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Abstract

We study the time constant C(ν) of last passage percolation on the complete directed acyclic
graph on the set of non-negative integers, where edges have i.i.d. weights with distribution ν with
support included in {−∞} ∪ R. We show that ν 7→ C(ν) is strictly increasing in ν. We also prove
that C(ν) is continuous in ν for a large set of measures ν. Furthermore, when ν is purely atomic,
we show that C(ν) is analytic with respect to the weights of the atoms. In the special case of two
positive atoms, it is an explicit rational function of these weights.

Keywords: last passage percolation, particle systems, renovation theory, coupling, stationarity, random
graphs, Markov chains.

1 Introduction

We study the problem of last passage percolation on a complete directed acyclic graph. Let Z+ denote
the set of non-negative integers. We consider the directed graph with vertex set Z+ and (directed) edge
set { (i, j) | 0 ≤ i < j }. Let ν be a probability distribution on {−∞} ∪ R and let X = (Xi,j)0≤i<j be
i.i.d. random variables with distribution ν. For 0 ≤ i < j, we assign weight Xi,j to the directed edge
(i, j). We call directed path a sequence of integers π = (i1, . . . , ik) such that 0 ≤ i1 < · · · < ik. The
associated weight wπ of the path π is defined by

wπ = Xi1,i2 + · · ·+Xik−1,ik .

The quantity we are interested in is the weight of a heaviest path starting at 0 and ending at n (see
Figure 1):

Wn = max{wπ | π = (i1, . . . , ik) is a directed path with i1 = 0 and ik = n }. (1)

As usual with last passage percolation models, the sequence of last passage times (Wn)n≥0 satisfies a
subadditive property, namely:

Wm ≥ Wn +Wn,m,

for all n < m where

Wn,m = max{wπ | π = (i1, . . . , ik) directed path with i1 = n and ik = m } (2)

has the same distribution as Wm−n. Therefore, by Kingman’s subadditive ergodic theorem, there exists
a deterministic constant C(ν) ∈ R ∪ {±∞}, called the time constant for last passage percolation, such
that

Wn

n

a.s.−−−−→
n−→∞

C(ν). (3)
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Figure 1: Illustration of the last passage percolation problem on the complete graph with 5 vertices.
With the weights given below each edge of this graph, W0 = 0, W1 = W2 = 1, W3 = 3, and W4 = 1.7.
A heaviest path from 0 to 4 is π = (0, 1, 2, 4).

The main goal of this article is to study the regularity of the function ν 7→ C(ν) and, in particular, study
the analyticity of C(ν) with respect to the probabilities of some atoms of ν. Indeed, in statistical physics,
the analyticity of observables is of particular importance because a breach of analyticity usually pinpoints
a phase transition in the model. A canonical example is the non-differentiability of the function p 7→ θ(p),
the probability that the origin belongs to an infinite cluster in classical Bernoulli bond percolation on
Z2, at the critical value pc = 1

2 . A similar result holds for the magnetization in the Ising model. One
may refer to [2, 17] and [1] for more details. We also point out that results similar to those stated in this
paper were previously obtained in [5, 6] for Bernoulli first-passage percolation on the lattice Zd in the
supercritical regime.

Let us note that there is a trivial scaling property of the model when multiplying all the weights by a
deterministic constant M > 0: let X be a random variable with distribution ν and let νM denote the
distribution of the random variable MX. It holds that

C(νM ) = M · C(ν). (4)

However, we point out that there is no such simplification when adding a deterministic constant to every
weight (because the heaviest paths do not have a fixed number of edges). In particular, we do not know
any simple relation between C(ν) and C(ν +M).

For x ∈ {−∞} ∪ R, let us denote by δx the Dirac measure at x. We remark that setting an edge with
weight −∞ is equivalent to removing this edge from the graph (at least for computing the heaviest
paths). As a consequence, when ν = (1−p)δ−∞+pδ1, the last passage percolation problem is equivalent
to the study of the longest path for the Barak-Erdős graph model [3], which is a directed acyclic version
of the Erdős-Rényi model. This specific case has known applications in applied mathematics on stability
in queues [8], in biology on food chains [18, 19], and in computer science on parallel computing [12, 13].
In [15, 16], Mallein and Ramassamy proved that the function p ∈ (0, 1] 7→ C((1−p)δ−∞+pδ1) is analytic,
that its Taylor expansion around 1 has integer coefficients, and they computed the first two terms of
the asymptotic expansion of p 7→ C((1− p)δ−∞ + pδ1) around 0. Those results are consequences of the
coupling between last passage percolation on Barak-Erdős graphs and the infinite-bin model, which is
an interacting particle system introduced by Foss and Konstantopoulos in [8].

A simple generalization of the last passage percolation problem for Barak-Erdős graphs is the case where
ν = (1 − p)δx + pδ1 for x ∈ {±∞} ∪ R. It is proved in [10] that the time constant C((1 − p)δx + pδ1)
seen as a function of x is strictly increasing and convex for all p ∈ (0, 1), and that its non-differentiability
points are the non-negative integers, the integers greater than one and their reciprocals.

Kingman’s subadditive theorem ensures only that C(ν) ∈ R ∪ {±∞} so that the time constant may
possibly be infinite. Let

Mν = inf{t ∈ R, ν([t,+∞)) = 0}

denote the essential supremum of ν. Obviously, we have Wn ≤ nMν almost surely and therefore C(ν) is
necessarily finite wherever ν has upper-bounded support. A less restrictive sufficient condition to ensure
that C(ν) ∈ [0,+∞) is given in [11] for probability distributions with support included in {−∞} ∪ R+.
It states that C(ν) is finite when E

[
max(0, X1,2)

2
]
< +∞. Reciprocally, it has been shown that if ν is

regularly varying with index s ∈ (0, 2) (which implies in particular that E
[
max(0, X1,2)

2
]
= +∞), then
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C(ν) = +∞. In fact, this result can easily be extended to all probability distributions ν on {−∞} ∪ R
by approximations and using the monotonicity of ν 7→ C(ν). However, the study of the time constant
C(ν) is greatly simplified when the support of the weight distribution is upper-bounded and this will be
our standing assumption throughout the paper.

Let us mention that the assumption that ν has finite essential supremum was previously enforced in a
work by Foss, Konstantopoulos, Mallein and Ramassamy in [9] where they used this fact to study the last
passage percolation model via a coupling with an interacting particle system called max growth system
(MGS) which is a generalization of the infinite-bin model introduced in [8]. Using tools from renovation
theory, they proved that it is possible to perform perfect simulations of the time constant C(ν) when
Mν < +∞. This connection between last passage percolation on a directed complete graph and the
MGS is also an essential ingredient for several proofs of this paper.

The remainder of the introduction is devoted to presenting the main results proved in the later sections
of this paper.

We first study the monotonicity of the function ν 7→ C(ν). If ν1 and ν2 are two probability distributions
on {−∞} ∪ R such that ν1 is stochastically dominated by ν2, then C(ν1) ≤ C(ν2) by a trivial coupling.
This means that the time constant C(ν) is a non-decreasing function for the stochastic (partial) order.
The more delicate question is whether it is strictly increasing. Our first result provides a positive answer
and generalizes a previous monotonicity result stated in [10] concerning the function m 7→ C((1−p)δm+
pδM ).

Let us denote by M1 the set of all probability distributions on ({−∞} ∪ R,B({−∞} ∪ R)), where
B({−∞} ∪ R) is the Borel algebra for the usual topology on {−∞} ∪ R. For every Borel set A ∈
B({−∞} ∪ R), let us denote by M1(A) the set of probability distributions ν ∈ M1 such that ν(A) = 1.

Theorem 1.1. For all M > 0, C(ν) is strictly increasing for the stochastic order on the set of probability
distributions ν ∈ M1([−∞,M ]) such that ν({M}) > 0 .

Remark 1.2. • The theorem above tells us something about the geometry of the heaviest paths:
because the time constant is strictly monotonic, edge weights with arbitrarily large negative values
in the support of ν may contribute to a heaviest path. Thus, avoiding all the edges with weights
below a certain cutoff is not the optimal strategy, as one could have naively expected.

• Let also remark that the assumption that ν({M}) > 0 with M > 0 cannot be dropped without
further assumptions because the strict monotonicity does not hold anymore for probability distri-
butions ν ∈ M1([−∞, 0]). Indeed, for any such distribution different from δ−∞, it is easy to check
that C(ν) = 0 (because in that case, every step is a penalty so the best strategy is to go from 0 to
n with only a finite number of steps that does not increase to infinity with n), c.f. [9] for details.

Denote by Mb
1 = { ν ∈ M1 | Mν < ∞} the set of all probability distributions in M1 with finite essential

supremum and by dLP the Lévy–Prokhorov metric on M1. It is known that this metric corresponds
to the topology of weak convergence of measures when working on a separable space, which is the case
here. For ν1, ν2 ∈ M1, we set

d(ν1, ν2) = max(dLP (ν1, ν2), |Mν1 −Mν2 |). (5)

It is straightforward that d defines a metric on M1.

Theorem 1.3. The map ν ∈ Mb
1 7→ C(ν) is continuous for the metric d defined in (5).

Remark 1.4. One may notice that ν 7→ C(ν) is not continuous on M1 for the Lévy-Prokhorov metric.
With νn = (1−εn)δ1+εnδn and ν = δ1, νn converges to ν for the Lévy-Prokhorov metric when εn tends to
0 as n tends to infinity. However, with C0(p) := C((1−p)δ0+pδ1), C

−1
0 its inverse and εn = (C−1

0 (2n−1)),
one can show that lim infn→∞ C(νn) ≥ 2 using the rescaling property (4), the monotonicity of the time
constant and the fact that C0 is continuous and takes value 0 at p = 0. Notice that the inverse of C0

exists since C0 is increasing by Theorem 1.1.

Remark 1.5. The fact that the essential supremum is an atom for the measures considered is crucial
for our construction. This is why we consider the metric d instead of the Lévy-Prokhorov metric. It
might be possible to prove the continuity for the Lévy-Prokhorov metric of the map ν 7→ C(ν) on
{ ν ∈ M1 | C(ν) ≤ M } for any fixed M > 0, but this might require a different construction.

The following technical result is a key ingredient for proving Theorem 1.3.
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Theorem 1.6. For all M ∈ R∗
+ and µ ∈ M1([−∞,M)), the map p 7→ C((1− p)µ+ pδM ) is analytic on

(0, 1].

This result is also interesting in itself since it shows that it would suffice to know the coefficients of the
Taylor expansion in p of the time constant at some p0 ∈ (0, 1] to obtain C((1−p)µ+pδM ) for all p ∈ (0, 1].
The scope of Theorem 1.6 is rather general since every distribution with finite essential support can be
decomposed as (1− p)µ+ pδM for some M ∈ {−∞} ∪ R, p ∈ [0, 1], and µ ∈ M1([−∞,M)).

In addition, we give a lower bound for the radius of convergence of p 7→ C((1− p)µ+ pδM ) at p = 1 in
Remark 3.3, which improves the lower bound given in [16] in the case where µ = δ−∞.

In [15], Theorem 1.6 was proved in the specific case where µ = δ−∞, which corresponds to the Barak-
Erdős case. Our proof of Theorem 1.6 is an extension of the analyticity proof of [15]. It relies on a
formula for C((1 − p)µ + pδM ) as a sum, over an infinite class of words, of polynomials in p whose
coefficients depend on µ (Proposition 2.13).

For measures with finite support, we obtain the following result, which is a generalization in a different
direction of the aforementioned analyticity result of [15]:

Theorem 1.7. For all N ∈ N and a1 > a2 > · · · > aN ≥ −∞, the map

(p2, . . . , pN ) 7→ C

(
N∑
i=1

piδai

)

is analytic on { (p2, . . . , pN ) ∈ [0, 1]N | 0 ≤ p2 + · · ·+ pN < 1 }, where p1 = 1− (p2 + · · ·+ pN ).

Remark 1.8. In general, we cannot extend the analyticity of the function considered in Theorem 1.7
to the set { (p2, . . . , pN ) ∈ [0, 1]N | 0 ≤ p2 + · · · + pN ≤ 1 }. For instance, p 7→ C((1 − p)δ−∞ + pδ1) is
not analytic at 0 cf. [15, 16].

Until now, we have considered general measures, possibly taking negative values. The model is easier
to study when the support of ν is included in R∗

+. For measures ν of the form (1 − p)δm + pδM with
0 < m ≤ M , the study of the time constant can be reduced to the study of a Markov chain on a finite
state space, and we have the following result:

Theorem 1.9. For all 0 < m ≤ M , p 7→ C((1− p)δm + pδM ) is a rational function on [0, 1].

