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Abstract

The classification of qubit channels is known since 2002. However, that of rebit channels
has never been studies so far, probably due to the scarcity of concrete rebit examples. In this
paper we fill the two gaps by exhibiting both the complete rebit channel classification and also
by discussing its relevancy in a recent colour perception theory based on quantum information.
In particular, we show that rebit channels can be used to determine the individual chromatic
state space of human observers, including those with colour deficiencies. Moreover, we propose
a qualitative explanation for the perceptual phenomenon of visual adaptation to a non-neutral
illuminant.

Keywords: Quantum information, effects, rebit channels, colour perception, individual colour
space

1 Introduction

Quantum channels represent the most general transformations between states of interacting, or
open, quantum systems. Their classification is a complicated research topic and can only be
achieved in very special cases. An example of paramount importance is represented by qubit
systems, whose channel classification has been exhibited in [16].

Up to the authors’ knowledge, the analogous result for rebit systems has never been obtained.
In the first part of this paper we provide the complete classification of rebit quantum channels
showing that the technique developed in [16], based on Choi’s theorem, cannot be used for the
rebit case, but an alternative strategy based on the χ-map representation must be considered.

While qubits are ubiquitous in quantum information, rebits remained for many decades a very
interesting but abstract research topic, see for instance [20]. This is likely to be the cause under-
lying the lack of interest in the rebit channel classification. For this reason, we deem important
to show the relevance of our mathematical results in the concrete framework offered by a recent
quantum-like colour perception theory proposed in the papers [4, 2, 7, 5, 3, 8, 6], where the space
of the so-called perceptual chromatic states coincides with the state space of a rebit system.

By interpreting colour perception as the result of the interaction between a human observer
and either a light stimulus or a patch lit by an illuminant, we show that the classification of rebit
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channels permits to characterise individual colour perception and to incorporate in the model
also observers with colour deficiencies. Moreover, we discuss how rebit channels can help us
understanding the phenomenon of adaptation to non-neutral illuminants not too different from
daylight and why, instead, humans fail to adapt to narrowband illuminant conditions.

The plan of the paper is the following: we start in section 2 by briefly recalling the basic
terminology and mathematical results about open quantum systems, then we pass to the rebit
channel classification in section 3, which will be subdivided in several subsection for the sake of
a smoother reading. The second part of the paper, devoted to applications, will start in section
4, where we will recall the most important results of the quantum-like colour perception model.
The usefulness of the rebit quantum channel classification will be discussed in section 5. Finally,
in section 6 we will conclude the paper with some perspectives for future investigations.

2 Terminology and mathematical results about open quan-
tum systems

Here we introduce the terminology and the known mathematical results of the theory of composite
quantum systems that will be used in the rest of the paper. Unless otherwise stated, the main
reference for all the results that will be quoted is [11]. All the Hilbert spaces that we will deal
with are implicitly assumed to be finite-dimensional and real.

Given a quantum system S, if A and B are two identifiable parts of it, i.e. two subsystems
on which we are able to perform experiments to address the properties of A and B individually,
then we say that the S is the composite system of A and B and we write S = A+B. If HA and
HB are the Hilbert state spaces underlying the systems A and B, respectively, then the quantum
state space of A+B is HA ⊗HB .

If A is not isolated, i.e. it can interact with B, then we say that A is an open quantum system
andB is its environment. If L(HA) denotes the vector space of linear operators onHA, then a linear
map C : L(HA)→ L(HA) is said to be a channel if it is trace preserving and completely positive.
This last request corresponds to demand not only that φ is positive, i.e. it respects the positivity1

of operators on HA but also that its extension, i.e. the map C⊗idB : L(HA⊗HB)→ L(HA⊗HB),
is positive. The requests defining a channel C are the minimal ones to guarantee that C maps states
in states and that C does not introduce non-meaningful negative probabilities when experiments
on the composite quantum system A + B are performed. To simplify the notation, let us denote
from now on HA as H.

An important class of channels is represented by the orthogonal ones: given an orthogonal
operator O ∈ L(H), the orthogonal channel associated to O is the map σO : L(H) → L(H) such
that, for all T ∈ L(H), σO(T ) := OT Ot. Orthogonal channels are unital, i.e. they map the
identity into itself, moreover, they form a group w.r.t. functional composition.

For the classification of channels they matrix representations turn out to be extremely useful.
The most basic of these representations can be obtained by equipping L(H) with the Hilbert-
Schmidt (HS) product, i.e. 〈T, S〉HS = Tr(StT ) for all T, S ∈ L(H), and fixing an orthonormal

basis (Ej)
d2−1
j=0 of operators of L(H). This permits to decompose T ∈ L(H) as follows

T =

d2−1∑
j=0

tTj Ej =

d2−1∑
j=0

Tr(EtjT )Ej (1)

and to uniquely associate it to the vector tT = (tTj )d
2−1
j=0 ∈ Rd

2

. If C : L(H)→ L(H) is a channel,
then, by linearity, it follows that

C(T ) =

d2−1∑
j=0

t
C(T )
j Ej , (2)

1T ∈ L(HA) is positive if, for all x ∈ HA, 〈x, Tx〉 ≥ 0, where 〈 , 〉 is the inner product of HA.
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where

t
C(T )
j =

d2−1∑
k=0

Cjkt
T
k and Cjk = Tr(Etj C(Ek)). (3)

tC(T ) = (t
C(T )
j )d

2−1
j=0 is the vector in Rd

2

uniquely associated to C(T ) w.r.t. the basis (Ej)
d2−1
j=0 .

A more sophisticated representation than the one just introduced is the so-called χ-matrix
representation, which will turn out to be a key ingredient for the rebit channel classification. This
representation is introduced by considering the (d2 × d2)-dimensional vector space L((L(H)) of
linear maps on L(H) endowed with the following inner product inherited by the Hilbert-Schmidt
product on L(H):

〈Ψ,Φ〉 :=

d2−1∑
j=0

〈Ψ(Ej),Φ(Ej)〉HS, ∀Ψ,Φ ∈ L(L(H)). (4)

In the rebit channel classification, we will be interested in the action of channels on density
matrices, which are symmetric, hence it is more useful to replace L(L(H)) with L(Sym(H)),
where Sym(H) ⊂ L(H) is the vector subspace of dimension N = d(d + 1)/2 of symmetric linear
operators on H.

