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1Università degli studi di Milano, Dipartimento di matematica, via Saldini 50,
20133 Milano, Italy

2Laboratoire MIA, Batiment Pascal, Pôle Sciences et Technologie, Université de
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Abstract

The classification of qubit channels is known since 2002. However, that of rebit channels
has never been studied so far, maybe because of the scarcity of concrete rebit examples. In
this paper we point out that the strategy used to classify qubit channels cannot be pursued
in the rebit case and we propose an alternative which allows us to complete the rebit channel
classification. This mathematical result has not only a purely abstract interest: as we shall
briefly mention, it may have applications in the analysis of local properties and temporal
evolution of real quantum systems and also in a recent color vision model based on quantum
information.

Keywords: Rebit channels, quantum information, effects.
Quantum channels represent the most general transformations between states of interacting,

or open, quantum systems. Their classification is a complicated research topic and can only be
achieved in very special cases. An example of paramount importance is represented by qubit
channels, whose classification has been exhibited in [16].

Up to the authors’ knowledge, the analogous result for rebit systems has never been obtained.
In this paper we start by showing that the technique developed in [16], based on Choi’s theorem,
cannot be applied in the rebit case. We then propose an alternative strategy, based on the χ-map
representation, which permits to achieve the complete rebit channel classification.

While qubits are ubiquitous in quantum information, rebits remained for many decades a very
interesting yet completely abstract research topic, see for instance [20]. This is likely to be the
cause underlying the lack of interest in the rebit channel classification. For this reason, we deem
important to underline the practical relevance of the classification theorem by briefly mentioning
possible applications in the analysis of local and dynamical features of rebit systems and also in
framework offered by a recent quantum-like color perception theory. These applications will be
developed in separate future works.

The plan of the paper is the following: we start in section 1 by briefly recalling the basic
terminology and mathematical results about open quantum systems, then we pass to the rebit
channel classification in section 2, which will be subdivided in several subsection for the sake of a
smoother reading. In section 3 we will show how to single out some noticeable rebit channels using
the classification theorem. Finally, possible concrete applications of our mathematical results will
be discussed in section 4.
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1 Terminology and preliminary mathematical results about
open quantum systems

Here we introduce the terminology and the known mathematical results of the theory of composite
quantum systems that will be used in the rest of the paper. Unless otherwise stated, the main
reference for all the results that will be quoted is [11]. Since our aim is to study rebit quantum
channels, all the Hilbert spaces that we will consider are implicitly assumed to be finite-dimensional
and real.

Given a quantum system S, if A and B are two identifiable parts of it, i.e. two subsystems on
which we are able to perform experiments to address the properties of A and B individually, then
we say that S is the composite system of A and B and we write S = A + B. If HA and HB are
the Hilbert state spaces underlying the systems A and B, respectively, then the quantum state
space of A+B is HA ⊗HB .

If A is not isolated, i.e. it can interact with B, then we say that A is an open quantum system
andB is its environment. If L(HA) denotes the vector space of linear operators onHA, then a linear
map C : L(HA)→ L(HA) is said to be a channel if it is trace preserving and completely positive.
This last request corresponds to demand not only that C is positive, i.e. it preserves the positivity1

of operators onHA, but also that its extension, i.e. the map C⊗idB : L(HA⊗HB)→ L(HA⊗HB),
is positive for all B. The requests defining a channel C are the minimal ones to guarantee that C
maps states in states and that C does not introduce non-meaningful negative probabilities when
experiments on the composite quantum system A + B are performed. To simplify the notation,
let us denote from now on HA as H.

An important class of channels is represented by the orthogonal ones: given an orthogonal
operator O ∈ L(H), the orthogonal channel associated to O is the map σO : L(H) → L(H) such
that, for all T ∈ L(H), σO(T ) := OT Ot. Orthogonal channels are unital, i.e. they map the
identity into itself, moreover, they form a group w.r.t. functional composition.

For the classification of channels their matrix representations turn out to be extremely useful.
The most basic of these representations can be obtained by equipping L(H) with the Hilbert-
Schmidt (HS) product, i.e. 〈T, S〉HS = Tr(StT ) for all T, S ∈ L(H), and fixing an orthonormal

basis (Ej)
d2−1
j=0 of operators of L(H). This permits to decompose T ∈ L(H) as follows

T =

d2−1∑
j=0

tTj Ej =

d2−1∑
j=0

Tr(EtjT )Ej (1)

and to uniquely associate it to the vector tT = (tTj )d
2−1
j=0 ∈ Rd

2

. If C : L(H)→ L(H) is a channel,
then, by linearity, it follows that

C(T ) =

d2−1∑
j=0

t
C(T )
j Ej , (2)

where

t
C(T )
j =

d2−1∑
k=0

Cjkt
T
k and Cjk = Tr(Etj C(Ek)). (3)

tC(T ) = (t
C(T )
j )d

2−1
j=0 is the vector in Rd

2

uniquely associated to C(T ) w.r.t. the basis (Ej)
d2−1
j=0 .