In addition, we can compute the explicit numerical expression for C((1 − p)δm + pδM ) for all positive
values of m and M . The complexity of the computation increases with M

m . We provide in Subsections

4.1 and 4.2 these numerical expressions for m in [M5 ,M ].

When m = 0, one can write the time constant as the reciprocal of the Ramanujan Ψ-function [7]. We
give in this article an alternative proof of that result:

Theorem 1.10 ([7]). For all M > 0 and p ∈]0, 1],

C((1− p)δ0 + pδM ) = M

( ∞∑
n=1

(1− p)(
n
2)

)−1

.

Organization of the paper

In Section 2, we recall the coupling from [9] between last passage percolation and the MGS. We construct
a time-stationary version of the MGS for measures (1 − p)µ + pδM with p ∈ (0, 1], M ∈ R∗

+ and
µ ∈ M1([−∞,M)) (Proposition 2.3). To do so, we use different (yet of similar flavor) renovation events
from those in [9] and [15]. With these, we obtain a formula for C(ν) in Proposition 2.13 that we use in
Section 3 to prove the regularity results on ν 7→ C(ν).

In Section 3, we study the regularity of ν 7→ C(ν). The main results proved in this section are Theorem
1.6, Theorem 1.7, Theorem 1.3 and Theorem 1.1.

In Section 4, we study the case of measures supported by two elements. Firstly, we prove Theorem 1.9
using results from [10] and we give the expression of C((1− p)δm + pδM ) for values of m close to M . In
the last subsection, we give an alternative proof of Theorem 1.10 using the stationary MGS.
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Figure 2: On the left, the configuration λ = δ−1+2δ0.3+ δ1. On the right, the configuration Φx(λ), with
x = (0.5,−0.3, 1.7, 1, . . . ). Here, m(λ, x) = 0.3 + 1.7 = 2.

2 Stationary max growth system and a formula for C(ν)

This section is dedicated to the max growth system (MGS) which was introduced in [9]. In Subsection
2.1, we recall the max growth system. This model was introduced by Foss, Konstantopoulos, Mallein
and Ramassamy in order to perform perfect simulation of the time constant C(ν). In Subsection 2.2, we
construct a stationary version of the MGS using tools from renovation theory. This construction differs
from the one in [9]. In Subsection 2.3, we use this construction in order to obtain a new formula for C(ν)
as an infinite sum of quantities depending on ν.

2.1 The max growth system

The max growth system (MGS) is an interacting particle system in discrete time on {−∞}∪R introduced
in [9]. A new particle is added to the configuration at each step according to a specific Markovian
dynamics.

We consider N the set of atomic measures λ on {−∞} ∪ R taking values in Z+ and such that

∀t ∈ R, λ([t,+∞)) < +∞.

An element of N represents a configuration of particles on the real line in the following sense: if we
consider λ ∈ N and A ∈ B(R), λ(A) represents the number of particles with positions in A in the
configuration λ. For instance, δ−1 + 2δ0 is an element of N . It corresponds to the configuration with
one particle at position −1 and two at position 0.

For λ ∈ N , we set λ1 ≥ λ2 ≥ . . . the positions of the particles in λ in decreasing order (with repetitions).
For example, λ = δ−1 + 2δ0, we have λ1 = λ2 = 0 and λ3 = −1. Notice that λ(R) is the number of
particles in the configuration λ.

We set W = ({−∞} ∪ R)N to be the set of weights. For x = (xi)i≥1 ∈ W and λ ∈ N , we set

m(λ, x) = max
1≤i≤λ(R)

(λi + xi).

The deterministic dynamics of the MGS is defined as follows: the weights sequence x applied to the
configuration λ adds a particle to λ at position m(λ, x). Therefore, for all x ∈ W, we define the map
Φx : N → N such that for all λ ∈ N ,

Φx(λ) = λ+ δm(λ,x).

See Figure 2 for an example.

An MGS with starting configuration λ(0) ∈ N and weight distribution ν is a process (λ(n))n≥0 taking

values in N such that λ(n+1) = ΦX(n+1)(λ(n)) for all n ∈ Z+, where X
(n) = (X

(n)
i )i≥1 and (X

(n)
i )(i,n)∈N2

are i.i.d. random variables with distribution ν.

We are interested in this process because of the following coupling from [9] relating the MGS to last
passage percolation on complete directed acyclic graphs. It is an extension of the infinite-bin model
introduced in [8].

Proposition 2.1 ([9]). We consider Wn as defined in (1) where Xi,j has distribution ν for all 0 ≤ i < j.
Then, if we set

λ(n) =

n∑
j=0

δWj
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Figure 3: On the left, the weighted graph from Figure 1. On the right, the corresponding configuration
for the MGS via the coupling from Proposition 2.1.

for all n ≥ 0, then (λ(n))n≥0 is an MGS with starting configuration λ(0) = δ0 and weight distribution ν.

In particular, λ
(n)
1 = max{Wj , j ∈ J0, nK}.

See Figure 3 for an illustration of this coupling. Since ν has finite essential supremum, E[(X1,2)+] is
finite. We give in Remark 2.10 a self-contained proof of the fact that (n−1 max{Wj , j ∈ J0, nK}) and
(n−1Wn) have the same limit almost surely and in L1. Then, by Proposition 2.1:

λ
(n)
1

n

a.s, L1

−−−−→
n→∞

C(ν). (6)

This result is also derived in [9].

Remark 2.2. In fact, the limit (6) also holds for any MGS with weight distribution ν, not necessarily
with starting configuration δ0. We explain this fact more in details in Remark 2.11.

2.2 Stationary MGS for weight distributions with an atom at their essential
supremum

For the remainder of this section, we assume that ν has the form (1− p)µ+ pδM with M > 0, p ∈ (0, 1]
and µ a probability distribution on [−∞,M). We construct a stationary (in time) version of the max
growth system (MGS) with weight distribution ν. Similar constructions have been done in [8, 15] for
the infinite-bin model using tools from extended renovation theory. Another similar construction have
been done for the observable describing the speed of the front in the MGS in [9]. In both cases, the
construction of the stationary process comes from renovation events, as introduced in [8], which consists
in random times at which the future becomes independent from the past.

Let us denote by Fs(λ) the configuration obtained by shifting all the particles in λ by s ∈ R. In other
words, (Fs(λ))i = λi − s for all i.

Proposition 2.3 (Time-stationary MGS). We consider M ∈ R∗
+ and (X

(n)
i )i∈N,n∈Z i.i.d. random

variables with distribution ν on [−∞,M ] such that ν({M}) := p > 0. Almost surely, there exists a

unique process (λ̃(n))n∈Z taking values in N such that:

A.1 ∀n ∈ Z, λ̃(n+1) = ΦX(n+1)(λ̃(n)),

A.2 λ̃
(0)
1 = 0.

In addition, F
λ̃
(n)
1

(λ̃(n)) is Fn-measurable for all n ∈ Z, where Fn is the σ-algebra generated by (X
(k)
i )i∈N,k≤n.

Remark 2.4. The process (λ̃(n))n∈Z is stationary in the sense that it is invariant in time. Since

(X
(n)
i )i∈N,n∈Z has the same distribution as (X

(n+1)
i )i∈N,n∈Z, the processes obtained via Proposition 2.3

for those two weights sequences have the same distribution.

Remark 2.5. In [9], a similar construction of the stationary MGS is done for all measures with p ∈ [0, 1],
which is a more general case. However, we do not obtain the formula from Proposition 2.13 from that
other construction. In [15], the weight distribution has form pδ1+(1−p)δ−∞, and the renovation events
consist in “good” and “bad” words appearing in a sequence of i.i.d. random variables with geometric
distribution. The construction leads to a formula for C((1−p)δ−∞+pδ1) as a sum, over an infinite class of
words, of polynomials in p. This formula leads to the proof of the analyticity of p 7→ C((1−p)δ−∞+pδ1).
The renovation event used in this article are similar in shape to those of [9]. However, the construction

6
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Φx(λ
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0
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4

Figure 4: Illustration of Lemma 2.6 for M = 1. The configurations Φx(λ) and Φx(λ
′) where λ =

δ0, λ′ = δ2 + 2δ3 and x = (x(1), x(2), x(3), x(4)), with x(1) = (1, 0.2,−3, . . . ), x(2) = (0.5, 1, 0.5, . . . ),
x(3) = (−0.2, 1, 0.3, 1, . . . ) and x(4) = (−1.5, 0.5, 0, 1, . . . ). The configurations λ and λ′ are represented
in black. The particles added are in blue and indexed by their order of appearance (the particle indexed
by i corresponds to the particle obtained from the weight sequence x(i)). Here, changing the values
appearing after the first 1 in the sequences x(i) would not change the obtained configurations. In this
case, the word α(x) = (1, 2, 2, 4) is indeed triangular.

done in this article using those events looks more like what have been done in [15]. In our case, the
renovation events we use lead us to a formula for C(ν) as a sum, over an infinite class of words, of
polynomials in p whose coefficients depend on µ.

The proof of Proposition 2.3 relies on the existence of renovation events. They consist in particular
sequences of weights, which are introduced in the following Lemma 2.6. Firstly, let us introduce some
necessary notations.

A word is defined as a finite sequence of positive integers. Let A = ∪n∈Z+Nn denote the set of all words.
For α = (α1, . . . , αn) ∈ A, |α| := n is the length of the word α. We denote by T = {α ∈ A | ∀i ∈
J1, |α|K, αi ≤ i} the set of all triangular words.

For l ∈ N and x = (x(1), . . . , x(l)) ∈ W l, we set Φx := Φx(l) ◦ · · · ◦ Φx(1) the map corresponding to the
successive applications of the weight sequences x(1), x(2), . . . , x(l) on configurations in N . Let us define
α(x) the word associated to the weight sequence x as the word of length l, for which the n-th letter
corresponds to the index of the first occurrence of the value M in the sequence x(n). More explicitly, for
all n ∈ J1, lK,

αn(x) := inf{i ∈ N, x(n)
i = M}.

Since ν({M}) > 0, it follows that αi(X
(a), . . . , X(b)) is finite a.s. for all a < b ∈ Z and i ∈ Ja, bK. We

denote by W≤M := [−∞,M ]N the set of all the elements x ∈ W such that xi ≤ M for all i ≥ 1.

Lemma 2.6. For all l ∈ N and x = (x(1), . . . , x(l)) ∈ (W≤M )l such that α(x) ∈ T , the quantity

m(Φ(x(1),...,x(l−1))(λ), x
(l))− λ1 depends only on α(x) and (x

(i)
j )i∈J1,lK,j∈J1,αi(x)−1K. In particular, it does

not depend on the configuration λ. In addition, m(Φ(x(1),...,x(i−1))(λ), x
(i))− λ1 ≥ M for all i ∈ J1, lK.

We illustrate this Lemma 2.6 in Figure 4.

Proof. We proceed by induction on l. We consider x = x(1) ∈ W≤M such that α(x) ∈ T . We have

x
(1)
1 = M because α(x) is a triangular word. In this case, m(λ, x(1))− λ1 = M and the result is proved

for l = 1.

We now assume that Lemma 2.6 holds for some l ∈ N. We consider x = (x(1), . . . , x(l+1)) ∈ (W≤M )l+1

such that α(x) ∈ T . Since α(x) ∈ T , there exists k0 ∈ J1, l + 1K such that x
(l+1)
k0

= M . In addition,

x(l+1) ∈ W≤M . Therefore, x
(l+1)
i ≤ x

(l+1)
k0

for all i ≥ k0. As a consequence,

m(Φx′(λ), x(l+1)) = max
1≤i≤k0

((Φx′(λ))i + x
(l+1)
i )

where x′ = (x(1), . . . , x(l)). We set yi = m(Φ(x(1),...,x(i−1))(λ), x
(i)) − λ1 for all i ∈ J1, lK, yl+1 = 0 and φ

a permutation of J1, k0K such that yφ(1) ≥ · · · ≥ yφ(k0). By induction hypothesis applied to x′, for all

λ ∈ N and i ∈ J1, lK, yi depends only on (α1(x), . . . , αl(x)) and (x
(i)
j )i∈J1,lK,j∈J1,αi(x)−1K. In addition,

yi ≥ M > 0 for all i ∈ J1, lK. Then, we obtain

m(Φx′(λ), x(l+1)) = max
1≤i≤k0

(λ1 + yφ(i) + x
(l+1)
i ).
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Figure 5: Illustration of Remark 2.9 with M = 1. For the edge weights represented on the graph,
(ξ1, ξ2, ξ3) = (1, 2, 2) is a triangular word, and there is a directed path made of edges with weights 1 from
0 to any element of {1, 2, 3}.

