, the group G
is still simple and simply connected. Moreover, we know that the bijection ® « & exchanges
long and short roots and that (WG)IUQ is an isomorphism for « long and of degree p when « is

short. By denoting as ¢'(—) the integers associated to the new isogeny f’, we then have
()< =d@) =q(a) =g¢- =1, (av long)
(¢")> =d'(@) = q(a)/p = q</p, (a short)

so the nontrivial integer strictly decreases after this step.

Following this procedure, one will necessarily factorise a finite number of times leading finally
to a central isogeny, which is the p given in the statement of the proposition. Moreover, we
claim that the Frobenius morphism and the very special isogeny - when it is defined - commute,
in the following sense: if G is simple and simply connected, then

TG OFG = FéOT('G.

To prove this, let us apply the factorisation of the Frobenius morphism given in Proposi-
tion 1.10 twice to get

Taw o Fg = mga) o (mgomg) = (Tgu) o mg) omg = Fromg.
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This means that we can commute 7 with the Frobenius and assume that it is the first morphism
(or the middle one, which gives another unique factorisation) in the expression f = po F™ o
. ]

Remark 1.13. The above Proposition allows us to associate to any isogeny f: G — G’
between simple algebraic groups a diagram of the form

a—1 L

d gl
é F™morm a
where 1 is the simply connected cover of G and p is central. In particular, notice that the

group (é)(m), which is the target of the morphism F™ o, is simply connected and p is central,
thus this group is the simply connected cover of G.

The first immediate consequence of this factorisation result is the uniqueness of the subgroup
Ng.

Lemma 1.14. Let G be simple satisfying the edge hypothesis and H < G a normal, noncentral
subgroup of height one. Then H contains the subgroup Ng. In particular, such a subgroup is
UNIQUE.

Proof. The conclusion clearly holds when H equals the Frobenius kernel of G, hence we can
assume that H # G1. To prove that Ng < H it is enough to show that f(Ng) is trivial, where
f is the isogeny G — G/H. Consider the associated diagram given in Remark 1.13 :

¢ —L s qm

wT pT
where 7 is either the identity or the very special isogeny of G. We want to show that the

bottom arrow is necessarily the very special isogeny 7. First, the subgroup H is noncentral
hence if m = 0 then 7™ = 7, otherwise the bottom row would be the identity and f would be

central. Moreover, H ¢ G = ker(F': G — G(l)) hence the factorisation of the isogeny f o
given in Proposition 1.12 does not contain any Frobenius morphism : this means that m = 0
so necessarily 7 is the very special isogeny of G. Thus, we can conclude that f o1 = poms
and

f(Ng) = f(V(Ng)) = p(rz(Ng)) =1
as wanted. 0

Example 1.15. Let us assume p = 2 and consider the group G = SOsg,41 = SO(K***1) in
type B, with n > 2, defined as being relative to the quadratic form

n—1

Q(z) = a + Z TiTon—i

i=0
and G’ = Sp,,, = Sp(k?") relative to the skew form

n
b(y,y') = D Yilhns1—i — Yont1-iY}-
i=1
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Since G fixes the middle vector of the canonical basis e, it acts on k" = k?"*!/ke, and this
gives an isogeny

p: G = S02n41 — Spy, = G,

of degree 2", Since the target of the isogeny is already simply connected, the diagram of
Remark 1.13 is as follows :

SO2n+1 —r Span

M
Spln2n+1

In particular, since 1 is central - identifying the root systems of a group and of its simply
connected cover - the integers g(—) associated to the isogeny ¢ must be the same as those
associated to the composition F o 7. In particular, this implies m = 0; hence the subgroup

Ns0,,41 = ker ¢ = p(ker m) = 9 (Nspin,, , ),

which appears in this natural construction, coincides with the one just defined above. In
particular, in this case

Lie NSpin2n+1 Lie(e C—B gy = Lie(e,, (Gm)) C—B (9-c @ e,

yed o 1<ig<n

To conclude this example, let us determine explicitly the subgroup Nso,,,, = ker ¢ and its
Lie algebra, which will be needed later on. A matrix in ker ¢ is of the form

ao
1, ; On
an—1
A= |bo...bp_1 an bpy1...b2p
An+1
0y, ; 1
a2n,
and the condition for A to be in SOq, 1 gives
n—1
Q(AZ’) = aixn + Z b2 2 + Z .Z' iT2n—i T A2pn—iTiTn + A;T2n— zxn)
Jj#n =0
n—1
= Q(z) = 2} + ) mion i,
=0
which is equivalent to a; = 0 for all i # n, a2 = 1 and b2 = 0 for all ¢. Moreover, under these
conditions det A = a,, = 1, thus we have
1 0 0
Nso,,,, = kerp = bo...bp—1 1 bpy1...b2, | € GLlopy1: b€ p =~ af,".
0 0 1

Finally, using the equalities in Remark 2.11 concerning short roots, we can conclude that
Lie N302n+1 = 0<.
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2. CASE OF PICARD RANK ONE

Let us recall that we are working with a semisimple algebraic group G > B o T over an
algebraically closed field k of characteristic p > 0, together with a fixed Borel subgroup and a
maximal torus contained in it. Our aim is to prove that all projective homogeneous varieties
under a G-action having Picard group of rank one are isomorphic (as varieties) to homogeneous
spaces having reduced stabilizers, in every type except G2 when the characteristic is p = 2.
Let us remark that, since the Picard rank of X = G/P is equal to the number of simple
roots of G not contained in the root system of a Levi subgroup of P, such spaces are realized
as quotients G/P such that the reduced subgroup of the stabilizer P is maximal. For a full
justification of this assertion, see Section 3.2.

The main result is the following :

Theorem 2.1. Let X be a projective algebraic variety over an algebraically closed field of
characteristic p > 0, homogeneous under a faithful action of a smooth connected algebraic
group H and having Picard group isomorphic to Z.

Then there is a simple adjoint algebraic group G and a reduced mazimal parabolic subgroup
P c G such that X = G/P, unless p =2 and H is of type Gs.

The purpose of this Section is to prove the above Theorem: the idea is to do it explicitly
case by case, since there seems to be no easy general geometric argument, as the case of type
(G2 in characteristic two confirms. We proceed as follows: in Section 2.1 we perform elementary
reductions to the case where X = G/P with G simple and the characteristic is 2 or 3, and we
recall some notation and results used in the proof. In Section 2.2 we illustrate the strategy of
the proof in the simplest case of type A,,—1. In Sections 2.3 to 2.5 we implement the argument
in types By, C), and Fy. The case of Ga, for which the above Theorem fails in characteristic
2, is then studied separately in Section 2.6.

2.1. Reductions and notation. Let us place ourselves under the hypothesis of Theorem 2.1
and denote as H,g the largest connected affine normal subgroup of H. By [BSU13, Theorem
4.1.1], there is a canonical isomorphism X ~ A x Y, where A is an abelian variety and Y is a
projective homogeneous variety under a faithful H,g action. Moreover, H,g is semisimple and
of adjoint type. Under our assumptions, the abelian variety must be a point because otherwise
the Picard group of X would not be discrete; more precisely, the hypothesis Pic X = Z implies -
by the combinatorial description of the Bialynicki-Birula decomposition of homogeneous spaces
given in Theorem 3.12 - that we can assume H to be simple. After such reductions, it is thus
enough to prove the following statement.

Theorem 2.2. Let G be a simple adjoint group, not of type Go when the characteristic is 2,
and P a parabolic subgroup such that Pyeq is mazimal. If G acts faithfully on X = G/P, then
P is a reduced parabolic subgroup.

Let us keep notations from Subsection 1.1 and recall for reference the statement of [Wen93,
Theorem 14].

Theorem 2.3. There is an injective map

Homge (A, N U {w0}) — {parabolic subgroups G > P > B}

e—  [1  GewP"
aeA: p(a)#00

Moreover, if p = 5 or the Dynkin diagram of G is simply laced, this map is also surjective.
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Remark 2.4. Let us start by taking a projective variety X which is homogeneous under the
action of a simple group H. By replacing such a group with the image G of the morphism
H — Auty (see Remark 2.18 concerning the notation on automorphism groups) we may
assume that the action is faithful. In particular, this means that there is no normal algebraic
subgroup of G contained in P. However, we need to be careful in the case-by-case proof because
this additional assumption - which is not restrictive on the varieties considered - forces the
group G to be of adjoint type.

Let us place ourselves in the setting of Theorem 2.2 and sketch the strategy of the proof:
let P be a nonreduced parabolic subgroup such that

Pred:Pa

for some simple positive root a € A; consider P* < P < (G, inducing the corresponding
inclusions on Lie algebras:

Lie P* < Lie P < LieG.
Since we do not have any information a priori on P, we study the quotient

Vo := Lie G/ Lie P“,

considered as a L“-module under the representation given by the adjoint action, where L%
denotes the Levi subgroup defined as the intersection P* n (P%)~ with the corresponding
opposite parabolic subgroup.
Let us fix some notation and state a Lemma on structure constants which will be repeatedly
used in what follows :

e the decomposition of the Lie algebra in weight spaces under the T-action is

g=LieG =LieT P g,
ved
e when G is simply connected, a Chevalley basis of Lie G is denoted as {X, Ho }ed,aeA -
In particular, g, = LieU, = kX, and X, = du,(1), where u, is the root homomorphism
G, — U,. Whenever the Dynkin diagram of G is not simply laced,
e &_ c ® and ¢ < P denote respectively the subsets of short and long roots, whenever
a multiple edge appears in the Dynkin diagram,
e when G is simply connected and satisfies the edge hypothesis (see Section 1.2.2), Ng
denotes the finite group scheme of height one whose Lie algebra is given by
Lie Ng = (Lie(y" (Gm)): 7€ ®<) P g5,
veP<
as recalled in Definition 1.8.
e when G is not simply connected and satisfies the edge hypothesis, Ng denotes the
schematic image of Ny via the universal covering map, where G is the simply connected
cover of G - see again Definition 1.8.
Let us recall the following Lemma - see [Hu78, Chapter VII, 25.2] - which allows us to

calculate all structure constants with respect to a Chevalley basis of the Lie algebra Lie G,
where G is simple and simply connected.

Lemma 2.5 (Chevalley). Let {X,: v € ®, Hy: o € A} be a Chevalley basis for Lie G, where
G is simple and simply connected. Then the resulting structure constants satisfy

(a) [Ho,Hgl =0 forall o, f € A ;

(b) [Ho, Xy = {a, )X, forallae A, ye ® ;

(c¢) [ Xy, X,] is a linear combination with integer coefficients of the Hy'’s ;
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(d) [ Xy, X5] = +(r + 1) X 45 for all § # +~ roots such that the 0-string through ~ goes
from v —1réd to v+ qb with g = 1, i.e. such that v+ § is still a root ;
(e) [ Xy, Xs] =0 for all roots § # +~ such that v + 6 is not a root.

In particular, the Chevalley relation we use the most frequently is (d): it is important to
recall that structure constants appearing in such equations are among +1,+2, +3, £4, which
indicates why problems arise in characteristic 2 and 3.

The main line of argument to prove Theorem 2.2 is the following: we start by considering
X = G/P with G adjoint acting faithfully and P nonreduced. Then with some computation
on Lie algebras, we show that - when it is defined - Ng < P, while otherwise G; < P. In both
cases this gives a normal algebraic subgroup of G contained in the stabilizer P, which cannot
exist due to Remark 2.4.

2.2. Type A,_1. We start with a case whose classification is already covered by [Wen93]| -
without needing any assumption on the characteristic of the base field - but which is useful in
order to explain the approach used in the other cases below.

Let us consider the reductive group G = GL, in type A,_1, its maximal torus 7" given by
diagonal matrices of the form

t = diag(t1,...,t,) € GL,

and the Borel subgroup B of upper triangular matrices. Let us denote as g; € X(T') the
character sending t — t;, for ¢ = 1,...,n. Then the root system ® = ®(G,T) is given by

Pt ={e; —¢j, 1<i<j<n}
with basis A consisting of the following roots :
O] =€&1 —€2, ..., Qn-1 =En—1 — &n.

Finally, assume given a nonreduced parabolic subgroup P such that P..q = P,,, where P, :=
P denotes the maximal reduced parabolic subgroup associated to the simple positive root
am, for a fixed 1 < m < n. Thus, the Levi subgroup L,, of this reduced parabolic subgroup is
a product of a reductive group of type A,,—1 and one of type A, ;1 :

Ly = {(* 0)} ~ GLyy X GLy_m,
0 =

and the two factors have as basis of simple roots {1, ...,am—1} and {@mn41,...,@,—1} respec-
tively.
Now, let us consider the vector space V,,, = Lie G/ Lie P,,. Since

{ye®": i e Supp()} = {ei — ¢, i <m < j},
the root spaces in V,,, are of the form g, 1, = kEj;, for i < m < j, where Ej; denotes the
square matrix of order n having all zero entries except the (j,7)-th entry which is equal to 1.

Concretely, V,,, consists as L;,,-module of all matrices M of size (n — m) x m. The action of
Ly, on V,, is given by

_ (A 0N [/O0 0\ /At 0 _ 0 0)_ 1
(A’B)'M_<0 B) <M o>< 0 Bl>_<BMA1 o)‘BMA ’

for all A € GL,,,, B € GL,,_,;;. This just corresponds to the natural action of GL,, x GLy_,
on Homy (K™, k™~™). In particular, V}, is an irreducible L,,-module.

Since Lie P/Lie P, is an L,,-submodule of V,,, and we assumed P to be nonreduced, this
implies Lie P = LieG hence G; < P. Under our assumptions, by Remark 2.4 we get a
contradiction. In other words, under the hypothesis of maximality of the reduced subgroup,
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we find that there are no new varieties other than those of the known classification. In the
following subsections we will treat the other cases - not included in Wenzel’s article - where
two different root lengths are involved.

Remark 2.6. What does this case correspond to, geometrically, on the level of varieties 7 We
know by [Wen93| that Peq = P*™ implies P = G, P* for some r > 0, hence

X = G/G, P ~ GW /(P ~ G/PY = Grass,n

is isomorphic to the Grassmannian of m-th dimensional vector subspaces in k", equipped with
the natural G = GL,-action, twisted by the r-th iterated Frobenius morphism. In particular,
assuming faithfulness of the action implies r = 0.

2.3. Type C,,. Let us consider the group G= Spa, in type Cy,, with n > 2 in characteristic
p = 2 or 3. Defining G as relative to the skew form b(z,y) = D" | TiYon+1—i — Tan+1—i¥Y; ON
k%", one has

0 0 1
~ 0o Q, 0 Q, .
G—{XGGLQnZtX(_Qn O)X_<—Qn 0)}, whereQn: 0o . 0

1 0 0

Deriving this condition gives as Lie algebra

LieG = {Meg[2n: M (_?2 %”) + (_% %”) M = }

= {(é _ljﬂ) egl,,: B= Bt andc_cﬁ},

where for any square matrix X of order n we denote as X the matrix Q,'XQ,, i.e.
(2.1) (X")ij = Xns1—jmt1—i-

Remark 2.7. Next, let us consider as maximal torus 7" the one given by diagonal matrices of
the form

t =diag(ts,...,tn,tn ..., 17 ") € GLay,
and denote as g; € X*(T') the character sending t — t;, for i = 1,...,n. A direct computation
gives the following root spaces in Lie G:

(0 Einyi-\ (0 EuQy,
92&—1@(0 0 >_k<o o)

0 0 U '
_ _ <1<
822 =k <En+1—i,i 0) : <Q"E“ 0/’ e
— 0 Ei,n+17j + Ej,n+17i =k 0 (EZ] + EJZ)Q”
Oei+e 0 0 0 0 7
G—ci—¢; EnJrlfi,j + EnJrlfj,i 0 Qn(Eij + Eji) 0/’ Js
E.. 0 E;; 0
=k =k ’
Bei—e; < 0 - n+1—j,n+l—i> ( 0 _E§j>
E.. 0 Ej; 0 ) ]
B ok yi k J <
G—eite; ( 0 - n+1i,n+1j> ( 0 _E;iZ) 7 -

where F;; denotes the square matrix of order n with zero entries except for the (4, j)-th which
is equal to one.
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The root system ® = ®(G, T) is thus indeed
(I)+={€i—€j, € + €5, 1<i<j<n}u{2, 1<i<n},

having chosen as Borel subgroup the one given by all upper triangular matrices in G < GLay.
The corresponding basis A consists of the following roots :

(2.2) Q) = €1 — €9, ..., Qp_1 = En_1 — En, Op = 2&,.

2.3.1. Reduced parabolic P,. Still considering the group G = Spy,,, denote as P, the maximal
reduced parabolic subgroup associated to the long simple positive root a,,: in a more intrinsic
way, this subgroup is the stabilizer of an isotropic vector subspace W < V of dimension
n, where G = Sp(V). In particular, W is the span of ej,...,e,, where (e;)?"; denotes the
standard basis of k%". Moreover, let us denote as P, the opposite parabolic subgroup and as
L,, their common Levi subgroup, so that

P, = Stab(W c V)
P, =Stab(W* c V)
L, =P,nP, =GL(W)~GL,,
where W @ W* = V. Let us also remark that L has root system ¥ given by
Ut ={g —¢;,1<i<j<n},

corresponding to a reductive group of type A,_1 having as basis aq,...,a,_1. This can be
visualized in the following block decomposition :

Ly = {(é _(21)0 : Ae GL(W) ~ GLn} < G.

First, the Lie algebra of P, is
Lie P, = Lie B (‘Dg—ai+aj = C—B (gai—aj (—Dg_fi“r&j) @g&‘i"r&‘j (‘ngzw

1<j 1<j 1<j %
For our purposes it is useful to study the L,-action on the vector space

Vn = Lle é/ Lle Pn = @gfgifej @97262"

1<j 7

Lemma 2.8. The L,-module V,, is isomorphic to the dual of the standard representation of
GL, on Sym?(k").

Proof. Indeed, the root spaces we are interested in have been computed in Remark 2.7. Those
equalities imply that a matrix in V,, is of the form

(QOX 8) ., with X e Sym?(k"),

thus the dual action of A € GL,, ~ L,, can be computed as follows:

_ tA—1 0 0 0\ /4 0 0 0
tg—1 ~ _ ~ 3
AT X~ ( 0 —(tA)ﬁ> <QnX 0) (o —(tAl)ﬁ> = (—QnAXtA o) ~AXA.

This gives the desired isomorphism between the two GL,-modules.
Let us remark that if we are working over a field of characteristic p = 2, the L,,-module V,
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contains a unique simple L,-submodule whose quotient is also irreducible, namely

n
€ ,Ci € k= @g—Zaia
=1

Cn 0

which is isomorphic to the dual of the standard representation of GL, on k", twisted once by
the Frobenius morphism. O

Proposition 2.9. Assume given a nonreduced parabolic subgroup P such that Py = P,.
Then Lie P = LieG or Lie P = Lie P, + g<. If p = 3, then necessarily Lie P = LieG.

Proof. Let us consider the nonzero vector space Lie P/Lie P,, which is an L;,-submodule of
V;,. The latter being isomorphic to Sym?(k™)* by Lemma 2.8, we have that

(a) either Lie P/Lie P, contains all of the weight spaces g_a., associated to long negative
roots,
(b) or it does not contain any of them.

Let us start by (a) and assume g_o., < Lie P for all 4. In order to prove that Lie P = Lie C~¥,
it is enough to show that for any ¢ < j, the Chevalley vector X_., . also belongs to Lie P.
For this, let us consider roots

v =¢&; —¢€j, satisfying X, € Lie L,, < Lie P,
6 = —2¢;, satisfying X € Lie P by our last assumption.
Thus, v+ = —¢&; —¢; is still a root while § —v = —3¢; —¢; is not: applying Lemma 2.5 gives
[Xej—e;s Xo2e;] = £X ¢, ¢, € Lie P

as wanted.