A more sophisticated representation than the one just introduced is the so-called χ-matrix
representation, which will turn out to be a key ingredient for the rebit channel classification.
This representation involves the so-called space of ‘super-operators’, i.e. the (d2×d2)-dimensional
vector space L((L(H)) of linear maps from L(H) to itself endowed with the following inner product

1T ∈ L(HA) is positive if, for all x ∈ HA, 〈x, Tx〉 ≥ 0, where 〈 , 〉 is the inner product of HA.
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inherited by the Hilbert-Schmidt product on L(H):

〈Ψ,Φ〉 :=

d2−1∑
j=0

〈Ψ(Ej),Φ(Ej)〉HS, ∀Ψ,Φ ∈ L(L(H)). (4)

In the rebit channel classification, we will be interested in the action of channels on density
matrices, which are symmetric, hence it is more useful to replace L(L(H)) with L(Sym(H)),
where Sym(H) ⊂ L(H) is the vector subspace of dimension N = d(d + 1)/2 of symmetric linear
operators on H.

Given an orthonormal basis (Ej)
N−1
j=0 of operators of Sym(H), an orthonormal basis (Frs)

N−1
r,s=0

for L(Sym(H)) is defined by

Frs(T ) := ErTE
t
s, ∀T ∈ Sym(H), (5)

so we can decompose a channel C on (Frs)
N−1
r,s=0 as

C =

N−1∑
r,s=0

χrsFrs, (6)

where the coefficients χrs are obtained via inner product of C with the basis elements Frs and
can be written explicitly as follows

χrs =

N−1∑
j,k=0

CjkTr(EjEsE
t
kE

t
r), (7)

with Cjk as in eq. (3). The χ-matrix uniquely associated to C is χC := (χrs)
N−1
r,s=0 and it has the

property that C is completely positive if and only if χC is positive semi-definite, see [11] page 206.
The last matrix representation that we need to recall is the Bloch representation, which relies on

the choice of a Bloch basis E0 := Id ∪ ~E, ~E := (E1, . . . , EN−1), i.e. an orthogonal basis (w.r.t. the
Hilbert-Schmidt product) of symmetric traceless operators on H such that ‖Ek‖2HS = ‖E0‖2HS = d
for all k = 1, . . . , N − 1. The corresponding Bloch decomposition of T is written as follows:

T =
1

d
(Tr(T )Id + vT · ~E) =

1

d
(Tr(T )Id +

N−1∑
k=1

vTk Ek), (8)

where vT ∈ RN−1 is called Bloch vector and has components vTk = Tr(EkT ), k = 1, . . . , N − 1.
The relationship between the vector tT and the Bloch vector vT is the following

tT =
1

d
(Tr(T ),vT ). (9)

Given a channel C, the relationship between the vector tC(T ) and the Bloch vector vC(T ) becomes
(see [11] page 205)

tT =
1

d
(Tr(T ),vC(T )), with vC(T ) = w +AvT , (10)

where the components of the vector w ∈ RN−1 and the entries of the matrix A ∈M(N −1,R) are

wj = Tr(T )Cj0, Ajk = Cjk, j, k = 1, . . . , N − 1. (11)

Two features of the Bloch representation can be singled out: after the action of a channel, the first
component of tT remains invariant, while the the Bloch vector undergoes an affine transformation.

For later purposes, we remark a third property: whenever a linear map leaves the first compo-
nent of tT invariant, for all T , that map is trace-preserving.

For orthogonal channel we can say more, as stated in the following theorem, see [11] page 205.
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Theorem 1.1 If C is a orthogonal channel σO, then

vσO(T ) = ROv
T , RO ∈ SO(N − 1), (12)

with:

(RO)jk =
1

d
Tr(EjOEkO

t), j, k = 1, . . . , N − 1, (13)

i.e. the Bloch vector of T ∈ L(H) undergoes a rotation after the application of an orthogonal
channel:

σO(T ) =
1

d
(Id +ROv

T · ~E). (14)

2 Classification of rebit channels

In this section we will carry out the complete classification of rebit channels. Due to the length
of this procedure, we have subdivided the section in several subsections to facilitate the reading.