Since y1, . . . , yl depends only on (α1(x), . . . , αl(x)) and (x
(i)
j )i∈J1,lK,j∈J1,αi(x)−1K, m(Φx′(λ), x(l+1))−λ1 de-

pends only on α(x) and (x
(i)
j )i∈J1,l+1K,j∈J1,αi(x)−1K. In addition, yi ≥ 0 for all i. Then, m(Φx′(λ), x(l+1))−

λ1 ≥ yφ(k0) + x
(l+1)
k0

≥ x
(l+1)
k0

= M , which concludes the inductive step.

Remark 2.7. As a consequence of Lemma 2.6, for all λ ∈ N and x ∈ (W≤M )l such that α(x) ∈ T , we
have

Φx(λ) = λ+

l∑
i=1

δλ1+yi ,

where yi := m(Φ(x(1),...,x(i−1))(λ), x
(i))− λ1 ≥ M > 0 for all i ∈ J1, lK. As a consequence, for (x

(i)
j )(i,j)∈N2

such that α((x(1), . . . , x(l))) ∈ T for all l ∈ N, if we know only λ1 and (x
(i)
j )i∈J1,lK,j∈N, then we can obtain

the positions of all the particles with positions greater than λ1 in Φ(x(1),...,x(l))(λ) for all l ∈ N.

We use Lemma 2.6 to construct the stationary version of the MGS. To do so, we set ξn = inf{i ∈
N, X(n)

i = M} for all n ∈ Z, where (X
(n)
i )i∈N,n∈Z are i.i.d. random variables with distribution ν. We

now prove that there are almost surely infinite triangular words in the sequence (ξn)n∈Z. We consider
R = {n ∈ Z | ∀i ∈ N, ξn+i−1 ≤ i } the set of all the times at which an infinite triangular word starts. By
the previous Remark 2.7, those times are renovation events in the sense that, for all n ∈ R, we are able
to reconstruct the future of the process after time n knowing only the front position at this time.

Lemma 2.8. For p ∈ (0, 1], infR = −∞ and supR = +∞ almost surely.

Proof. We notice that the probability distribution of the system is invariant by the shift map

σ :
RZ×N −→ RZ×N

(x
(n)
i )n∈Z,i∈N 7−→ (x

(n+1)
i )n∈Z,i∈N

.

In addition, Pp(0 ∈ R) =
∏

k≥1(1− (1− p)k), which is positive for p ∈ (0, 1]. By ergodicity, infR = −∞
and supR = +∞.

Remark 2.9. One can give the following interpretation for an element of R in terms of last passage
percolation via the coupling from Proposition 2.1:

n ∈ R ⇔ ∀k > n,∃i0 = n < i1 < · · · < il = k, ∀j ∈ J1, lK, Xij−1,ij = M,

where Xi,j is the weight of the edge (i, j) in the graph. In other words, n is in R if and only if there
exists a directed path made of edges with weight M from vertex n to any vertex k > n in the graph. See
Figure 5 for an illustration.

By Lemma 2.8, we can enumerate the elements of R as · · · < T−1 < T0 ≤ 0 < T1 < T2 < . . . .

Remark 2.10. By Lemma 2.6 and Proposition 2.1, WTKn
≤ Wn < WTKn+1

for all n ∈ N, where
(Tk)k≥1 enumerates the elements of R for the MGS defined in Proposition 2.1 and Kn := max{ k ∈ Z |
Tk ≤ n }. In addition, Lemma 2.6 also implies that WTk

= max0≤n≤Tk
Wn = λ

(Tk)
1 for all k ∈ N since

WTk
= 1+max0≤n≤Tk−1 Wn. Since Tk tends to +∞ as k tends to +∞, (n−1 max{Wj , j ∈ J0, nK})n and

(n−1Wn)n have the same limit as n tends to +∞. As a consequence, (6) is proved.
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Remark 2.11. By Proposition 2.1, notice that the time constant C(ν) is equal to the limit of n−1(Wn−
WT1

) = maxT1≤k≤n(λ
(k)
1 − λ

(T1)
1 ) as n tends to infinity. Since this quantity is independent of the initial

configuration of the considered MGS by Lemma 2.6, (6) holds for any initial configuration λ(0) for λ.

Proof of Proposition 2.3. For k ∈ Z, we set Y (k) = (X(Tk), . . . , X(Tk+1−1)), where X(n) = (X
(n)
i )i∈N.

By definition of Tk, α(Y
(k)) ∈ T for all k ∈ Z. We set y

(k)
j = m(Φ(X(Tk),...,X(j−1))(θ), X

(j)) − θ1 for all

k ∈ Z, j ∈ JTk, Tk+1−1K and any θ ∈ N . Thanks to Lemma 2.6, y
(k)
j depends only on (X(i))i∈JTk,Tk+1−1K

and not on θ. As a consequence, if (λ̃(n))n∈Z verifies assumption A.1 from Proposition 2.3, then the

position m(λ̃(i−1), X(i)) of the particle added at time i ∈ JT0, T1 − 1K depends only on λ̃
(T0−1)
1 and

(X(T0), . . . , X(T1−1)):

m(λ̃(i−1), X(i)) = λ̃
(T0−1)
1 + y

(0)
i . (7)

Since T0 ≤ 0 < T1 and α((x(T0), . . . , x(0))) ∈ T , by Lemma 2.6,

λ̃
(0)
1 = max

i∈JT0,0K
(λ̃

(T0−1)
1 + y

(0)
i ) = λ̃

(T0−1)
1 + max

i∈JT0,0K
y
(0)
i .

If we assume that (λ̃(n))n∈Z also verifies assumption A.2 from Proposition 2.3, then necessarily

λ̃
(T0−1)
1 = − max

i∈JT0,0K
y
(0)
i . (8)

We set z
(0)
i = y

(0)
i −maxj∈JT0,0K y

(0)
j for all i ∈ JT0, T1 − 1K. By (7) and (8), for all i ∈ JT0, T1 − 1K, we

have
m(λ̃(i−1), X(i)) = z

(0)
i .

By Remark 2.7, we notice that

λ̃(0) = λ̃(T0−1) +
∑

i∈JT0,0K

δ
λ̃
(T0−1)
1 +y

(0)
i

= λ̃(T0−1) +
∑

i∈JT0,0K

δ
z
(0)
i

.

For i ∈ JT0, T1 − 1K, y(0)i ≥ M by Lemma 2.6. Then z
(0)
i ≥ λ̃

(T0−1)
1 +M . In addition, all the particles

in the configuration λ̃(T0−1) have their positions in (−∞, λ̃
(T0−1)
1 ]. Therefore, the positions of all the

particles in λ̃(0) whose positions are in (−M, 0] are all the z
(0)
i for i ∈ JT0, 0K such that z

(0)
i > −M .

Now, we can iterate this method in order to obtain all the particles positions in (−2M, 0] of the configura-
tion λ(0), and then in (kM, 0] for all k ≤ −1. Let us consider an integer k ≤ −1. For all i ∈ JTk, Tk+1−1K,

m(λ̃(i−1), X(i)) = λ̃
(Tk−1)
1 + y

(k)
i , (9)

As a consequence, by Lemma 2.6,

λ̃
(Tk+1−1)
1 = λ̃

(Tk−1)
1 + max

j∈JTk,Tk+1−1K
y
(k)
j

Then, if we have λ̃
(Tk+1−1)
1 , we obtain λ̃

(Tk−1)
1 , and we can compute allm(λ̃(i−1), X(i)) for i ∈ JTk, Tk+1−1K

by (9). As a consequence, by induction on k, we obtain m(λ̃(i−1), X(i)) for all Tk ≤ i ≤ 0, and those

positions contains all the particles positions in (kM, 0] since λ
(Ti)
1 −λ

(Ti−1)
1 ≥ M for all i ≤ 0. Therefore,

λ̃(0) is almost surely uniquely defined by assumptions A.1 and A.2 . In addition, we notice that by
construction, F

λ̃
(0)
1

= λ̃(0) is F0-measurable.

Now that we have constructed λ̃(0), for all n ≥ 1, λ̃(n) is obtained by iterating n times assumption A.1 .
By construction, it is clear that F

λ̃
(n)
1

(λ̃(n)) is Fn-measurable for all n ≥ 1.

In order to get λ̃(n) for n ≤ −1, it suffices to remove the particles with positions m(λ̃(i−1), X(i)) from
λ(0) for all i ∈ Jn+ 1, 0K since the process should verify assumption A.1 . Since we managed to compute

those positions when we constructed λ̃(0), we obtain λ̃(n). Another way to construct λ̃(n) for such n
would be to use the same method as for λ̃(0) with the sequence (X(k))k≤n. Since the process is almost
surely uniquely defined by construction, we would almost surely obtain the same configuration. With
this second method, it is clear that F

λ̃
(n)
1

(λ̃(n)) is Fn-measurable, which concludes the proof.
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Now that we have constructed the stationary version (λ̃(n))n∈Z of the MGS, we can couple it with the
standard MGS (λ(n))n∈Z+

using the same renovation events.

Proposition 2.12 (Coupling property). We consider (λ̃(n))n∈Z the stationary version of the MGS

introduced in Proposition 2.3 with weights (X
(i)
j )i∈Z,j∈N. We consider a configuration λ(0) ∈ N and we

set λ(n) = ΦX(n)(λ(n−1)) for all n ≥ 1. Then, (λ(n))n≥0 is a standard MGS. For all n ≥ T1,

m(λ(n−1), X(n))−m(λ̃(n−1), X(n)) = λ
(T1−1)
1 − λ̃

(T1−1)
1 . (10)

In addition, λ
(n)
1 − λ̃

(n)
1 = λ

(T1−1)
1 − λ̃

(T1−1)
1 for all n ≥ T1.

In what follows, we call front position the position of a particle with maximal position in a configuration.

Proof of Proposition 2.12. By definition of T1, α((x
(T1), . . . , x(n))) ∈ T for all n ≥ T1. As a consequence

of Lemma 2.6, m(Φ(X(1),...,X(n−1))(θ), X
(n))− θ1 does not depends on the configuration θ ∈ N . Then, for

all n ≥ T1,

m(λ(n−1), X(n))− λ
(Tk−1)
1 = m(λ̃(n−1), X(n))− λ̃

(Tk−1)
1 .

which completes the proof of (10). By Lemma 2.6, we also know that m(Φ(X(1),...,X(n−1))(θ), X
(n))−θ1 ≥

M > 0 for all n ≥ T1. Therefore, all the particles added at a time n ≥ T1 in the two versions of the MGS
have positions greater than the front positions at time T1 − 1 in both MGS. In addition, all the particles
added at time n < T1 have positions less or equal to the front position at time T1 − 1 for both MGS.

Then, for all n ≥ T1, λ
(n)
1 − λ

(T1−1)
1 = λ̃

(n)
1 − λ̃

(T1−1)
1 = maxi∈JT1,nK m(Φ(X(1),...,X(n−1))(θ), X

(n)) − θ1
where θ is any element of N .

2.3 An abstract formula for the time constant for last passage percolation

In this section, we give a formula for C((1 − p)µ + pδM ) in terms of the renovation events given in
Subsection 2.2.

For α ∈ A, we denote by H(α) =
∑|α|

i=1(αi − 1) the height of the word α. We set Tm to be the set of
all the words in T with no strict suffix in T . More precisely, α ∈ Tm if and only if α ∈ T and for all
i ∈ J2, |α|K, (αi, . . . , α|α|) /∈ T . The elements of Tm are called minimal triangular words.

For β ∈ T and x = (x
(i)
j )i∈J1,lK,j∈J1,βi−1K with x

(i)
j ∈ [−∞,M) for all (i, j), let sendM (β, x) be the difference

of front positions between steps l − 1 and l when applying a weight sequence x′ ∈ (W≤M )l such that

α(x′) = β and x
′(i)
j = x

(i)
j for all 1 ≤ i ≤ l and 1 ≤ j ≤ βi − 1 to any configuration λ ∈ N . By Lemma

2.6, this quantity depends only on β and (x
(i)
j )i∈J1,lK,j∈J1,βi−1K. It is clear that s

end
M (β, x) ∈ [0,M ].

More precisely, Lemma 2.6 asserts thatm(Φ(x′(1),...,x′(l−l))(λ), x
′(l))−λ1 depends only on β and (x

(i)
j )i∈J1,lK,j∈J1,βi−1K.

Then,

sendM

(
β, (x

(i)
j )i∈J1,lK,j∈J1,βi−1K

)
= max

i∈J1,lK
yi − max

i∈J1,l−1K
yi, (11)

where yi = m(Φ(x′(1),...,x′(i−l))(λ), x
′(i)) − λ1 for all i ∈ J1, lK, any configuration λ ∈ N and any x′ ∈

(W≤M )l such that α(x′) = β and x
′(i)
j = x

(i)
j for all 1 ≤ i ≤ l and 1 ≤ j ≤ βi − 1.