Let us place ourselves in the hypothesis of (b) and assume that no root subspace associated
to a negative long root is in Lie P. Since by assumption P is nonreduced, Lie P, < Lie P so

there must be at least one short root of the form —e; — ¢; satisfying X_., ., € Lie P. We will
now prove that this implies all short roots —&; — &, for [ < m belong to Lie P, hence showing

Lie P = Lie P, + g-.
First, assume [ # 4, j and consider roots
v = —¢&; —¢gj, satisfying X, € Lie P by assumption,
0 = —g; + &4, satisfying Xy € Lie L,, < Lie P.
In this case, v+ = —g; — ¢; is still a root while § —~v = —¢; + 2¢; + € is not: applying
Lemma 2.5 gives
[X ey X el =£X ¢ ¢, eLieP.
Now, let us fix any [ < m satisfying I, m # j and consider roots
¥ =¢€; —€m, satisfying X, € Lie L,, = Lie P,
0 = —g; —¢j, satisfying X € Lie P by the last step.
Thus, v+ 6 = —&; — &y, is still a root while § —v = —&; — 2¢; + &, is not: applying Lemma 2.5
gives
[Xej—ems X—e,—¢;] = £X ¢, € Lie P.
If we are working over a field of characteristic p = 3, the representation of GL,, acting on
Sym? (k™) is already an irreducible one: this means that V}, is an irreducible L,-module. Hence
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the nonzero submodule Lie P/ Lie P, must coincide with all of V,,; equivalently, Lie P = Lie G
as wanted. O

Proof. (of Theorem 2.2 in type C,, when Preq = F,,)

Let G be simple adjoint of type C), and X = G/P with a faithful G-action such that P,eq = P*»
and P is nonreduced. Define P < G = Spa, as being the preimage of P in the simply connected
cover: it is a nonreduced parabolic subgroup satisfying ﬁred = P,. When p = 2, the above
Proposition implies that

(Lie(vY(Gm)): 7€ P<)®g< = Lie Ny Lie P,

hence by considering the image in the adjoint quotient we get N < P, which is a contradiction
by Remark 2.4. If p = 3 then the above Proposition implies that Lie P = LleG hence the
Frobenius kernel satisfies Gl c P and its image in the adjoint quotient is a normal subgroup
of G contained in P, which gives again a contradiction. Therefore in both cases P must be a
smooth parabolic. O

2.3.2. Reduced parabolic P,,, m < n. Let us consider again a k-vector space V of dimension
2n and denote as G the group Spay, = Sp(V), of type C), with n > 2 and k of characteristic
p = 2 or 3. Its root system has been recalled in (2.2). Let us fix an integer 1 < m < n
and consider - keeping the notation recalled at the beginning of this subsection - the maximal
reduced parabolic

P, = P%m,

associated to the short simple root «,,, which is the subgroup scheme stabilizing an isotropic
vector subspace of dimension m: let us denote the latter as W. Then, P,, also stabilizes its
orthogonal with respect to the symplectic form on V: denoting as P, the opposite parabolic
subgroup and as L., their common Levi subgroup, one finds

P,, = Stab(W c Wt c V) = Stab(W c W@ U < V)
P, = Stab(W* ¢ (W*)* c V) = Stab(W c W*@ U c V)
Ly, = Py, n P, = GL(W) x Sp(U) ~ GLy, X Spay,_opm, -

In other words, the choice of such a Levi subgroup corresponds to fixing a vector subspace U
satisfying V.= W @ U @ W*. Let us also remark that L has root system W given by

t =g — gj,i<j<mpu{e —ej&+¢ej,m<i<jtu{;, m<j}

This can be visualized in the following block decomposition :

Ly, = 0 B 0 : Ae GL(W),BeSp(U) y c P, = 0 = =
0 0 —(AhE 0 0 =

Proposition 2.10. Assume given a nonreduced parabolic subgroup P such that Prg = Pp,.
Then Lie P = LieG or Lie P = Lie P,,, + g<. If p = 3, then necessarily Lie P = Lie G.

Proof. The Lie algebra of P, contains all root subspaces except for those associated to negative
roots containing ., in their support, hence

Vm := Lie é/Lle Pm = ( @ gfeifej @ 92€j> @ (Q—eifsj @gfsﬁej)

<j<m js<m <m<j
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More concretely, since L,, = Stab(WW) n Stab(W*), the Levi subgroup acts on V;,, as follows.
First, a matrix in

( @ g—Ei—Ej @ g—2€j>
<j<m js<m

is of the form

0 00
0 00
Q,X 0 0
with X € Sym2(W), and the L,,-action on it is given by
A 0 0 0 0 0\ /At 0 0
(A,B)-X=~[0 B 0 0 0 0 0 Bt 0
0 0 —(AHE/\X 0 0 0 0 —Af
0 0 0
= 0 0 0]~ttxA!,
—Qn(fA7IXA™YH 0 0

hence this L,,-module is isomorphic to the dual of the standard representation of GL,, acting
on Sym? (k™).

Let us assume that the characteristic of the base field is p = 2: then Sym? (W) has an unique
irreducible L,,-submodule given by Dj<mb—2e;: this proves that, once such a root subspace is
contained in Lie P for some j < m, then all root subspaces associated to long negative roots
are. If p = 3, then Sym2(W) is already an irreducible submodule itself, hence it is either
contained in Lie P/ Lie P, or has trivial intersection with it.

On the other hand, by Remark 2.7, an element of

@ (g—é‘i—{;‘j @g—gi-{-gj) =: M

1 <m<j

is of the form

0 0 0 0 0
Y 0 0, where Y’:=0Q,Y <Q "O—’”>
0 Y 0 nom
with Y € Homy (W, U). This gives as Ly,-action
A0 0 0 0 0\ /4t o0 0
(A,B)-Y~[0 B 0 Y 0 0 0 B! 0 |~BYal

0 0 —A N/ \o Y o 0 0 -—At
because B being an element of Sp(U) implies

0 Qn—m
—Qnem 0

Thus, M is isomorphic as an L,,-module to the representation

GLyn X SPop_apm — Homy (K™, k*"~2™) (A,B)-Y = BY A™!

(AHY'B =Q,'A7 Y'B < > = (BY AT

This means in particular that M is an irreducible L,,-module, since the Weyl group acts tran-
sitively on the set of its weights.

Now, let us go back to the parabolic subgroup P: being nonreduced, Lie P/ Lie P,, is a non-
trivial Ly,-submodule of V;,,. We already know that assuming such a quotient to contain g_o;
implies it contains all of them, thus we still need three claims to conclude the proof:
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(a) assuming Lie P/ Lie P, to contain a subspace associated to a long negative root implies
it also contains a subspace associated to a short negative root;

(b) assuming it to contain a subspace associated to a short negative root implies it contains
all of them;

(¢) when p = 3, assuming it to contain a subspace associated to a short negative root
implies it also contains a subspace associated to a long negative root.

For (a), assume g_o.; < Lie P for some j < m, then consider roots

v = —2¢;, satisfying X, € Lie P
0 =¢j —ep, satisfying Xs € Lie B < Lie P.

Since v + § is a root and d —  is not, Lemma 2.5 yields
[X—Qt’:‘jaXaj—En] = iX—gj_gn € Lie P.

Let us remark that (a) is automatically true when p = 3 due to the irreducibility of the L,-
module Sym2(W), without needing to consider any structure constant.

For (b), first assume some g, < M is also contained in Lie P. Then M c Lie P because of its
irreducibility as L,,-submodule of V,,,. Moreover, fixing i < j < m and applying Lemma 2.5
toy = —g —ep and § = —¢; + &, satisfying X, X5 € M, we obtain

[X—Ei—ajaX—Ej-i-&n] = i“)(_tfz‘_tfg' € Lie P.

Thus (b) holds in this case. On the other hand, let us start by assuming that g—c;—c; < Lie P
for some ¢ < j < m. Then, applying Lemma 2.5 to v = —&; —¢; and § = ¢; — e, € @ yields

[X—ejme;s Xej—e,] = X ;o € Lie P

so we conclude that some g, € M is contained in Lie P and conclude by the beginning of the
proof of (b).

For (c) it is enough to use (b) and the irreducibility of the L,,-submodule Sym?(WW) when
p=3. 0

Proof. (of Theorem 2.2 in type C,, when Preq = Pp,)

Let G be simple adjoint of type C),, and X = G/P with a faithful G-action such that Peq =
Pom and P is nonreduced. Define P < G = Spy,, as being the prelmage of P in the simply
connected cover: it is a nonreduced parabolic subgroup satisfying Pred = P,,. When p =2
Proposition 2.10 implies that

(Lie(y"(Gm)): 7€ < )Dg< = Lie Ny < Lie P,

hence by considering the image in the adjoint quotient we get NG c P, which is a contradiction
by Remark 2.4. If p = 3 then Proposition 2.10 implies that Lie P = Lie G hence the Frobenius
kernel satisfies G1 < P and its image in the adjoint quotient is a normal subgroup of G
contained in P, which gives again a contradiction. Therefore in both cases P must be a
smooth parabolic. O

2.4. Type B,. The aim of this subsection is to get the same results for the group of type
B,,, with the help of some of the computations involving structure constants, which we have
already done in case of type C,.
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2.4.1. Lie algebra of SOsgy,11. Before continuing with our proof, let us compute what Lie G
looks like, where G = SOg, 11 = SO(k?"*1) is defined as being relative to the quadratic form

n—1
Q(x) = xp + Y. wiwan-i,
1=0
in order to determine all its root spaces and be able to make explicit computations with them.

To do this, let us consider as maximal torus T" < G the one given by diagonal matrices of the
form

t = diag(ty, ..., tn, Lty o t7) € GLopyr,

ybm

while the Borel subgroup is given by upper triangular matrices in G. The Lie algebra is given
by all matrices of the form

fo
A=(aj)lisr o B= (b}
fnfl
M = 9o .- -Gn—1 h In+1---92n € 92n+1
fn+1
C = (cij)itj=1 : D= (dij)7-1
f2n

satisfying Q((1 + eM)z) = Q(z) for all z € k***1, where €2 = 0. Let us compute

Q((1+eM)x) = (zp + €(goxo + - .- + gn—1Tn—1 + hyp + gnt1%Tns1 + - .. ggn$2n))2

n—1 n—1 n—1
+ Z (mz + € (Z ai;T5 + fitn + Z bi,n+1—mx2n—m>>
j=0 m=0

=0
n—1 n—1
: <x2ni + € (Z Cn+1—irTr + fon—itn + Z dn+1—i,n+l—l$2n—l>>
r=0 =0
n—1 n—1
= Q(:E) + E[Zh:l?i + Z (f2nfi + 2gi)$i$n + Z (fl + 2g2n7i)xn$2n7i
=0 =0
n—1 n—1 n—1
+ Z bi nt1-mTan—mTan—i + Z Cn+1—irTiTy + Z (aij +dn+17j,n+17i)xj$2nfi]
i,;m=0 ir=0 i,j=0

Asking the above quantity to be equal to Q(x) gives the following conditions:
2h = 0, fl = —292n—i, f2n7i = i, D= _Aﬁa C= _Cﬁy B = _Bﬁa

where we keep the notation (2.1). Moreover, the matrices €, B and ,,C have zero diagonal.
Since the group considered is special orthogonal, the last condition on the determinant implies
that the trace of the matrix must be zero hence h = 0 also in characteristic 2. The result is
thus

A =-2Q,w B

Lie SOgn+1 = t?) 0 tw € g[2n+1: C= —Cﬁ, B = —Bﬁ, Cn+l—ip = bn+17i,i =0
cC —-20,v —Af
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Remark 2.11. Denoting, analogously to the type Cy, as ¢; € X(7T) the character ¢ — ¢; for
1 < i < n, the root spaces are the following :

0 0 0
g_gi =k tei 0 0 s
0 —2ep41— O
0 —2€i 0
g =k |0 0 e, I<i<n,
0 0 0
0 0 (EU + Eﬂ)Qn
Oeite; k10 O 0 ,
0 0 0
0 0 0
9ere; =k 0 0 0], i <7,
E; 0 0
gai—aj =k 0 0 0 ;
0 0 —E
Eji 0 0
gcive; =k 0 0 0 | i <,
0 0 —E,

where e; denotes the standard basis of k" and E;; the square matrix of order n with all zero
entries except for the (7, 7)-th which is equal to one.

We thus verify that the root system ® = ®(G,T) is given by
={ei—¢gj,ei+e,1<i<ji<n}u{eg, 1<i<n},
with basis A consisting of the following roots :
(2.3) ] =€1—€9, ..., Qpn_1 =Ep_1 — Ep, Qp = En.

2.4.2. Reduced parabolic P,. Going back to our setting, let us consider the maximal reduced
parabolic subgroup P, = P®" associated to the short simple root «,, i.e. the stabilizer of the
isotropic vector subspace W = keg @ - - - @ ke,—1 < V of dimension n, where G = SO(V') and
(e;)?", denotes the standard basis of k*"*1. Since its Levi subgroup L,, = P, n P, stabilizes
both W and its dual W* = ke, 11 @ - - - @ keap,, we conclude that it is of the form

A 0 0 * * *
L, = 0 1 0 : Ae GL(W)~GL,, y € P, = 0 & * c G,

0 0 (A1 0 0
where V = W @ ke, ® W*. In particular, L, is isomorphic to GL,,, with root system ¥ given
by

={ei—¢j,1<i<j<n}

Proposition 2.12. Assume given a nonreduced parabolic subgroup P such that Prgq = P,.
Then Lie P = LieG or Lie P = Lie P,, + g<. If p = 3, then necessarily Lie P = Lie G.
Proof. First, by definition of P, its Lie algebra is given by

Lie P, = Lie L, P g, +ej @95”

1<j
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Since P is assumed to be nonreduced, Lie P, < Lie P hence :

(1) either there is some ¢ such that g_., < Lie P,
(2) or there is some i < j such that g_., ., < Lie P.

Let us start by assuming (1) and fix such an index i. To show that all other g_; are then
contained in Lie P, let us consider the L,-module

V, :=LieG/Lie P, = P g—c,—c, P o—e.-

i<j i

By Remark 2.11, a matrix in @;__, g_, is of the form

0 0 0
ty 0 0
0 —2Q,v 0
for v € k™, and the dual L,-action on it is given by
A=t 0 0 0 0 0\/40 0
(2.4) iAt.o= 0 1 o]l O O0]{0O 1 0
0 0 ) \0 —2Q.,0 0/ \0 0 (AH
0 0 0
(2.5) = | (Av) 0 0]~ Av

0 —20,Av 0

In particular, @;"_, g—., is a simple L,-module, isomorphic to the dual of the standard repre-
sentation of GL,, on k™. Thus, if a root subspace associated to some —¢; is contained in Lie P,
all of the g_., are too.

Let us assume instead that (2) holds: then, by repeating the same exact reasoning done in
case (b) of the preceding subsection, we show that Lie P contains all weight spaces associated
to long roots. This is due to the fact that the argument above only involves roots of the form
+(e; + &m). Moreover, assume i # n and consider roots

v = &n, satisfying X, € Lie L,, < Lie P
6 = —¢; —ep, satisfying X5 € Lie P by our last assumption.
Thus, v+ é = —¢; is still a root while § — v = —¢; — 2¢,, is not: applying Lemma 2.5 gives
[Xe,, X—ci—c,] = X, € Lie P,

In conclusion, when p = 2 we have shown that condition (2) implies Lie P = Lie G, while
assuming condition (1) to be true and (2) to be false implies Lie P = Lie P,, + g<.

If p = 3 then the above reasoning still holds; the only remark that we need to add is that
g< < Lie P implies that there is a long negative root v satisfying g,  Lie P/ Lie P,. For this,
let us consider roots

7 = —¢1 and 0 = —¢&,, satisfying X, X5 € Lie P by our last assumption.

Thus, v+ 0 = —e1 — &, is still a root, v — § = —e1 + €, is too, while v — 20 = —¢1 + 2¢, is
not: applying Lemma 2.5 gives

[X_ e, X ¢, ]=+2X_.,_¢,, hence X_., . €LieP.
Clearly, this last step of the proof would not work under the hypothesis p = 2. O

Proof. (of Theorem 2.2 in type B, when Pyoq = P,)
Let G be simple adjoint of type B, and X = G/P with a faithful G-action such that Peq =
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P, = P% and P is nonreduced. When p = 2, the above Proposition, together with the
computation of Example 1.15, imply that

g< = Lie Ng < Lie P,

hence we get Ng < P, which is a contradiction by Remark 2.4. When p = 3, the above
Proposition implies that Lie P = Lie G, hence the Frobenius kernel satisfies G; < P, which
gives again a contradiction. Therefore in both cases P must be a smooth parabolic. O

Remark 2.13. A small additional remark is needed in order to have a uniform statement
later on, since this is the only case where the group G is not simply connected: let ¢: G =
Spiny, .1 — G = SOg2,41 be the quotient morphism and consider a nonreduced parabolic

subgroup P G such that Peq = P?. The above reasoning implies that ¢(P) either contains
N¢ - when such a subgroup is defined - or it contains the Frobenius kernel GG;. In particular,
P contains a normal noncentral subgroup of height one, namely P n¢~'(Ng) or P~ 1(Gy).

2.4.3. Reduced parabolic P,,, m < n. Let us consider again a k-vector space V of dimension
2n + 1 and denote as G the group SOs,+1 = SO(V), of type B, with n > 2 and k of
characteristic p = 2 or 3. Moreover, let us consider the maximal reduced parabolic subgroup

P, := P

associated to a long simple root «,, for some m < n, keeping notations from (2.3). This
subgroup is the stabilizer of an isotropic vector subspace W = keg @ --- ® keyp1 < V of
dimension m, where (e,-)fgo denotes the standard basis of k?"*!. Since its Levi subgroup
L, = Py, n P, stabilizes both W and its dual W* = kegp—m4+1 @ - - - @ keay,, we conclude that
it is of the form

Ln,=<(0 B 0 |:AeGL(W),BeSO(U)ycP,=4(0 =
0 0 (AL 0 0

where V =W @ U @ W*. In particular, L,, ~ GL,;, x SOs,_9m+1 With root system ¥ given
by
Ut ={e;—gji<j<mluie —¢gje +ej, m<i<j}u{e, m<j}

Proposition 2.14. Assume given a nonreduced parabolic subgroup P such that Ppg = Py,.
Then Lie P = Lie G or Lie P = Lie Py, + g<. If p = 3, then necessarily Lie P = LieG.

Proof. The Lie algebra of P, contains all root subspaces except for those associated to negative
roots containing ., in their support, hence

Vin 1= Lie G/ Lie P, = @ O—e;—¢; @ O—¢; @ (gfeifej (‘Dgfsiﬁj)
<j<m js<m <m<j
The analogous computations as those in the proofs of Proposition 2.10 and (2.4) imply that,
as L,,-modules,
(1) @, <m 8—¢; is isomorphic to the dual of the standard representation of GL, on k™,
hence it is in particular a simple L,,-submodule of V,,, ;
(2) @ismq’ (g,ei,ej @ g,eﬁej) is isomorphic to the following representation, which gives
a second irreducible L,,-submodule of V,,, :
GLyy % SO9, 911 — Homy (K™, K*=2m+1) (A, B)-Y = BYA™L.
Now, first assume g_., < Lie P for some [ < m. Then @jsm g, is contained in Lie P, since
Lie P/ Lie P,, is a nontrivial L,,-submodule of V,,,. Hence in this case g~ < Lie P.
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The only other possibility is to start by assuming that g, < Lie P for some long negative root
~ containing ay, in its support. Then one can repeat the same exact reasoning of point (b) in
the proof of Proposition 2.10, since it involves only roots of the form +(g; +¢,,) with I < m, to
conclude that all root subspaces associated to long negative roots are also contained in Lie P.
To conclude that, in this case, Lie P = Lie G, it suffices to apply Lemma 2.5 to v = —e1 — &
and § = &,,, which gives

[X—61—€m7 X

en] = tX_ ., €LieP

as wanted.