Given an orthonormal basis (Ej)
N−1
j=0 of operators of Sym(H), an orthonormal basis (Frs)

N−1
r,s=0

for L(Sym(H)) is defined by

Frs(T ) := ErTE
t
s, ∀T ∈ Sym(H), (5)

so we can decompose a channel C on (Frs)
N−1
r,s=0 as

C =

N−1∑
r,s=0

χrsFrs, (6)

where the coefficients χrs are obtained via inner product of C with the basis elements Frs and
can be written explicitly as follows

χrs =

N−1∑
j,k=0

Cjk Tr(EjEsE
t
kE

t
r), (7)

with Cjk as in eq. (3). The χ-matrix uniquely associated to C is χC := (χrs)
N−1
r,s=0 and it has the

property that C is completely positive if and only if χC is positive semi-definite, see [11] page 206.
The last matrix representation that we need to recall is the Bloch representation, which relies on

the choice of a Bloch basis E0 := Id ∪ ~E, ~E := (E1, . . . , EN−1), i.e. an orthogonal basis (w.r.t. the
Hilbert-Schmidt product) of symmetric traceless operators on H such that ‖Ek‖2HS = ‖E0‖2HS = d
for all k = 1, . . . , N − 1, which induces the so-called Bloch decomposition:

T =
1

d
(Tr(T )Id + vT · ~E) =

1

d
(Tr(T )Id +

N−1∑
k=1

vTk Ek), (8)

where vT ∈ RN−1 is called Bloch vector and has components vTk = Tr(EkT ), k = 1, . . . , N − 1.
The relationship between the vector tT and the Bloch vector vT is the following

tT =
1

d
(Tr(T ),vT ). (9)

Given a channel C, the relationship between the vector tC(T ) and the Bloch vector vC(T ) becomes
(see [11] page 205)

tT =
1

d
(Tr(T ),vC(T )), with vC(T ) = w +AvT , (10)
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where the components of the vector w ∈ RN−1 and the entries of the matrix A ∈M(N −1,R) are

wj = Tr(T )Cj0, Ajk = Cjk, j, k = 1, . . . , N − 1. (11)

Two features of the Bloch representation can be singled out: after the action of a channel, the first
component of tT remains invariant, while the the Bloch vector undergoes an affine transformation.

For later purposes, we remark a third property: whenever a linear map leaves the first compo-
nent of tT invariant, for all T , that map is trace-preserving.

For orthogonal channel we can say more, as stated in the following theorem, see [11] page 205.

Theorem 2.1 If C is a unitary channel σO, then

vσO(T ) = ROv
T , RO ∈ SO(N − 1), (12)

with:

(RO)jk =
1

d
Tr(EjOEkO

t), j, k = 1, . . . , N − 1, (13)

i.e. the Bloch vector of T ∈ L(H) undergoes a rotation after the application of an orthogonal
channel:

σO(T ) =
1

d
(Id +ROv

T · ~E). (14)

3 Classification of rebit channels

In this section we will carry out the complete classification of rebit channels. Due to the length
of this procedure, we have subdivided the section in several subsections to facilitate the reading.

3.1 The first step: decomposition of a rebit channel in the orthogonal
and diagonal parts

To study the classification of rebit channels we fix H = R2 and the Bloch basis (σj)
2
j=0, where σ0

is I2 and σ1, σ2 are the (symmetric and traceless) real Pauli matrices:

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
. (15)

Moreover, instead of considering a general operator T , we will deal directly with density matrices,
i.e. positive unit-trace operators ρ ∈ L(R2) representing rebit states. As it is well-known, the
convex set of density matrices S(R2) of the rebit is parametrized by the points of the unit disk
D ⊂ R2, also referred to as the Bloch disk.

Since d = dimR(H) = 2, all the orthogonal channels are exhausted by rotation matrices2.
Moreover, since d = 2, we have that N = 2(2 + 1)/2 = 3 and so the rotation matrix R appearing
in theorem 2.1 belongs to SO(2) and labels orthogonal channels σΩR

: S(R2)→ S(R2) such that

σΩR
(ρ) := ΩR ρΩR

t, (16)

with ΩR
t = Ω−1

R and, thanks to eq. (13), Rjk = Tr(σj ΩR σk ΩR
t)/2, for all j, k = 1, 2.

Finally, a generic channel C induces an affine transformation of the Bloch vector vρ ∈ D, so
there exist w ∈ R2 and A ∈M(2,R) such that

C(ρ) =
1

2
(I2 + (w +Avρ) · ~σ), (17)

or, if C is unital,

C(ρ) =
1

2
(I2 +Avρ · ~σ). (18)

2As proven in [11], this holds only in dimension 2, so either for the rebit or the qubit, for which H = C2 and
dimC(H) = 2.
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The information recalled above imply that we can classify the rebit channels by determining
what are the possible matrices A and vectors w that may appear in eq. (17) such that C remains
a channel. Of course, the classification would be greatly simplified if the matrix A were diagonal
or at least diagonalizable, however this may not be achievable. Instead, it is always possible to
write a singular value decomposition of A:

A = O1ΣOt2, (19)

where O1, O2 ∈ O(2) and Σ = diag(µ1, µ2), where µ1, µ2 ∈ [0,+∞) are the singular values of A.
Adapting the strategy used in [16] to the rebit case, we now show how it is possible to handle

eq. (19) in order to understand how rebit channels act on the unit disk, up to a rotation, by
replacing A with a diagonal matrix D, originated from Σ, which is able to encompass also the
general case in which the diagonal entries do not have the same sign.

We start by the basic remark that Oj ∈ O(2) can be seen as the product of a rotation matrix
Rj ∈ SO(2) with the matrix

I =

{
diag(1, 1) ≡ I2 if Oj ∈ SO(2)

diag(1,−1) ≡ I ′2 if Oj ∈ O(2) \ SO(2)
, (20)

the second case representing a reflection around the horizontal axis.
If both O1 and O2 belong to SO(2) or to O(2) \ SO(2) then we can rewrite Oj = RjI in eq.

(19) where I is either the identity or the reflection, respectively. Taking into account that I2 = I2
in both cases and that Σ and I commute, we obtain

A = R1IΣIRt2 = R1ΣRt2. (21)

If, instead, Oi ∈ SO(2) and Oj ∈ O(2) \ SO(2), with i, j ∈ {1, 2}, i 6= j, then eq. (19) becomes

A = R1Σ′Rt2, (22)

where Σ′ := I ′2Σ = ΣI ′2 = diag(µ1,−µ2), which is no longer positive semi-definite.
By introducing the decomposition of the identity R2R

t
2 after R1 in the two previous expressions

of A, we get either A = R1R
t
2R2ΣRt2 or A = R1R

t
2R2Σ′Rt2, but

R := R1R
t
2 (23)

belongs to SO(2) and

S :=


R2ΣRt2
or

R2Σ′Rt2

(24)

is such that St = S, i.e. it is a real symmetric matrix and, as such, diagonalizable.
Notice that S is not necessarily a positive semi-definite matrix since the conjugation of Σ or

Σ′ with the rotation matrix R2 does not affect their eigenvalues and Σ′ is not positive-definite.
Hence, if O ∈ O(2) is the orthogonal matrix that diagonalizes S, then

A = RODOt, (25)

where D = diag(λ1, λ2), with λj ∈ R and |λj | = µj , j = 1, 2. Now we can repeat the same
argument used above, i.e. we can write O = R3I, with R3 ∈ SO(2), so that eq. (25) becomes
A = RR3IDIRt3 = RR3DR

t
3.