Proposition 2.13. For all p ∈ (0, 1], M ∈ R∗
+ and µ ∈ M1([−∞,M)),

C((1− p)µ+ pδM ) =
∑

β∈Tm

p|β|(1− p)H(β)

∫
sendM

(
β, (x

(i)
j )i,j

) ∏
1≤i≤|β|

1≤j≤βi−1

dµ(x
(i)
j ).

Proof. By (6), for (λ(n))n∈Z+
an MGS with a starting configuration λ(0), we know that (n−1λ

(n)
1 ) con-

verges to C(ν) almost surely and in L1 as n tends to infinity. Consider λ̃ the stationary MGS introduced

in Proposition 2.3. Since n−1(λ
(T1−1)
1 −λ̃

(T1−1)
1 ) converges almost surely and L1 to 0 as n tends to infinity

by Proposition 2.12, we also have

λ̃
(n)
1

n

a.s, L1

−−−−→
n→∞

C(ν).
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Then, by L1 convergence,

1

n
E
[
λ̃
(n)
1

]
−−−−→
n→∞

C(ν). (12)

By stationarity of (λ̃(n))n∈Z (see Remark 2.4), E[λ̃(k+1)
1 − λ̃

(k)
1 ] = E[λ̃(1)

1 − λ̃
(0)
1 ] = E[λ̃(1)

1 ] for all k ∈ Z.
Therefore,

E
[
λ̃
(n)
1

]
=

n−1∑
k=0

E
[
λ̃
(k+1)
1 − λ̃

(k)
1

]
= nE

[
λ̃
(1)
1

]
.

As a consequence, by (12), C(ν) = E
[
λ̃
(1)
1

]
. Now, we rewrite this formula in terms of triangular words

and weights sequences. We set

Tpast = inf{ t ∈ N | (X(−t+2), . . . , X(1)) ∈ T }.

By definition of Tpast, we have α((X(2−Tpast), . . . , X(1))) ∈ Tm. Then, by the law of total probability

C(ν) =
∑

β∈Tm

P(α((X(2−Tpast), . . . , X(1))) = β)E
[
λ̃
(1)
1 | α((X(2−Tpast), . . . , X(1))) = β

]
=
∑

β∈Tm

p|β|(1− p)H(β)E
[
λ̃
(1)
1 | α((X(2−Tpast), . . . , X(1))) = β

]
. (13)

Conditionally to the event {α((X(2−Tpast), . . . , X(1))) = β}, (X(i)
j )i∈J1,|β|K,j∈J1,βi−1K are i.i.d. with distri-

bution µ. Therefore, by definition of sendM ,

E
[
λ̃
(1)
1 | α((X(2−Tpast), . . . , X(1))) = β

]
=

∫
sendM

(
β, (x

(i)
j )i,j

) ∏
1≤i≤|β|

1≤j≤βi−1

dµ(x
(i)
j ). (14)

Putting everything together, we obtain the formula from Proposition 2.13, which completes the proof of
the proposition.

3 Regularity properties of the time constant

The four subsections are devoted respectively to the proofs of Theorem 1.6, Theorem 1.7, Theorem 1.3
and Theorem 1.1.

3.1 Analyticity in p for measures of the form (1− p)µ+ pδM

With the results from Section 2, we now prove Theorem 1.6 regarding the analyticity of p 7→ C((1 −
p)µ+ pδM ) on (0, 1].

Proof of Theorem 1.6. We fix M ∈ R∗
+. We denote by D(z0, r) := { z ∈ C | |z − z0| < r } the open disk

of radius r and center z0. By Proposition 2.13, it suffices to show that for all q0 ∈ [0, 1), there exists a
δ > 0 such that for all z ∈ D(0, δ),∑

β∈Tm

|q0 + z|H(β)|1− q0 − z||β|
∫ ∣∣∣sendM

(
β, (x

(i)
j )i,j

)∣∣∣ ∏
1≤i≤|β|

1≤j≤βi−1

dµ(x
(i)
j ).

We consider q0 ∈ [0, 1) and z ∈ C. Since µ is a probability distribution and sendM

(
β, (x

(i)
j )i,j

)
takes values

in [0,M ], it suffices to show that for some δ > 0 and all z ∈ D(0, δ),∑
β∈Tm

|q0 + z|H(β)|1− q0 − z||β| < ∞. (15)
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By the triangle inequality, we have∑
β∈Tm

|q0 + z|H(β)|1− q0 − z||β| ≤
∑

β∈Tm

(q0 + |z|)H(β)(1− q0 + |z|)|β|.

For z such that 1− q0 − |z| > 0, we have

∑
β∈Tm

|q0 + z|H(β)|1− q0 − z||β| ≤
∑

β∈Tm

(q0 + |z|)H(β)(1− q0 − |z|)|β|
(
1− q0 + |z|
1− q0 − |z|

)|β|

.

For p ∈ (0, 1] and µ a probability distribution such that µ([−∞,M)) = 1, we denote by Ep,µ the

expectation corresponding to a probability space where the weights X
(i)
j have distribution (1−p)µ+pδM .

For r > 1, we notice that

Ep,µ

[
rTpast

]
=
∑

β∈Tm

(rp)|β|(1− p)H(β).

by the law of total probability applied to α((X(2−Tpast), . . . , X(1))). Therefore,

∑
β∈Tm

|q0 + z|H(β)|1− q0 − z||β| ≤ E1−q0−|z|,µ

[(
1− q0 + |z|
1− q0 − |z|

)Tpast
]
. (16)

If we show that the moment generating function of Tpast is finite on an open neighborhood of 1, then we
can show that both quantities in (16) are finite for |z| small enough. To do so, we introduce ξn = inf{i ∈
N, X(n)

i = M} for all n ∈ Z. We consider the random sequence (Mn)n≥0, where Mn corresponds to the
number of elements i in J−n+ 2, 1K such that ξi > i+ n− 1. More explicitly, we consider M0 = ∅, and
for all n ≥ 1,

Mn = { i ∈ J−n+ 2, 1K | ξi > i+ n− 1 }.

For n ∈ Z+, we set Mn = #Mn. By definition of Tpast, we notice that

Tpast = inf{n ∈ N | Mn = 0 }.

See Figure 6 for an illustration. Equivalently, by definition of (ξi)i∈Z, for all n ∈ N,

Mn = { i ∈ J−n+ 2, 1K | ∀j ∈ J1, i+ n− 1K, X(i)
j < M }.

We also notice that for all n ≥ 1,

Mn = {i ∈ {−n+ 2} ∪Mn−1, X
(i)
i+n−1 < M}.

Since Mn−1 depends only on (X
(i)
j )i∈J−n+1,1K,j∈J1,i+n−2K which is independent of (X

(i)
i+n−1)i∈J−n+2,1K,

the conditional distribution of Mn given Mn−1 is a binomial distribution Binomial(Mn−1 + 1, 1− p).

We notice that Mn has the same law as a Galton-Watson process with immigration, with distribution
Bernoulli(1− p) for the number of offspring of one particle and with distribution Bernoulli(1− p) for the
immigration at each step. In [20], Zubkov shows the following result :

Theorem 3.1 ([20, Theorem 1]). For any p ∈ (0, 1), there exists a constant c such that for all k > 0,

P(Tpast > k) ∼ c(rp)
−(k+1),

where rp is the only element r of (1, 1
1−p ) such that

∑∞
k=0(qr)

k+1
∏k

n=1(1− qn) = 1 with q := 1− p.

As a consequence of Theorem 3.1, Tpast has finite exponential moments. More precisely:

Lemma 3.2. For all p ∈ (0, 1], there exists ρp > 1 such that for all p′ ∈ [p, 1] and µ ∈ M1([−∞,M)),

Ep′,µ[ρ
Tpast
p ] < ∞.
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Figure 6: A dot is represented at position (n, i) if and only if X
(n)
i = M . Notice that (ξk, . . . , ξ0, ξ1) is

triangular if and only if, for all i ∈ Jk, 1K, there is at least one dot with abscissa i below or on the dashed
line passing through (k, 1). For n ∈ N, Mn is the set of all i ∈ J2− n, 1K for which there is no dot with
abscissa i below or on the dashed line passing through (2− n, 1). Here, M1 = M2 = {1}, M3 = {−1},
M4 = M7 = ∅, M5 = {−4,−3} and M6 = {−4}. Then, Tpast = 4.

Proof of Lemma 3.2. For p = 1, the result is trivial since Tpast = 1 almost surely. Now, we assume that

p ∈ (0, 1). By Theorem 3.1, for any 1 < ρp < rp, Ep,µ[ρ
Tpast
p ] < ∞. In addition, Tpast is a non-increasing

function of p for the trivial coupling. Therefore, Ep′,µ[ρ
Tpast
p ] < ∞ for all p′ ∈ [p, 1], since rp > 1.

Now, we consider 1 < r < r 1−q0
2

from Lemma 3.2. Setting δ = min( 1−q0
2 , (1−q0)(r−1)

r+1 ) and z ∈ D(0, δ),

we have E1−q0−|z|,µ[r
Tpast ] < ∞ by Lemma 3.2 since |z| < 1−q0

2 . Furthermore, 1−q0+|z|
1−q0−|z| < r because

|z| < (1−q0)(r−1)
r+1 . Then, we have (15) by (16), which concludes the proof of Theorem 1.6.

Remark 3.3. There is no easy way to compute rp explicitly, but we can approximate its value. We can
obtain a lower bound for the radius of convergence of p 7→ C((1− p)µ+ pδM ). This lower bound is valid
for all µ ∈ M1([−∞,M)) since Tpast does not depend on µ. Let us consider ε ∈ (0, 1), q0 ∈ [0, 1) and

r = rε(1−q0). One can show by similar computations as above that δ = min((1− q0)(1− ε), (1−q0)(r−1)
r+1 )

is also a lower bound for the radius of convergence of p 7→ C((1− p)µ+ pδM ) around 1− q0. For q0 = 0,
we can numerically optimize this lower bound in ε. We obtain that the radius of convergence around 1
is lower bounded by 0.298167. This lower bound does not seem to be optimal according to numerical

simulations, but it is a slight improvement over the previously known lower bound
√
2−1
2 ≃ 0, 20710678

from [16] for the case where µ = δ−∞.

3.2 Analyticity for measures with N atoms

We first simplify the formula from Proposition 2.13 in the specific case where ν has finite support:

Proposition 3.4. We consider N weights a1 > a2 > · · · > aN ≥ −∞ such that a1 > 0, and p1, . . . , pN ∈
[0, 1] such that p1 + · · ·+ pN = 1 and p1 > 0. Then,

C

(
N∑
i=1

piδai

)
=
∑

β∈Tm

∑
x∈Eβ

senda1
(β, x) p

|β|
1 p

c2,x
2 . . . p

cN,x

N , (17)

where Eβ = { (x(i)
j )i∈J1,|β|K,j∈J1,βi−1K | x(i)

j ∈ {a2, . . . aN} } and ck,x = |{ (i, j) ∈ J1, |β|K × J1, βi − 1K |
x
(i)
j = ak }| for all k ∈ J1, NK and x ∈ Eβ.
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Proof. We apply Proposition 2.13 with p = p1 and µ = 1
1−p1

∑N
i=2 piδai

. We obtain

C

(
N∑
i=1

piδai

)
=
∑

β∈Tm

p
|β|
1 (1− p1)

H(β)

∫
senda1

(
β, (x

(i)
j )i,j

) ∏
1≤i≤|β|

1≤j≤βi−1

dµ(x
(i)
j )

=
∑

β∈Tm

∑
x∈Eβ

p
|β|
1 (1− p1)

H(β)senda1
(β, x)

|β|∏
i=1

βi−1∏
j=1

µ({x(i)
j })

=
∑

β∈Tm

∑
x∈Eβ

p
|β|
1 (1− p1)

H(β)senda1
(β, x)

 |β|∏
i=1

βi−1∏
j=1

(1− p1)
−1p

Ii,j,2
2 . . . p

Ii,j,N
N


=
∑

β∈Tm

∑
x∈Eβ

senda1
(β, x) · p|β|1 p

c2,x
2 . . . p

cN,x

N ,

where Ii,j,k := 1
x
(i)
j =ak

.

Let us now prove Theorem 1.7:

Proof of Theorem 1.7. We consider N weights a1 > a2 > · · · > aN ≥ −∞ with a1 > 0. By Hartogs’
theorem on separate holomorphicity [14], if f is a function defined on an open set U ⊆ Cn such that, for
all i ∈ J1, nK, zi 7→ f(z1, . . . , zn) is analytic when the other coordinates zk for k ̸= i are fixed, then f is
analytic on U . Therefore, it suffices to show that for every k ∈ J2, NK,

pk 7→ C

(
N∑
i=2

piδai
+ (1− p2 − · · · − pN )δa1

)

is analytic on {pk ∈ [0, 1], 0 ≤ p2 + · · · + pN < 1} for all p2, . . . , pk−1, pk+1, . . . , pN ∈ [0, 1] such that
p2 + · · ·+ pk−1 + pk+1 + · · ·+ pN < 1.