Up to this point everything holds in both characteristic p = 2 and 3. To conclude it is enough
to show that, when p = 3, if g. < Lie P then there is a long negative root v satisfying

g, < Lie P/ Lie P,,,. For this, let us consider roots
v = —¢1 and 0 = —&,, satisfying X, X5 € Lie P by our last assumption.

Thus, v+ 0 = —e1 — &, is still a root, v — § = —e1 + €, is too, while v — 20 = —¢1 + 2¢, is
not: applying Lemma 2.5 gives

[X ¢, X ., ]=+2X_. _.,, hence X_.,_. €LieP

as wanted. O

Proof. (of Theorem 2.2 in type B, when Poq = P,)
Let G be simple adjoint of type B, and X = G/P with a faithful G-action such that Peq =
P and P is nonreduced. When p = 2 the above Proposition, together with Example 1.15,
imply that

g< = Lie Ng < Lie P,

hence we get Ng < P, which is a contradiction by Remark 2.4. When p = 3, the above
Proposition implies that Lie P = Lie G, hence the Frobenius kernel satisfies Gy < P, which
gives again a contradiction. Therefore in both cases P must be a smooth parabolic. O

Remark 2.15. As in Remark 2.13 above, we can conclude that if P < Spin,,, is a nonre-
duced parabolic subgroup satisfying Peq = P%™, then it contains a normal noncentral sub-
group of height one.

2.5. Type Fj. Let us consider a simple group G with root system Fj over an algebraically
closed field k of characteristic p = 2 or 3. Following notations from [Bou68|, a basis A of its
root system @ is given by

Q] = &9 — &3, Qg = &3 — &4, Q3 = &4, Qg = 5(61—62—63—64),

satisfying the relations

leall” = [leal® = 2, ||as|[* = [Jaal[* =1
and
1
(26)  (a1,02) = (a2,03) = =1, (e1,03) = (a1, 4) = (a2,4) = 0, (a3,0) = —3.
Let us denote the associated maximal reduced parabolic subgroups as P; := P%, for ¢ €

{1,2,3,4}. Let us also recall that, when p = 2, Ng < G is the unique subgroup of height one
such that

Lie Ng = Lieay (Gy,) ® Lie o} (G,) @ g<,
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where the short positive roots are
as, 4, Q2 + a3, az + oy, a1 + ag + as, as + 2a3 + ay,
a9 + agz + oy, a1 + 209 + 3as + 204, o + as + az + oy,

a1 + ag + 2a3 + oy, a1 + 2a0 + 2a3 + oy, ag + 2an + 3as + ay.

Proposition 2.16. Assume given a nonreduced parabolic subgroup P such that Prq = P; for
some i. Then Lie P = LieG or Lie P = Lie P, + g<. If p = 3, then necessarily Lie P = Lie G.

Proof. Before starting a case-by-case analysis, let us denote as s;, for i = 1,2, 3, 4, the reflection
associated to the simple root ay, i.e.

(i)
(ai7 ai)

(2.7) si(y)=v7—2 i, for all v € ®.

Case Preq = P1.
Let us assume that Preq = P and denote as L; := P; n P, the Levi subgroup: its root system
is of type Cs with basis consisting of short roots a4, as and the long root as. Moreover, L
acts on the vector space

Vi :=LieG/Lie Pl = @ g_,
vyel't

where I’y is the subset of all positive roots satisfying c; € Supp(y). As usual, let us consider
the nonzero vector subspace Wy := Lie P/ Lie P;, which is a Lj-submodule of V;j: the set of
its weights, which we denote €2, must be stable under the reflections sg, s3 and s4. Our aim
is to show that

(2.8) either Q=T1n"nP. or Q =T7:

in other words, either W1 = @ er, neo_g—~ or W1 = V1.
First, let us show that the Weyl group W (L1, T) = {so, s3, S4) acts transitively on

FlmCI><={oz1—|—oz2—l—oz3, a1 + ag + ag + oy, 041+O£2+2013+Oé4, a1+2a2+2a3+a4,
a1 + 2ag + 3as + ay, a1 + 200 + 3ag + 2a4} -

this implies that either 'y n ®. < Oy or (T'1 N P.) Ny = . The following computations
follow directly from (2.6) and (2.7) :

84(011 + ag + ag) =1 + g + a3 + oy,

(

(

sl + 2a0 + 2a3 + ) = a1 + 2a9 + 3as + ay,
sa(0n + 200 + 3a3 + aq) = a1 + 2a9 + 3az + 2a4.

S3 a1+a2+a3+a4)=a1+a2+2a3+a4,

so(a + ag + 2a3 + ay) = ag + 209 + 2a3 + ay,

Next, let us show that W (L, T') acts transitively on

(1 n @ )\{a} = {a1, a1 + a2, a1 + a2 + 2a3, a1 + 209 + 2a3, a1 + ag + 2a3 + 204,
a1 + 209 + 2a3 + 20y, a1 + 209 + dag + 20y, a1 + 3as + dag + 2a4},

where & := 21 + 3ag + 4az + 2y is the highest root. Let us remark that & is indeed fixed
by the Weyl group of L1: this is due to the fact that it is the only root whose coefficient of oy
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is 2 instead of 1. Again, the transitivity of the action is proved by direct computation :
82(0&1) = o1 + a9,
s3(ag + ag) = a1 + ag + 2asg,
so(o + ag + 2a3) = a1 + 209 + 2as,
sa(oq + 200 + 2a3) = a3 + 29 + 203 + 20y,
sl + 200 + 2a3 + 2a4) = a1 + 209 + dag + 2ay,
s1(oq + 200 + 2a3 + 2a4) = a1 + ag + 2a3 + 20y,
so(a + 200 + 4ag + 2a4) = a1 + 3ag + 4as + 2ay.
Thus, either (T'y n &2 )\{a} < Q; or (T'1 n P=)\{a}) N Q1 = . Next, we show that & €
if and only if (T'y n @ )\{a} < Q.
e Assume that g_5 < Wi. Then applying Lemma 2.5 to v = —& and 6§ = ag + 2a2 + 203
give
[X—&aXa1+2a2+2a3] = ina17a272a372a4 € Lie P7
since v + ¢ is a root while v — § = —3a; — bag — 6ag — 2ay4 is not. This implies that
the long root a; + as + 2a3 + 2a4 belongs to €2y
e Assume that (I'y n ®-)\{a} < Q. In particular,
J—a1—2a9—2a3 ® J—a1—as—2a3—2a4 & Lie P.
Thus, we can apply Lemma 2.5 to v = —a1 —2as —2a3 and 6 = —a1 — as — 2a3 — 204
to get
[Xfa172a272a37Xfa17a272a372a4] =+X z€LieP,
since v + ¢ is a root while v — § = —as + 2y is not.
The last step in order to prove (2.8) consists in showing that (I'y n ®~) < ©; implies (I'1 N
d_) N Qy # ¢ which, by the above reasoning, means I'y = )3. By our assumption, the long
root v = —aq — 202 — 203 — 204 satisfies g, < Lie P. Setting 6 = —a3 and applying Lemma 2.5
gives
[Xfa172a272a372a47X7a3] = ina172a273a372a4 € Lie P7
since y + ¢ is a root while v — d = —a; — 29 — a3 — 2a4 is not. This concludes the first case.

Case Pieq = Ps.
Let us assume that Peq = P» and fix the analogous notation as above: Ly := P, n P, acts on

Wy := Lie P/ Lie P, = (—B g—y C Vo :=LieG/Lie P, = (—B g
7€Q22 v€l2

and its set of weights {23 must be stable under the action of the Weyl group W(Lq,T) =
(81,83, 84y. Our aim is to show that

(2.9) either Qo =T9n®_. or Q=15
First, let us consider the partition of I'y as disjoint union of the following subsets :
Y1 = {aq + 3ag + das + 20y, a},
Yo i={aq + 2a9 + 2a3, a1 + 209 + 203 + 20y, a1 + 209 + dag + 2a4},
Y3 :={aq + 2a9 + 23 + ay, a1 + 209 + 3ag + ag, aq + 209 + 3as + 204},
Yio:i={oo+az, a1 +as+as, a1 +ag +ag + o, a1 + az + 2a3 + ay,
a9 + 2a3 + agq, ag + as + ayl,

Y5 = {a2 + 203 + au, ag + 203, a1 + ag, ag, a1 + az + 2a3, a1 + g + 203 + 204}
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Notice that 37 U Yo U X5 =Ty n P and X3 u Xy = 'y N P, so the root lengths once
again come into play. Moreover, X1, 39 U 33 and >4 U X5 are indeed stable under the action
of W(Lg,T), since their elements have coefficient 3, 2 and 1 respectively with respect to the
simple root ao. Now, the following computations prove that :

e 3 is stable by W (Ly,T) :
s1(aq + 3ag + dag + 204) = @;
Yy is stable by W (Lo, T) :

sq(aq + 200 + 2a3) = a1 + 200 + 203 + 20y,
sg(aq + 20 + 2a3 + 2a) = g + 209 + dag + 2au;

Y3 is stable by W (Lo, T'):

s3(o + 200 + 2a3 + ag) = a1 + 20 + 3ag + g,
sa(o + 200 + 3ag + 2a4) = a1 + 209 + 3as + 2au;

Y4 is stable by W (Lo, T) :

s1(ae + a3) = ag + ag + as,

sa(aq + ag + ag) = a1 + as + ag + ay,
s1(ag + ag + ag + aq) = as + ag + ay,
(
(

V)

s(ag + ag + ag) = ag + 2a3 + ay,
s1(ag + 2a3 + aq) = a1 + ag + 2a3 + ay;

Y5 is stable by W(Lo, T) :

sa(a + 2a3 + 2a4) = ag + 2a,

sz(ag + 2a3) = ag + g,

si(ag +ag) = s and  s3(a; + az) = ag + ag + 2as,
sq(ag + ag + 2a3) = a1 + ag + 2a3 + 2ay4.

Thus, for 7 = 1,...,5, we have shown that 3; n Qs # & implies that X; < €. Next, we
prove the following claims by using Lemma 2.5 on structure constants :

(a) X1 < Qy implies that Xy < Oy,
) Yo < Q9 implies that X5 < Qo,
(¢) X5 < Qg implies that o < Qo,
(d) o U X5 < Qo implies that Xy < Qo,
) X3 < Qg implies that ¥4 < Qg,
) ¥4 < Qo implies that X3 < Qo,
(g) X9 < Qg implies that 33 < Q.

The parabolic subgroup P being nonsmooth by assumption, the set ()9 is nonempty hence,
once these implications are proved, it must be either all of I's or X3 U ¥4 = I's N &, which
proves (2.9).

(a): By assumption g_n,—3a,—4as—20, < Lie P. Set v = —a; — 3o —4ag —2a4 and § = ag,
then v — § = —a1 — 4as — 4as — 2a4 is not a root hence

[X’*MX(S] = ina172a274a372a4 € LleP

SO a1 + 2aig + 4ag + 204 € Yo N Qo
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(b): By assumption g_,,—20s—4a5-204 < LieP. Set 7 = —a; — 2ay — 4oz — 2a4 and
6 = ag + 2ag, then v — 0 = —a; — 3as — 6z — 2ay is not a root hence

[X’*MX(S] = ina17a272a372a4 € LleP
SO ] + o + 23 + 204 € X5 N Q.

(c): By assumption g_q,—ay @ g—ay—2a5 < Lie P. Set v = —a; —ag and § = —ay — 2as3,
then v — § = —a1 — 2a3 is not a root hence

[XW,X(;] = ina172a272a3 € Lie P
S0 a1 + 29 + 23 € Yo N o,

(d): By assumption g_a; —as—2a5—204 PI—a;—2as—2a5 < Lie P. Set v = —a; —ag—2a3—2ay
and 6 = —ay — 29 — 2asg, then v — 0 = as — 2a4 is not a root hence

[X,, X5] =+X_5€eLlieP
SO @ € X1 N Qo.

(e): By assumption g_n,—20y—2a5—as < Lie P. Set v = —a; — 200 — 203 — g and 6 = ag,
then v — § = —a; — 3as — 2ai3 — @4 is not a root hence

(X, X5] = X 01 —as—203—a4 € Lie P
SO ] + (o + 23 + g € g N Q.

(f): By assumption g_o,—as—as—as D §—as—2a5—a, < LieP. Set v = —a; —ag — ag — ay
and 6 = —ag — 2a3 — @y, then v — § = —a; + a3 is not a root hence

[X’*MX(S] = ina172a273a372a4 € LleP
S0 a1 + 2ai9 + 3z + 204 € X3 N Qo

(g): By assumption g_n,—20y—2a5—204 < Lie P. Set v = —a; —2a9—2a3—2a4 and 0 = —ag,
then v — § = —a1 — 2a9 — a3 — 2a4 is not a root hence

[X’*MX(S] = ina172a273a372a4 € LleP
S0 a1 + 2ai9 + 3z + 204 € X3 N Qo

Case Preq = Ps.
Let us assume that Peq = P3 and fix the analogous notation as above: L3 := P3n P; acts on

Wy i=Lie P/Lie Py = (@ g < Vy i= LieG/Lie Py = @ g,
veQd3 V€l

and its set of weights {23 must be stable under the action of the Weyl group W(Ls,T) =
(81,82, 84y. Our aim is to show that

(2.10) either Q3=T3n®. or Q3=TI45.
First, let us consider the partition of I's as disjoint union of the following subsets :
Ay i={a1 + 209 + daz + 20y, aq + 3o + das + 2ay, A},
Ao i={a1 + 209 + 203, a1 + 209 + 203 + 204, a1 + g + 203 + 20y, ao + 203 + 20,
ag + 2a3, 1 + ag + 2as},
Az :={a1 + 2a9 + 3a3 + 20y, a1 + 209 + 3az + ay},
Ay i={a1 + 209 + 203 + a4, aq + a9 + 203 + g, ag + 203 + ayl,
As i={ao + az + ag, a1 + ag + ag + a4, a1 + a2 + az, as + asz, az, az + ay}.

Notice that Ay U Ao =T'3 n ®. and A3 U Ay U A5 =T'3 n ®_; moreover, as in the preceding
case, let us remark that Aj, A3, Ay U Ay and Aj are stable under W (L3, T') because their
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elements have as coefficient respectively 4, 3, 2 and 1 with respect to the simple root ag. Now
let us prove by direct computation that :

e A, is stable by W (L3, T) :
so(aq + 20 + das + 2ay) = aq + 3 + das + 2ay,
s1(aq + 3ag + das + 2a4) = @;

A5 is stable by W (L3, T) :
sa(0n + 200 + 2a3) = a1 + 200 + 2a3 + 2auy,
so(an + 200 + 2a3 + 204) = a1 + ag + 2a3 + 20,
s1(on + ag + 2a3 + 204) = a9 + 2a3 + 2auy,

sq(ae + 2a3 + 2a4) = ag + 2a,

s1(ae + 2a3) = a1 + a9 + 2as;
A3 is stable by W (L3, T) :

sa(0q + 200 + 3a3 + 2a4) = a1 + 20 + 3ag + ay;
A4 is stable by W (L3, T') :

so(aq + 200 4+ 2a3 + o) = a1 + ag + 2a3 + ay,

s1(aq + ag + 2as + ay) = ag + 2a3 + ay;
A5 is stable by W (L3, T) :

sl(a2+a3+a4) = o1 + g + a3 + Qy,

34(a1 + o + ag + 044) = o1 + oy + ag,
s1(ag + ag + ag) = as + as,
so(ag + ag) = ag,
34(a3) = a3 + 0g4.
Thus, for j = 1,...,5, we have shown that A; n Q3 # & implies that A; < 3. Next, we need
to prove the following claims by using Lemma 2.5 on structure constants :
(a) A1 < Qg implies that Ay = Qg,

A5 < Qg implies that Ay < Qg,
Ay U A5 < Qg implies that Ag < Qg,
(g) A1 < Qg implies that Ag c Qs.

The parabolic subgroup P being nonsmooth by assumption, the set ()3 is nonempty hence,
once these implications are proved, it must be either all of I's or A3 U Ay U A5 =T's n P,
which proves (2.10).

(a): By assumption g_5z < LieP. Set v = —a& and 0 = ay + 2a9 + 2ag, then v — § =
—3a1 + Bag + 6ais + 24 is not a root hence

[X’\/7X5] = i*X*—Ocl—012—2013—2054 € Lie P
S0 a1 + ag + 2a3 + 2a4 € Ao N Q3.

(b): By assumption g_n,; —2a5—2a3 @ 0—a1—as—203—204 < Lie P. Set v = —a1 — 2a — 2a3
and § = —a1 — ag — 2a3 — 2ay, then v — 0 = —ao + 2a4 is not a root hence

[X,, X5] =+X_5€eLlieP
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soae A nQs.
(c): By assumption g_o,—2a9—3a35-20, < LieP. Set v = —ag3 — 2as — 3o — 2a4 and
d=az+ase®t, then v — 6 = —a; — 205 — 4ag — 3oy is not a root hence

[X’*MX(S] = ina172a272a37a4 € LleP
S0 a1 + 2ai9 + 23 + g € Ay N Q3.

(d): By assumption g_a,—2a5—a, < Lie P. Set v = —ay — 2a3 — oy and 6 = az € T, then
¥ —0 = —ag — 3ag — ay is not a root hence

(X, Xs] = +X_ny—a3—ay € Lie P
SO0 ao + ag + ag € As N Q3.

(e): By assumption g_as—a, @ —as—as < Lie P. Set v = —a3 —ayg and 0 = —ag — as, then
v — 0 = —ag + ay is not a root hence

(X, X5] = X _,—203—a4 € Lie P
SO g + 2ai3 + ay € Ay 0 Q3.

(f): By assumption g, —as—as—0q D —as—2a3—as < LieP. Set v = —a; —ag — a3 — ay
and § = —ag — 2a3 — oy, then v — § = —a; — a3 is not a root hence

[X’yyXé] = iX—a1—2o¢2—3a3—2o¢4 € Lie P

S0 a1 + 2ai9 + 3az + 204 € Az N Q3.
(g): By assumption g_o,—2as-4a3-204 < Lie P. Set v = —aq — 2ag — 4o — 2a4 and
0 =a3€®", then vy — 3 = —a; — 2a9 — Hag — 20y is not a root hence

[X’yyXé] = iX—a1—2o¢2—3a3—2o¢4 € Lie P
S0 a1 — 2ai9 + 3ag + 204 € Az N Q3.
Case Poeq = P4

Let us assume that P..q = P, and fix the analogous notation as above: the Levi subgroup
Ly := Py n P, , which is of type B3, acts on
W, := Lie P/ Lie Py = (—B g—y C Vy:=LieG/Lie Py, = (—B [l
YEQy 7€l

and its set of weights 4 must be stable under the action of the Weyl group W (L4, T) =
{81, 82, 83). Our aim is to show that

(2.11) either Qy=Tyn®. or Q=T

Let 8 := a1 + 2as + 3a3 + 2a4 and consider, as in the first case of this proof, the action of
W (L4, T) on

Ty " PN{B, s} :={as + aq, ag + ag + g, a1 + ag + a3z + ay, o + ag + 203 + ay,
aq + 209 4 203 + @y, a1 + 200 + 3ag + ag, @z + 2a3 + ayl,
which is transitive because
so(as +ay) = ag + as + ay
si(ae +ag 4+ ag) = a1 + ag + as + ay,
s3(og +ag + az + ay) = aq + ag + 2as + ay,

(
(
so(o + ag + 2a3 + o) = aq + 209 + 2a3 + oy,
s1(oq + ag 4+ 2a3 + o) = ag + 2a3 + ay,

(

szl + 200 4+ 2a3 + aq) = a1 + 209 + 3a3 + ay,
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and the same action on
Iyn @ = {ag + 2a3 + 204, a1 + a2 + 2a3 + 20y, a1 + 209 + 2a3 + 20,
a1 + 2ag + das + 20y, ag + 3ag + das + 20y, A},

which is also transitive because
s1(ae + 2a3 + 2ay) = a1 + a9 + 2a3 + 2ay,
sa(o + ag + 2a3 + 20y) = a1 + 200 + 2a3 + 20y,
szl + 200 + 2a3 + 2a4) = a1 + 209 + dag + 2ay,
so(a + 200 + dag + 2a4) = a1 + 3ag + das + 2ay,
s1(oq + 3ag + dag + 2a4) = A.