By defining R1 := RR3 ∈ SO(2) and R2 := Rt3 ∈ SO(2) we can finally write:

A = R1DR2. (26)

A natural question that arises now is that if the matrix factorization A = R1DR2 implies an anal-
ogous channel factorization, the answer is positive thanks to the fact that R1 and R2 are special
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orthogonal matrices and we are working in dimension 2, so they are automatically associated to
orthogonal channels σΩR1

and σΩR2
, which simply act on a Bloch vector via the matrix R1 and

R2, respectively. So, the only degree of freedom that we have is in the definition of the channel
corresponding to the matrix D. It is quite simple to recognize that the sequential transformation
that must be applied to the Bloch vector vρ in order to obtain formula (17) with A = R1DR2 is
the following:

vρ
σΩR27→ R2v

ρ CD7→ Rt1w +DR2v
ρ
σΩR17→ R1(Rt1w +DR2v

ρ) = w +R1DR2v
ρ. (27)

The action of the second transformation on the density matrix ρ is

CD(ρ) = CD

(
1

2
(I2 + vρ · ~σ)

)
:=


1
2

(
I2 + (Rt1w +DR2v

ρ) · ~σ
)

if C is not unital

1
2 (I2 +DR2v

ρ · ~σ) if C is unital.

(28)

We can summarize what we have found in the following theorem.

Theorem 3.1 For every rebit channel C there exist two rotation matrices R1,R2 ∈ SO(2) and a
diagonal matrix D = diag(λ1, λ2), with λ1, λ2 ∈ R, such that C can be written as:

C = σΩR1
◦ CD ◦ σΩR2

, (29)

where σΩRj
are the orthogonal channels associated to Rj, j = 1, 2, and CD is defined as in eq.

(28).

As a consequence of this theorem, the rebit channels classification is equivalent to the determi-
nation of the constraints that must be satisfied by the map CD in order to be a channel. These
constraints will clearly affect the shift vector w and the entries of the diagonal matrix D.

The discussion of these constraints is long and quite technical and we postpone it to subsection
3.3. Instead, in the next subsection we carry out the much simpler analysis of the possible geometric
deformations of the unit disk D, the state space of the rebit, induced by channels.

3.2 Geometric deformation of the state space by rebit channels

The action of the orthogonal channels corresponds simply to a rotation of the Bloch vector vρ

and the shift vector w. So, geometrically speaking, the only non-trivial part of the decomposition
written in eq. (29) is represented by action of CD.

To avoid an unnecessary complicated notation and keep the analysis as simple as possible, we
will rewrite R2v

ρ and Rt1w simply as vρ = (vρ1 , v
ρ
2) and w = (w1, w2), respectively. Using this

simplified notation, we can write the modification of the vector tρ = 1
2 (1, vρ1 , v

ρ
2) by CD as follows:

tCD(ρ) =
1

2

(
1, v

CD(ρ)
1 , v

CD(ρ)
2

)
=

1

2
(1, w1 + λ1v

ρ
1 , w2 + λ2v

ρ
2), (30)

or

tCD(ρ) =
1

2

(
1, v

CD(ρ)
1 , v

CD(ρ)
2

)
=

1

2
(1, λ1v

ρ
1 , λ2v

ρ
2), (31)

in the case of unital channels.
Let us analyze the latter case first: the action of CD on tρ is represented in matrix form by1 0 0

0 λ1 0
0 0 λ2

 =

(
1 0
0 D

)
, (32)
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moreover, on one side we have that
(
v
CD(ρ)
1

)2

+
(
v
CD(ρ)
2

)2

≤ 1 to assure the positivity of CD, i.e.

that vCD(ρ) is still a state, and, on the other side, from (31) we have that vj = v
CD(ρ)
j /λj , j = 1, 2,

so the constraint (vρ1)2 + (vρ2)2 ≤ 1 is translated into the inequality(
v
CD(ρ)
1

λ1

)2

+

(
v
CD(ρ)
2

λ2

)2

≤ 1. (33)

This means that CD maps the set of rebit statesD in the two dimensional closed ellipsoid embedded
in D represented by equation (33). On its border we find the images by CD of the pure states of
the rebit, parametrized by the elements of the unit circle. Since λ1 and λ2 are the semi-axes of
this ellipsoid, they must verify

|λj | ≤ 1, j = 1, 2. (34)

The centre of the Bloch disk remains fixed by the action of CD only if C is unital. In the more
general case of a non-unital channel C we have, by eq. (30), that the action of CD on tρ can be
represented via the affine matrix

A =

 1 0 0
w1 λ1 0
w2 0 λ2

 =

(
1 0
w D

)
(35)

and the image of the Bloch disk under the action of CD is an ellipsoid with origin of the semi-axes
given by (w1, w2) and with analytic expression given by:(

v
CD(ρ)
1 − w1

λ1

)2

+

(
v
CD(ρ)
2 − w2

λ2

)2

≤ 1, (36)

Again, to guarantee the positivity of CD, i.e. that the constraints defining states are still valid,
we must have

|wj | ≤ 1, j = 1, 2. (37)

λ1 and λ2 will be called scale coefficients, while we will refer to w1 and w2 as shift coefficients.

3.3 Analytical constraints on CD to be a channel

In order to be a channel, CD must be completely positive and trace-preserving. This last property
is easily seen to be satisfied, in fact the first row of the matrix appearing in formula (35) is (1, 0, 0),
hence it leaves the first component of the vector tρ unaltered. In section 2 we have seen that this
implies that CD is trace-preserving. So, only complete positivity must be examined.

In [16], necessary and sufficient conditions for the complete positivity in the qubit case have
been established by using Choi’s theorem. For that, it is essential to rewrite the four matrices
Ejk, j, k = 1, 2, of the canonical basis of M(2,C) as a linear combination of the identity plus the
three Pauli matrices, including the one with complex entries. However, in the rebit case we have
at disposal only the identity plus the two real Pauli matrices and so this technique cannot be
pursued any longer. Hence, other strategies must be considered.

In what follows we will show that the χ-matrix representation recalled in section 2 can be
used instead of the Choi theorem to establish necessary and sufficient conditions for the complete
positivity of the map CD.

In order to build the χ-matrix associated to CD it is convenient to fix the orthonormal Bloch
basis of H(2,R), i.e. (σ0, σ1, σ2)/

√
2. Thanks to eqs. (7) and (35) we get

χr,s =
1

4

2∑
k=0

Tr[σsσkσrCD(σk)]

=
1

4

[
Tr
(
σsσr(I2 + w1σ1 + w2σ2)

)
+ λ1 Tr

(
σsσ1σrσ1

)
+ λ2 Tr

(
σsσ2σrσ2

)]
.