2.1 The first step: decomposition of a rebit channel in the orthogonal
and diagonal parts

To study the classification of rebit channels we fix H = R2 and the Bloch basis (σj)
2
j=0, where σ0

is I2 and σ1, σ2 are the (symmetric and traceless) real Pauli matrices:

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
. (15)

Moreover, instead of considering a general operator T , we will deal directly with density matrices,
i.e. positive unit-trace operators ρ ∈ L(R2) representing rebit states. From eq. (8), we obtain
immediately that the Bloch decomposition of ρ is

ρ =
1

2
(σ0 + vρ · ~σ) ≡ ρ0 + s1σ1 + s2σ2, (16)

where ρ0 = I2/2 represents the maximally mixed state and vρ = (s1, s2)t ∈ D is the Bloch vector
associated to ρ, D being the unit disk in R2.

It follows that the convex set of density matrices S(R2) of the rebit is parameterized by the
points of D, which, in quantum theories, is commonly referred to as the Bloch disk and it is
depicted in Figure 1. It can be seen that ρ0 is parameterized by the center of the disk and ρ(r, ϑ)
represents a generic density matrix expressed in polar coordinates, i.e.

ρ(r, ϑ) =
1

2

(
1 + r cosϑ r sinϑ
r sinϑ 1− r cosϑ

)
, r ∈ [0, 1], ϑ ∈ [0, 2π). (17)

Since d = dimR(H) = 2, all the orthogonal channels are exhausted by rotation matrices2.
Moreover, N = 2(2 + 1)/2 = 3 and so the rotation matrix R appearing in theorem 1.1 belongs to
SO(2) and labels orthogonal channels σΩR

: S(R2)→ S(R2) such that

σΩR
(ρ) := ΩR ρΩR

t, (18)

with ΩR
t = Ω−1

R and, thanks to eq. (13), Rjk = Tr(σj ΩR σk ΩR
t)/2, for all j, k = 1, 2.

Finally, a generic channel C induces an affine transformation of the Bloch vector vρ ∈ D, so
there exist w ∈ R2 and A ∈M(2,R) such that

C(ρ) =
1

2
(I2 + (w +Avρ) · ~σ), (19)

2As proven in [11], this holds only in dimension 2, so either for the rebit or the qubit.
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Figure 1: The Bloch disk. The colors chosen to visualize the intersections of the border with the
axes will be motivated in section 4.

or, if C is unital,

C(ρ) =
1

2
(I2 +Avρ · ~σ). (20)

The information recalled above imply that we can classify the rebit channels by determining
what are the possible matrices A and vectors w that may appear in eq. (19) such that C remains
a channel. Of course, the classification would be greatly simplified if the matrix A were diagonal
or at least diagonalizable, however this may not be achievable. Instead, it is always possible to
write a singular value decomposition of A:

A = O1ΣOt2, (21)

where O1, O2 ∈ O(2) and Σ = diag(µ1, µ2), where µ1, µ2 ∈ [0,+∞) are the singular values of A.
Adapting the strategy used in [16] to the rebit case, we now show how it is possible to handle

eq. (21) in order to understand how rebit channels act on the unit disk, up to a rotation, by
replacing A with a diagonal matrix D, originated from Σ, which is able to encompass also the
general case in which the diagonal entries do not have the same sign.

We start by the basic remark that Oj ∈ O(2) can be seen as the product of a rotation matrix
Rj ∈ SO(2) with the matrix

I =

{
diag(1, 1) ≡ I2 if Oj ∈ SO(2)

diag(1,−1) ≡ I ′2 if Oj ∈ O(2) \ SO(2)
, (22)

the second case representing a reflection around the horizontal axis.
If both O1 and O2 belong to SO(2) or to O(2) \ SO(2) then we can rewrite Oj = RjI in eq.

(21) where I is either the identity or the reflection, respectively. Taking into account that I2 = I2
in both cases and that Σ and I commute, we obtain

A = R1IΣIRt2 = R1ΣRt2. (23)

If, instead, Oi ∈ SO(2) and Oj ∈ O(2) \ SO(2), with i, j ∈ {1, 2}, i 6= j, then eq. (21) becomes

A = R1Σ′Rt2, (24)

where Σ′ := I ′2Σ = ΣI ′2 = diag(µ1,−µ2), which is no longer positive semi-definite.
By introducing the decomposition of the identity R2R

t
2 after R1 in the two previous expressions

of A, we get either A = R1R
t
2R2ΣRt2 or A = R1R

t
2R2Σ′Rt2, but

R := R1R
t
2 (25)
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belongs to SO(2) and

S :=


R2ΣRt2
or

R2Σ′Rt2

(26)

is such that St = S, i.e. it is a real symmetric matrix and, as such, diagonalizable.
Notice that S is not necessarily a positive semi-definite matrix since the conjugation of Σ or

Σ′ with the rotation matrix R2 does not affect their eigenvalues and Σ′ is not positive-definite.
Hence, if O ∈ O(2) is the orthogonal matrix that diagonalizes S, then

A = RODOt, (27)

where D = diag(λ1, λ2), with λj ∈ R and |λj | = µj , j = 1, 2. Now we can repeat the same
argument used above, i.e. we can write O = R3I, with R3 ∈ SO(2), so that eq. (27) becomes
A = RR3IDIRt3 = RR3DR

t
3.