Next, we prove the following claims using Lemma 2.5 on structure constants :

(a) Ty n ®- < Q4 implies that S € Qy,

) B € Q4 implies that (I'y N ®)\{B, as} < Qq,
)

)

—_~

(Ty " @ \{B, s} < Q4 implies that ay € Qy,

ay € Q4 implies that (T'y N P)\{B, ay} < Qy,

e) (Ty n @ )\{B} < Q4 implies that 5 < Q4.

The parabolic subgroup P being nonsmooth by assumption, the set )4 is nonempty hence,

once these implications are proved, it must me either all of T’y or I'y n ®, which proves (2.11).
(a): By assumption g_n,—205-20, < Lie P and g_n,—ay—as € LieLs < Lie P. Set v =

—ag — 2a3 — 204 and § = —a; — g — as, then v — § = a3 — ag — 2a4 is not a root hence

(X, X;5] =+X_gelieP

b
¢
d

—_~

so B € Qy.

(b): By assumption g_g < LieP. Set v = —f and 0 = ag + ag + a3 + au € &, then
v —0 = —2a1 — 3ag — 4ag — 3ay is not a root hence

[X., X5] = X _ay—205—a, € Lie P

s0 ag 4+ 2a3 + ag € ((Ty N PO\{B, as}) N Qq.

(c): By assumption g_n4—q, < Lie P. Set v = —a3 —ag and 0 = ag € &+, then v —§ =
—2a3 — g 18 not a root hence

(X, Xs] =+X_,, €LlieP

S0 ay € Q4.

(d): By assumption g_,, < Lie P and g_,, < Lie Ly < Lie P. Set v = —ay and 0 = —az,
then v — 0 = a3 — ay is not a root hence

(X, X5] =+X_q,-q, €LieP

soag+ay € ((T's n@)\{B,04}) N Qy.

(e): By assumption g_n, @ 0—0;—205—3035—a, < Lie P. Set v = —a4 and § = —ag — 2a9 —
3ag — ay, then v — § = a1 + 2a0 + 33 is not a root hence

[X,,X;] = +X_3 € Lie P

so B € Qy.

Conclusion: up to this point all computations hold in both characteristic p = 2 and 3.
To conclude our proof when p = 3, one more step - which works simultaneously for all cases
1 =1,2,3,4 - is necessary in order to conclude that €; = I';. That is, we want to show that
(T n @) < Q; implies (I'; N &2) N Q; # &. By assumption, g_q, —205—303—2q, < Lie P. Set
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v = —a; — 209 — 3a3 — 2a4 and § = a3 € &, then v+ 6 and v — J are still roots while
v —26 = —aq — 2a9 — Bag — 2a4 18 not, hence

[XV,X(;] = i2X_01_202_4a3_20l4 € Lie P hence X—a1—2a2—4a3—2a4 € Lie P,
so that —ag — 2ag — 4dag — 2ay € (I'; N P~ ) N Q; as wanted. O

Proof. (of Theorem 2.2 in type Fj)

Let G be simple of type Fy and X = G/P with a faithful G-action such that P.eq is maximal
and P is nonreduced. When p = 2, Proposition 2.16 implies that g. < Lie P, hence we
get Lie Ng¢ < Lie P and Ng < P by the equivalence of categories, which is a contradiction
by Remark 2.4. When p = 3, the above Proposition implies that Lie P = Lie G, hence the
Frobenius kernel satisfies (G; < P, which gives again a contradiction. Therefore in both cases
P must be a reduced parabolic. O

2.6. Type G9. The last non-simply laced Dynkin diagram we have to consider is of type Gs.
In this case, things behave as expected when the reduced parabolic subgroup is P*2, the one
associated with the long simple root aws, or when the characteristic is p = 3: the proof follows
the same strategy as in types B, C),, and Fj.

This still leaves out the case of a nonreduced parabolic subgroup satisfying Peq = P* in
characteristic 2, where a; denotes the short simple root. Under such assumptions, we find two
p-Lie subalgebras (2.16) and (2.17) containing Lie P*' but which are not p-Lie ideals. This
gives rise to (at least) two parabolic subgroups which have as reduced subgroup a maximal one,
but cannot be described as (ker ) P* for some isogeny ¢ with source G. We then move on to
investigate the corresponding homogeneous spaces, which we describe by using the Chevalley
description of G as automorphism group of an octonion algebra.

Let us recall for reference the following result: see [Dem77, Theorem 1], reformulated here
under the stronger hypothesis of k being an algebraically closed field. It will be needed to
conclude the type G2 case, as well as later on, when dealing with higher Picard ranks.

Theorem 2.17. Let H' be a semisimple adjoint group over k and Q' a reduced parabolic
subgroup of H'. Then the natural homomorphism

H' — H := Auty, o
s an isomorphism in all but the three following cases:

(a) H' is of type Cy, for some n =2 and Q' = P* is associated to the first short simple
root: in this case the automorphism group H is smooth simple adjoint of type Aop_1;

(b) H' is of type By, for some n =2 and Q' = P*" is associated to the short simple root:
in this case the automorphism group H is smooth simple adjoint of type Dy 1;

(¢c) H' is of type Gy and Q' = P*': in this case the automorphism group H is smooth
simple adjoint of type Bs.

With a slight change of notation compared to Demazure, we call the three pairs (H, Q) in

the cases (a), (b) and (c) of the Theorem ezceptional, while (H',Q’) is called the associated
pair to the exceptional one.

Remark 2.18. In order to be clear let us recall what we mean by automorphism group, both
in Theorem 2.17 and in the rest of the paper. For a proper algebraic scheme X over a perfect
field k, let us consider the functor

Auty: (Sch/k)eq — Grp, T — Autp(X7p),

sending a reduced k-scheme T to the group of automorphisms of T-schemes of X x; T. By
[MOG67, Theorem 3.6] this functor is represented by a reduced group scheme Auty which is
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locally of finite type over k. We denote as AutOX its connected component of the identity,
which is a smooth algebraic group.

2.6.1. What works as expected. Let us consider a group G with root system of type G2 over a
field k of characteristic p = 2 or 3. Following notations from [Bou68|, the elements of ®* are

a, o] +ao, 201+, 3a1+ao, as, a1+ 2as.

In particular, let us consider as elements of the basis A the short root a; and the long root as;
then denote P, := P*! and P, := P®? the associated maximal reduced parabolic subgroups.

A~

a2

—aq £

—3aq1 — an —Q

—20(1 — Q2 —Qa1] — Q2

v

—30[1 - 20[2

Let us recall that, when p = 3, Ng < G is in this case the unique subgroup of height one
such that

Lie NG = Lie Oéi/ (Gm) @® Gan ® o S— ® Jas+201 ® J—as—201 @® Jai+as ® J—a1—ao-
Proposition 2.19. Assume given a nonreduced parabolic P such that Prq = Py (with p = 3)

or Preg = Py (withp = 2 or 3). Then Lie P = Lie G or Lie P = Lie Pyeqg + g<. If p = 2, then
necessarily Lie P = Lie G.

Remark 2.20. We can conclude that Theorem 2.2 holds in this case as follows: let G be
simple of type G2 and X = G/P with a faithful G-action such that P,eq is maximal, satisfies
the hypothesis of Proposition 2.19, and such that P is nonreduced. The above Proposition
implies that

Lieay (Gp,) @ g< = Lie Ng < Lie P,
hence we get Ng < P, which is a contradiction by Remark 2.4. Therefore P must be a smooth
parabolic.

Proof. Case Peq = Pi.
Let us assume that P = P and that the characteristic is p = 3. The Levi subgroup
Ly := Py n P; has root system {+as} and acts on the vector space

Vl := Lie G/ Lie Pl =0-o S J—a1—as ®g—2a1—o¢2 @g—3a1—o¢2 @9—3011—2012-

Now, let us look at the nonzero vector subspace Wy := Lie P/ Lie P;, which is in particular an
Li-submodule of V. Thus, the set of its weights must be stable under the reflection s,,. This
means, by a direct computation, that

(2.12) 0-301-200 C W1 = g_30,—a, € W1,
(2.13) Ooo—ay CW1 <=  g_o W
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Let us assume first that g_q,—a, ®g—a, < Wi. Then, applying Lemma 2.5 to v = —a; — 2
and 6 = —qy gives

[X _oi—ags X—ay] = £2X 94,0y, hence X o4, 4, € Lie P,

since v+ and y—¢ are roots while y—20 = a3 —as is not. Conversely, assuming g_24,—a, < W1
and considering roots v = —2a1 — ag and § = 3 yields

[X 201 —ags Xay | = £2X 4, —a,, hence X_,, _,, € Lie P.

In other words, we have showed that whenever a root subspace associated to a short negative
root is contained in W7, the other two are too.
To conclude this first case, it is enough to show that

0-30;—200 D 9-3a,—as © W1 implies that g_2q,—a, = Wi.

This can be done by considering roots v = —3a; — 2as and § = a3 + g, for which v+ J is a
root but v — d = —4ay — 3 is not, hence

[X—3a1—2a27Xa1+a2] = iX—2a1—a2 € Lie P.

Case Pieq = Ps.
Moving on to the second case, let us assume that Peq = P». The Levi subgroup Ly := Pon Py
has root system {+a;} and acts on the vector space

Vy := Lie G/ Lie P, = J—ao ® J—ai1—as @ J—2a1—an @ 9-3a;—a2 @ 9-3a;—2as-

Now, let us look at the nonzero vector subspace Wy := Lie P/ Lie P, which is in particular an
Ly-submodule of V5. Thus, the set of its weights must be stable under the reflection sq,. This
means, by a direct computation, that

(2'14) 9—ai—ay & Wy 9-201—as & Wa,
(2.15) O-3a1—ay C W <= g_o < Wo.

The equivalence (2.14) already implies that once a root subspace associated to a short negative
root is contained in Ws, the only other one is too.

If p = 3, to conclude it suffices to show that g_, < W for some long root v € ®* implies
Wy = V5 ie. Lie P = LieG. First,

[X—301-202, Xa,] = £X 30, -a,,
because (—3a; — 2a3) — g is not a root, and conversely
[X—301—a5: X-a,] = £X 30,200,
because (—3a; — a) — (—ag) is not a root. Finally,
[X—301—02s Xa1] = £X 20,055

because (—3a; — ag) — a1 is not a root. This proves that in this case Wy = V5.
If p = 2, one more step must be added: assume that g_24,—a, ® §—a,—ay < Wa, then

[X 201 —a9s X—a1] = £X 30,0y, hence X_3,,_, € Lie P,

because (—2a1 — a2) + a1, (—2a1 — ag) + 2aq are roots, while (—2a; — ag) + 3y is not.
This last remark, together with the above computations shows that when p = 2 necessarily
Lie P = LieG. ]
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2.6.2. What does not. The only case yet to consider is the following: the characteristic is p = 2,
the group G is of type G2 and P is a nonreduced parabolic subgroup satisfying Peq = P*!, the
reduced parabolic associated to the short simple root, whose Levi subgroup has root system
{fas}. Let us place ourselves in this setting: by repeating the same reasoning as above, we
can conclude only a weaker statement.

Lemma 2.21. Assume that one of the two root subspaces associated to —3a1 — 2a0 and
—3a1 — g is contained in Lie P. Then Lie P = Lie G.

Proof. By (2.12), we have that both root subspaces are in Lie P. Then considering roots
v =—-3a; —2a3, § = a; + as and & = 2a; + ay yields
(X, X5] = X 901—a, € Lie P and [X,,Xy]| = +X_4 —a, € Lie P,

because v — § and v — ¢ are not roots. This means that if one long root is added then we
have to add everything else. O

The same reasoning applied to short roots fails, due to the vanishing of structure constants
in characteristic 2. More precisely, we can identify two Lie subalgebras strictly containing
Lie P*!, which cannot be Lie ideals since Lie G is a simple p-Lie algebra (see Lemma 1.9) as
follows: define the following vector subspaces

(2.16) h:=Lie P" ®g_2q,—a, = Lie BAg—0, D 9—201—as;
(2'17) [:= Lie P*! Dg-a; DI—ci1—a, = Lie BB g0, D g—a; D I—a1—as-
Lemma 2.22. With the above notation, h and | are two p-Lie subalgebras of Lie G.

Proof. Let {Xy: v € ® Hy,,Hqy,} be a Chevalley basis of LieG. First, using Lemma 2.5 we
can calculate a few structure constants which are then useful in the rest of the proof:

ad(X_2041_042) ad(X—Oq) ad(Xfalfaz) ad(XOq) ad(XZOq +a2)
X, 0 €LieT X o, 0 X3, 0y
X3041 +as Xa1 X2a1 +az 0 0 0
Xoo 4 € LieT 0 0 X301+ 0
X3a1 +2as Xa1 +as 0 X2a1 +as 0 0
Xa1+a2 0 Xaz € LieT 0 X3a1+2a2
X, 0 0 X ., Xos o 0
X o, X 301 oy 0 0 eLiel 0
X73a17a2 0 0 0 Xf2a1 —Q Xfal
X—2a1—a2 0 X—3a1 —a2 X—3a1—2a2 0 € LieT
X—3a1—2a2 0 0 0 0 X—a1 —as
Xfalfaz X73a172a2 0 0 Xfaz 0
X .o, 0 X oo 0 0 0

Let us verify that b is a Lie subalgebra. Since we know that Lie P is one, it is enough to
show that [g_2a; —ay, Lie P*] < h. Lemma 2.5 implies that

[972041*0(2’1416 T] = [X*2Orl*az’Lie T] C g-201-a2 © b
Moreover, the first column of the above table shows that
[g—2a1—azag'y] = k[X—2a1—a27X'y] - h7

for all roots v whose root subspace is contained in Lie P*!.
Analogously, let us prove that [ is a Lie subalgebra: for this, it is enough to show that

[g*al ’ Lie POq]’ [g*OZl*OQ ’ Lie Pal]v [g*al ) gfalfaz] = [
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First, Lemma 2.5 implies that
[0—a,,LieT] = [X_o,,LieT] € g_qo, < I;
[0—ai—as, LieT] = [X_a,—as, LieT] € g—ay—ay, < L.
Moreover, the second and third column in the above table show that

[g—alag-y] = k[X—(xl?X’Y] and [g—al—a27g'y] = k[X—Ofl—O!27X’y]

are both subspaces of [, for all roots v whose root subspace is contained in Lie P*!.

To conclude there is still left to show that h and [ are stable by the p-mapping (recall that by
assumption p = 2), knowing that Lie P*! is. In other words, setting Y, equal to the image of
X, by the p-mapping, we want to prove that Y_s,, _, € h and that Y_,,,Y_, 0, € [.

To do this, let

Y oni—ay = H + Z asXgs, for some asek, H e LieT.
6ed
It is enough to show that a_n, = a—34,-ay = 0—30;-2a5 = G—a;—ay; = 0. By the properties of
the p-mapping, we have that ad(Y,) = ad?*(X,) for any root . Using that [X_2a, —as, Xay ]
vanishes (see table), we have:
0 =ad(X—20;—a, ) ([X—201 a2, Xa ]) = ad2<X—2a1—a2)(Xa1)
= ad(Y*QOtl*aQ)(Xal) = [Hv Xal] + Z aé[Xév Xal]'
6ed

Expanding all brackets using the fourth column of the above table gives that, for some a € k,

0= aonl + a2oe1—oz2X3oz1+a2 + aochoq-i-ocz +a—qy Ha1 + a—3a1—a2X—2a1—a2 + a—oe1—oz2X—oz27
which implies in particular a_n, = a_34,—ay = G—ay—ay, = 0. Moreover, [X o4, —a,, Xa, ] also
vanishes, hence we have
0= ad(X*2a1*a2)([X*2a1*a27Xal+az]) = adz(X*2a1*a2)(Xal+az)
=ad(Y-20;-as)(Xoy+as) = [H, Xoy +as] + Z as[Xs, Xar+az)-
6ed
Writing this with respect to the Chevalley basis gives

A—3071 —20a [X—Bozl —2a9) qu +a2] = A—3a;—2as X—2a1 —a2

as the only term in X_5,, _q,, meaning that the coefficient a_34, 24, also vanishes, as wanted:
thus we can conclude that b is a p-Lie subalgebra of Lie G.
Analogously, let
Yoo, =H + Z bsXs, for some bse k, H € LieT,
6ed
and as before we aim to show that b_3n,—a, = b_24,-0s = 0—3a;-24, = 0. Using that
[X_01s X201 +a,] vanishes (see table), we have

0 :ad(X—a1)([X—a17X2a1+a2]) = ad2(X—a1)([X—Oz17X2a1+a2])

= ad(Y*al)(XQOthLaz) = [H/7 X20£1+az] + Z bé[Xév X2a1+a2]'
oed
Expanding all brackets using the last column of the above table gives that, for some b € k and
some H” € Lie T,
0= bX2a1+a2 + ba1X3a1+a2 + ba1+a2X3a1+2a2 + b—3a1—a2X—a1 + b—2a1—a2H”
+ b73a172a2X7a17a2 .
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In particular, this proves that b_sa;—ay = b—30;-2a, = 0. Moreover, [X_,,, X_0;—a,] also
vanishes, hence we have

0 :ad(X*al)([X*ale*a1*a2]) = ad2(X*a1)([X*a17X*a1*a2])

=ad(Y_a,)(X—a;-az) = [H/,Xfmfaz] + Z bs[Xs, X—a1—as]-
oed

Expanding this with respect to the Chevalley basis gives b_24,—ay[X—20;—ass X—a1—as] =
b_20,—asX—301—2asX—30;—20, as the only term in X_3,, _24,, meaning that the coefficient
b_24,—a, also vanishes: this proves that Y_,, € [.