Now, we fix k ∈ J2, NK. By (17), it suffices to show that for all (p2, . . . , pN ) ∈ [0, 1]N such that
0 ≤ p2 + · · ·+ pN < 1, there exists δ > 0 such that for all z ∈ D(0, δ),

(⋆) :=
∑

α∈Tm

∑
x∈Eα

|1− p2 − · · · − (pk + z)− · · · − pN ||α| · pc2,x2 . . . p
ck−1,x

k−1 |pk + z|ck,x · pck+1,x

k+1 . . . p
cN,x

N < ∞

since 0 ≤ senda1
≤ a1. We set p1 = 1− p2 − · · · − pN . By the triangle inequality, we obtain the following

upper bound

(⋆) ≤
∑

α∈Tm

∑
x∈Eα

(p1 + |z|)|α| · pc2,x2 . . . p
ck−1,x

k−1 (pk + |z|)ck,x · pck+1,x

k+1 . . . p
cN,x

N

=
∑

α∈Tm

∑
x∈Eα

(
p1 + |z|
p1 − |z|

)|α|

(p1 − |z|)|α| · pc2,x2 . . . p
ck−1,x

k−1 (pk + |z|)ck,x · pck+1,x

k+1 . . . p
cN,x

N

We take δ < min(1 − pk, 1 − p1) so that pk + |z| ∈ [0, 1[ and 1 − p1 − |z| > 0. If we denote by Ep,µ the
expectation corresponding to the probability space where the weights have distribution (1 − p)µ + pδ1,
then

(⋆) ≤ Ep1−|z|,
∑N

i=2
pi

1−p1
δai

[(
p1 + |z|
p1 − |z|

)Tpast
]
,

where Tpast is the length of the first triangular word in the past for a word of i.i.d. random variables with
distribution G(p1 − |z|). This expectation is exactly the same as in (16), and its finiteness has already
been proved by Lemma 3.2 for |z| ≤ δ′ for some δ′. Then, with δ < min(1− pk, 1− p1, δ

′), (⋆) < +∞.

Therefore, pk 7→ C
(∑N

i=2 piδai
+ (1− p2 − · · · − pN )δ1

)
is analytic on {pk ∈ [0, 1], 0 ≤ p2 + · · ·+ pN <

1}.
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3.3 Continuity

Proof of Theorem 1.3. We proceed by successive approximations to prove the theorem. Firstly, we show
that it suffices to prove the result on the set of measures ν with essential supremum equal to a fixed M
and with ν((M − ε,M)) = 0 for some ε > 0. Secondly, we use Theorem 1.6 and we prove the continuity
of µ 7→ C((1 − p)µ + pδMν ) via Proposition 2.13 in order to prove the continuity of ν 7→ C(ν) on this
class of measures.

Let us consider νn, ν ∈ M1 such that d(νn, ν) converges to 0 as n tends to +∞. In other terms, (νn)n
weakly converges to ν and Mνn

converges to Mν as n tends to +∞. We want to show that C(νn)
converges to C(ν) as n tends to +∞.

For ε > 0, we set ν(ε) = (1−p(ε))µ(ε)+p(ε)δMν where p(ε) = ν([Mν −ε,Mν ]) and µ(ε) = ν([−∞,Mν−ε)∩•)
1−p(ε) .

Similarly, we set ν
(ε)
n = (1−p

(ε)
n )µ

(ε)
n +p

(ε)
n δMν

where p
(ε)
n = νn([Mν−ε,Mνn

]) and µ
(ε)
n = νn([−∞,Mν−ε)∩•)

1−p
(ε)
n

.

Notice that the probability distribution µ(ε) is well-defined if and only if p(ε) < 1. When p(ε) = 1, set

ν(ε) = δMν
. Similarly, µ

(ε)
n is not well-defined when p

(ε)
n = 1, and we set ν

(ε)
n = δMν

in that case.

Since a probability distribution has a set of atoms which is at most countable, we can assume that

ν({Mν−ε}) = 0 for ε as small as we need. Then, p
(ε)
n converges to p(ε) as n tends to +∞ by Portmanteau

theorem (c.f [4]) for such ε. Then, µ
(ε)
n is also well-defined for n large enough when p(ε) < 1 by convergence

of (p
(ε)
n )n to p(ε). Similarly, it is easy to show that (µ

(ε)
n )n weakly converges to µ(ε) by the Portmanteau

theorem when p(ε) < 1. As a consequence, (ν
(ε)
n )n weakly converges to ν(ε).

By the triangle inequality, for all n ∈ N and ε > 0,

|C(νn)− C(ν)| ≤ |C(νn)− C(ν(ε)n )|+ |C(ν(ε)n )− C(ν(ε))|+ |C(ν(ε))− C(ν)|. (18)

The first and last terms in the right-hand side of (18) are easy to control. We consider (X
(n)
i,j )i<j i.i.d

random variables with distribution νn. If we set

X̃
(n)
i,j := Mν1X

(n)
i,j ≥Mν−ε

+X
(n)
i,j 1X

(n)
i,j <Mν−ε

,

then (X̃
(n)
i,j )i<j are i.i.d random variables with distribution ν

(ε)
n . For πN = (iN,1, . . . , iN,kN

) a heaviest

path starting at 0 and ending at N for the weights (X
(n)
i,j )i<j , we have

C(νn)− C(ν(ε)n ) ≤ lim inf
N→∞

1

N

kN−1∑
l=1

(X
(n)
iN,l,iN,l+1

− X̃
(n)
iN,l,iN,l+1

)

by (3). For all i < j, (X
(n)
i,j − X̃

(n)
i,j ) is positive only when Mν < X

(n)
i,j ≤ Mνn

. In this case, X̃
(n)
i,j = Mν .

Then, we obtain the following domination

C(νn)− C(ν(ε)n ) ≤ max(Mνn −Mν , 0). (19)

Similarly, if π′
N = (i′N,1, . . . , i

′
N,k′

N
) is a heaviest path starting at 0 and ending at N for the weights

(X̃
(n)
i,j )i<j , then

C(ν(ε)n )− C(νn) ≤ lim inf
N→∞

1

N

k′
N−1∑
l=1

(X̃
(n)
i′N,l,i

′
N,l+1

−X
(n)
i′N,l,i

′
N,l+1

)

by (3). Since (X̃
(n)
i,j −X

(n)
i,j ) is positive only when Mν − ε ≤ X

(n)
i,j < Mν , we obtain

C(ν(ε)n )− C(νn) ≤ Mν − (Mν − ε) ≤ ε. (20)

As a consequence of (19) and (20), |C(ν
(ε)
n )−C(νn)| ≤ ε+ |Mνn

−Mν |. A similar reasoning shows that

0 ≤ C(ν(ε))− C(ν) ≤ ε. Then, |C(νn)− C(ν)| ≤ |C(ν
(ε)
n )− C(ν(ε))|+ 2ε+ |Mνn −Mν | for all n ≥ 0 by

(18). By convergence of (Mνn)n to Mν , we obtain

lim sup
n→∞

|C(νn)− C(ν)| ≤ lim sup
n→∞

|C(ν(ε)n )− C(ν(ε))|+ 2ε,
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Since we can take ε as small as we want, it remains to see that |C(ν
(ε)
n ) − C(ν(ε))| converges to 0 as n

tends to +∞. To do so, we use the following two lemmas:

Lemma 3.5. For all p ∈ (0, 1] and M > 0, µ 7→ C((1−p)µ+pδM ) is continuous for the Lévy-Prokhorov
metric on the space of probability distributions in M1([−∞,M)).

Lemma 3.6. For all M > 0 and p ∈ (0, 1], there exist L ∈ R+ and p− < p+ ∈ R∗
+ such that p− < p < p+

and such that for all µ ∈ M1([−∞,M)), p 7→ C((1− p)µ+ pδM ) is L-Lipschitz on [p−,min(1, p+)].

Assuming that those two lemmas are true, we obtain the result as follows. We set

ν̂(ε)n = (1− p(ε))µ(ε)
n + p(ε)δMν

.

By the triangle inequality,

|C(ν(ε)n )− C(ν(ε))| ≤ |C(ν(ε)n )− C(ν̂(ε)n )|+ |C(ν̂(ε)n )− C(ν(ε))|. (21)

By Lemma 3.5, the second term in (21) converges to 0 as n tends to +∞, since (µ
(ε)
n )n weakly converges to

µ(ε) when p(ε) < 1. When p(ε) = 1, the second term vanishes. For the first term, we apply Lemma 3.6 with

p = p(ε): since (p
(ε)
n )n converges to p(ε), there existsN ∈ N such that for all n ≥ N , p

(ε)
n ∈ [p−,min(1, p+)].

Then, there exists L ∈ R+ such that for all n ≥ N , |C(ν
(ε)
n ) − C(ν̂

(ε)
n )| ≤ L|p(ε)n − p(ε)| by Lemma 3.6.

Therefore, the first term in (21) converges to 0, which concludes the proof of Theorem 1.3.

Let us now prove Lemmas 3.5 and 3.6.

Proof of Lemma 3.5. We consider fixed p ∈ (0, 1] and M > 0. For µ a probability distribution on
[−∞,M), we denote by Ep,µ the expectation corresponding to a probability space where the weights
(Xi,j)i<j are i.i.d. with distribution (1− p)µ+ pδM . By (13),

C((1− p)µ+ pδM ) =
∑

β∈Tm

p|β|(1− p)H(β)Ep,µ

[
λ̃
(1)
1 | α((X(2−Tpast), . . . , X(1))) = β

]
.

Notice that, conditionally to the event (α((X(2−Tpast), . . . , X(1))) = β), (X
(i)
j )i∈J1,|β|K,j∈J1,βi−1K are i.i.d.

with distribution µ. By definition of sendM

(
β, (x

(i)
j )i,j

)
,

Ep,µ

[
λ̃
(1)
1 | α((X(2−Tpast), . . . , X(1))) = β

]
=

∫
sendM

(
β, (x

(i)
j )i,j

) ∏
1≤i≤|β|

1≤j≤βi−1

dµ(x
(i)
j ).

Notice that for all β ∈ Tm and M > 0, sendM (β, •) is continuous and bounded by M . As a consequence,

Ep,µ

[
λ̃
(1)
1 | α((X(2−Tpast), . . . , X(1))) = β

]
is a continuous function of µ for the Lévy-Prokhorov metric.

Since this conditional expectation is bounded by M , we obtain the continuity of µ 7→ C((1− p)µ+ pδM )
by the dominated convergence theorem.

Proof of Lemma 3.6. Let us consider M > 0, p ∈ (0, 1] and µ ∈ M1([−∞,M)). Assume that 0 < p− <
p < p+ where p− and p+ will be adjusted later. By Theorem 1.6, the map p 7→ C((1 − p)µ + pδM ) is
analytic on (0, 1]. Then, by the mean value theorem,

|C((1− p1)µ+ p1δM )− C((1− p2)µ+ p2δM )| ≤ Lµ,p1,p2 |p2 − p1|, (22)

for all p− ≤ p1 < p2 ≤ min(1, p+), where Lµ,p1,p2
:= sup

{ ∣∣∣( ∂
∂pC((1− p)µ+ pδM ) |p=p′

)∣∣∣ | p′ ∈ (p1, p2)
}
.

We need to dominate Lµ,p1,p2
by some quantity which does not depends on µ. For all β ∈ Tm, p ∈ (0, 1]

and x
(i)
j ∈ [−∞,M), we set g(β, p, (x

(i)
j )i,j) = p|β|(1 − p)H(β)sendM

(
β, (x

(i)
j )i,j

)
. Then, by Proposition

2.13,

C((1− p)µ+ pδM ) =
∑

β∈Tm

∫
g(β, p, (x

(i)
j )i,j)

∏
1≤i≤|β|

1≤j≤βi−1

dµ(x
(i)
j ).
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The function p 7→ g(β, p, (x
(i)
j )i,j) is differentiable on (0, 1] since it is polynomial, and we have

∂

∂p
g(β, p, (x

(i)
j )i,j) =

(
|β|p|β|−1(1− p)H(β) −H(β)p|β|(1− p)H(β)−1

)
· sendM

(
β, (x

(i)
j )i,j

)
for all β ∈ Tm\{1}, and ∂

∂pg(1, p, (x
(i)
j )i,j) = M. Since sendM

(
β, (x

(i)
j )i,j

)
∈ [0,M ], for all β ∈ Tm, by the

triangle inequality,∣∣∣∣ ∂∂pg(β, p, (x(i)
j )i,j)

∣∣∣∣ ≤ M
(
|β|p|β|−1

+ (1− p−)
H(β) +H(β)p

|β|
+ (1− p−)

H(β)−1
)

≤ M

(
|β|
p+

+
H(β)

1− p−

)
p
|β|
+ (1− p−)

H(β)

≤ M

(
|β|
p+

+
H(β)

1− p−

)
p
|β|
− (1− p−)

H(β) ·
(
p+
p−

)|β|

.