By defining R1 := RR3 ∈ SO(2) and R2 := Rt3 ∈ SO(2) we can finally write:

A = R1DR2. (28)

A natural question that arises now is that if the matrix factorization A = R1DR2 implies an anal-
ogous channel factorization, the answer is positive thanks to the fact that R1 and R2 are special
orthogonal matrices and we are working in dimension 2, so they are automatically associated to
orthogonal channels σΩR1

and σΩR2
, which simply act on a Bloch vector via the matrix R1 and

R2, respectively. So, the only degree of freedom that we have is in the definition of the channel
corresponding to the matrix D. It is quite simple to recognize that the sequential transformation
that must be applied to the Bloch vector vρ in order to obtain formula (19) with A = R1DR2 is
the following:

vρ
σΩR27→ R2v

ρ CD7→ Rt1w +DR2v
ρ
σΩR17→ R1(Rt1w +DR2v

ρ) = w +R1DR2v
ρ. (29)

The action of the second transformation on the density matrix ρ is

CD(ρ) = CD

(
1

2
(I2 + vρ · ~σ)

)
:=


1
2

(
I2 + (Rt1w +DR2v

ρ) · ~σ
)

if C is not unital

1
2 (I2 +DR2v

ρ · ~σ) if C is unital.

(30)

We can summarize what we have found in the following theorem.

Theorem 2.1 For every rebit channel C there exist two rotation matrices R1,R2 ∈ SO(2) and a
diagonal matrix D = diag(λ1, λ2), with λ1, λ2 ∈ R, such that C can be written as:

C = σΩR1
◦ CD ◦ σΩR2

, (31)

where σΩRj
are the orthogonal channels associated to Rj, j = 1, 2, and CD is defined as in eq.

(30).

As a consequence of this theorem, the rebit channels classification is equivalent to the determi-
nation of the constraints that must be satisfied by the map CD in order to be a channel. These
constraints will clearly affect the shift vector w and the entries of the diagonal matrix D.

The discussion of these constraints is long and quite technical and we postpone it to subsection
2.3. Instead, in the next subsection we carry out the much simpler analysis of the possible geometric
deformations of the unit disk D, the state space of the rebit, induced by channels.
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2.2 Geometric deformation of the state space by rebit channels

The action of the orthogonal channels corresponds simply to a rotation of the Bloch vector vρ

and the shift vector w. So, geometrically speaking, the only non-trivial part of the decomposition
written in eq. (31) is represented by action of CD.

To avoid an unnecessary complicated notation and keep the analysis as simple as possible, we
will rewrite R2v

ρ and Rt1w simply as vρ = (vρ1 , v
ρ
2) and w = (w1, w2), respectively. Using this

simplified notation, we can write the modification of the vector tρ = 1
2 (1, vρ1 , v

ρ
2) by CD as follows:

tCD(ρ) =
1

2

(
1, v

CD(ρ)
1 , v

CD(ρ)
2

)
=

1

2
(1, w1 + λ1v

ρ
1 , w2 + λ2v

ρ
2), (32)

or

tCD(ρ) =
1

2

(
1, v

CD(ρ)
1 , v

CD(ρ)
2

)
=

1

2
(1, λ1v

ρ
1 , λ2v

ρ
2), (33)

in the case of unital channels.
Let us analyze the latter case first: the action of CD on tρ is represented in matrix form by1 0 0

0 λ1 0
0 0 λ2

 =

(
1 0
0 D

)
, (34)

moreover, on one side we have that
(
v
CD(ρ)
1

)2

+
(
v
CD(ρ)
2

)2

≤ 1 to assure the positivity of CD, i.e.

that vCD(ρ) is still a state, and, on the other side, from (33) we have that vj = v
CD(ρ)
j /λj , j = 1, 2,

so the constraint (vρ1)2 + (vρ2)2 ≤ 1 is translated into the inequality(
v
CD(ρ)
1

λ1

)2

+

(
v
CD(ρ)
2

λ2

)2

≤ 1. (35)

This means that CD maps the set of rebit statesD in the two dimensional closed ellipsoid embedded
in D represented by equation (35). On its border we find the images by CD of the pure states of
the rebit, parametrized by the elements of the unit circle. Since λ1 and λ2 are the semi-axes of
this ellipsoid, they must verify

|λj | ≤ 1, j = 1, 2. (36)

The centre of the Bloch disk remains fixed by the action of CD only if C is unital. In the more
general case of a non-unital channel C we have, by eq. (32), that the action of CD on tρ can be
represented via the affine matrix