To prove that Y_,, _,, is also in [, an analogous computation, symmetric with respect to the
reflection s,,, can be done. Finally, we can conclude that [ is a p-Lie subalgebra. |

Corollary 2.23. The p-Lie subalgebras of Lie G containing strictly Lie P*' are exactly b and
[

Proof. Let us consider a p-Lie subalgebra Lie P* ¢ s < Lie G, meaning that there is some
positive root 7 # a7 such that g_, is contained in s. By Lemma 2.21, if v is long then
s = Lie G, so we can assume 7 to be short. To do this, let us remark that by Lemma 2.5 we
have

(218) [X—alyX—2a1—o¢2] = X—3o¢1—a27

because —aj — (—2a; —ag)) and —a; —2(—2a;1 — a2)) are roots while —a; —3(—2a;1 — az2)) is
not, hence the structure constant is 3 = 1. If v = oy, by symmetry with respect to the Weyl
group {£sq,} of the Levi factor of P*' we have that g_n,_q, is also contained in s, hence
either s = [ or it also contains g_s4,—a,. The equality (2.18) together with Lemma 2.21 then

imply s = Lie G. The same reasoning applies when starting by v = —a3 — as. On the other
hand, starting by v = 21 + a2 implies that either s = b, or it contains also g_; ® 9—a;—ass
from which we conclude again - by (2.18) and Lemma 2.21 - that s = Lie G. O

Definition 2.24. Let us fix the following notation for the rest of this Section:

(1) H := (U_20,—ay)1 is the subgroup of height one such that Lie H = g_24,-q,, i.€.
h =Lie P"" @ Lie H ;

(2) L := (U—qy)1 - (U—qy—ay)1 is the subgroup of height one such that LieL = g_,, @
J—ai—ay, 1.e. [ =LieP*" @LielL ;

(3) Py the parabolic subgroup generated by P*' and H;

(4) P the parabolic subgroup generated by P* and L.

Let us notice that g_,, and g_o,—q, commute, so that L is the direct product of the
Frobenius kernels defining it.

Remark 2.25. The two parabolic subgroups P, and B are ezotic in the sense that they cannot
be of the form (ker ¢)P% for some isogeny ¢, since when p = 2 the only noncentral isogenies
in type Gy are iterated Frobenius homomorphisms (see Proposition 1.12). Moreover, we do
not know if these two examples are the only ones we can build using the p-Lie subalgebras b
and [. The reason is the following: a parabolic subgroup P satisfying Lie P = h (resp. [) is
uniquely determined - see Theorem 1.1 - by the height of its intersection with U_s4, —a, (resp.
the heights of its intersections with U_,, and U_q, _q,). This might allow an infinite class of
exotic parabolic subgroups with reduced part equal to P1.

In the following part we investigate what the homogeneous spaces having as stabilizer re-
spectively P, and P} are isomorphic to, as varieties.
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2.6.3. Parabolic B .

Proposition 2.26. Let G be simple of type Ga in characteristic p = 2 and By, the parabolic
subgroup of Definition 2.24. Then the quotient morphism G/P* — G/Py is the natural
projection

PS5 Q = {x?), + Zoxy + 175 + Tox6 = 0} — PO, [z0: ... 1 6] = [mo: @1 To: 24 T5: 6]
In particular, the homogeneous space G/Py is isomorphic as a variety to P® = PSpg /P!,

In order to construct this morphism, we will see the group G as the automorphism group
of an octonion algebra - see the Appendix for more details - which is

O = {(u,v): u,v are 2 x 2 matrices},

with basis (e11, €12, €21, €22, f11, f12, fo1, fo2), recalled in Subsection 4.1, with unit e = (1,0) =
e11 + eg2, and which is equipped with a norm

q(u,v) = det(u) + det(v).

An embedding of the group G into Spg can be seen as follows: let us consider its action on
the vector space

Vi=et = {(u,v): det(1+ u) + det(u) = 1}

as in (4.2). Since p = 2, we have that e € V hence the group G also acts on the quotient
W := V /ke, which has dimension 6. By (4.4) in the Appendix, a maximal torus 7" of G - with
respect to the basis (fi2, fi1, €12, €21, fo2, fo1) of W - is given by

G2 > (a,b) — diag(a, a 't a%b, a7 %!, ab,a_l) =teT c GLg.

Let us recall that the basis of simple roots we fix is a;(t) := a and az(t) := b, hence V has
the following decomposition in weight spaces :

‘/0 = kea Voq = kf127 V—al = kf217 VOC1+O!2 = kf227
Vfalfag = kfll) ‘/2a1+a2 = k€127 Vf2a17a2 = keay.

This way, T can be identified with the maximal torus in [He08, page 13]: in Heinloth’s de-
scription of the embedding G = Spg in characteristic 2, given by the action on

W = V/ke = Wa1 ® W—al—ag ® W2a1+a2 @ W—2a1—a2 @ Wa1+a2 @ W—au
the group G is generated by the two following copies of GLs :

-1
A det B

01: Avr— AWM det AL and 6y9: B+—
A

B
B )
det B

where A() denotes the Frobenius twist applied to A.
Lemma 2.27. When considering the action of G on P(V) = PS, we have
Stabg ([Vaay +as]) = P

Proof. First, let us prove that P!, which is generated by T, U+n, and U,,, fixes Vaq, 10, =
keja. Clearly the torus does; moreover, the computation of the respective actions of u_q, (),
Uay (A) and uq, (A) on V', done in Remark 4.2, shows that all three fix

[e12] =[0: 0:1: 0:0:0: 0]
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This proves that P < S := Stabg([Vaa;+az])- To prove the reverse inclusion, let us remark
that no nontrivial subgroup of U_,, and of U_s4,—q, fixes [e12]: again by Remark 4.2, we
have

U_oy(N) -e12 = €12+ Afag and U o4, ay(N) - €12 = €12 + Ve,

thus U_o, n S =U_24,-ay, NS = 1.

At this point, we know that Lie P** < S, hence by Corollary 2.23, LieS is either equal to
Lie P** to b, to [ or to Lie G. However, Uy, NS = 1 means g_,, is not contained in Lie S, hence
the latter cannot be equal to [ nor to Lie G. Analogously, U_24,—a, NS = 1 means gan,; +as
is not contained in Lie S, hence Lie .S cannot be equal to . This means that Lie § = Lie P*
hence S = P as wanted. O

We can now conclude part of the statement of Proposition 2.26. First, let us recall that we
are working with the basis (f12, f11, €12, €, €21, fa2, f21) on V, giving homogeneous coordinates
[zo: -+ : wg] on P(V): the norm ¢ hence becomes

q(x) = x% + Toxy + T1T5 + ToT6,

and its zero locus in PY is the quadric @ of the Proposition. The point [e12] belongs to @
while [e] does not, and the quotient W = V'/ke corresponds to the projection P%\{[e]} — P>.
Moreover, we have

G/P* = G/Stabg([Vaa;+as]) = G - [e12] — Q@
Since both are smooth irreducible projective of dimension 5, they coincide. In particular,
Autgy pay = Autdy = SO(V) = SO7

is of type B3, as stated in Theorem 2.17.
What is left to prove is that G/Py ~ P?: to do this, we look at the action of G on W.

Lemma 2.28. When considering the action of G on P(W) = P®, we have
Staba([Waa +as]) = By.

Proof. Let S’ be the stabilizer. From the above Lemma we know that P! fixes [Van, +as]s
hence it also fixes [Waq, +a,]- Moreover, by Remark (4.2) we have

U201 —ay(A) - [e12] = [0: 0: 1: A%:0: 0] and  u_q,(A) - [e12] = [0: 0: 1: 0: A: 0],
meaning that U_,, NS’ =1, while
H = u_20,—a, (ap) =U_2q,-a5 N s'.

In particular, this yields that on one side, P, < S” hence hh < Lie S, and on the other side, g_q,
is not contained in Lie S’. In particular by Corollary 2.23 Lie S’ = b and the only positive
root 7 satisfying 1 ¢ U_, n §" € U_, is —2a1 — a, hence by [Wen93]

Ug= J] WU~4nS)=UssanS =H
yed+: U_\ S

where U, following Wenzel’s notation, denotes the infinitesimal unipotent subgroup given by
the intersection of a parabolic subgroup P with the unipotent radical of the opposite of Pieq
with respect to the Borel B. Thus, we can conclude that S = Ug, - S|,y = H - P*, and the
latter must coincide with P, by definition. ([l

Corollary 2.29. We have Py = H - P**. More precisely,
UI;h = Ph N R;(Pal) = Ph N U72a17a2 = H.
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Now, let us consider the embedding
G/Ph = G/ Stabg([W2a1+a2]) =G- [612] — S P(W) = P> .

As before, since both are smooth irreducible projective of dimension 5, they coincide. This
gives as quotient map

(2.19) G/P* =Q — G/(H - P™) =P°
the projection from [e], which has degree 2 equal to the order of H.

2.6.4. Parabolic P;. Let us consider the homogeneous space G/ P, and show that one can realize
it in a concrete way using octonions. More precisely, considering the action of Gy < SO7 on
V', the parabolic subgroup F; is the stabilizer of a 3-dimensional isotropic vector subspace of
V', spanned by the root spaces associated to the short positive roots.

Lemma 2.30. Let G be simple of type Go in characteristic p = 2 and P, the parabolic subgroup
of Definition 2.2/. When considering the action of G on P(A3V), we have

Stabg([f12 A fa2 A e12]) = P

Proof. Let us denote as S” the above stabilizer.

First, let us prove that P*', which is generated by T, U4t,, and U,,, fixes the subspace
kfio @ keio @ kfa2, whose elements are of the form (wy,0,ws,0,0,ws,0). The computations
of Remark 4.2 in the Appendix give us the following :

uaz()‘) : <w0707w270707w570) = <w0707w270707)‘w0 + w570)7
u—az()‘) : <w0707w270707w570) = (wo + )\w5707w270707w570)
ual()\) : <w0707w270707w570) = <w0707w2 + )‘w570707w570)7

meaning that by Corollary 2.23 P* < S”. Moreover, considering the action on such a subspace
of the root subgroups associated to —a1, —2a; — as and —a; — ag, we have the following :

U_ay (A) - (wo,0,w2,0,0,ws,0) = (wo, 0,ws,0,0, \ws + ws, \w),
U—2071—a (A) : (’IU0,0,’ZUQ,0,0,’U)E,,O) = (’LU(),)\’LU(),'IUQ,O, )\2'102,'(05,)\'(05),
U—ay—an (A) ' (’IU0,0,’ZUQ,0,0,’U)E,,O) = (U)O + )\wg,)\2w5,w2,0,0,w5,0).

The second equality means that the intersection U_oq,—q, NS” is trivial, hence g_24, —q, is n0t
contained in Lie S” and the latter cannot be equal to Lie G nor to . The other two equalities
imply that U_, nS” = u_q, (o) and U_q, —ay N S” = U_q,—a, (), meaning that Lie 8" = [.
In particular, the positive roots ~ satisfying 1 & U_, n S’ & U_, are aq and a; + a3, hence
by [Wen93|

Up= ] Wn8)=UaicaynS8") (Ueay nS") = L.
yed+: U_ydS”

Thus, we can conclude that S” = Ug, - S/, = L- P*', and the latter must coincide with P by
definition. O

Corollary 2.31. We have P, = L - P**. More precisely,
Up =hn R, (P*)=(PRNnU_q—ay) (PAnU_qy,) = L.

Next, let us determine an explicit equation for the variety X. Recall that - keeping the
notation from Proposition 2.12 - the reduced parabolic subgroup associated to the short root
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ag in type Bs, which is denoted P3 = P*3 < SOy, is the stabilizer of an isotropic subspace of
dimension 3, hence

P[ = Stabg([flg A\ f22 A\ 612]) = G N P3 = G M Stabso7([f12 A\ fgg A\ 612]).

The following Lemma holds in any characteristic and is a consequence of [SV00, Lemma
1.3.2] and of the fact that by definition z = —z for all x € V.

Lemma 2.32. There is a well-defined alternating form
v NV — k,  (x,y,2) — (xy, 2).
Clearly there is an inclusion
(2.20) Go c {u e SO7: v(uz,uy,uz) = v(x,y,z) forall z,y,z € V} < SO7.

Proposition 2.33. Let us denote as H the hyperplane defined by v = 0 in P(A3V) and as Z
its intersection with the quotient SO7 /P3. Then we have the equality Z = 2X as Weil divisors
on SO7 /Ps.

Proof. Recall that X is irreducible of dimension 5 while SO7 /Ps is irreducible of dimension

6. Let us consider X and SO7 /P5 respectively as the Ga-orbit and the SO7-orbit of the point

1 = [fiz A fa2 A erz] in P(A®V). First, we have v(n) = v(fia, faz,e12) = (f12fa,e12) =
(e12,e12) = 0, hence by (2.20) we have v(X) = 0, which gives an inclusion of X into the
intersection Z = H n SO7/Ps;. Moreover, SO7 /Ps is not contained in the hyperplane H:
consider u € SO7 given by permuting fio with fo; and foo with fi1, then we have

v(un) = v(ufiz, ufar,ue12) = v(for, fi1,e12) = {forfi1,e12) = {ear, e12) = 1.

By [Har77, III, Corollary 7.9], Z is connected because it is the intersection of an hyperplane
in P(A®V) with a smooth projective variety. Moreover, it is equidimensional of dimension 5:
let us write it as Z = X U Y where Y is the union of all other irreducible components of Z.
Since Y is Gy-stable, if it were not empty it should have trivial intersection with X because
the latter is a G-orbit. This would contradict the connectedness of Z. The variety X is hence
the reduced part of the divisor Z in SO7 /Ps.

Next, let us give an explicit equation for v: let z,y,z € V and set

x = agfi2 + a1 fa2 + azei1z + aze + aq fo1 + as fi1 + agea1,
y = bofiz + b1 faz + baeig + bse + bafor + bs f11 + beear,
z = cofi12 + c1fa2 + cae12 + cze + cafor + 5 f11 + ceear,

for appropriate coefficients a;, b;, ¢; € k. Using the product of octonions - see table (4.1) - one
gets

apby + agbs + asbe + aibg)ern
apbg + asbs + asbs + a1bs)esn
)
)

—

Ty = (a5b1 + agby + azbs + agbg)err +
eo1 +

)
)
)i+
+ (a3b6 + aqb1 + a1bg + CLGbg)f2l +

Another direct computation gives

+ (a5b6 + agby + aqbs + agbs
+ ( apbs + asby + agbs + asbg f12
agbi + a1bs + agba + asbg f22.

asbs + apby + agbs + asbg

—~ ~

v(z,y,z) = apbicq + apbgcy + a1bocy + arbsco + agboer + agbic
+ apbscg + apgbgcs + asboce + asceby + agbocs + agbsco
+ aibscs + arbscs + asbics + asbse + asbics + asbser
+ agbscy + asbycs + asbacy + asbycy + agbacs + agbsco
+ agbsce + asbges + asbacg + asbgea + agbacs + agbsca.
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Let us exploit the above computation to obtain an equation for X in the open Bruhat cell C'
of SO7 /Ps, which is an affine space of dimension 6 given by the orbit U -  where

-

1
0 1
0 0 1
U = as bg C3 1 € SO7 ’
a4 b4 Cq4 h4 1
as b5 Cs h5 01
L ag b(; Ce hﬁ 0 0 1

where we order V' with respect to the basis (fi2, fa2, €12, €, €21, f11, f21) i.e. we exchange fao
and f11 from the usual ordering, in order to have an easier block decomposition with the 3-plan
7 in the first block.

The condition of such a matrix being in SO7 implies ag = a%, bs = b%, cy = c%, be = as,
cg = ag, c5 = by and hy = hs = hg = 0, hence for dimension reasons we have

-

1
0 1
0 0 1
C=U-n~<{|M X A3 1 cNjekp~AS
M A A 001
X A X5 0 0 1
[\ X A4 00 0 1

v

By substituting in the above expression for v, we obtain that the intersection C' n H is given
by the equation

A3 4+ X6+ Ao + A5+ AeAs + At As + Aada + A2+ A = (A3 4+ Ag + A 2)?,

hence X n C' has equation A3 + A\g + A1 A2 = 0 and we obtain the equality Z = 2X. d

Lemma 2.34. Consider the embedding of X = G /P, into P(A3V). Then the Picard group of
X s generated by Ox(1).

Proof. Let us denote as £ the unique ample generator of the Picard group of X, so that there
is a unique integer n > 1 satisfying the equality

(2.21) Ox(1) = nL.

The variety X is the Ga-orbit of the point corresponding to the line in A3V generated by
f12 A faa A €12, which is B-stable and of weight 2(2a; + a2). Considering (2.21) as an equality
of Go-linearized line bundles, their respective weights at the base point of X give 2(2a1 +awg) =
nA, where £ has weight A. This implies either n = 1 (and we are done) or n = 2, which is
the assumption we make. This means that A\ = 2a; + ag, hence the G-module H°(X, £)*
contains a B-stable line having such a weight. Let us denote as F' = H°(X, £)* the G-module
generated by such a line. By the universal properties of Weyl modules, F' can be expressed in
a unique way as quotient of the G-module V' (2aq + a2), where V() denotes the Weyl module
associated to the dominant weight \: see [Ja03, 11.2.13|. Moreover, since V is generated by
the line Van, +ay, for dimension reasons it must coincide with V(2aq + ag): this means that
either ' =V or F' = W, because the latter is the unique quotient of V' which is a G-module
and it is simple. Thus, the natural morphism of X into P(H?(X,£)*) factorises through a
G-equivariant morphism

X=G/Ph—PV)=G/P" or X=G/P,— P(W)=_G/P,
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This would lead respectively to the inclusions P < P% and P < P, which both give a
contradiction when considering the respective inclusions on Lie algebras. O

Up to this point we have realized the variety X = G/P, using octonions. One might now ask
whether Theorem 2.1 still holds for the variety X. Actually this is not the case, as illustrated
in the following result.

Proposition 2.35. Let G be simple of type Go in characteristic p = 2 and Py the parabolic
subgroup of Definition 2.2/. Then G/P is not isomorphic, as a variety, to a quotient of the
form G'/P% for any G’ simple and o € A(G").

In particular, this means that Theorem 2.1 does not hold in this case.

Lemma 2.36. Let G’ be simple and let o be a simple root of G'. If dim(G'/P®) = 5, then
such a variety is either isomorphic to @ < P®, to P® or to G/P® where G is of type G2 and
g 1s the long root.

Proof. Let us recall that dim(G’'/P%) = |®1(GQ)| — |®T(L®*)|, where L* = P* n (P%)” is a
Levi subgroup, hence so we can compute this quantity explicitly in each case.
Type A,_1: forI1<m <n—1,

dim(G'/P*") =m(n—m) =5

when (n,m) = (6,5) or (6,1). In that case, G'/P* = G'/P* ~ P>,
Type B,: the number of positive roots is n?.
e For 1 < m < n — 1, the Levi subgroup P*" n (P*")~ is of type Aym—1 X Bp_m, SO

o= = m

which only has as positive integer solution the pairs (n,m) = (4,5), which is absurd, and
(n,m) = (3,1). In that case, G’ = SO7 and by Theorem 2.17 and Proposition 2.26 we have
SO7 /P¥ ~ G/P* ~ Q < PS.

e Considering the last simple root, P** n (P%*)~ is of type A,,_1 and

m(m —1) 1—m

dim(G'/P®m) = n? — 5

~|—2n—m> =5

. /) amy nn—1) n(n+1)
dim(G'/P°") = n? — 5 = 5

is never equal to 5.

Type C,,: the same computations as in type B, give (n,m) = (3,1), meaning G’ = PSpg and
- again by Theorem 2.17 - we have PSpg /P™ = PSLg /P* ~ P°.