Since β is triangular, H(β) ≤ |β|(|β|−1)
2 . Then, H(β) ≤ |β|2 and we have∣∣∣∣ ∂∂pg(β, p, (x(i)

j )i,j)

∣∣∣∣ ≤ M

(
1

p+
+

1

1− p−

)
p
|β|
− (1− p−)

H(β) · |β|2
(
p+
p−

)|β|

(23)

for all β ∈ Tm. Since the term on the right in (23) does not depend on p, it suffices to show that it is
integrable in order to exchange the derivative and the sum by the Leibniz integral rule. With Ep,µ the
expectation corresponding to the probability space where the weights have distribution (1− p)µ+ pδM ,
we obtain

∑
β∈Tm

p
|β|
− (1− p−)

H(β) · |β|2
(
p+
p−

)|β|

= Ep−,µ

[
Tpast

2

(
p+
p−

)Tpast
]

(24)

by the law of total probability. Now, let us consider a p0 ∈ (0, p). By Theorem 3.1, if p0rp0
> p, the

quantity in (24) is finite with p− = p0 and any p+ ∈ (p, p0rp0). If p0rp0 ≤ p, let us consider p− such that
p− p0(rp0 − 1) < p− < p. Since rp = sup{ r ≥ 1 | Ep,µ[r

Tpast ] < +∞}, p 7→ rp is non-decreasing on (0, 1]
since Tpast is non-increasing in p by trivial coupling. Then, 0 < p − p− < p0(rp0

− 1) ≤ p−(rp− − 1),
which implies that p < p−rp− . Therefore, for any p+ ∈ (p, p−rp−), the quantity in (24) is finite. We set

L =
∑

β∈Tm

(
1
p+

+ 1
1−p−

)
p
|β|
− (1− p−)

H(β) · |β|2
(

p+

p−

)|β|
, which is finite and depends only on p− and p+.

Then, by (22) and the Leibniz integral rule, p 7→ C((1−p)µ+pδM ) is L-Lipschitz on [p−,min(1, p+)].

3.4 Strict monotonicity of C(ν)

In this subsection, we consider νj ∈ M1 of the form (1 − pj)µj + pjδM for j = 1, 2, where M > 0,
p1, p2 ∈ (0, 1] and µ1, µ2 ∈ M1([−∞,M)). Assuming that ν1 is dominated by ν2 for the stochastic order,

there exists (X
(n)
i (νj))i,n≥1 i.i.d. random variables with distribution νj such that X

(n)
i (ν1) ≤ X

(n)
i (ν2)

almost surely for all i, n ≥ 1 by trivial coupling. We set λ and θ to be the MGS with respective weights

sequences (X
(n)
i (ν1))i,n≥1 and (X

(n)
i (ν2))i,n≥1, and starting configuration δ0.

Proposition 3.7. With λ and θ as previously defined, consider ξn := inf{i ∈ N, X(n)
i (ν1) = M} for all

n ∈ N. Let T1 < T2 < . . . be the enumeration of the elements of R = {n ∈ N | ∀i ∈ N, ξn+i−1 ≤ i }.
Then,

C(ν1) = γ1−p1E[λ
(T2−1)
1 − λ

(T1−1)
1 ], (25)

C(ν2) = γ1−p1E[θ
(T2−1)
1 − θ

(T1−1)
1 ], (26)

where γq :=
∏

k≥1(1− qk) for all q ∈ [0, 1).

Proof. For j = 1, 2, the sequences ((X(l)(νj))Tk≤l<Tk+1
)k∈N are stationary by definition of (Tk)k∈N. By

Lemma 2.6 and Remark 2.7, (λ
(Tk+1−1)
1 − λ

(Tk−1)
1 )k∈N depends only on (X(l)(ν1))Tk≤l<Tk+1

. Therefore,
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(λ
(Tk+1−1)
1 − λ

(Tk−1)
1 )k∈N is a stationary sequence. If we set Kn = max{ k ≥ 0 | Tk − 1 ≤ n }, then

λ
(n)
1 = λ

(T1−1)
1 +

∑Kn−1
k=1 (λ

(Tk+1−1)
1 − λ

(Tk−1)
1 ) + (λ

(n)
1 − λ

(TKn−1)
1 ). By ergodicity,

Kn

n

a.s.−−−−→
n→∞

P(1 ∈ R) = γ1−p > 0

and

C(ν1) = lim
n→+∞

1

n

Kn−1∑
k=1

E
[
λ
(Tk+1−1)
1 − λ

(Tk−1)
1

]
.

Therefore, we obtain (25). To obtain (26), we notice that X
(n)
i (ν1) = M implies that X

(n)
i (ν2) = M .

Therefore, (θ
(Tk+1−1)
1 − θ

(Tk−1)
1 )k∈N is also stationary by Lemma 2.6 and Remark 2.7, and a similar

reasoning leads to (26).

The following lemma allows us to compare the positions of the fronts in two MGS with comparable
weights sequences:

Lemma 3.8. Consider (x(n))n∈N and (y(n))n∈N two deterministic sequences of elements of W≤M . Set
(λ(n))n∈Z+ and (θ(n))n∈Z+ the deterministic MGS with starting configurations λ(0) = θ(0) = δ0 and

respective weights sequences (x
(n)
i )i,n∈N and (y

(n)
i )i,n∈N. More explicitly, for all n ∈ N, set λ(n) =

λ(n−1)+ δm(λ(n−1),x(n)) and θ(n) = θ(n−1)+ δm(θ(n−1),y(n)). If x
(n)
i ≤ y

(n)
i for all i, n ∈ N, then λ

(n)
i ≤ θ

(n)
i

for all n ∈ N and 1 ≤ i ≤ n+ 1.

Proof. Let us show that λ
(n)
i ≤ θ

(n)
i for all 1 ≤ i ≤ n + 1 by induction on n. For n = 0, the result is

clearly true. Assume that the result is true for n− 1 ∈ Z+: λ
(n−1)
i ≤ θ

(n−1)
i for all 1 ≤ i ≤ n. Therefore,

by definition of m,

m(λ(n−1), x(n)) = max
1≤i≤n

(λ
(n−1)
i + x

(n)
i ) ≤ max

1≤i≤n
(θ

(n−1)
i + y

(n)
i ) = m(θ(n−1), y(n)).

Note that (λ
(n)
i )1≤i≤n+1 (resp. (θ

(n)
i )1≤i≤n+1) corresponds to the elements of {λ(n−1)

i | 1 ≤ i ≤ n } ∪
{m(λ(n−1), x(n))} (resp. { θ(n−1)

i | 1 ≤ i ≤ n } ∪ {m(θ(n−1), y(n))}) counted with repetitions in non-
increasing order.

Consider Z a uniform random variable on J1, n+1K and set Sx = λ
(n−1)
Z and Sy = θ

(n−1)
Z when 1 ≤ Z ≤ n,

and set Sx = m(λ(n−1), x(n)) and Sy = m(θ(n−1), y(n)) when Z = n+1. By construction, Sx ≤ Sy almost
surely. Therefore, if Fx and Fy are the respective cumulative distribution functions of Sx and Sy, then

Fx ≥ Fy. Notice that Sx (resp. Sy) has the same distribution that S′
x := λ

(n)
Z (resp. S′

y := θ
(n)
Z ). By the

inequality on the cumulative distribution functions of S′
x and S′

y, it is straightforward that λ
(n)
i ≤ θ

(n)
i

for all 1 ≤ i ≤ n+ 1.

Proof of Theorem 1.1. Assume that ν2 strictly dominates ν1 in the sense that for all t ∈ R, µ1([−∞, t]) ≥
µ2([−∞, t]), and this inequality is strict for at least one t ∈ R.

By Proposition 3.7, it suffices to prove that E[λ(T2−1)
1 − λ

(T1−1)
1 ] < E[θ(T2−1)

1 − θ
(T1−1)
1 ]. By the law of

total probabilities,

E[λ(T2−1)
1 − λ

(T1−1)
1 ] =

∑
β∈Tm

p
|β|
1 (1− p1)

H(β)E[λ(T2−1)
1 − λ

(T1−1)
1 |α(X(T1)(ν1), . . . , X

(T2−1)(ν1)) = β],

and a similar formula holds for (θ(n)) :

E[θ(T2−1)
1 − θ

(T1−1)
1 ] =

∑
β∈Tm

p
|β|
1 (1− p1)

H(β)E[θ(T2−1)
1 − θ

(T1−1)
1 |α(X(T1)(ν1), . . . , X

(T2−1)(ν1)) = β].

Notice that α((X(T1)(νj), . . . , X
(T2−1)(νj))) is triangular minimal for j = 1 by definition of T1 and

triangular for j = 2 sinceX
(n)
i (ν1) ≤ X

(n)
i (ν2) for all i, n ≥ 1. Therefore, by Lemma 2.6, λ

(T2−1)
1 −λ

(T1−1)
1

(resp. θ
(T2−1)
1 −θ

(T1−1)
1 ) depends only on λ

(T1−1)
1 and (X(n)(ν1))n≥T1 (resp. θ

(T1−1)
1 and (X(n)(ν2))n≥T1).
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Figure 7: Illustration of the particles added between steps T1 = 1 and T2 − 1 = 8 for an MGS with
weight distribution ν1 at the top and ν2 at the bottom conditionally on the event Ak,t, with k = 4 and

−3M < t ≤ −2.5M . We also assume here that λ
(0)
1 = θ

(0)
1 = 0. The particles are labeled by their

appearance times. For this realization, X
(T1+k)
1 (ν2) = −2.5M and X

(T1+k)
1 (ν1) ≤ −3M .

As a consequence, λ
(T2−1)
1 −λ

(T1−1)
1 ≤ θ

(T2−1)
1 −θ

(T1−1)
1 almost surely by Lemma 3.8. Therefore, it suffices

to find β ∈ Tm such that

E[λ(T2−1)
1 −λ

(T1−1)
1 |α(X(T1)(ν1), . . . , X

(T2−1)(ν1)) = β] < E[θ(T2−1)
1 −θ

(T1−1)
1 |α(X(T1)(ν1), . . . , X

(T2−1)(ν1)) = β].

For k ∈ N, we consider the word β(k) = (1, . . . , 1, (k + 1), k, . . . , 3, 2) ∈ Tm of size 2k. For k ∈ N and
t ∈ R such that M(1− k) < t ≤ M(2− k), we also set Ak,t to be the intersection of the events

{X(T1)
1 (ν1) = · · · = X

(T1+k−1)
1 (ν1) = X

(T1+k)
k+1 (ν1) = X

(T1+k+1)
k (ν1) = · · · = X

(T1+2k−1)
2 (ν1) = M},

{X(T1+k)
1 (ν2) ∈ [t,M(2− k)]},

{X(T1+k)
1 (ν1) < X

(T1+k)
1 (ν2)},⋂

1≤n≤2k

1≤i<β(k)
n

(i,n)̸=(1,k+1)

{X(T1+n−1)
i (ν2) ≤ t}.

Let us explain the reason why we consider this event in the case where T1 = 1, λ
(T1−1)
1 = 0 and θ

(T1−1)
1 = 0

(which is easy to extend to the general case). Assume that the event Ak,t is realized. Then for both
processes λ and θ, the particle added at time n for 1 ≤ n ≤ k is placed at position nM . The particle
added at time k + 1 for λ (resp. for θ) is placed at some position Pλ such that M ≤ Pλ ≤ 2M (resp.
Pθ such that M < Pθ ≤ 2M). Note that Pλ < Pθ. Finally, the particle added at time k + 1 + n for
1 ≤ n ≤ k − 1 is placed at position Pλ + nM for the process λ and at position Pθ + nM for the process
θ. See Figure 7 for an illustration.

We have λ
(T2−1)
1 − λ

(T1−1)
1 = Pλ + (k − 1)M and θ

(T2−1)
1 − θ

(T1−1)
1 = Pθ + (k − 1)M , hence λ

(T2−1)
1 −

λ
(T1−1)
1 < θ

(T2−1)
1 − θ

(T1−1)
1 . To complete the proof, it suffices to find t and k such that P(Ak,t) > 0 and

M(1− k) < t ≤ M(2− k).

For any t ∈ R, we set kt = ⌈tM−1⌉ so that M(kt−1) < t ≤ Mkt. Let X and X̃ be two random variables

of respective laws ν1 and ν2 coupled by trivial coupling such that X ≤ X̃. For t ∈ R, we define the
events:

• Bt = {X̃ ≤ t},

• Ct = {X < X̃} ∩ {t ≤ X̃ ≤ Mkt}.