A =

 1 0 0
w1 λ1 0
w2 0 λ2

 =

(
1 0
w D

)
(37)

and the image of the Bloch disk under the action of CD is an ellipsoid with origin of the semi-axes
given by (w1, w2) and with analytic expression given by:(

v
CD(ρ)
1 − w1

λ1

)2

+

(
v
CD(ρ)
2 − w2

λ2

)2

≤ 1, (38)

Again, to guarantee the positivity of CD, i.e. that the constraints defining states are still valid,
we must have

|wj | ≤ 1, j = 1, 2. (39)

λ1 and λ2 will be called scale coefficients, while we will refer to w1 and w2 as shift coefficients.
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2.3 Analytical constraints to be satisfied by CD to be a channel

In order to be a channel, CD must be completely positive and trace-preserving. This last property
is easily seen to be satisfied, in fact the first row of the matrix appearing in formula (37) is (1, 0, 0),
hence it leaves the first component of the vector tρ unaltered. In section 1 we have seen that this
implies that CD is trace-preserving. So, only complete positivity must be examined.

In [16], necessary and sufficient conditions for the complete positivity in the qubit case have
been established by using Choi’s theorem. For that, it is essential to rewrite the four matrices
Ejk, j, k = 1, 2, of the canonical basis of M(2,C) as a linear combination of the identity plus the
three Pauli matrices, including the one with complex entries. However, in the rebit case we have
at disposal only the identity plus the two real Pauli matrices and so this technique cannot be
pursued any longer. Hence, other strategies must be considered.

In what follows we will show that the χ-matrix representation recalled in section 1 can be
used instead of the Choi theorem to establish necessary and sufficient conditions for the complete
positivity of the map CD.

In order to build the χ-matrix associated to CD it is convenient to fix the orthonormal Bloch
basis of H(2,R), i.e. (σ0, σ1, σ2)/

√
2. Thanks to eqs. (7) and (37) we get

χr,s =
1

4

2∑
k=0

Tr[σsσkσrCD(σk)]

=
1

4

[
Tr
(
σsσr(I2 + w1σ1 + w2σ2)

)
+ λ1Tr

(
σsσ1σrσ1

)
+ λ2Tr

(
σsσ2σrσ2

)]
.

(40)

The straightforward computation of the matrix elements gives

χCD
(λ1, λ2, w1, w2) =

1

2

1 + λ1 + λ2 w1 w2

w1 1 + λ1 − λ2 0
w2 0 1− λ1 + λ2

 . (41)

As recalled in section 1, the complete positivity of CD is equivalent to the positive semi-definiteness
of χCD

. Being a real symmetric matrix, its eigenvalues are all real and so χCD
is positive semi-

definite if and only if all its eigenvalues are non-negative. We will conduct the analysis of positive
semi-definiteness following an increasing order of complexity.

2.3.1 The unital case (w1 = w2 = 0)

Unital rebit channels leave the centre of the Bloch disk invariant, so they have a null shift vector
w = (w1, w2) = 0.

This means that the χ−matrix in this case reduces to the following diagonal form

χCD
(λ1, λ2) =

1

2

1 + λ1 + λ2 0 0
0 1 + λ1 − λ2 0
0 0 1− λ1 + λ2

 .

Its eigenvalues are therefore its three diagonal elements, i.e.

q0 :=
1

2
(1 + λ1 + λ2), q1 :=

1

2
(1 + λ1 − λ2), q2 :=

1

2
(1− λ1 + λ2) (42)

and so, CD is completely positive if and only if{
λ2 ≥ −1± λ1

λ2 ≤ 1 + λ1

. (43)

Since (λ1, λ2) ∈ [−1, 1] × [−1, 1] ⊂ R2, the three inequalities appearing in the system (43) define
the admissibility region P for the parameters, which lies inside the pentagon of Figure 2.
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Figure 2: Admissibility region P for the parameters λ1 and λ2 to guarantee the complete posi-
tiveness of the map CD in the unital case.

2.3.2 The non-unital cases with either w1 = 0 or w2 = 0

We start by considering w = (0, w2), |w2| ≤ 1, w2 6= 0. This means that the shift occurs only in
the direction of the λ2−axis. In this case the χ-matrix is

χCD
(λ1, λ2, w2) =

1

2

1 + λ1 + λ2 0 w2

0 1 + λ1 − λ2 0
w2 0 1− λ1 + λ2

 .