Type D,: the number of positive roots is n(n — 1).

e For 1 < m < n — 4, the Levi subgroup is of type A1 X Dyp_m, SO

~ (= m)n=m=1) =m

which has no positive integer solutions (n,m).

e For m = n — 3, the Levi subgroup is of type A,,_4 x As, so

(n—3)(n—4)
2

m(m —1) 1-m

2

dim(G'/P*") =n(n—1) — +2n—m — 1> =5

dim(G'/P*") =n(n—1) — —6=25,
which gives n? + 5n = 34 hence no integer solutions.
e For m = n — 2, the Levi subgroup is of type A,,_3 x A1 x A1, so

(n—2)(n—23)

dim(G'/P*") =n(n—1) — 5

—1-1=5,
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which gives n? 4+ 3n = 20 hence no integer solutions.
e For m = n — 1 or m = n, the Levi subgroup is of type A,_1, so

—1 -1
dim(G'/P*") =n(n —1) — n(n2 ) = n(n2 ) =5,
which is never equal to 5.
Type Fg: the number of positive roots is 36, and the following table
E6 a1 (6% Qa3 (67} a5 | g
L D5 A4><A1><A1 A2XA2XA1 A4><A1 D5 A5
|DF (L) 20 11 7 11 20 | 15
dim(G/P%) | 16 25 29 25 16 | 21
shows that the desired quantity is never equal to 5.
Type FE7: the number of positive roots is 63 and the following table
E7 a1 (6% Qs (7] (6% Qg | A7
L> Dﬁ A5><A1 A1><A2><A3 A4><A2 D5><A1 E6 A6
|®F (L) 30 16 10 13 21 36 | 21
dim(G/P%) | 33 47 53 50 42 27 | 42
shows that the desired quantity is never equal to 5.
Type FEg: the number of positive roots is 120 and the following table
Eg aq a9 (0%} (%] (075 (67 a7 | ag
L D7 A6><A1 A1XA2><A4A4XA3D5XA2 EGXAl E7 A7
|DF (L) 42 22 14 16 23 37 63 | 28
dim(G/P%) | 78 98 106 104 97 83 57 | 92
shows that the desired quantity is never equal to 5.
Type Fjy: a direct computation - see Subsection 2.5 - gives
dim(G'/P*") = dim(G'/P**) =15 and dim(G'/P*?) = dim(G'/P**) = 20.

Type Gs: as we already know, both G/P* = @ and G/P*? have dimension 5.
Lemma 2.37. The variety X = G/P; is not isomorphic to P® nor to Q.

Proof. Let us consider the quotient map f: G/P* — G/P. By Corollary 2.31 we have
P = L - P“, hence the morphism f is finite, purely inseparable and of degree 4. Assume
X ~ P?, then we get f: Q — P5. Considering the line bundle Og(1) = Ops (1), we have
that PicQ = Z-Og(1) and f*Ops(1) = Og(m) for some m > 0, since it has sections. Taking
degrees, this gives on the left hand side
f0ps(1) - f*Ops(1) - f*Ops(1) - f*Ops(1) - f*Ops(1)
=(deg f) (Ops(1) - Ops(1) - Ops(1) - Ops(1) - Ops (1)) = deg f,

so we get deg f = 4. On the right hand side, this equals

Oq(m) - Oq(m) - Og(m) - Og(m) - Og(m)

= p*Ops(m) - p*Ops(m) - p*Ops(m) - p*Ops(m) - p*Ops (m)

= (deg p)(Ops (m) - Ops(m) - Ops(m) - Ops (m) - Ops(m)) = (deg p - m®),

which has degree 2m®, where p is the projection of Proposition 2.26. Comparing degrees one
gets 4 = 2mP, which is absurd.
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Now, let us assume instead that X ~ @, then f: Q@ — Q is of degree 4 and again
f*Oq(1) = Og(r) for some r > 0: the analogous computation of degrees yields 8 = 2r9,
which is again absurd. O

Lemma 2.38. The variety X = G/P, is not isomorphic to G/P2.

Proof. Assume X ~ G/P“2, then the G-action on X is given by a morphism 0: G — AutOG /Paz
the latter being equal to G by Theorem 2.17. In particular, 6 is an isogeny which satisfies
§~1(P*2) = P. This means that there is some g € G(k) such that

(ker ) - gP*2g™1 = P.

Since ker 6 is finite, taking the connected component of the identity and the reduced subscheme
on both sides implies that P2 and P! are conjugate in GG, which is a contradiction. O

The above study of P, and P does not complete the classification (in characteristic 2) of
homogeneous spaces having as stabilizer a parabolic subgroup whose reduced part is equal to
P, Let us consider a simple group G of type G5 and a nonreduced parabolic subgroup P ¢ G
satisfying Peq = P™!, in characteristic p = 2. Moreover, let us assume that Lie P # Lie G, i.e.
that Lie P is equal to f (resp. [) and let us write it as P = Up - Preq, where Up = PN Ry (Pred):
in particular, it is contained in U_2q,—q, (resp. in U_q, - U_q,—q,) and its order is |Up | = 27
for some n > 2, the case n = 1 being P, treated above.

Lemma 2.39. Let X be the underlying variety of G/P. If n is not congruent to 0 or 1 modulo
5, then X cannot be isomorphic to G'/P* for any G' and a € A(G').

Proof. Assume X ~ G'/P®. Then by Lemma 2.36 it must be either isomorphic to Q < P, to
P’ or to G/P. The same reasoning as in Lemma 2.38 proves that X # G/P®2. Moreover,
the quotient morphism G/P* — G/P gives a purely inseparable finite map of degree 2™

f:Q— X.
By repeating an analogous computation as in Lemma 2.37,
o if X = P® and f*Ops(1) = Og(m) for some m > 0, then 2" = 2m> hence m = 22 for
some a € N and n = ba + 1;
o if X = Q and f*Ogq(1) = Og(r) for some 7 > 0, then 2"+ = 275 hence r = 2° for
some b e N and n = 5b,

giving a contradiction with the assumption on n. O

Question: if n is congruent to 0 or 1 modulo 5, can X be isomorphic to some G'/P*?

3. CONSEQUENCES AND HIGHER PICARD RANKS

We state here - in all types but G5 - the desired modification of Wenzel’s description
of parabolic subgroups having as reduced subgroup a maximal one: they are all obtained
by fattening the reduced part with the kernel of a noncentral isogeny, which generalizes to
this setting the role of the Frobenius in characteristic p > 5. We then give a criterion to
determine when two homogeneous spaces with Picard rank one have the same underlying
variety. Moving on to a different setting, we consider spaces G/P with higher Picard ranks.
First, using the Bialynicki-Birula decomposition allows us to describe explicitly classes of
curves and divisors on such varieties. This description is then used to establish a family of
examples - in Picard rank two - of homogeneous spaces which are not isomorphic as varieties
to those having a stabilizer a parabolic subgroup belonging to Wenzel’s classification, i.e. of
the form G,,, P** n ... N Gy, P for some integers m; and simple roots ;.
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3.1. Consequences in rank one. In the following Subsection we complete the study in the
case of Picard rank one. Due to Proposition 2.35, let us make the assumption that the group
G is not of type G2 in characteristic two.

3.1.1. Classification of parabolics with mazximal reduced subgroup. The results in the preced-
ing Section allow us to complete the classification of parabolic subgroups having as reduced
subgroup a maximal one. Let us recall that, by Theorem 2.3, if the Dynkin diagram of G is
simply laced or if p > 3, then such subgroups are of the form P = G, P* = (ker F3")P“.

Proposition 3.1. Let G be simple and P be a parabolic subgroup of G such that its reduced
subgroup is maximal i.e. of the form Prq = P for some simple root . Then there exists an
isogeny @ with source G such that

P = (ker p)P“,

unless G is of type Gy over a field of characteristic p = 2 and « is the simple short root.

Proof. First, Propositions 2.9, 2.10, 2.19, 2.16 and Remarks 2.13 and 2.15 imply that if G is
simple and P,eq is a maximal reduced parabolic subgroup, then either P is reduced, or there
exists a nontrivial noncentral normal subgroup of height one contained in P. This subgroup
is either H = N¢g - when it is defined - or the image of the Frobenius kernel of the simply
connected cover of G.

Now, let us consider the given parabolic P. If it is reduced, then there is nothing to prove. If
it is nonreduced, then there is a noncentral subgroup H(;y < P normalized by G and of height
one. Let us denote as

Y1 G — G/H(l) = G(l)
the quotient morphism and replace the pair (G, P) with (G, P1)), where Py := P/Hy).
This gives again a parabolic subgroup whose reduced subgroup is maximal, hence either P
is reduced or we can repeat the same reasoning to get an isogeny

(2h G — G/H(l) — G/H(Q) =: G(Q)

Setting P(o) := G/H () we repeat the same reasoning again. This gives a sequence (G (), Pim))
which ends with a reduced parabolic subgroup in a finite number of steps : indeed, P/P,eq is
finite so it is not possible to have an infinite sequence

Pred;H(l)Pred;’”;H(m)Pred;’”;P-

Thus, let us set H := H(,,) for m big enough and ¢ := ¢,,. Then we claim that P = HP* =
(ker ) P*.
Both H and P“ are subgroups of P by construction, hence HP* — P. Quotienting by H then
gives

HP*/H = P*/(H n P*) c P/H = P,.
Since both are reduced and have the same underlying topological space, they must coincide
hence HP® = P. O

In particular, using our previous results on factorisation of isogenies, we can give a very
explicit description of the kernels involved in the classification.

Corollary 3.2. Keeping the above notation and the ones given in Definition 1.8, in the equality
P = (ker p)P®, there are only the two following options:

(a) either ker ¢ = ker F? = Gy, is the Frobenius kernel,
(b) or, when such a subgroup is defined, ker p = ker(mgm) 0 FZ') = Ny
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Proof. Let us first assume G to be simply connected and consider the factorisation of the
isogeny ¢ given by Proposition 1.12

p: G —2 G L @

where ¢ = 7w o F™ and p is central. Let o, o” and o’ be simple roots of G, G” and G’
respectively, defined by the equalities

Pred — Poc7 O,(Pa) — })O//7 p(Pa//) _ Pal_
Then
P = (ker po)P® = (po) Y (P*) = o~ (P¥") = (ker o) P?,
hence replacing ¢ by o and G’ by G” gives one of the cases (a) and (b).
If G is not simply connected, then we can consider the pull-back P := ¢~}(P) < G in the
simply connected cover. Applying the above reasoning to P yields

either P = ¢(P) = (G P*) = GuP*, or P = (P) = (N, 5P*) = Ny cP®

and we are done. O

3.1.2. Comparing varieties of Picard rank one. Let us start by considering a homogeneous
variety X = G/P under the action of a simple adjoint group G, having Picard group of rank
one. Then set

Go := M?X and Py := Stab(z) < Gy,

where z € X is a closed point and where we keep as notation for the automorphism group the
same as in Remark 2.18. Since the radical of Gy is solvable and acts on the projective variety
X, it has a fixed point: being normal in Gy, it is trivial. Analogously, the center of G - which
is contained in a maximal torus - is trivial. Moreover, the hypothesis Pic X = Z together
with Theorem 3.12 imply that Gy is simple. So the group Gy is simple adjoint and uniquely
determined by the variety X, while Py is a parabolic subgroup whose reduced subgroup is
maximal. Its conjugacy class is uniquely determined by X up to an automorphism of the
Dynkin diagram of Gy. Moreover, since the action of Gg on X is faithful, by Theorem 2.2 we
have that Py is reduced, hence of the form Py = P for a simple root a.

Now, let us consider the action of G on X: we want to relate in all possible cases the pair
(G, P) to the pair (Gy, Py). This will give us a way to determine, given two homogeneous
spaces G/P and G’/P’, whether they are isomorphic as varieties.

Proposition 3.3. If the pair (Go, Py) is not exceptional in the sense of Demazure, then one
of the following two cases holds :
(a) G = Gy and P = G,,P*, where P* = Py up to an automorphism of the Dynkin
diagram of G, o
(b) G = (Go)aa and P = Ny, P, where P* = ng,(Py)/Z(Go) up to an automorphism of
the Dynkin diagram of G.
If (Go, Po) is exceptional, then there are two additional possibilities - denoting as (G{), P}) the
associated pair in the sense of Demazure :
(a’)) G = G} and P = G,,P%, where P = P} up to an automorphism of the Dynkin
diagram of G, o
(b)) G =(Gp)ad and P = Ny, P, where P* = ng (Py)/Z(Gy) up to an automorphism of
the Dynkin diagram of G.
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Proof. Let us start by assuming that (G, Pp) is not exceptional in the sense of Demazure. By
Corollary 3.2, either P = G,,,P* or P = N,, g P* for some «. In the first case,

X = G/GpP* = G™ /)(PY)™ ~ G/P®

as varieties, hence by Theorem 2.17 this implies G = Autg( = Gy and P = PY leading to
(a). In the second case,

X = G/NyoP® = G )(PT)™ ~ G/P™ = Goa/ (P¥/2(G))

as varieties, hence by Theorem 2.17 again Goq = Auty = G and Py = P®/Z(G). Considering
their respective images by the very special isogeny of G,q gives (b).
If (Go, Py) is exceptional in the sense of Demazure, Theorem 2.17 allows for two additional

cases: to get the conclusion it is enough to repeat the same reasoning by replacing (G, Fp)
with (Gj), P)). 0

3.2. Curves and divisors on flag varieties. We give here an explicit basis for 1-cycles
and divisors modulo numerical equivalence on a flag variety X = G/P of any Picard rank,
with stabilizer P not necessarily reduced. We do so by describing the cells of an appropriate
Biatynicki-Birula decomposition of X in terms of the root system of G and of the root system
of a Levi subgroup of the reduced part of P.

3.2.1. Biatynicki-Birula decomposition of a G-simple projective variety. Flag varieties are nor-
mal, projective and equipped with a G-action with a unique closed orbit, hence they form a
particular class of simple G-projective varieties (for short, G-simple varieties), as in [Bri02].
Let us review here the main definitions and results concerning the Bialynicki-Birula decom-
position of such varieties, then specialize to flag varieties. The original work on the subject is
[BB73]; for a scheme-theoretic statement see [Mil17, Theorem 13.47].

Let us consider a G-simple variety X and fix a cocharacter A: G, — T such that

B={geG: }/in(l) AB)gA(t™1) exists in G},

which is equivalent to the condition that {(y,\) > 0 for all v € ®*. This implies in particular
that the set of fixed points under the G,,-action induced by A coincides with the set X7 of
T-fixed points. Recall that the fixed-point scheme X7 is smooth, see for example [Mill7,
Theorem 13.1]. For any connected component Y < X T there are an associated positive and a
negative stratum, defined as

XHY):={reX: l%A(t) cxeY} and X (YV):={reX: %i_r}r(l))\(tfl) -z eY},
equipped with morphisms
p i XT(Y) =Y, $i—>%i_I>I(l))\(t)'$,
p X (Y)=Y, z—lmAt )z

t—
Theorem 3.4 (Bialynicki-Birula decomposition). Let X be a normal G-simple projective
variety. Then the following hold:

e The variety X is the disjoint union of the positive (resp. negative) strata as'Y ranges
over the connected components of X .

e The morphisms p* and p~ are affine bundles.

e The strata X (Y) and X~ (Y) intersect transversally along Y .
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Let us remark that the assumption on A implies that positive strata are B- invariant, while
negative strata are B~ -invariant. In particular, the unique open positive stratum X% is equal
to X T (zT) where ™ is the unique B~ -fixed point, and analogously the unique open negative
stratum X~ is equal to X~ (7 ) where 2~ is the unique B-fixed point. Let us recall here the
main results from [Bri02| in the case where X is smooth.

Theorem 3.5. Let X be a smooth G-simple projective variety, x~ its B-fixed point, X~ =
X~ (z7) the open negative cell and Dy, ..., D, the irreducible components of X\X ™.

(1) Dy,...,D, are globally generated Cartier divisors, whose linear equivalence classes
form a basis of Pic(X).

(2) Every ample (resp. nef) divisor on X is linearly equivalent to a unique linear combi-
nation of Dy, ..., D, with positive (resp. non-negative) integer coefficients. In partic-
ular, rational and numerical equivalence coincide on X i.e. the natural map Pic(X) —
NY(X) is an isomorphism.

(3) There is a unique T-fized point x; such that D; is the closure of X~ (x; ). Moreover,
x; 18 isolated.

(4) Consider the B-invariant curve C; := B - x; . Then
DZ' . Cj = (57;]',

meaning that C; intersects transversally D; and no other D;.
(5) The convex cone of curves NE(X) is generated by the classes of C1,...,Cy, which form
a basts of the rational vector space N1(X)q.

3.2.2. Biatynicki-Birula decomposition of flag varieties. Let us now specialize to our case i.e.
interpret the results of the above Section in terms of root systems. The first step consists in
recalling the Bruhat decomposition of a flag variety with reduced stabilizer, i.e. X = G/Pr
where I < A is a basis for the root system of a Levi subgroup of Pr. In particular, for a simple
root « the subgroup P® - which has been widely used in the previous Sections - coincides with
PA\(a}- Let us fix a set of representatives w € Ng(T'), for w e W = W(G,T) and let us recall
the following (see [Sp98, 8.3]).

Theorem 3.6 (Bruhat decomposition). Let G © B © T be a reductive group, a Borel subgroup
and a mazimal torus, and W = W (G, T). Then the following hold.

(1) G is the disjoint union of the double cosets BwB, for we W.
(2) Let ®,, be the set of positive roots y such that w='v is negative. Then

Uwi= ] Uy
YEDy,
1s a subgroup of the unipotent radical of B, with the product being taken in any order.

(8) The map Uy, x B — BwB given by (u,b) — wwb is an isomorphism of varieties.

This gives a decomposition of G/B into the disjoint union of the cells BwB/B, which are
isomorphic to U, i.e. to affine spaces of dimension equal to the length of w. Since we want to
work with G/ Py instead of G/B, we shall not consider the whole Weyl group but its quotient
by the subgroup W; generated by the reflections corresponding to simple roots in 1.

Lemma 3.7. In any left coset of Wi in W there is a unique element w characterized by the
fact that wl < ®* or by the fact that the element w is of minimal length in wW7.

Proof. See [BT72, Proposition 3.9| O
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We denote the set of such representatives as W!. In particular, denoting wg and wo,1 the
element of longest length of W and W7 respectively, then w(I) = wowp,7 is the element of

longest length in W',

Proposition 3.8 (Generalized Bruhat decomposition). For a fized I < A, the group G is the
disjoint union of the double cosets BwPy, where w ranges over the set W'.

In order to get a similar statement as (3) in Theorem 3.6, let us consider for any w € W/
the sets

(3.1) L= {yedT:wly¢ d and wly ¢ B},
(3.2) By 1 i= By \PL = By 0 D]

Lemma 3.9. With the above notation, let us fix we WY.

e groups U, wi ranging over resp. ®y.1) generate two subgroups of the
1) Th U,, with v ‘ ol D, te t b th
unipotent radical of B,

I
Up=[1 Uy and Uwr= [] Uy
'qu){u Veéw,l

with the product being taken in any order.
(2) The product map UL x P; — BwP; given by (u,h) +— wih is an isomorphism of
varieties.

Proof. To prove (1), let us recall that for any pair of roots 7,6 € ® there exist constants ¢;;
such that

(uy(@)us() = [ wiyrjolcya’y’),  forallz,ye G,
1,j>0,iv+jéeP

(see [Sp98, Proposition 8.2.3]). If v and § are both in ®. | then w=!(iy + jJ) is still negative
and not belonging to @7, hence by Equation (3.1) the product of the root subgroups with
roots ranging over ®! is a group. The same reasoning holds for the second product.