(38)
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The straightforward computation of the matrix elements gives

χCD
(λ1, λ2, w1, w2) =

1

2

1 + λ1 + λ2 w1 w2

w1 1 + λ1 − λ2 0
w2 0 1− λ1 + λ2

 . (39)

As recalled in section 2, the complete positivity of CD is equivalent to the positive semi-definiteness
of χCD

. Being a real symmetric matrix, its eigenvalues are all real and so χCD
is positive semi-

definite if and only if all its eigenvalues are non-negative. We will conduct the analysis of positive
semi-definiteness following an increasing order of complexity.

3.3.1 The unital case (w1 = w2 = 0)

Unital rebit channels leave the centre of the Bloch disk invariant, so they have a null shift vector
w = (w1, w2) = 0.

This means that the χ−matrix in this case reduces to the following diagonal form

χCD
(λ1, λ2) =

1

2

1 + λ1 + λ2 0 0
0 1 + λ1 − λ2 0
0 0 1− λ1 + λ2

 .

Its eigenvalues are therefore its three diagonal elements, i.e.

q0 :=
1

2
(1 + λ1 + λ2), q1 :=

1

2
(1 + λ1 − λ2), q2 :=

1

2
(1− λ1 + λ2) (40)

and so, CD is completely positive if and only if{
λ2 ≥ −1± λ1

λ2 ≤ 1 + λ1

. (41)

Since (λ1, λ2) ∈ [−1, 1] × [−1, 1] ⊂ R2, the three inequalities appearing in the system (41) define
the admissibility region P for the parameters, which lies inside the pentagon of Figure 1.

•

•

•

•

•

(1,0)

(1,1)(0,1)

(-1,0)

(0,-1)

λ1

λ2

Figure 1: Admissibility region P for the parameters λ1 and λ2 to guarantee the complete posi-
tiveness of the map CD in the unital case.

3.3.2 The non-unital cases with either w1 = 0 or w2 = 0

We start by considering w = (0, w2), |w2| ≤ 1, w2 6= 0. This means that the shift occurs only in
the direction of the λ2−axis. In this case the χ-matrix is

χCD
(λ1, λ2, w2) =

1

2

1 + λ1 + λ2 0 w2

0 1 + λ1 − λ2 0
w2 0 1− λ1 + λ2

 .

8



First of all we notice that the condition qj ≥ 0 for j = 0, 1, 2 is still a necessary condition for
positive semi-definiteness of the matrix and hence for complete positivity of CD. This can be
seen by selecting the vectors ej of the canonical basis of R3 and performing the scalar product
etjχCD

(λ1, λ2, w2)ej , which reproduces exactly the values qj , j = 1, 2, 3.
In order to give also sufficient conditions we compute the eigenvalues of this matrix. The

characteristic polynomial of χCD
is:

P (x) =

[
1

2
(1 + λ1 − λ2)− x

] [
x− 1

2

(
1 + λ2 +

√
λ2

1 + w2
2

)][
x− 1

2

(
1 + λ2 −

√
λ2

1 + w2
2

)]
,

(42)
and therefore the three eigenvalues are{

µ0 := 1
2 (1 + λ1 − λ2)

µ± := 1
2

(
1 + λ2 ±

√
λ2

1 + w2
2

)
.

The condition µ0 ≥ 0 is equivalent to the necessary condition q1 ≥ 0 and the request that µ+ ≥ 0
gives λ2 ≥ −

√
λ2

1 + w2
2 − 1, which is always true, since it is necessary that |λj | ≤ 1 and |wj | ≤ 1

for all j = 1, 2 in order to guarantee positivity.
Finally, µ− ≥ 0 gives 1 +λ2 ≥

√
λ2

1 + w2
2, which, squaring both sides gives an upper bound on

w2, i.e. on the possible vertical shifts of the ellipsoid, precisely:

w2
2 ≤ (λ2 + 1)2 − λ2

1. (43)

The case in which w = (w1, 0), i.e. when the shift occurs only in the λ1−axis, is analogous
to the case described above. Proceeding as before, we obtain the following upper bound on the
possible horizontal shifts of the ellipsoid:

w2
1 ≤ (λ1 + 1)2 − λ2

2. (44)

3.3.3 The non-unital case with a generic w = (w1, w2)

In the general case, even if it is possible to compute the eigenvalues of χCD
, their explicit expression

is so complicated that their non-negativity cannot be studied analytically. We can avoid this
problem by studying the characteristic polynomial of the expression of χCD

in eq. (39), i.e.

P (x) = −x3 +
a

2
x2 − b

4
x+ det (χCD

), (45)

with a = 3 + λ1 + λ2, b = 3− (w2
1 + w2

2) + 2(λ1 + λ2)− (λ1 + λ2)2 and

det(χCD
) =

1

8

[
(1− λ1 + λ2)

[
(1 + λ1 + λ2)(1 + λ1 − λ2)− w2

1

]
− w2

2(1 + λ1 − λ2)
]
. (46)

By Descartes’ rule of signs, all the three roots of P are positive if and only if the coefficients of the
powers of x present three variations, i.e. their signs change from one to the next. This happens if
and only if a, b and det (χCD

) are all ≥ 0.
Since the condition |λj | ≤ 1 must hold to guarantee positivity, a ≥ 0 always holds. The request

b ≥ 0 gives an upper bound on the norm of w, that is

‖w‖2 = w2
1 + w2

2 ≤ 3 + 2(λ1 + λ2)− (λ1 + λ2)2. (47)

Finally, det (χCD
) ≥ 0 holds if and only if

w2
1(1− λ1 + λ2) + w2

2(1 + λ1 − λ2) ≤ (1 + λ1 + λ2)(1 + λ1 − λ2)(1− λ1 + λ2) = 8 q0q1q2, (48)

having used definition (40) in the last equality. The condition det(χCD
) ≥ 0 always implies b ≥ 0.

Indeed, the region described by (47) is a disk w.r.t. the two variables (w1, w2), moreover

max
|λj |≤1, j=1,2

{3 + 2(λ1 + λ2)− (λ1 + λ2)2} = 4, (49)
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so the ray of this disk is always ≤ 2. On the other hand, when 1±λ1 +λ2 > 0 and 1+λ1−λ2 > 0,
the region described by (48) w.r.t (w1, w2) is an ellipsoid that can be explicitly written as

w2
1

1

4
(1 + λ1 + λ2)(1 + λ1 − λ2)

+
w2

2

1

4
(1 + λ1 + λ2)(1− λ1 + λ2)

≤ 4. (50)

Therefore, since

max
|λj |≤1, j=1,2

{(1 + λ1 + λ2)(1 + λ1 − λ2)} = max
|λj |≤1, j=1,2

{(1 + λ1 + λ2)(1− λ1 + λ2)} = 4, (51)

it follows that both denominators of the inequality (50) are bounded by 1 when |λj | ≤ 1, j =
1, 2. This means that this ellipsoid described by the condition (50) is always contained into the
disk described by eq. (47). Moreover, inequality (50) gives a nice geometric characterization of
condition (48), saying that CD is completely positive if and only if its shift vector w belongs to
the ellipsoid described by (50).