First of all we notice that the condition qj ≥ 0 for j = 0, 1, 2 is still a necessary condition for
positive semi-definiteness of the matrix and hence for complete positivity of CD. This can be
seen by selecting the vectors ej of the canonical basis of R3 and performing the scalar product
etjχCD

(λ1, λ2, w2)ej , which reproduces exactly the values qj , j = 1, 2, 3.
In order to give also sufficient conditions we compute the eigenvalues of this matrix. The

characteristic polynomial of χCD
is:

P (x) =

[
1

2
(1 + λ1 − λ2)− x

] [
x−

1

2

(
1 + λ2 +

√
λ21 + w2

2

)][
x−

1

2

(
1 + λ2 −

√
λ21 + w2

2

)]
, (44)

and therefore the three eigenvalues are{
µ0 := 1

2 (1 + λ1 − λ2)

µ± := 1
2

(
1 + λ2 ±

√
λ2

1 + w2
2

)
.

The condition µ0 ≥ 0 is equivalent to the necessary condition q1 ≥ 0 and the request that µ+ ≥ 0
gives λ2 ≥ −

√
λ2

1 + w2
2 − 1, which is always true, since it is necessary that |λj | ≤ 1 and |wj | ≤ 1

for all j = 1, 2 in order to guarantee positivity.
Finally, µ− ≥ 0 gives 1 +λ2 ≥

√
λ2

1 + w2
2, which, squaring both sides gives an upper bound on

w2, i.e. on the possible vertical shifts of the ellipsoid, precisely:

w2
2 ≤ (λ2 + 1)2 − λ2

1. (45)

The case in which w = (w1, 0), i.e. when the shift occurs only in the λ1−axis, is analogous
to the case described above. Proceeding as before, we obtain the following upper bound on the
possible horizontal shifts of the ellipsoid:

w2
1 ≤ (λ1 + 1)2 − λ2

2. (46)
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2.3.3 The non-unital case with a generic w = (w1, w2)

In the general case, even if it is possible to compute the eigenvalues of χCD
, their explicit expression

is so complicated that their non-negativity cannot be studied analytically. We can avoid this
problem by studying the characteristic polynomial of the expression of χCD

in eq. (41), i.e.

P (x) = −x3 +
a

2
x2 − b

4
x+ det (χCD

), (47)

with a = 3 + λ1 + λ2, b = 3− (w2
1 + w2

2) + 2(λ1 + λ2)− (λ1 + λ2)2 and

det(χCD
) =

1

8

[
(1− λ1 + λ2)

[
(1 + λ1 + λ2)(1 + λ1 − λ2)− w2

1

]
− w2

2(1 + λ1 − λ2)
]
. (48)

By Descartes’ rule of signs, all the three roots of P are positive if and only if the coefficients of the
powers of x present three variations, i.e. their signs change from one to the next. This happens if
and only if a, b and det (χCD

) are all ≥ 0.
Since the condition |λj | ≤ 1 must hold to guarantee positivity, a ≥ 0 always holds. The request

b ≥ 0 gives an upper bound on the norm of w, that is

‖w‖2 = w2
1 + w2

2 ≤ 3 + 2(λ1 + λ2)− (λ1 + λ2)2. (49)

Finally, det (χCD
) ≥ 0 holds if and only if

w2
1(1− λ1 + λ2) + w2

2(1 + λ1 − λ2) ≤ (1 + λ1 + λ2)(1 + λ1 − λ2)(1− λ1 + λ2) = 8 q0q1q2, (50)

having used definition (42) in the last equality. The condition det(χCD
) ≥ 0 always implies b ≥ 0.

Indeed, the region described by (49) is a disk w.r.t. the two variables (w1, w2), moreover

max
|λj |≤1, j=1,2

{3 + 2(λ1 + λ2)− (λ1 + λ2)2} = 4, (51)

so the ray of this disk is always ≤ 2. On the other hand, when 1±λ1 +λ2 > 0 and 1+λ1−λ2 > 0,
the region described by (50) w.r.t (w1, w2) is an ellipsoid that can be explicitly written as

w2
1

1

4
(1 + λ1 + λ2)(1 + λ1 − λ2)

+
w2

2

1

4
(1 + λ1 + λ2)(1− λ1 + λ2)

≤ 4. (52)

Therefore, since

max
|λj |≤1, j=1,2

{(1 + λ1 + λ2)(1 + λ1 − λ2)} = max
|λj |≤1, j=1,2

{(1 + λ1 + λ2)(1− λ1 + λ2)} = 4, (53)

it follows that both denominators of the inequality (52) are bounded by 1 when |λj | ≤ 1, j =
1, 2. This means that this ellipsoid described by the condition (52) is always contained into the
disk described by eq. (49). Moreover, inequality (52) gives a nice geometric characterization of
condition (50), saying that CD is completely positive if and only if its shift vector w belongs to
the ellipsoid described by (52).

Notice that when (1− λ1 + λ2) = 0 (or (1 + λ1 − λ2) = 0, or (1 + λ1 + λ2) = 0, respectively),
inequality (50) forces w2 = 0 (or w1 = 0, or w1 = w2 = 0, respectively) and hence the ellipsoid
described by inequality (50) degenerates to a segment or to the origin (w1, w2) = 0 which are
always contained into the disk described by eq. (49).