Moving on to (2), let us consider an element z € BwP;. Let us fix an order on ®1 = {~1,..., v}
and on @, 1 = {d1,...,0,} . By Theorem 3.6, there are a unique w’ € Wy, a unique u =
Uy (21) Uy (1) € UL, a unique v’ = ug, (y1) - ... us,, (Ym) € Uy, 1 and a unique b € B such
that 2 = uu'ww'b € Bww'B. Moreover, by [Sp98, 8.1.12(2)], there exist constants ¢; € k such

that
' = (H u(;i(yi)) w=w <H g, (y,)w) = wHuwﬂgi(ciyi) =: wu”
i=1

i=1 i=1

Since w16; is in ®; for all 4, the product v” is an element of Py, as well as h := u”w'b because
w' € Wr. This gives a unique way to write = as product uiwh for some v € UL and he P;. O

Next, let us go back to our original setting: consider a sequence G > P D Peg = Pr D B D
T and look at the map

X =GP —2—— G/P=:X,

in order to relate the geometry of X to that of X. The morphism o is finite, purely inseparable
and hence a homeomorphism between the underlying topological spaces. Let us denote as
0€ X and o € X the respective base points.
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The decomposition of Proposition 3.8 allows us to express the variety X as the disjoint
union of the cells BwP;/P; = Bwo as w € W, Let us remark that W/ corresponds to the set
of isolated points under the T-action, i.e. that

(X)T = {wé : we W/Wp}

and the same holds for X. It is hence natural if such a decomposition coincides with the
Bialynicki-Birula decomposition of Theorem 3.4. This is useful because the advantage of the
first one is that it is more explicit and easier to manipulate, while the second can be defined
also on X, independently of the smoothness of the stabilizer. Let us denote as )Z';j (resp. X))
the positive Biatynicki-Birula strata associated to the T-fixed point wé (resp. wo), and the
analogous notation for negative strata.

Lemma 3.10. For any w e W /Wy, we have
Bwo = )N(;; and Bwo = X,.

Proof. For the first equality, wo belongs to )Z';j because it is a T-fixed point. Moreover, positive
strata are B-invariant which means that Bwo < )Z';; . The other inclusion comes from the fact
that X can be expressed as the disjoint union of both the strata of the two decompositions
with the same index set.

Next, let us consider Bwo = o(Bwd), which equals U(JN(;UF ) by what we just proved. The
inclusion J()Z'J ) © X} comes from the fact that o being T-equivariant respects the Bialynicki-
Birula decomposition, while the other inclusion is due to the fact that

|_| Bwo=X = |_| X:Ur.

weW! weW!

because ¢ is an homeomorphism. O

Remark 3.11. How can we visualize the morphism ¢ on cells? By Proposition 3.8, the Bruhat
cell associated to w € W/ in X is an affine space of dimension [, equal to the cardinality of
®! = {~1,...,7}. Let us consider the integers n;, which we recall are associated to the roots
in ® via the equality

U_y, 0P =u_n(cpni).
If we denote as Y; the coordinate on the affine line given by U,,, then the morphism o acts on

such a line as an n;-th iterated Frobenius morphism, hence its behavior on the cell Bwo = )Z';;
can be summarized in the following diagram

~

Ul ~ X+ = Speck[Y1,...,Y]]~ Al —— G/P;

w

ny

X} =Speck[Y" . Y~ Al ——— G/P
We reinterpret all the ingredients of Theorem 3.5 in order to specialize and state it in the
case of flag varieties. First, X = G/P is indeed smooth, projective and G-simple. Its unique

B-fixed point is z~ = o the base point, which gives as open cell B~0 = Bwyo = Bwéo = X;FI.
0
Moreover, the irreducible components of X \Xwé are the closures of the strata of codimension

one, i.e. the cells Bwo with w € W of length I(w) = I(w}) — 1. Those are exactly of the form
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w = wpsqwo,r for o € A\, since for o € I we have that wgs, is in the same left coset as wé.

In particular, the divisors in the statement of Theorem 3.5 are

D, = Bwgsqwo 10 = Bwysq0 = B=sq0, for ae A\I,

hence the unique T-fixed point x, such that D, is the closure of X~ (z,) is , = sq0, and
we are led to consider the B-invariant curves

C, = Bxy = Bsyo.

We are now able to reformulate the results of Section 3.2.1 in the following:

Theorem 3.12. Let us consider a sequence G > P D Ppg = Pr > B> T and let X = G/P
with base point o and open cell X~ = B~o0. Then the following hold:

(1) The irreducible components of X\X~ are the closures D,, of the negative cells asso-
ciated to the points s,o0 for a € A\I. Moreover, they are globally generated Cartier
divisors, whose linear equivalence classes form a basis for Pic(X).

(2) Every ample (resp. nef) divisor on X is linearly equivalent to a unique linear combina-
tion of the D, ’s with positive (resp. non-negative) integer coefficients. In particular,
the natural map Pic(X) — NY(X) is an isomorphism.

(8) Considering the B-invariant curves Cy,’s defined above, the intersection numbers satisfy
D, -Cg = dap-

(4) The convex cone of curves NE(X) is generated by the classes of the Cy’s, which form
a basts of the rational vector space N1(X)q.

3.2.3. Contractions. Theorem 3.12 tells us in particular that the Picard group of a flag variety
X = G/P is a free Z-module of rank the number of simple roots not belonging to the root
system of a Levi factor of P,q. This gives a motivation to the study, done in Section 2, of
parabolic subgroups having maximal reduced part. In order to move on to higher ranks by
exploiting the previous results in rank one, we adopt the following strategy : we define a finite
collection of morphisms which behave nicely, arise naturally from the variety X, and whose
targets are homogeneous spaces of Picard rank one. As a first step towards such a construction,
we recall the notion of a contraction between varieties and some of its properties.

Definition 3.13. Let X and Y be varieties over an algebraically closed field k. A contrac-
tion between them is a proper morphism f: X — Y such that f*: Oy — f,Ox is an
isomorphism.

We will make use of the following results (stated here for reference).

Theorem 3.14. Let f: X — Y be a contraction between projective varieties over k. Then f
is uniquely determined, up to isomorphism, by the convex subcone NE(f) of NE(X) generated
by the classes of curves which it contracts. Moreover, if Y' is a third projective variety and
' X =Y’ satisfies NE(f) < NE(f'), then there is a unique morphism ¥ : Y — Y' such that
fr=1of.

X ! Y

oW

Y/
Proof. See [Deb01, Proposition 1.14]. O

Theorem 3.15 (Blanchard’s Lemma). Let f: X — Y be a contraction between projective
varieties over k. Assume that X is equipped with an action of a connected algebraic group G.
Then there exists a unique G-action on'Y such that the morphism f is G-equivariant.
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Proof. See [Bril7, 7.2]. O

The following construction is done here for any globally generated line bundle and is then
applied to Ox (D, ) to define the desired family of contractions.

Lemma 3.16. Let X be a projective variety over k and L a line bundle over X which is
generated by its global sections. Then

(a) There is a well-defined contraction

o0
fir X — Y :=Proj @ H(X,L®").

n=0

(b) A curve C in X is contracted by f if and only if L-C = 0.

Proof. (a) : Let us denote as S the graded ring on the right hand side and denote as S; =
HO(X, £84) its homogeneous part of degree d. The schemes X and Y = Proj S are covered
by the open subset

0 0 AN
H (X, L
D(t) = Spec (U %) and Xy:={rve X, t,¢m,L,} = X\Z(t),
n=0
for t homogeneous in @4>154, because by hypothesis L is globally generated. This allows to
define f via the inclusion

(3.3)

0 0 ®nd
U H(X £57) Ox(Xy), forte S

tn

n=0

Moreover, [Har77, II, Lemma 5.14] - applied to the coherent sheaf Ox and the line bundle
£8" _implies that (3.3) is an equality, which gives the condition f,Ox =~ Oy.

(b) : Let us consider the sheaf Oy (1) defined as in [Har77, II, Proposition 5.11], fix some
global section s € H°(X,£) and assume the open set on which it does not vanish is affine
i.e. Xs = SpecOx(Xs). Recall that we have the trivialization £jx, ~ sOx,, so considering
sections over X, gives

*8 "1 Ox (X,)
0 * _ n+1 . X s) 0
H (Xs,f OY(l)) - <nL—J() =2 ) ®Ufzo f_ﬁ OX(XS) = Sn =H (Xs,ﬁ)-

By covering X with the open sets X, as s ranges over the global sections, this gives the
condition f*Oy (1) = L, hence

H0<X7 ﬁ) = HO(X7 f*Oy(l)) = H0<Y7 f*f*OY<1)) = H0<Y7 OY<1) @0y f*OX)
= H°(Y, 0y (1)),

where the last equality comes from f being a contraction. In particular, Oy (1) is ample over
Y, thus it must have strictly positive intersection with any effective 1-cycle by Kleinman’s
criterion. In other words, given a nonzero class C' € NE(X), f,C = 0 if and only if

0=0y(1) fuC = f*Oy(1)-C=L-C,
by the projection formula, and we are done. ([l

Before going back to our particular case, let us prove a criterion for a morphism between
homogeneous spaces to be a contraction.

Lemma 3.17. Consider a chain of algebraic groups H < H' < G over k. The morphism
f: G/H — G/H' is a contraction if and only if H'/H is proper over k and O(H'/H) = k.
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Proof. Let us consider ¢: G — G/H and ¢': G — G/H' to be the quotient maps and m: G x
H/H' — G/H the morphism given by the group multiplication and then by quotienting by
H: by |[Mill7, Proposition 7.15] we have a cartesian square

GxH/H—" @

I |

G/H s G/H'
Since ¢ is faithfully flat and prg is obtained as base change of f via such a morphism, f
being proper is equivalent to prg being proper; now, the latter is obtained as base change of
H'/H — Speck via the structural morphism of G, which is also fppf, hence it is proper if and
only if H'/H is proper over k. This shows the first condition.
Moreover, the formation of the direct image of sheaves also commutes with fppf extensions:
more precisely, applying this to the structural sheaves in our case yields

(@) f+Oc/u = (prc)«Ocxm/m = Oc @ Opryu(H'/H),
hence by taking ¢} on both sides one gets
f[+O¢/n = O/ <= Ogypy(H'/H) =k,
which gives the second condition. O

Remark 3.18. Let us consider again a fixed parabolic subgroup P. We now construct a
collection of morphisms f,: X — G/Q,, for a € A\I, such that

(1) the target G/Qy is defined in a concrete geometrical way,

(2) each f, is a contraction,

(3) the stabilizer @, coincides with the smallest subgroup scheme of G containing both P
and P?%: in particular, (Qq)red 18 @ maximal reduced parabolic subgroup,

(4) the collection (fa)aea\sr "tells us a lot" about the variety X.

The reason why @, is not directly defined as being the algebraic subgroup generated by P
and P“ is that this notion does not behave well since P is nonreduced in general.
Let us apply Lemma 3.16 to the variety X = G/P and the line bundle £ = Ox (D, ), which
can be done thanks to Theorem 3.12. This gives a contraction

ee}
(3.4) far X — Y, :=Proj (P H(X,0x (nDy,)).

n=0
By Theorem 3.15, there is a unique G-action on Y, such that f, is equivariant. Moreover,
since f, is a dominant morphism between projective varieties, it is surjective, hence the target
must be of the form Y, = G/Q, for some subgroup scheme P € Q, & G. We take this
construction as the definition of the subgroup @, so that conditions (1) and (2) are already
satisfied. Moreover, by Theorem 3.12 and Lemma 3.16, a curve C' is contracted by f, if and
only if D, - C' = 0, meaning that this map contracts all Cg for S # o while it restricts to a
finite morphism on C,. This leaves one more condition to show.

Lemma 3.19. The smallest subgroup scheme of G containing both P and P® is Q.

Proof. By definition of Y, we have the inclusion P < Q,,.
Let H be the subgroup scheme of G generated by P and P®. Since

Pred:PI: ﬂ Pa7
aeA\T
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the subgroup generated by P.eq and P? is just P®. Next, consider the quotient map 7 : X —
G/P% and the composition f, o o: X — G/Qq: the latter contracts, by the above discus-
sions, all curves 6’5 for 8 # «, hence NE(7) < NE(f, o o). Moreover, 7 is a contraction by
Lemma 3.17, because its fiber at the base point is P*/P; which is proper and has no noncon-
stant global regular functions. By Theorem 3.14, there exists a unique morphism ¢ making
the diagram

X = G/Pea —— G/P*

! :
X=G/Pp— g,
commute: this shows P%* c ), hence H < Q.
Conversely, let us consider the projection 7: X — G/H. We already know by Theorem 3.12
that 7 contracts all Cg for B # «; moreover, the square on the left in the following diagram
is commutative and its horizontal arrows are both homeomorphisms. This implies that «

contracts all Cg for 8 # a. In other words, the inclusion NE(f,) < NE(7) holds.

X 7 + X L y G/Qq

G/P* —— G/H

Since f, is a contraction by definition, this gives a factorisation by 1 - again by Theorem 3.14
- which means that @, < H. O

Remark 3.20. The homogeneous space X is now equipped with a finite number of contrac-
tions f, such that the target of each morphism has Picard group Z, with a unique canonical
ample generator, corresponding to the image of D,. The inclusion

(3.5) Pc () Qa
aeA
holds by definition of Q). If the characteristic is p = 5, by Theorem 2.3 there are nonnegative
integers m,, for @ € A\I such that P is the intersection of the G, P%, hence P ¢ Q, < G, P*
and the inclusion (3.5) becomes an equality. Geometrically, this corresponds to saying that
the product map
f=1[te: X —[]G/Qa
aeA aceA
is a closed immersion, realizing X as the unique closed orbit of the G-action on the target.

3.3. Example in Picard rank two. Let us consider a simple simply connected algebraic
group G over k, having Dynkin diagram with an edge of multiplicity equal to the characteris-
tic p € {2, 3}, so that the definitions and properties of Subsection 1.2.2 apply. In what follows,
we call a parabolic subgroup of Wenzel type if it is of the form G,,, P“* n ... n G, P% for
some integers m; and simple roots «;, while a homogeneous space is said to be of Wenzel type
its underlying variety is isomorphic to some G’/P’, where P’ is a parabolic subgroup of Wenzel
type.

The main result in this part is the following, which provides us with a first family of homoge-
neous projective varieties (in types B, C, and Fj) which are not of Wenzel type.

Proposition 3.21. Let p = 2 and consider a simple, simply connected group G and two
distinct simple roots o and B such that: either G is of type By, or Cy, and the pair (o, ) is of
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the form (o, ;) withi < j <n orj=nandi<n-—1, or G is of type Fy and the pair (o, B)
1S one among

(a17a4)7 (OéQ,Oél), (a27a4)7 (Oég,Oél), (a37a4)7 (a4,a1).
Then the homogeneous space X = G/(NgP® n PP) is not of Wenzel type.

First, we give a motivation to the fact that we look for an example in rank two, then we
prove Proposition 3.21 in two consecutive steps.

Let us fix a simple root € A. In order to find a parabolic subgroup not of Wenzel type,
the easiest and more natural idea is to consider the very special isogeny 7g: G — G and
the subgroup P := NgP¢. Its reduced part P,eq = P is maximal, but P is not of the form
G P* for any m. Indeed, its associated function pp: ®* — N U {0} is given by

v+ if a ¢ Supp(y)
v+ 0 if « € Supp(y) and v € -
v+ 1 if a« € Supp(y) and v €

while the function associated to a parabolic subgroup of Wenzel type satisfies pg,, pa(7) = m
for all roots v containing « in their support, regardless of their length. There always exist
both a short and a long root containing any simple root « in their support, namely

(3.6) e in type By, Supp(e1) = Supp(e1 + €2) = A;

(3.7) e in type Cp, Supp(2e1) = Supp(ey + €2) = A;

(3.8) in type Fy, Supp(a; + 2as + 3as + 2a4) = Supp(ag + 2as + das + 2a4) = A,
(3.9) e in type Go, Supp(2a1 + a2) = Supp(3aq + 2a2) = A.

Let us remark that the above roots can be constructed in a uniform way: they are respectively
the highest short root and the highest (long) root. Thus, we can conclude that pp # ¢a,.0
for all m, proving that P is a parabolic subgroup not of Wenzel type. However, X = G/P is
isomorphic as a variety to G/Ps, hence the homogeneous space X is still of Wenzel type.

The same reasoning applies when one considers the product of a parabolic subgroup of Wenzel
type and of a kernel of a noncentral isogeny with source G: this might define a new parabolic
subgroup, but an homogeneous space which is still of Wenzel type. Together with Proposi-
tion 3.1, this implies that it is not possible to find examples of homogeneous spaces not of
Wenzel type having Picard rank one, when the characteristic satisfies the edge hypothesis (see
Section 1.2.2). This provides a motivation to the study of the rank two case, which means
considering parabolic subgroups whose reduced part is of the form P® n P? for two distinct
simple roots & and (5. In such a context we are able to find the desired class of examples.

Lemma 3.22. Let us consider a simple, simply connected group G having Dynkin diagram
with an edge of multiplicity p, fix two distinct simple roots o and B and an integer r = 0. Both
the parabolic
P:= N,gP®n PP

and its pull-back via the very special isogeny me: G — G are not of Wenzel type if and only if
one of the following conditions is satisfied :

(i) G is of type By, or C, and the pair (o, B) is of the form (o, o;) with i < j < n or

j=nandi<n-—1;
(ii) G is of type Fy and the pair (o, 8) is one amongst

(011,014), (042,041), (012,014), (043,041), (013,044), (Oé4,0£1).
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In particular, this situation can only happen when p = 2.

Proof. Let us take a look at the function pp: @ — N U {00} associated to the parabolic P -
recall that it is determined by the equality

UynP= u*ﬁ/(apso(w)% vE F

- and let us compare it to the one associated to some Q = G,, P* n G,,P? (i.e. a parabolic of
Wenzel type), which is necessarily of this form because Qreq = Prea = P N P8, Our aim is
to find in which cases there is a contradiction with the equality P = Q. First of all, assuming
op(B) = pg(B) leads to n = 0. Now, let us write down the values that ¢p and ¢ assume on
all positive roots in the following table.

a, B € Supp(7) | o € Supp(7), a € Supp(7), f € Supp(7)
8 ¢ Supp(v), 7 short | 8 ¢ Supp(y), v long
qQ(7) 0 m m 0
op(7y) o0 r+1 r 0

Thus, the two functions can never coincide if and only if there exist at least one long root and
one short root containing o and not 5 in their respective supports. Let us examine each root
system to determine when this is the case.

e If G is of type G5 in characteristic p = 3, then all roots distinct from a; and as contain
both simple roots in their support, hence the desired condition is never satisfied. Thus
from now on we can assume that p = 2.

o If G is of type By, let a = aj and 8 = o; for some 1 < 7,j < n. A positive short root
is of the form &,, = a;, + ... + ap_1 + 2o, for m < n or €, = a,,: hence if j < then
a short root containing « in its support also contains . Let us then assume ¢ < j: in
this case v = ¢; satisfies the condition. Moving on to long roots, if ¢ < j < n then
v =« = ¢g; — €41 is as wanted, while if j = n then v = ¢,_1 + &, = o + 2051
satisfies the condition when ¢ < n — 1, while if © = n — 1 then there is no such 7.

o If G is of type Oy, let a = aj and 8 = o for some 1 < 4,5 < n. A positive long root
is of the form 2¢,, = 2(a + ... + ap—1 + ay,) for m < n or 2¢, = a,: hence if j < i
then a long root containing « in its support also contains . Let us then assume i < j:
in this case v = 2¢; satisfies the condition. Moving on to short roots, if i < j < n
then v = a = ¢; — €41 is as wanted, while if j = n then v = ¢,_1 + e, = ap + 1
satisfies the condition when ¢ < n — 1, while if i = n — 1 then there is no such ~. This
completes condition (7).

e If G is of type Fy, there is no short root containing oy (resp. g, resp. o) in its
support and not containing ag (resp. g, resp. 043); moreover, there is no long root
containing a3 (resp. g, resp. ay) in its support and not containing s (resp. g,
resp. «ag). This can be seen by directly looking at the list of positive roots in such
a system, recalled at the beginning of Subsection 2.5. The remaining pairs are listed
below, which gives condition (7).

o | B | ashort y: o€ Supp(y), 8 ¢ Supp(v) | a long v: a € Supp(y), B ¢ Supp(7)
a1 | g o1 + ag + a3 o

a9 | o1 a9 + o3 9

Q9 | Oy a9 + Q3 a9

a3 | a1 (o '%} as + 2a3

a3 | aq (o '%} as + 2a3

ay | g Qay a2 + 203 + 20
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Up to this point we have only shown that the parabolic P is not of Wenzel type if and only if
conditions (i) or (i7) are satisfied. Now, let us consider the pull-back

7151 (P) = Fél (Ny,aP* n PB) =G, PN NEPB

and compare it with Q = G,,P® n G, P?, analogously as before. This gives in particular,
considering a root v € ®* satisfying @, 8 € Supp(7), that pg(y) = min(m,n) for all v, while
¢r-1(py(7) is equal to 1 if 7 is short, and equal to 0 if 7 is long. To show that those two
parabolics can never coincide it is enough to have both such a long and a short root. This
is always the case, as recalled at the beginning of this Subsection in (3.6)- (3.8), hence this
concludes the proof. O

Lemma 3.23. Keeping the above notations, consider two distinct simple positive roots o and
B satisfying one of the conditions of Lemma 3.22. Then the parabolic P := NgP® n P? gives
a variety X := G/P which is not of Wenzel type.