Notice that when (1− λ1 + λ2) = 0 (or (1 + λ1 − λ2) = 0, or (1 + λ1 + λ2) = 0, respectively),
inequality (48) forces w2 = 0 (or w1 = 0, or w1 = w2 = 0, respectively) and hence the ellipsoid
described by inequality (48) degenerates to a segment or to the origin (w1, w2) = 0 which are
always contained into the disk described by eq. (47).

In conclusion, det (χCD
) ≥ 0 implies b ≥ 0 in every case, and hence the inequality (48) is

necessary and sufficient to guarantee that the eigenvalues of χCD
are ≥ 0.

3.4 The classification theorem of rebit channels

We summarize the analysis conducted above in the following theorem.

Theorem 3.2 Every rebit channel C can be decomposed as C = σΩR1
◦ CD ◦ σΩR2

, where σΩRj

are orthogonal channels associated to the rotation matrices Rj ∈ SO(2), j = 1, 2, and CD can be
represented in the Bloch basis (σ0, σ1, σ2) by the affine matrix

A =

 1 0 0
w1 λ1 0
w2 0 λ2

 =

(
1 0
w D

)
,

with the coefficients λj , wj, j = 1, 2, satisfying the following conditions:
q1 = 1 + λ1 + λ2 ≥ 0

q2 = 1 + λ1 − λ2 ≥ 0

q3 = 1− λ1 + λ2 ≥ 0
w2

1

(1+λ1+λ2)(1+λ1−λ2) +
w2

2

(1+λ1+λ2)(1−λ1+λ2) ≤ 1

. (52)

Geometrically, because of the presence of CD, the action of C on the Bloch disk representing the
state space of the rebit is to shrink it to an ellipsoidal region contained in the unit disk in R2,
which can also degenerate into a line segment or in a point. Either the semi-axes of the ellipsoidal
region or the line segment can be tilted with respect to the coordinate axes due to the presence
of the orthogonal channels σΩRj

, j = 1, 2.

4 A basic recap of the quantum-like colour perception model

As declared in the introduction, we want to strengthen the importance of the theoretical result
that we have just obtained by showing how it can be directly applied to the colour perception
model developed in the papers [4, 2, 7, 5, 3, 8, 6]. The content of these papers is of course too
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large to be reported entirely, for this reason here we will outline only the most important concepts
and results that will be needed to understand why rebit channels appear in this theory.

In the second part of the nineteenth century it became clear, in particular to Riemann, Maxwell,
Grassmann and von Helmholtz, that the space of perceptual colours C is not merely a set of
sensations, but a space with a rich mathematical structure. In [17], Schrödinger condensed the
fragmented colour knowledge into a set of axioms which imply that C is a 3-dimensional regular
convex cone. C represents an ideal space of perceptual colours in isolation, i.e. all the possible
colour sensations reported by an observer exposed to a single light source in isolation without
considering the so-called skotopic threshold and the glare limits, which are the lower and upper
bounds of human sight with respect to the intensity of light stimuli.

In [15], Resnikoff completed Schrödinger’s axiomatic system by exhibiting the homogeneity of
C and then proved that C can only be either [0,+∞)3 or [0,+∞)×H, where H is a 2-dimensional
hyperbolic space, see [14] for more details. The space [0,+∞)3 is the prototype of the classical
CIE (Commission International de l’Éclairage) colour spaces, whereas [0,+∞)×H is a much more
interesting space from an algebraic, geometric and also perceptual point of view. [0,+∞)×H is
isomorphic to H+(2,R), the space of 2 × 2 positive-semidefinite real symmetric matrices, and to
L+, the closed future lightcone in the 3-dimensional Minkowski space.

From now on, we will identify C with either H+(2,R) or L+, which coincide precisely with the
domain of positivity of the only two non-associative 3-dimensional formally real Jordan algebras:
H(2,R), composed by real symmetric 2× 2 matrices, and R⊕ R2, the so-called spin factor, both
endowed with suitable Jordan products. For more information about Jordan algebras, the very
clear paper [1] can be consulted, for the purposes of this paper the only result that we need to
recall is that H(2,R) and R⊕R2 are isomorphic as Jordan algebras via the following natural map:

J : H(2,R)
∼−→ R⊕ R2

A =

(
α+ v1 v2

v2 α− v1

)
7−→ J(A) =

α
v1

v2

 ≡ (α
v

)
.

(53)

Our assumption about C is called trichromacy axiom because it is the mathematical translation of
the trichromatic nature of human colour perception due to the existence of three retinal photore-
ceptors with different sensitivities. However, as it is well-known (see e.g. [9]), while photoreceptors
allow colour vision, ganglion cells and other retinal neurons generate colour vision via the oppo-
nent mechanism first argued by Hering [12]. Thus, the properties of a perceptual colour space
should be able to account for both trichromacy and opponency.

As we are going to see, this task can be intrinsically accomplished if we analyze colour per-
ception with the mathematical formalism of quantum theories. The first step of the quantum-like
colour perception theory consists in considering C as the state cone of the model, i.e. as the set of
states modulo a non-negative real constant. We represent quantum states s via density matrices,
which, in this framework, are unit trace matrices belonging to H+(2,R), explicitly,

S =

{
ρs(s1, s2) ≡ 1

2

(
1 + s1 s2

s2 1− s1

)
, s2

1 + s2
2 ≤ 1

}
∼= D, (54)

where D is the unit disk in R2, i.e. the state space of the rebit, which emerges spontaneously from
the trichromacy axiom. Far from being an accidental (or even unwanted) feature of this model, the
fact that chromatic states are labelled by elements of a 2-dimensional space is perfectly coherent
with Hering’s theory: the only intrinsic information that can be extracted by the observation of
colours in isolation is represented by the two degrees of chromatic opposition, while the perceived
intensity, or brightness, needs comparisons with other stimuli, see e.g. [13]. For this reason, we
call Hering’s rebit the system whose states are described by S. The two degrees of opposition are
exhibited by the density matrices when they are written in the Bloch representation, i.e.