We search for t ∈ R such that P(Bt) > 0 and P(Ct) > 0, this will imply that P(Akt,t) > 0. Since

P(X < X̃) > 0, there exists t ∈ R such that P(Ct) > 0. Let us consider k′ = max{ kt ∈ Z | ∃t ∈
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R,P(Ct) > 0 }. Notice that t 7→ P(Bt) and t 7→ P(Ct) are respectively right continuous non-decreasing
and left continuous non-increasing functions on (M(k′ − 1),Mk′]. We define

tB = inf{ t ∈ (M(k′ − 1),Mk′] | P(Bt) > 0 }

and
tC = sup{ t ∈ (M(k′ − 1),Mk′] | P(Ct) > 0 }.

Let us prove that M(k′ − 1) ≤ tB ≤ tC ≤ Mk′. If M(k′ − 1) = tB , these inequalities are clearly true.
Assume that M(k′ − 1) < tB . Notice that ν2([−∞, tB)) = 0 by definition of tB . Therefore, t 7→ P(Ct)
is constant on (M(k′ − 1), tB) by definition of Ct. Since t 7→ P(Ct) is non-increasing and non-zero on
(M(k′ − 1),Mk′], we have P(CtB−ε) > 0 for all small enough ε > 0, which implies that tB ≤ tC by
definition of tC .

If tB < tC , then we take t ∈ (tB , tC) and we have P(Bt) > 0 and P(Ct) > 0. If tB = tC (which implies
that M(k′ − 1) < tB), we notice that

P({X < X̃} ∩ {tB < X̃ ≤ Mk′}) = 0

by definition of tC . In addition,

P({X < X̃} ∩ {M(k′ − 1) < X̃ ≤ Mk′}) > 0

by definition of k′. Therefore,

P({X < X̃} ∩ {M(k′ − 1) < X̃ ≤ tB}) > 0

Since
P({X < X̃} ∩ {M(k′ − 1) < X̃ ≤ tB}) = P({X < X̃} ∩ {X̃ = tB})

by definition of tB , we conclude that P(Bt) > 0 and P(Ct) > 0 for t = tB = tC .

4 The case of probability distributions supported by two non-
negative real numbers

In this section, we study the case where two non-negative real numbers support ν.

In Subsection 4.1 and Subsection 4.2, we study the case where two elements 0 < m < M support ν. We
prove Theorem 1.9 in two steps. The first step consists in proving the theorem for m = M

k for some
k ∈ N. In this case, the MGS reduces to a Markov chain on a finite state space which makes explicit
computations possible. The second step consists in extending this result to all 0 < m < M . To do so, we
use results from [10] in Subsection 4.2 to show that for M

k+1 < m < M
k , C((1− p)δm + pδM ) is obtained

by linear interpolation of C((1− p)δM
k
+ pδ1) and C((1− p)δ M

k+1
+ pδ1).

We give formulas for C((1 − p)δm + pδM ) for values of m ∈ [M5 , 5M ] at the ends of Subsections 4.1
and 4.2. In Subsection 4.3, we consider the case where ν is supported by 0 and M > 0 and we give an
alternative proof of Theorem 1.10 via the MGS.

4.1 Rationality in p for measures of the form (1− p)δM
k
+ pδM

By the rescaling property (4), it suffices to prove Theorem 1.9 for M = 1. The following proposition is
equivalent to Theorem 1.9 in the particular case when M = 1 and m = 1

k for some k ∈ N.

Proposition 4.1. For all k ∈ N, p 7→ C((1− p)δ 1
k
+ pδ1) is a rational function on [0, 1].

If k = 1, then C((1− p)δ 1
k
+ pδ1) = C(δ1) = 1 is clearly a rational function of p.

Now, we fix k ≥ 2 and we set ν = (1 − p)δ 1
k
+ pδ1. By (6), it suffices to study the front position of

(λ(n))n≥0 an MGS with weight distribution ν and starting configuration λ(0) = δ0 in order to study
C(ν). In our case, the study of the MGS is easier than in the general case by the following lemma:
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Figure 8: Illustration of the reduction of the MGS to a Markov chain on a finite state space when M = 1
and k = 4. Since the dynamics of the MGS depends only on the particles at a distance less than 1 from

the front, only particles at positions λ
(n)
1 , λ

(n)
1 − 0.25, λ

(n)
1 − 0.5 and λ

(n)
1 − 0.75 matter for the evolution

of the system at time n by Lemma 4.2.

Lemma 4.2. We consider a starting configuration λ(0) = δ0 and (X
(n)
j )n,j∈N i.i.d. random variables

with distribution ν = (1− p)δ 1
k
+ pδ1. We consider (λ(n))n∈N the MGS defined by λ(n) = ΦX(n)(λ(n−1))

for all n ∈ N. Then, for all n ∈ Z+, if kn = |{ i ∈ J1, λ(n)(R)K | λ(n)
i > λ

(n)
1 − 1 }| is the number of

particles at distance less than 1 from the front at time n,

m(λ(n), X(n+1)) = max
i∈J1,knK

(λ
(n)
i +X

(n+1)
i ). (27)

As a consequence, almost surely, for all n ∈ N,

B.1 The dynamics of the MGS at each step depends only on the particles at a distance less than 1 from
the front.

B.2 The position m(λ(n−1), X(n)) of the new particle at time n verifies:

m(λ(n−1), X(n))− λ
(n−1)
1 ∈

{
i

k
| i ∈ J1, kK

}
.

B.3 The front moves at each step: λ
(n)
1 = m(λ(n−1), X(n)) > λ

(n−1)
1 .

B.4 All particles have positions in 1
kZ: λ

(n−1)
j ∈ 1

kZ for all n ∈ N and j ∈ N.

B.5 There is at most one particle at a given position.

Proof. We notice that X
(n+1)
1 ≥ 1

k for all n ∈ Z+. Therefore, if λ
(n)
i ≤ λ

(n)
1 − 1, then λ

(n)
i +X

(n+1)
i ≤

λ
(n)
1 +X

(n+1)
1 . Therefore, by definition of m, we obtain (27):

m(λ(n), X(n+1)) = max
i∈J1,knK

(λ
(n)
i +X

(n+1)
i ).

Points B.1 to B.5 are simple consequences of (27) and of the fact that X
(j)
i ∈ { 1

k , 1} almost surely.

For a configuration λ ∈ N , we set u(λ) the configuration obtained by removing from λ all the particles
at positions smaller or equal to λ1 − 1 and by shifting all the particles so that the front position in u(λ)
is 0. More explicitly, for all λ ∈ N ,

u(λ) =
∑
i∈N

δλi−λ1
1λ1−λi<1.

See Figure 8 for an illustration. By Lemma 4.2, we can now define our Markov chain (y(n))n∈Z+ :

Proposition 4.3. Let us consider (λ(n))n∈Z+
an MGS with starting configuration λ(0) = δ0 and measure

ν = (1 − p)δ 1
k
+ pδ1. If y(n) := u(λ(n)) for all n ∈ Z+, then (y(n))n∈Z+

is a Markov chain on the finite

state space Ek = { δ0+
∑k−1

i=1 xiδ−i
k

| (x1, . . . , xk−1) ∈ {0, 1}k−1 }. In addition, there is a unique recurrent

class for this Markov chain, and for all n ∈ N,

λ
(n)
1 =

n∑
i=1

−y
(i)
2 . (28)

21



Proof. It is easy to check that u(ΦX(n)(λ(n−1))) = u(ΦX(n)(u(λ(n−1)))) for all n ∈ N since the dynamics
of the MGS depends only on the particles at a distance less than 1 from the particle(s) at the front by
(27). Therefore, u(λ(n)) = u(ΦX(n)(u(λ(n−1)))) for all n ∈ N. Then,

y(n) = u ◦ ΦX(n)(y(n−1))

for all n ∈ N by definition of (y(n))n∈Z+
. Since (X(n))n∈N are i.i.d., (y(n))n∈Z+

is a Markov chain.

By B.2 , B.4 , B.5 from Lemma 4.2 and by construction of (y(n))n∈Z+ , y
(n) ∈ Ek for all n ∈ Z+.

We prove the uniqueness of the recurrent class by proving that, starting from any configuration in Ek for
the Markov chain, there is a non-zero probability for the next configuration to be δ0. For all λ0 ∈ Ek, it

is easy to compute that P(y(n) = δ0 | y(n−1) = λ0) = P(X(n)
1 = 1) = p > 0 for all n ∈ N.

It remains to prove (28). By B.3 , λ
(n)
1 − λ

(n−1)
1 = λ

(n)
1 − λ

(n)
2 for all n ∈ N. As a consequence,

λ
(n)
1 =

∑n
i=1(λ

(i)
1 − λ

(i)
2 ). Therefore, by construction of (y(n))n∈Z+

, λ
(n)
1 =

∑n
i=1(y

(i)
1 − y

(i)
2 ). Since

y
(i)
1 = 0 for all i ∈ N, we obtain (28).

Proof of Proposition 4.1. We can now complete the proof of Proposition 4.1. By Lemma 4.2, there
exists a unique stationary distribution for the Markov chain (y(n)). Let us denote by µp,k this stationary
distribution. Then, by Proposition 4.3 and (6),

1

n

n∑
i=1

−y
(i)
2

a.s.−−−−→
n→∞

C(ν)

By the ergodic theorem for Markov chains, C(ν) = E[−ỹ2] where ỹ has distribution µp,k. Since

(X
(n)
i )i,n∈N are i.i.d. with distribution ν = (1− p)δ 1

k
+ pδ1, the transition probabilities for this Markov

chain are polynomials in p. As a consequence, since one can obtain µp,k as an eigenvector for the eigen-
value 1 of the transition matrix of (y(n))n≥1, its coefficients are rational functions in p. Therefore, the
theorem is proved.

Since (y(n))n≥1 is a Markov chain on a finite state space, one can explicitly compute the stationary
distribution for this model by computating the eigenspace of the transition matrix for the eigenvalue 1.
As a consequence, we can give an explicit formula for C((1− p) 1k + pδ1) for small values of k:

C(δ1) = 1,

C((1− q)δ1 + qδ 1
2
) =

1

2
(2− q),

C((1− q)δ1 + qδ 1
3
) =

3 + q − 4q2 + q3

3(1 + q − q2)
,

C((1− q)δ1 + qδ 1
4
) =

4− 3q + 2q2 − q4 + 4q5 − 11q6 + 7q7 − q8

4(1 + q3 − q4 + 2q5 − 3q6 + q7)
,

C((1− q)δ1 + qδ 1
5
) =

1

5
(5 + q − 6q2 + 11q3 − 8q4 − 7q5 + q6 + 14q7 − 23q8 + 16q9 + 23q10 − 68q11

+ 81q12 − 68q13 + 33q14 + 28q15 − 85q16 + 90q17 − 48q18 + 12q19 − q20)× (1 + q − q2 + 2q3 − 3q5 + q6

+ q7 − 2q8 − q9 + 10q10 − 16q11 + 12q12 − 2q13 − 11q14 + 23q15 − 27q16 + 19q17 − 7q18 + q19)−1.

4.2 Rationality in p for measures of the form (1− p)δm + pδM for 0 < m < M

In this subsection, we complete the proof of Theorem 1.9. To do so, we recall the notion of skeleton points
from [10], which are the renovation events used by Foss and Konstantopoulos to prove the convexity of
m 7→ C((1− p)δm + pδ1) and to characterize its points of non-differentiability for all p ∈ (0, 1).

We consider (Xi,j)i<j∈Z i.i.d. random variables with distribution ν = (1 − p)δm + pδ1 with m ≤ 1. An
integer n ∈ Z is a skeleton point on the left if for every integer k < n, there exists a directed path from
k to n made of edges with weight 1. Similarly, n ∈ Z is a skeleton point on the right if for every integer
k > n, there exists a directed path from n to k made of edges with weight 1. A skeleton point is a
skeleton point on the left and the right. In other words, n ∈ Z is a skeleton point if, for all a < n < b,
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Figure 9: Illustration of skeleton points in a graph with 6 vertices. The red edges have weights m, the
blue ones have weights 1. In this graph, 2 is a skeleton point on the right, 4 is a skeleton point on the
left, and 3 is a skeleton point.

there is a directed path of edges with weights 1 from a to n and a directed path of edges with weights
1 from n to b. Analogously, one could define the notion of skeleton points in other weighted directed
acyclic graphs. We give an example of skeleton points for a complete graph with 6 vertices in Figure 9.

Remark 4.4. Notice that the renovation events that we use in Subsection 2.2, which consist in triangular
words, precisely correspond to the skeleton points on the right when ν = (1− p)δm+ pδ1 by Remark 2.9.