In conclusion, det (χCD
) ≥ 0 implies b ≥ 0 in every case, and hence the inequality (50) is

necessary and sufficient to guarantee that the eigenvalues of χCD
are ≥ 0.
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2.4 The final classification theorem of rebit channels

We summarize the analysis conducted above in the following theorem.

Theorem 2.2 Every rebit channel C can be decomposed as C = σΩR1
◦ CD ◦ σΩR2

, where σΩRj

are orthogonal channels associated to the rotation matrices Rj ∈ SO(2), j = 1, 2, and CD can be
represented in the Bloch basis (σ0, σ1, σ2) by the affine matrix

A =

 1 0 0
w1 λ1 0
w2 0 λ2

 =

(
1 0
w D

)
,

with the coefficients λj , wj, j = 1, 2, satisfying the following conditions:
q1 = 1 + λ1 + λ2 ≥ 0

q2 = 1 + λ1 − λ2 ≥ 0

q3 = 1− λ1 + λ2 ≥ 0
w2

1

(1+λ1+λ2)(1+λ1−λ2) +
w2

2

(1+λ1+λ2)(1−λ1+λ2) ≤ 1

. (54)

Geometrically, because of the presence of CD, the action of C on the Bloch disk representing the
state space of the rebit is to shrink it to an ellipsoidal region contained in the unit disk in R2,
which can also degenerate into a line segment or in a point. Either the semi-axes of the ellipsoidal
region or the line segment can be tilted with respect to the coordinate axes due to the presence
of the orthogonal channels σΩRj

, j = 1, 2.

3 Noticeable rebit channels

In the previous section we have seen that the really interesting information about the deformation
of the Bloch disk by a unital rebit channel is contained in way the scaling parameters λ1, λ2 vary
inside the admissible region P depicted in Figure 2 and described by inequalities (43). In fact, the
presence of the orthogonal channels appearing in theorem 2.2 simply amounts to a rotation of the
Bloch vectors. So, in what follows, we will just concentrate on the diagonal unital channel CD,
recalling that its action on a general state ρ = 1

2 (σ0 + r cos(ϑ)σ1 + r sin(ϑ)σ2) is the following:1 0 0
0 λ1 0
0 0 λ2

 1

2

 1
r cos(ϑ)
r sin(ϑ)

 =
1

2

 1
λ1r cos(ϑ)
λ2r sin(ϑ)

 . (55)

Let us start by the characterisation of the so-called Kraus rank of CD, i.e. the number of non-zero
eigenvalues of the associated χ−matrix:

• the vertices of P given by (λ1, λ2) = (−1, 0) and (λ1, λ2) = (0,−1) correspond to rank-1
channels because q1 = q2 = 0, q3 = 2 and q1 = q3 = 0, q2 = 2, respectively;

• the points belonging to the three diagonal edges of P defined by the conditions λ2 = ±λ1−1
and λ2 = λ1 + 1 correspond to rank-2 channels. This is straightforward to see, since a single
vanishing eigenvalue qj in eq. (42) defines a diagonal edge, and so the intersection of two
diagonal edges correspond to two vanishing eigenvalues;

• all the other points of P correspond to full-rank (i.e. rank-3) channels.

Now we pass to the analysis of some noticeable rebit channel.

1. The identity channel, which correspond to (λ1, λ2) = (1, 1), leaves the Bloch disk invariant.
This is the only channel with this behaviour. In fact, apart from the case just examined,
the length of the disk axes could be preserved only by the couples (−1,−1), (1,−1), (−1, 1)
which, however, lie outside the admissibility region P.
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2. The phase flip channels: by substituting (λ1, λ2) = (1 − p, 1), with 0 < p < 1, in eq. (55),
the corresponding channels transform the Bloch disk into an ellipsoid that intersects it at
the poles, i.e. the yellow and blue points of Figure 1, which remain fixed, while the disk is
shrunk in the horizontal direction. The case p = 1, i.e. (λ1, λ2) = (0, 1), corresponds to a
rank-2 channel which reduces the Bloch disk to the vertical axis.

The case (λ1, λ2) = (1, 1 − p) is exactly analogous, with the role of the two axes swapped.
When p = 1 the Bloch disk degenerates into the horizontal axis. Figure 3 illustrates all these
cases.

.
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Figure 3: (λ1, λ2) for phase flip channels. (a): (1 − p, 1), (b): (0, 1), (c): (1, 1 − p), (d): (1, 0),
p ∈ (0, 1).