ρs(s1, s2) = ρ0 +
s1

2
σ1 +

s2

2
σ2 ≡ ρ0 +

1

2
vs · ~σ, (55)
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where ρ0 := I2/2 and vs ∈ D indicates the Bloch vector. Using polar coordinates, i.e. r ∈ [0, 1],
ϑ ∈ [0, 2π) and (s1, s2) = (r cosϑ, r sinϑ), one easily finds that

ρs(r, θ) = ρ0 +
r cos θ

2
[ρ(1, 0)− ρ(1, π)] +

r sin θ

2

[
ρ
(

1,
π

2

)
− ρ

(
1,

3π

2

)]
. (56)

It turns out that, for all ϑ, ρ(1, ϑ) is a rank-1 projector, i.e. a pure state, and ρ(1, ϑ1), ρ(1, ϑ2)
project on orthogonal directions precisely when ϑ1 and ϑ2 are antipodal. Since orthogonality in
quantum theories represents incompatible states, eq. (56) codifies a generic chromatic state as
the superposition of two opponencies between incompatible states, red-green and yellow-blue in
Hering’s theory, plus an offset state represented by ρ0, called achromatic state, characterized by
the fact of maximizing the von Neumann entropy and not carrying any chromatic information.
For more information about the von Neumann entropy and its use in this colour perception model
see in particular [6].

The picture in Figure 2 summarizes what recalled so far and translates in a rigorous setting
the famous Newton colours disk.

.

.

ρs(r, ϑ)

ρ0

Achromatic
state

Pure hues

•

•

•

•

G

B

R

Y

Figure 2: The space of chromatic states of Hering’s rebit and its features.

Once obtained the chromatic state space S, the state cone Cs, isomorphic to H+(2,R), is

Cs :=

{
2αρs =

(
α(1 + s1) αs2

αs2 α(1− s1)

)
, α ≥ 0, vs = (s1, s2) ∈ D

}
. (57)

Naively, one may guess that the direct interpretation of α ≥ 0 is the brightness of a perceptual
colour, i.e. its perceived luminance. However, despite the fact that [0,+∞) surely contains the
brightness values, the upper and lower perceptual bounds of human sight impose a restriction on
the brightness values which turns the infinite state cone Cs into a compact space called colour solid.
Several proposals of colour solid can be found in the literature, the most famous being Mayer’s
and Lambert’s double and single pyramid, respectively, Runge’s sphere and Ostwald’s double cone.
None of them is based on a mathematical theory, but just on the proponent’s intuition.

One of the great achievements of the quantum-like theory of colour perception is a rigorous
solution to the long-lasting problem of reducing the infinite perceptual colour cone C to a compact
space and also defining brightness consistently with the structure of the resulting colour solid.

This solution makes use of the fundamental concepts of quantum effect and channel, which
have been adapted with great formal rigor to colour perception in [8].

The notion of effect is related to the probabilistic interpretation of observable measurement
when a system has been prepared in a given state. In the quantum-like colour perception model,
an effect is a triple

e := (e0,ve), (58)
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where e0 ∈ R is called effect magnitude and

ve :=

(
e1

e0
,
e2

e0

)
, (59)

e1, e2 ∈ R, is called effect vector, subjected to the condition that the effect matrix

ηe =

(
e0 + e1 e2

e2 e0 − e1

)
∈ H+(2,R), (60)

is bounded between the null matrix and I2. This implies that e0 ∈ [0, 1] and

e2
1 + e2

2 ≤ min
e0∈[0,1]

{
(1− e0)2, e2

0

}
(61)

so, in particular, ve ∈ D and the space of all effects E is the closed convex double cone with
a circular basis of radius 1/2 located height α = 1/2, with vertices in (e0, e1, e2) = (0, 0, 0) and
(e0, e1, e2) = (1, 0, 0), depicted in Figure 3 and in perfect agreement with the geometry of Ostwald’s
colour solid.

e0

e1

e2

− 1
2

−1

0

Figure 3: The convex double cone representing the effect space.

Following the quantum paradigm, it is natural to identify the act of perceiving a colour, inter-
preted as a perceptual measurement, with an effect. As a direct consequence, the colour solid of
actually perceivable colours is identified with E .

Crucially, after a measurement associated to an effect, the state of a system changes. Such
state transformations are codified by the so-called Lüders operations, defined as follows: if the
original state s of a visual scene is described by the density matrix ρs, then the measurement of a
perceived colour, identified with the effect e and represented by the matrix ηe, provokes a change
of the initial state s which becomes a post-measurement generalized state given by

ψe(s) := η1/2
e ρsη

1/2
e , (62)

η
1/2
e is called the Kraus operator associated to the Lüders operation ψe and it is the square root

of ηe, i.e. the only positive semi-definite matrix such that η
1/2
e η

1/2
e = ηe. Thanks to the cyclic

property of the trace we have:

Tr(ψe(s)) = Tr(ρsηe) = 〈e〉s = e0(1 + ve · vs), (63)

where 〈e〉s is the expectation value of the effect e on the state s. This implies that

ϕe(s) =
ψe(s)

〈e〉s
, (64)
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is a density matrix representing the post-measurement state and the transformation ρs 7→ ϕe(s)
is a rebit channel, called Lüders channel.

In [8] it has been proven that

J(ϕe(s)) =
1

2

(
1

ve ⊕ vs

)
, (65)

where J is the isomorphism defined in (53) and ⊕ denotes the Einstein-Poincaré relativistic sum
between the two vectors, i.e. ve ⊕ vs = ve if ‖ve‖ = 1, otherwise

ve ⊕ vs =
1

1 + ve · vs

{
ve +

1

γve

vs +
γve

1 + γve

(ve · vs)ve

}
, (66)

where ‘ · ’ denotes the Euclidean inner product and γve is the e-Lorentz factor, i.e.

γve =
1√

1− ‖ve‖2
. (67)

The generalized density matrix ψe(s) contains both the chromatic information expressed by the
state ϕe(s) and the normalized scalar information given by 〈e〉s. In [6] a perceived colour associated
to a measurement labelled by an effect e has been defined precisely as the post-measurement
generalized state ψe(s) and its brightness as Tr(ψe(s)) = 〈e〉s. This definition not only fits ideally
with the quantum paradigm, but it has also been proven to provide a rigorous description of the
lightness constancy property of human vision, see again [6] for more details.

To recap, the infinite cone C, which can be identified with the state cone of an ideal observer
without perceptual bounds, reduces to the compact double cone E when the limitations of real
human sight are taken into account.

5 Applications of the rebit channels classification to colour
perception

Even if the description of perceived colours as elements of E is much more realistic than the one
offered by the infinite state cone Cs, there is still a degree of idealisation left: the chromatic state
space S, parametrized by the elements of the Bloch disk, refers to an observer without any degree
of colour deficiency. As it is well-known, retinal photoreceptors may have spectral sensitivity
distributions that deviate from the standard ones due to genetic or acquired anomalies, or they
may even be absent. These pathological conditions lead to colour deficiencies such as anomalous
trichromacy, dichromacy or total colour blindness, see e.g. [10, 18] for more information. In
these cases, not all the chromatic states are attainable. In fact, evidences about variations in the
subjective ability to discern and categorise colours indicate that each observer, after measuring a
colour, leaves a perceptual signature on the chromatic state space by modifying it accordingly to
the particular features of her/his visual system.