Proof. The reduced part of the parabolic subgroup P is Peq = P* n P?: by Theorem 3.12,
the convex cone of curves of the variety X is generated by the classes of the curves

Co = Bsqo and Cjg = Bsgo.
Next, let us consider the two contractions
fa: X — G/Qn and fg: X — G/Qp

defined by (3.4). Clearly, Qs = {(Q, P®) = P” is smooth, since P = P?. On the other hand,
both P and P® are by definition subgroups of NgP® hence

P = (Qa)red < Qa < NGPa

Moreover, let us remark that P* < (Qu)red © (NgP)red = P%, 50 (Qa)rea = P*. However,
Q. is not equal to P%: this follows from the fact that U_, n P® = 1, while

UanP=U_4nNgP)n(U_on PP =u_n(ap) nu_o(Ga) = u_alay)

because « is a short root. By Theorem 2.1 - applied to Q)n, we have that Lie Ng < Lie Qq:
the subgroup Ng being of height one, this means that Ng < Q. hence finally Q, = NgP*“.
This means that the product of the contractions

foQXfB:X‘—>Xa><Xﬁ

is a closed immersion, where X, (resp. Xp) is the underlying variety of G/NgP® (resp.
G/P?). Moreover, these maps are - up to a permutation - uniquely determined by the variety
X, because the monoid NC, @ NC3 < N;(X) of effective 1-cycles does not depend on the
group action on it: the two contractions are uniquely determined by its two generators and
by the fact that the first is a nonsmooth morphism while the second is smooth.

The following step consists in studying the automorphisms of the varieties X and Xg. First,
we can apply Theorem 2.17 to the variety Xg = G/ PP since its stabilizer is smooth and since
by Lemma 3.22 the pair (Gaq, P?/Z(G)) is not associated to any of the exceptional pairs,
except in the case of G = Sp,,, and (a, B) = (o, 1), which we treat later. This implies

Aut())(ﬁ = Gaq-

Next, let us consider the group Autg@ its natural action on X gives, applying Theorem 3.15
to the contraction fg: X — Xpg, an action on Xz i.e. a morphism

Auty ——— Aut, = Gua.
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In particular, the isogeny £ is a section of the natural morphism given by the action of G,q on
X, thus giving a semidirect product MOX = (Gaq X ker . Since MOX is reduced, ker & must
be finite, smooth and connected, so it is trivial and we conclude that @g( = Gag-

Finally, let us consider another action of a semisimple, simply connected G’ onto the variety X;
realizing it as a quotient G’/P’ for some parabolic subgroup P’. Since it is simply connected,
G’ is either simple or the direct product G(;y x --- x G(;) where each G(;) is simple.

e If G’ is simple, then its action on X induces a morphism G’ — @9( = (G4, which is in
particular an isogeny. By Proposition 1.12, this morphism can be factorised as

¢ — 5 ¢ — Auth or ¢ ¢ — Aut%,

where the second possibility only can happen whenever G satisfies the edge hypothesis. The
stabilizer of the G’-action is the preimage of the stabilizer of the G-action via such an isogeny,
hence it is either of the form G, P for some m or of the form G,,7~!(P). Now, a parabolic
Q@ is of Wenzel type if and only if G,,Q is for any integer m, since the associated functions
satisfy ¢o(v) + m = ¢a,,o (7). This means that P’ is of Wenzel type if and only if P (resp.
77 1(P)) is. This remark, together with Lemma 3.22 allows us to conclude that, due to our
choice of roots o and 3, P’ is still a parabolic subgroup not belonging to Wenzel’s description.
If G = Spy, and P? = P* | then Theorem 2.17 yields @%ﬁ = PGLs,. Repeating the above
reasoning implies that @9( = PGLgy, as well, hence the isogeny with source G’ is necessarily
the composition of an iterated Frobenius and a central isogeny. This implies that the stabilizer
of the G’-action is of the form P’ = G,, P hence still not of Wenzel type.

o If G' = G(1) x -+ x G(py is not simple, consider the morphism

G(l) X e X G(l) # G —» Gad
determined by the action: then H := ker ¢ is a normal subgroup of G’ and the image of ¢ is
simple, thus H is necessarily of the form

H = H Gy x K, for some K < Z(G),
i#io
thus K is trivial because the quotient G is also simply connected. In particular, denoting as
P(io) = P'n G(io), we have

X=G/P'=G/ (H G * P(m)) = Glio)/ Plio)
Ve
Applying the reasoning above to G(;) instead of G’ leads to the conclusion that the as-
sociated function of P, is not of Wenzel type, hence the same is true for the stabilizer
P' = Tlizi, G * Flio)- -
Question: Let us assume that G is simple and not of type G9 in characteristic 2. Do there
exist parabolic subgroups which are not of the form

P = ﬂ (ker )PP
BeA\I
for a collection of isogenies ¢g with source G7 In rank one this is not possible as proven
in Proposition 3.1. At this point we are not able to exclude that they exist, nor to build
any explicit example. If we think that they are all of this form, then one idea to construct
g starting from P would be to consider the contractions fz: G/P — G/Qp and define the
isogeny via the condition Qg = (ker gog)PB.
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4. APPENDIX

Let us resume here a short description of the Chevalley embedding of the group of type Ga,
which holds in any characteristic. We will then specialize to characteristic two which is the
interesting one for our purposes. First we describe its action on the algebra of octonions, then
we use it to compute some of the root subgroups of such a group, which are fundamental in
order to study the parabolic subgroups P, and P (see Definition 2.24).

4.1. The Chevalley embedding of G5. Let G be the simple group of type Go in charac-
teristic p > 0. It can be viewed - as illustrated in [SV00], from which we will keep most of the
notation - as the automorphism group of an octonion algebra. The latter is the algebra

O = {(u,v): u,v are 2 x 2 matrices},

=(Go)@a) e (G0 0)
(o) Ga) e (6) 6 )
(o) Gn) e (0) 6 o)
ae(la)G) e (G0)6Y)

unit e = (1,0) = e + eg2, and which is equipped with a norm

q(u,v) = det(u) — det(v).

Let us write here for reference a table of products of the basis vectors :

N e | ean | e |exn | fir| fa | fiz | foo
e11 | enn 0 €12 0| fi1] far 0 0
ear [ e | O e | 0| O 0 fu1 | fa
ez | 0 | enn 0 |ew| fiz]| fo 0 0
(4.1) e2| 0 | esn | 0 Jew| 0] 0 | fio | fo
fii]| O 0 | —fiz|fuu| 0 |—exan| O |en
foar| O 0O | —fol|fa|en| 0 |—e1| O
fi2 | fiz|=fu| O 0| 0 |—exn| 0 |ep
foo | foo | —far| O 0 Jex| O | —ep2| 0

An embedding of the group Go into SO7 - which gives an irreducible representation in all
characteristics but two - can be seen as follows: let us consider its action on the vector space

(4.2) Vi=et = {(u,v): det(1 + u) — det(u) = 1} = {(u,v): u1y + ugy = 0}.

By [SV00, Lemma 2.3.1|, a maximal torus of G - with respect to the basis (ej2, €21, f11,€11 —
€22, f12, fa1, faz) of W - acts on V as

G2 3 (&n) — diag(én, &yt 1,667 n) e GLy

Let us re-parameterize it with & = a, n = ab, this gives the torus

G,.2 3 (a,b) — diag(a®b,a 2071, a7 071 1,a,a7 L, ab) =: t € GL7,
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and the basis of simple roots we fix is a1 (t) := a and ag(t) := b. Such a torus acts on V with
the following weight spaces :

Vo = k(e11 — e22), Vo, = kfi2, Voo, = kfa1, Vay4as = kfao,
V_ai—as = kf11, Voai+as = ke12, Vooa,—a, = keat,

which correspond to 0 and the short roots. Re-arranging V' as

(4.3) V =kfia@kfi1 ®keia @ k(e — en) ® keas @ kfor @ kfor

gives the maximal torus T'

(4.4) G2 3 (a,b) — diag(a,a b1, 6%, 1,672 ab,a™!) =t e T < GL;.

This way, T' can be identified with the maximal torus in [He08, page 13]: in his description of
the embedding G < GL7, the group G is generated by the two following copies of GLg,

det B~1
A B
01: Ar—s Sym?(A) det A~" and 60y: Br— 1 ,
A B

N_ 0 1 t a—1 0 1
(0 0) ()

However, in characteristic p = 2, due to the fact that e € V and that G acts on the quotient
W =V /ke, these become the following two copies embedded in GL(W) = GLg:

where

1
A det B

01: Avr— AWM det AL and fy: B+—
A

B
B )
det B

where A®) denotes the Frobenius twist applied to A.

Lemma 4.1. The subgroups 01(GLg2) and 63(GLg2) have root system with positive root respec-
tively By := 21 + ag and Ps := —3a1 — 2as.

Proof. See the computation of the root homomorphisms associated respectively to 51 and [,
done in Remark 4.2: these are respectively the intersection of 6;(GL2) and 02(GL2) with the
upper triangular matrices of GL7. O

Let us remark that {f1, 32} is indeed a basis for the root system of type G, with corre-
sponding set of positive roots being

—3a1 — 209, ] — o, —Q9, A, 31 + a9, 201 + Qo

and with Borel subgroup given by the intersection of G with the upper triangular matrices in

GL7.
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4.2. Root subgroups. Let us move on to the explicit computation of some of the root sub-
groups in type Go. As before, we will do everything considering the action on a 7-dimensional
vector space - the orthogonal of the identity element of O - so that the computations hold in
any characteristic, then at the end we will summarize what we get in characteristic 2.

Let us consider the group G acting on the vector space V' arranged as in (4.3). Denoting

as xg, ..., xg the coordinates on V', the norm becomes
2
(4.5) q(z) = —x5 — xox4 — T125 + ToT6,

while the maximal torus 7" given in (4.4) acts on V' through this table of characters

1 a’b [a~Tp7 T a a’b b1 a?
a2p 1 1 (a3 2|a Tt a a2 b1
ab a3b? 1 a’b a?b? a a’b
(4.6) a~! ab | a2t 1 a’b | a 1p1 a
a3 T a a2 a2t 1 [a3b 2 |a Tt
b a’b? a T ab a>b? 1 a’b
a2 b [a3b7 T a T ab [ a7?b71T 1

The idea is the following: we know that - for any root v € ® - the root subgroup U, < G
is determined by being the unique subgroup of GL(V) (resp. GL(W) in characteristic 2),
which is smooth, unipotent, is acted on by T via the character v, and whose elements are
automorphisms of octonions. We will impose some of these necessary condition - such as u- ()
being an isometry for any A € G, - to determine the root homomorphism w.: G, — Us,.

e First, let us consider the root a;. By (4.6) and the condition for wu,, to be a group
homomorphism, there exist some constants 7i,...,n5 € k such that for any A € Gg, uq, (M)
acts on V as

1 00 ?71)\ 0 0 ?75)\2
010 0 mA 0 0
001 0 0 mA 0
000 1 0 0 1\
000 O 1 0 0
000 O 0 1 0
000 O 0 0 1
Moreover, uq, (A) being an isometry means, by (4.5), that

q(2) = q(ua,(\) - ) = q(zo + mAx3 + Ns\226, 1 + MAT4, To + N3\T5, T3 + N4\T6, T4, T5, T6)
= q(x) + (=2m4 + m)Az3w6 + (05 — N3)N22E — (03 + M) Az4s,

hence 11 = 214, 75 = 13 and 12 = —n3. This still leaves two independent parameters 73
and 74 instead of one, so let us also impose the condition of ug,, (\) respecting the product

fazear = —far - see (4.1) :
(Uay (A) - f22)(Uay (A) - €21) = ua, (A) - (—f21)
(m3A(e11 — e22) + fa2)(—=m3Afi1 + e21) = — 772/\2f12 — mA(e1r — e22) — fa
—77?3/\2]012 - 773/\(611 - 622) — fo1=— 772/\2f12 - 774)\(611 - 622) — fo1,

implying 73 = n4. Let us reparametrise the root homomorphism such that n3 = 1: this,
together with an analogous computation for —aq, gives the desired representations, of the
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form
1 00 22 0 0 )\ 1 0 0 0 000
01 0 0 =X 0 0 01 0 0 000
001 0 0 X O 00 1 0 000

Ugy: A= [0 00 1 0 0 XN, ug:A—|[XAX 0 0 1 00 0
000 0O 1 0 0 0O X 0 0 100
000 0O O 1 0 00 =X 0 010
000 0 0 0 1 A0 0 2\ 0 0 1

e Let us consider the root ap. By (4.6) and the condition for u,, to be a group homomor-
phism, there exist some constants 7; and 72 € k such that for any A € Gy, uq, (M) acts on V
as

Uay (A) - @ = (20, 1, T2, T3, T4, MATOT5, N2AT1 + Tg).
Moreover, the isometry condition means that
q(7) = q(uay(N) - @) = =23 — w2w4 — MATOT1 — T125 + RATOT + ToZ6
= q(x) + (12 — m)Azo71,
hence 11 = n2. As before, we can conclude that the associated root subgroups are of the form

100 0 00 1 00 0 A

Uy : A

> O O O O
OO OO

0 0
1 1
0 0
0 0
0 0

O OO+~ OOoOOo
O OO~ O OO
_— o OO o X»Oo

SO = O oo
O~ OO OO

_ o OO oo

h

Q

¥

>
OO O OO
OO OO O
OO O OO
O~ OO OO

0 A0 0 0

e Let us consider the root 2a; + ay. By (4.6) and the condition for ugq, +a, to be a group
homomorphism, there exist some constants 71, . ..,75 € k such that for any A € G, U2, +ay (M)
acts on V as

1 mA 0 0O 0 0 0
0 1 0 0 0 0 0
0 0 1 mA n5A2 0 0
0 0 0 1 mx 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 mA
00 0 0 0 0 1

Moreover, the isometry condition implies
q(U2a; +as(N) - T) = q(z0 + MAT1, T1, T2 + N2AT3 + N5A°T4, T3 + M3AT4, T4, T5 + UATG, T6)
= q(@) + (m — na)Az1ze — (03 + 15)\°af — (203 — 1) Arawa = g(x),

hence 171 = 14, 5 = —n3 and 72 = 2n3. This still leaves two independent parameters 73 and
n4 instead of one, so let us also impose the condition of ugn,1a,(A) respecting the product

faoear = —fa1 :
(U201 +as (A) * f22) (U201 +as (X) - €21) = U2a; +as(A) - (—f21)
faa(—m3N%e19 + m3A(e11 — e22) + e21) = — A faz + for
N3Afaa — fa1 = — naAfa2 — for,
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implying 13 = 14, so we can conclude that the associated root subgroups are of the form

1 X0 0 0 00 10 0 0 00O
010 0 0 00 A1 0 0 000
001 2x =X 0 0 00 1 0 000
Udoy+as: A— |0 0 0 1 0 0 OJ,u—204—ag: A— |0 0 A 1 0 0 0
000 0 1 00 00 =22 221 0 0
000 0 0 1 X\ 00 0 0 010
000 0 0 01 00 0 0 0 X1

e Let us consider the root ay + ay. By (4.6) and the condition for s, +a, to be a group
homomorphism, there exist some constants 71, ...,n5 € k such that for any A € Gg, Ua; +ay (M)
acts on V as

1 0 0 O 0 00
0 1 0 0 0 00
mA 0 1 0 0 00
0 mnmA 0 1 0 00
0 0 0 O 1 00
0 7A%2 0 m3A 0 1 0
0 0 0 0 mA O 1

Moreover, the isometry condition implies
() =q(tas 10, (A) - ) = (0, 21, MATQ + T2, RAT1 + T3, T4, DA 21 + 3AT3 + 5, WATY + Tg)
=q(x) — (22 + m3) Aw1x3 + (na — m)Awozs — (03 + ns)N a7,

hence 13 = —2m2, 71 = 74 and 75 = —n3. Reasoning as in the above cases, let us also impose
the condition of u, ta,(A) respecting the product fifo1 = —eos :

(ua1+a2 O‘) : fll)<ua1+a2 O‘) : f21) = Uay +ae O‘) : <_e21)
(fi1 + mA(e11 — ea2) — A% fa2) for = —ea1 — quAfor
—e21 + M fa1 = —ear — N far,

implying 1o = —n4. Reparametrizing and doing an analogous computation for the negative
root allows to conclude that the root subgroups are as follows :

1 0 00 000 10X 00 0 0
01 0 0 00 0 01 0 20 0 A2 0
A0 1.0 000 001 0 0 0 0
Uoitag: A |0 =X 0 1 0 0 0f, t_ga:A— |0 00 1 0 =X 0
00 0 0 100 000 0 1 0 A
0 A2 02\ 0 1 0 000 0 0 1 0
0 0 0 0 XA O 1 000 0 0 0 1

e As last computation, let us consider the root —3a; — 2ay. By (4.6) and the condition for
U_3q,—2ay t0 be a group homomorphism, there exist some constants 7; and 72 € k such that
for any A € Gg, U_34,-2a, () acts on V' as

U—30;—2a2(A) - T = (T0,T1 + MAT2, T2, T3, T4 + M2 AT5, T5, Tg).
The isometry condition implies
q(z) = q(u_30;-20,(A\) - ) = —:L'% — Xy — MAT2T5 — T1T5 — N AT2X5 + ToLe

= q(x) + (2 + m)Az2zs,



MATILDE MACCAN

66

hence 179 = —n; and we can conclude that the root subgroups have the following form :
(4.7)

00000
00 000

-2 1.0 0 00

0
1

1
0
0
0
0
0
0

01000
00100
00X 10
00001

0
0
0
0

U3ay +2az * A

9

0
0
0
0
0
0
1

0
0
0
0
—-A
1
0

10 0 0O
01 X 00
00100

00 001

00000
00 00O

A— [0 0 0 1 0

U—_3a71—2as -

V /ke, giving an

embedding G < Spg: we resume below what the root subspaces we need become in that case.

Remark 4.2. Let us recall that in characteristic 2 the group G acts on W
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COOO-O 0000 =0 0000 =X gl gono OO0 O O
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OHO0OO0OO0OO0 oHOoOOo O
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OO T T T T AKO0O0O00 W 00000 N~~~
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—~ ~< —~ —~ ~
=< o =< =< —
~— N ~— ~— I
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u u — — al
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= = s
— - -~
& N~ ocococo~<—~H occococo A —
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