3. Depolarizing channels are channel such that |λ1| = |λ2|, i.e. corresponding to points lying on
the two bisectors of P in Figure 2. These channels simply shrink the Bloch disk to another
disk with radius r < 1. If one of the λj ’s is negative, the channel reflects also the disk with
respect to one of the two (or both) axes. When λ1 = λ2 = 0, the entire disk degenerates to
the single central point which represents the maximally mixed state ρ0. This is the so-called
completely depolarizing channel.

4. Linear channels are defined by the condition that either λ1 or λ2 or both are equal to 0,
i.e. they correspond to points lying on the horizontal or vertical axis in Figure 2. When
(λ1, λ2) = (q, 0) (or (λ1, λ2) = (0, q), respectively), with −1 < q < 1, the entire Bloch disk
is sent to an horizontal (or vertical, respectively) segment of length 2|q|. When q < 0 also a
reflection is applied. When q = 0 we recover the completely depolarizing channel.

When q = −1 we have the two rank-1 channels corresponding to the vertices (0,−1) and
(−1, 0), which are the intersection of two of the diagonal edges. These channels first shrink
the Bloch disk to a segment as in case (ii), but in addition they reflect it with respect to the
horizontal or vertical axis, respectively.

5. All the other channels correspond to points lying either on the ‘diagonal’ edges or to the
interior of Figure 2. In the first case we have rank-2 channels, in the second one full-rank
channels. All the corresponding channels transform the Bloch disk to a generic ellipsoid.

Figure 4 gives a compact illustration of the channels discussed in the previous list depending on
the position of the couple of scaling parameters (λ1, λ2) ∈ P. Due to Theorem 2.1, the previously
discussed transformations of the Bloch disk must be considered up to rotations.

4 Future applications of the classification theorem

Rebit properties cannot be deduced from those of a qubit simply by replacing the complex field
C with the real field R. For instance, Wootters has proven that, while local measurements are
enough to determine the state of an open qubit system, this is not necessarily true for a rebit, see
[19]. This is just one of the peculiar features of rebits that make their analysis worthwhile. In
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Figure 4: A visual representation of the cases described in the previous list. Starting from the
identity and proceeding in a clockwise ordering we have: a phase flip of the type (λ1, λ2) = (1, 1−p),
a general case, a linear channel, a rank-1 degenerate channel, the completely depolarizing channel, a
depolarizing channel, a degenerate phase flip and finally a phase flip of the type (λ1, λ2) = (1−p, 1).

this section we would like to briefly discuss two open problems that may benefit from the rebit
channel classification theorem.

The first is related to rebit dynamics: for a closed (complex) quantum system with Hamiltonian
H, the unitary evolution of density matrices is governed by the Schrödinger-Liouville equation ρ̇ =
−i[H, ρ]. Its non-unitary counterpart for open quantum systems in the Markovian approximation
is the Lindblad master equation, which still involves the imaginary unit, see e.g. [?]. This raises
the natural question about how the dynamics of real quantum systems can be described. At this
moment, the question remains a much debated and interesting open problem, see e.g. [?, ?, ?, ?, ?].
If one wished to analyze the dynamical change of rebit states in terms of channels, it seems
reasonable to assume that having available the complete classification of these maps would be of
great benefit.

The second application refers to a recent model of human color perception formulated in the
framework of quantum information, see [8, 6] for the two more recent and complete publications
about this topic. In such a model, human observers perform perceptual measurements on visual
scenes prepared in so-called chromatic states, which are nothing but states of a particular rebit
system called Hering’s rebit [2]. This name honors the famous Hering’s theory in which colors are
described by means of two degrees of incompatible chromatic sensations: red-green and yellow-
blue. In the Bloch disk, the opponent colors are antipodal, which explains their placement in the
depiction of the Bloch disk in Figure 1.

The crucial fact is that a perceptual measurement is modeled via an effect associated to a
human observer. The measurement modifies the initial chromatic state via a Lüders operation,
giving rise to a post-measurement generalized state. It is well-known that color perception abilities
vary from person to person and that some individuals may also be affected by different degrees and
types of color perception anomalies. For this reason, an important open problem in colorimetry
is the determination of the so-called individual chromatic space I, i.e. the space of chromatic
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sensations that can actually be perceivable by a given observer. In the quantum model, I is a
convex subset of the Bloch disk. In a future paper, we will explore the possibility of identifying
the individual color space with the image of the Bloch disk via a rebit channel uniquely associated
to a human observer. For this purpose, the classification theorem proven in this paper will turn
out to be of fundamental importance.

5 Conclusions and perspectives

We have detailed the complete classification of rebit channels and underlined that the strategy
used in the 2002 paper [16] for the classification of qubit channels, founded on Choi’s theorem,
must be replaced by an alternative procedure based on the χ-matrix representation.

The classification theorem has not only a theoretical significance, but it may help understanding
the dynamical evolution of real quantum systems and lead to important applications in a recent
quantum information-based color perception model which will be explored in future contributions.
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