This consideration is the key to understand the usefulness of Hering’s rebit channels classifica-
tion: since the act of perceiving a colour is modelled by the Lüders channel associated to the effect
o representing a given observer, the possible chromatic states perceived by the observer o must be
searched in the deformed state spaces of the Bloch disk after the application of the Lüders channel
ϕo. We formalise this sentence as follows.

Def. 5.1 The individual chromatic state space Io of an observer modelled by the effect o is the
range of the Lüders channel ϕo, i.e.

Io = {ϕo(s), s ∈ S}, (68)

where S has been defined in (54).
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Experimentally, Io can be obtained through the so-called hue scaling experiments, in which an
observer is asked to judge the proportion of opposition red-green and yellow-blue that he or she
perceives in a given light stimulus presented in isolated conditions (i.e. without other light stimuli
and no external illumination), see [10] for more details. Experimental evidence tells us that, in
such conditions, the Lüders channel ϕo is unital, i.e. the achromatic state is preserved. For this
reasons, in the following subsection, we will study the possible individual chromatic state spaces
by analysing only the most relevant cases of unital rebit channels.

5.1 Categorisation of human observers

In section 3 we have seen that the really interesting information about the deformation of the Bloch
disk by a unital rebit channel is contained in way the scaling parameters λ1, λ2 vary inside the
admissible region P depicted in Figure 1 and described by inequalities (41). In fact, the presence
of the orthogonal channels appearing in theorem 3.2 simply amounts to a rotation of the Bloch
vectors. So, in what follows, we will just concentrate on diagonal unital channels CD, recalling
that their action on a general state ρs = 1

2 (σ0 + r cos(ϑ)σ1 + r sin(ϑ)σ2) is the following:1 0 0
0 λ1 0
0 0 λ2

 1

2

 1
r cos(ϑ)
r sin(ϑ)

 =
1

2

 1
λ1r cos(ϑ)
λ2r sin(ϑ)

 . (69)

Let us start by the characterisation of the so-called Kraus rank of CD, i.e. the number of non-zero
eigenvalues of the associated χ−matrix:

• the vertices of P given by (λ1, λ2) = (−1, 0) and (λ1, λ2) = (0,−1) correspond to rank-1
channels because q1 = q2 = 0, q3 = 2 and q1 = q3 = 0, q2 = 2, respectively;

• the points belonging to the three diagonal edges of P defined by the conditions λ2 = ±λ1−1
and λ2 = λ1 + 1 correspond to rank-2 channels. This is straightforward to see, since a single
vanishing eigenvalue qj in eq. (40) defines a diagonal edge, and so the intersection of two
diagonal edges correspond to two vanishing eigenvalues;

• all the other points of P correspond to full-rank (i.e. rank-3) channels.

Now we pass to the analysis of some noticeable Hering’s rebit channel.

1. The identity channel, which correspond to (λ1, λ2) = (1, 1), leaves the Bloch disk invariant.
This is the only channel with this behaviour. In fact, apart from the case just examined,
the length of the disk axes could be preserved only by the couples (−1,−1), (1,−1), (−1, 1)
which, however, lie outside the admissibility region P.

2. The phase flip channels: by substituting (λ1, λ2) = (1 − p, 1), with 0 < p < 1, in eq. (69),
the corresponding channels transform the Bloch disk into an ellipsoid that intersects it at
the poles, i.e. yellow and blue of Figure 2, which remain fixed, while the disk is shrunk in the
red-green direction. The case p = 1, i.e. (λ1, λ2) = (0, 1), corresponds to a rank-2 channel
which reduces the Bloch disk to the yellow-blue opponent axis.

The case (λ1, λ2) = (1, 1 − p) is exactly analogous, with the role of the two opponent axes
swapped, hence such channels have the red and green points of the Bloch disk fixed and
shrink the disk in the yellow-blue direction. When p = 1 the Bloch disk degenerates into the
green-red opponent axis. Figure 4 illustrates all these cases.

3. Depolarizing channels are channel such that |λ1| = |λ2|, i.e. corresponding to points lying
on the two bisectors of P in Figure 1. These channels simply shrink the Bloch disk to
another disk with radius r < 1. If one of the λj ’s is negative, the channel reflects also
the disk with respect to one of the two (or both) axes. When λ1 = λ2 = 0, the entire
disk degenerates to the single central point, i.e. the achromatic state. This is the so-called
completely depolarizing channel.
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Figure 4: (λ1, λ2) for phase flip channels. (a): (1 − p, 1), (b): (0, 1), (c): (1, 1 − p), (d): (1, 0),
p ∈ (0, 1).

4. Linear channels are defined by the condition that either λ1 or λ2 or both are equal to 0,
i.e. they correspond to points lying on the horizontal or vertical axis in Figure 1. When
(λ1, λ2) = (q, 0) (or (λ1, λ2) = (0, q), respectively), with −1 < q < 1, the entire Bloch disk
is sent to an horizontal (or vertical, respectively) segment of length 2|q|. When q < 0 also a
reflection is applied. When q = 0 we recover the completely depolarizing channel.

When q = −1 we have the two rank-1 channels corresponding to the vertices (0,−1) and
(−1, 0), which are the intersection of two of the diagonal edges. These channels first shrink
the Bloch disk to a segment as in case 2., but in addition they reflect it with respect to the
horizontal or vertical axis, respectively.

5. All the other channels correspond to points lying either on the ‘diagonal’ edges or to the
interior of Figure 1. In the first case we have rank-2 channels, in the second one full-rank
channels. All the corresponding channels transform the Bloch disk to a generic ellipsoid.

Figure 5 gives a compact illustration of the channels discussed in the previous list depending on
the position of the couple of scaling parameters (λ1, λ2) ∈ P. Due to theorem 3.1, the previously
discussed transformations of the Bloch disk must be considered up to rotations.

Figure 5: A visual representation of the cases described in the previous list. Starting from the
identity and proceeding in a clockwise ordering we have: a phase flip of the type (λ1, λ2) = (1, 1−p),
a general case, a linear channel, a rank-1 degenerate channel, the completely depolarizing channel, a
depolarizing channel, a degenerate phase flip and finally a phase flip of the type (λ1, λ2) = (1−p, 1).