For n1 < n2 ∈ Z, let Wn1,n2 be the weight of a heaviest path between the vertices n1 and n2 as defined
in (2). We also denote by (Γi)i∈Z the sequence of all the skeleton points in Z with the convention that
· · · < Γ−1 < Γ0 ≤ 0 < Γ1 < . . . . To prove Theorem 1.9 for all m ∈ (0, 1], we use the following result
from [10]:

Proposition 4.5 ([10, Proposition 4]). For all 0 < m ≤ 1 and p ∈]0, 1],

C((1− p)δm + pδ1) = γ2
1−pE [WΓ1,Γ2 ] ,

where γq =
∏∞

n=1(1− qn) for all q ∈ [0, 1[.

By Proposition 4.5, we only need to study the expectation of the heaviest path between two consecutive

skeleton points. For n ∈ N, let SPn be the set of weights (xi,j)1≤i<j≤n ∈ {m, 1}(
n
2) such that 1 and n are

the only two skeleton points for those edge weights in a complete graph with n vertices. Let us consider
SP := ∪n≥2SPn. For x = (xi,j)1≤i<j≤n ∈ SP and π = (i1, . . . , ik) a directed path from i1 = 1 to ik = n,
denote by Nx(π) = |{ j ∈ J1, k − 1K | xij ,ij+1

= 1 }| and Nx(π) = |{ j ∈ J1, k − 1K | xij ,ij+1
= m }| the

respective numbers of edges with weights 1 and m in the path π, and denote by wx(π) =
∑k−1

c=1 xic,ic+1

the weight of the path π. For πmax a directed path from 1 to n maximising wx, we set Nx = Nx(πmax)
and Nx = Nx(πmax). With those notations, WΓ1,Γ2

= NX′ +mNX′ , where X ′ = (Xi,j)Γ1≤i<j≤Γ2
.

In general, NX′ and NX′ are not uniquely defined since there could be several ways to obtain the maximal
weight in terms of the number of edges with weight 1 and m in a maximal path for fixed weights. Yet,
it is possible to show that those two quantities are uniquely defined for all 0 < m ≤ 1 such that m is
not the reciprocal of an integer greater or equal to 2. If Pp,m(N and N are not uniquely defined) > 0
for some p ∈ (0, 1), then m is called a critical point. It has been proved in [10] that the positive critical
points are all integers greater than 1 and their reciprocals:

Proposition 4.6 ([10, Theorem 5]). For 0 < m ≤ 1, m is critical if and only if m = 1
k for some integer

k ≥ 2.

Since the probability that X ′ = x is positive for all x ∈ SP and p ∈ (0, 1), there is a deterministic
definition of the critical points: m is a critical point if and only if there exists x ∈ SP and π1 = (i1, . . . , id)
and π2 = (j1, . . . , jr) two directed paths with i1 = j1 = 1 and id = jr = n such that wx(π1) = wx(π2) =
maxπ wx(π) and Nx(π1) ̸= Nx(π2). With our notations, notice that maxπ wx(π) = Nx +mNx.

In Subsection 4.1, we proved that p 7→ C((1 − p)δm + pδ1) is a rational function for any critical point
0 < m < 1. The following lemma enables us to extend this result to all m ∈ (0, 1).
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Lemma 4.7. For any k ∈ N and x ∈ SP, Nx and Nx are constant functions of m on ( 1
k+1 ,

1
k ).

Proof. Consider an integer k ≥ 1 and x = x(m) ∈ SPn for some n ∈ N. By Proposition 4.6), every
element m ∈ ( 1

k+1 ,
1
k ) is non-critical. Therefore, Nx(m) and Nx(m) are well-defined for all m ∈ ( 1

k+1 ,
1
k ).

Let us fix c an element of ( 1
k+1 ,

1
k ) (for instance, c := ( 1

k+1 + 1
k )/2) and set

Ux,c =

{
m ∈

(
1

k + 1
,
1

k

)
| Nx(m) = Nx(c) and Nx(m) = Nx(c)

}
.

To prove Lemma 4.7, let us show that Ux,c = ( 1
k+1 ,

1
k ). We show that Ux,c is non-empty, closed and open

relatively to ( 1
k+1 ,

1
k ). The first point is clear since c ∈ Ux,c.

Firstly, let us show that Ux,c is closed relatively to ( 1
k+1 ,

1
k ). If (ml)l≥1 ∈ (Ux,c)

N converges to some

m ∈ ( 1
k+1 ,

1
k ) as l tends to infinity, then maxπ wx(ml)(π) converges to maxπ wx(m)(π) by continuity of

m 7→ maxπ wx(m)(π), where we take the max over all directed paths starting at 1 and ending at n. Since

ml ∈ Ux,c for all l ≥ 1, maxπ wx(ml)(π) = Nx(c)+mlNx(c), which converges to Nx(c)+mNx(c) as l tends

to infinity. Therefore, maxπ wx(m)(π) = Nx(c) +mNx(c). By the non-criticality of m and the definition

of N and N , we have proved that m ∈ Ux,c, since there is a path with Nx(c) edges with weight 1 and

Nx(c) edges with weight m in the sequence x. Then, Ux,c is closed relatively to ( 1
k+1 ,

1
k ).

Now, we prove that Ux,c is open relatively to ( 1
k+1 ,

1
k ). By contradiction, let us assume there exists

m ∈ Ux,c and (ml)n≥1 ∈ ( 1
k+1 ,

1
k )

N such that ml converges to m as n tends to infinity and such that

ml /∈ Ux,c for all n ≥ 1. Since Nx(ml) and Nx(ml) are bounded by the number of vertices in the graph with

weights x, there is an extraction (mφ(l))l of (ml)l such that (Nx(mφ(l))) and (Nx(mφ(l))) both converge.
Let us denote their respective limits by n0 and n0. Since those sequences are integer-valued, they are
equal to respectively n0 and n0 for n large enough. Then, maxπ wx(m)(π) = n0 +mn0 by continuity of

m 7→ maxπ wx(m)(π). By definition of N and N , and since m is non-critical, we have Nx(m) = n0 and

Nx(m) = n0, which contradicts the fact that ml /∈ Ux,c. As a consequence, Ux,c is open relatively to

( 1
k+1 ,

1
k ).

Since Ux,c is open and closed relatively to ( 1
k+1 ,

1
k ) which is connected, Ux,c = ( 1

k+1 ,
1
k ). Equivalently,

m 7→ Nx,m and m 7→ Nx,m are constant functions on ( 1
k+1 ,

1
k ).

Proof of Theorem 1.9. We consider an integer k ≥ 1 and p ∈ (0, 1). By Lemma 4.7, if Γ1 < Γ2 are the
first two positive skeleton points, then Ep,m [N ] and Ep,m

[
N
]
are constant functions of m on ( 1

k+1 ,
1
k )

for fixed p. Therefore, by Proposition 4.5, if we set f 1
k
(p) = γ2

1−pEp,c [N ] and g 1
k
(p) = γ2

1−pEp,c

[
N
]

where c = 1
2

(
1
k + 1

k+1

)
, then

C((1− p)δm + pδ1) = f 1
k
(p) +m · g 1

k
(p) (29)

for all m ∈ ( 1
k+1 ,

1
k ) and p ∈ (0, 1). Since m 7→ C((1 − p)δm + pδ1) is continuous on R according to

Theorem 1.3, (29) is also true for m ∈ [ 1
k+1 ,

1
k ] and p ∈ [0, 1]. Therefore, considering (29) with m = 1

k

and then with m = 1
k+1 , we get{

C((1− p) 1k + pδ1) = f 1
k
(p) + 1

k · g 1
k
(p)

C((1− p) 1
k+1 + pδ1) = f 1

k
(p) + 1

k+1 · g 1
k
(p),

which is equivalent to{
f 1

k
(p) = (k + 1) · C((1− p) 1

k+1 + pδ1)− k · C((1− p) 1k + pδ1)

g 1
k
(p) = k(k + 1)(C((1− p) 1k + pδ1)− C((1− p) 1

k+1 + pδ1)).
(30)

By Proposition 4.1, p 7→ C((1 − p)δm + pδ1) is a rational function for all m = 1
k with k ≥ 1. Then, f 1

k

and g 1
k
are also rational functions on (0, 1) by (30), which implies that p 7→ C((1−p)δm+pδ1) is rational

on (0, 1). By Theorem 1.6, this function is continuous at p = 1. By the rescaling property and Theorem
1.6, it is also continuous at p = 0. Therefore, p 7→ C((1− p)δm + pδ1) is rational on [0, 1].
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Figure 10: Illustration of the case ν = (1− p)δ0 + pδ1. Here, Y4 = 3, Y5 = 1 and Y6 = 2 with notations
from the proof of Theorem 1.10. Knowing λ(4), the probability to obtain λ(5) as above is 1 − q3 since
there are 3 front particles in λ(4).

Since C((1− p)δ 1
k
+ pδ1) has been computed for k ∈ J1, 5K (c.f. Subsection 4.1), we obtain the following

formulas for f 1
k
and g 1

k
by (30):

f1(1− q) = 1− q, g1(1− q) = q,

f 1
2
(1− q) =

(1− q)(1 + q)

1 + q − q2
, g 1

2
(1− q) =

q(1− q + q2)

1 + q − q2
,

f 1
3
(1− q) =

(1− q)(1 + q + q3 + 2q5 − 2q6 − q7 + q8)

(1 + q − q2)(1 + q3 − q4 + 2q5 − 3q6 + q7)
, g 1

3
(1− q) =

q(1− q + q2)(1 + q3 − 4q4 + 5q5 − 3q6 + q7)

(1 + q − q2)(1 + q3 − q4 + 2q5 − 3q6 + q7)
.

One could also compute f 1
4
(p) and g 1

4
(p) using (30) and the formulas we give for C((1 − p)δ 1

4
+ pδ1)

and C((1 − p)δ 1
5
+ pδ1). As a consequence, we get an explicit formula for p 7→ C((1 − p)δm + pδ1), for

m ∈ [ 1
k+1 ,

1
k ] by (29).

Remark 4.8. By the rescaling property (4) and (29), C((1 − p)δm + pδ1) = g 1
k
(p) + m · f 1

k
(p) for all

k ≥ 2 and m ∈ [k, k + 1].

4.3 A formula for the time constant for measures of the form ν = (1−p)δ0+pδM

One can give an explicit formula for p 7→ C((1− p)δ0 + pδ1). Dutta first found such a formula in [7]. We
give here an alternative proof of Theorem 1.10 via the coupling with the MGS with weights 0 and 1.

Proof of Theorem 1.10. By the rescaling property (4), it suffices to prove the result for M = 1.

We consider an MGS (λ(n))n≥0 with weight sequences (X(n))n≥0 with distribution ν = (1 − p)δ0 + pδ1

and starting configuration λ(0) = δ0. Since X
(n)
i ∈ {0, 1} almost surely for all n, i ∈ N, it is easy to show

that λ
(n)
i ∈ Z≥0 almost surely and that (27) still holds in this case. Therefore,

m(λ(n−1), X(n)) = λ
(n−1)
1 + max

i∈J1,Yn−1K
X

(n)
i

where Yk = |{ i ∈ J1, λ(k)(R)K | λ(k)
i = λ

(k)
1 }| for all k ∈ Z+ (see Figure 10 for an illustration). Since

X
(n)
i ∈ {0, 1} almost surely, maxi∈J1,Yn−1K X

(n)
i ∈ {0, 1} and m(λ(n−1), X(n)) = λ

(n)
1 almost surely for all

n ∈ N. Notice that Yn = 1 if and only if the front position moved from time n− 1 to time n. Then, for
all n ∈ N, we obtain

λ
(n)
1 − λ

(n−1)
1 = 1Yn=1. (31)

We consider Fn the σ-algebra generated by (X(k))k≤n for all n ∈ N. Since Yn−1 is Fn−1-measurable,
Yn−1 and X(n) are independent by construction. As a consequence, it is easy to show that (Yn)n≥1 is a
discrete-time Markov chain on N with transitions (pi,j)i,j∈N where pi,i+1 = (1−p)i and pi,1 = 1−(1−p)i.
The result of Theorem 1.10 is trivial for p = 1. For p ∈]0, 1[, this Markov chain is clearly irreducible.
Furthermore, a distribution π on N is stationary if and only if{

∀j ≥ 2 , πj = πj−1(1− p)j−1,
π1 =

∑
j≥1 πj(1− (1− p)j).
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As a consequence, there is a unique stationary probability distribution π defined by

πj =
(1− p)(

j
2)∑∞

n=1(1− p)(
n
2)

for all j ∈ N. By (31), λ(n) =
∑n

i=1 1Yi=1. Then, by the ergodic theorem for Markov chains and (6),
C((1− p)δ0 + pδ1) = π1, which completes the proof.
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