Thanks to eq. (66), we know that the relativistic sum vo ⊕ vs, i.e. the Bloch vector relative
to the post-measurement state produced by the perception of a chromatic state s by an observer
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modelled by the effect o, will be contained in one of the deformed Bloch disks just discussed.
We are now able to give a mathematical characterisation of human observers by using the

classification of unital Hering’s rebit channels. To this aim, we recall some standard definitions
form ophthalmology and colour theory:

• the LMS cones are the retinal photoreceptors with sensitivity pick in the long, middle and
short wavelengths of the visual spectrum. Apart from the separation of their picks, the
sensitivity curves of the L and M cones are almost identical and they vastly overlap;

• a normal trichromatic observer is a person with the three LMS cones functioning and with
maxima of their absorption curves at 560, 530 and 420 nm, respectively;

• an anomalous trichromatic observer is a person with the three LMS cones functioning, but
the absorption curves maxima of the L and M cones are less separated, between 2 and
12 nm, with respect to the 30 nm separation of normal trichromats. This is by far the
most common colour deficiency found in humans. We further distinguish between the two
following sub-categories: protanomalous have normal S and M cones, but anomalous L cones
whose spectral sensitivity curve is shifted closer to that of M cones; deuteranomalous have
normal S and L cones, but anomalous M cones whose spectral sensitivity curve is shifted
closer to that of L cones3;

• a dichromatic observer is a person who lacks one type of cones. We distinguish among:
protanopes, who lack the L cones; deuteranopes, who lack the M cones; tritanopes, who lack
the S cones4;

• a monochromatic observer is a person affected by a very rare colour deficiency in which only
the S cones are functioning or no cones at all, in which case they only possess skotopic vision
via the rod system. These people totally lack chromatic sensation.

Let (λ1, λ2) ∈ P be the scale parameters corresponding to the Lüders channel ρs 7→ ϕo(s),
where s is a chromatic state. Then o models:

• a normal trichromatic observer if (λ1, λ2) = (1, 1), because in this case the Bloch disk
remains preserved as a whole, so all the chromatic states can be perceived;

• an anomalous trichromatic observer if (λ1, λ2) = (1 − p, q), p ∈ (0, 1), q ∈ (0, 1], q > 1 − p,
i.e. if ϕo is a phase flip or a depolarizing channel that shrinks the Block disk more into the
red-green direction. In this case, in fact, the neurons of the parvocellular pathway have more
difficulty in performing the comparison between the output signals of the L and M cones,
hence the red-green opposition axis gets shorter. The anomaly worsens as p→ 1;

• a dichromatic observer if (λ1, λ2) corresponds to a linear channel or a degenerate rank-1
phase flip channel, in particular:

– if (λ1, λ2) = (0, q), q ∈ (0, 1], we have a protanope or a deuteranope;

– if (λ1, λ2) = (q, 0), q ∈ (0, 1], we have a tritanope.

Both conditions become more severe as q → 0;

• a monochromatic observer if (λ1, λ2) = (0, 0) because in this case the only state that can be
reported is the achromatic one, with variations in brightness.

3data on people with a shifted S cone spectral sensitivity have not been confirmed solidly.
4the prefixes used in these definitions and the following one are derived from protos, deuteros and tritos, which

mean first, second and third, respectively, in ancient Greek.
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5.2 Qualitative analysis of the adaptation to a non-neutral illuminant

Chromatic adaptation is the human visual system ability to modify colour perception when the
spectral distribution of lighting varies in order to maintain as fixed as possible the perception of
achromatic surfaces. This phenomenon can be experienced by everyone wearing, for instance, a
ski mask: as soon as the mask is worn the snow seems yellowish, but after a short amount of time
this sensation disappears and snow is perceived as achromatic. When the mask is removed, snow
appears bluish for a few seconds under natural light conditions, before the achromatic sensation
comes back.

Here we propose a qualitative discuss on the interpretation of chromatic adaptation in terms
of Hering’s rebit channels. In a future work, a quantitative analysis will complete the present one.

So far we have modelled mathematically the interaction between an observer and a visual
scene prepared in a given chromatic state s, represented by a light stimulus in isolated conditions,
perceived by a human observer identified with an effect o. When the visual scene consists in a patch
lit by an illuminant, the mathematical description must be modified as thoroughly discussed in [6]:
the physical properties of the patch define a chromatic state s which is altered by the illuminant,
modelled as a physical effect ι, which participates to the visual scene preparation.

We are now going to analyse two different situations that will provide possible explanations
of the reason why the adaptation to illuminants slightly different than daylight is practically
unnoticeable and, on the contrary, under extreme illuminant conditions, adaptation cannot restore
a full chromatic vision.

Let us start with the first case by considering, for instance, an achromatic patch lit by a slightly
yellowish illuminant. In this case s = ρ0, and, since the illuminant ι is yellowish, the chromatic
state presented to the observer will be ϕι(ρ0), where ϕι is the non-unital Lüders channel associated
to the action of the illuminant on the patch, which shifts ρ0 vertically towards the south pole
(0,−1), where the pure yellow hue is locate, hence its shift vector is w = (0, w2), −1 < w2 < 0,
|w2| � 1. It is worth stressing again that what just described is still part of the scene preparation.

When the observer interacts with the visual scene prepared in this way, the sudden yellowish
sensation provoked by ϕι(ρ0) will rapidly be modified by her/his visual system to become the
achromatic state of her/his own chromatic state space through the Lüders channel ϕo. Figure
6 illustrates what just discussed and shows also that if the yellowish illuminant is replaced by a
neutral one, the observer will suddenly perceive a bluish patch relative to the chromatic state ρ̃
with Bloch vector vρ̃ = (0,−w2)t, before rapidly experiencing again an achromatic sensation.

Figure 6: Illustration of the phenomenon of chromatic adaptation to a yellowish illuminant.

Now let us concentrate on the case in which the illuminant is not given by a slightly yellowish
light, but a very saturated red one. In this case, when the observer adapts to this kind of situation,
the channel ϕo shrinks dramatically the Bloch disk to a small ellipsoidal region close to the pure
red border of the original Bloch disk, in order to remain inside it, as illustrated in Figure 7. In
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this case, the amount of chromatic states that can be perceived will be very limited, as confirmed
by the data reported in visual experiments performed with very saturated illuminants.
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Figure 7: Illustration of the phenomenon of chromatic adaptation to a very saturated red illumi-
nant.

6 Conclusions and perspectives

We have detailed the complete classification of rebit channels and underlined that the strategy
used in the 2002 paper [16] for the classification of qubit channels, founded on Choi’s theorem,
must be replaced by an alternative procedure based on the χ-matrix representation. This should
not come as a surprise, because rebits properties cannot be deduced from those of qubits simply
by replacing C with R: for instance, in [19] it is proven that local measurements are enough to
determine the state of an open qubit system, but this is not always true for a rebit.

We have also shown that our classification result has not only a theoretical significance, but
it has important applications in a recent quantum information-based model of colour perception.
The surprising link between two apparently very distant research fields is offered by the fact that,
in [8, 6], the act of perceiving colours by a human observer is described via rebit channels hence,
by knowing how they modify the Bloch disk, it is possible to obtain an individual description of
the chromatic state space for each observer. Remarkably, this technique permits to single out also
colour deficiencies of different degree and type.

Finally, we have discussed how to apply the rebit channel classification to a qualitative interpre-
tation of the phenomenon of visual adaptation to a non-neutral illuminant which is coherent with
everyday experience. In a future work, we plan to deepen the study of this important perceptual
feature with a quantitative analysis based on the concept of relative quantum entropy.
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