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LAW OF LARGE NUMBERS FOR THE MAXIMUM OF THE

TWO-DIMENSIONAL COULOMB GAS POTENTIAL

GAULTIER LAMBERT, THOMAS LEBLÉ, AND OFER ZEITOUNI

Abstract. We derive the leading order asymptotics of the logarithmic potential of a two
dimensional Coulomb gas at arbitrary positive temperature. The proof is based on precise
evaluation of exponential moments, and the theory of Gaussian multiplicative chaos.

1. Introduction

1.1. Setting and main result. We are interested in proving a law of large numbers for the
maximal value of the random electrostatic (or logarithmic) potential generated by the particles
of a two-dimensional Coulomb gas - sometimes also called a 2d log-gas, or “two-dimensional,
one-component plasma” (2DOCP). We start by recalling the definition of the 2DOCP.

The 2DOCP. Let N ≥ 1 and let XN := (x1, . . . , xN ) be a N -tuple of (distinct) points in R
2. Let

XN :=
∑N

i=1 δxi be the associated purely atomic measure of total mass N on R
2. Let D(z, r)

denote the (closed) disk of center z and radius r in R
2 and set Dr = D(0, r) and D = D1. Let

m0 be the probability measure with uniform density, denoted m0, on the unit disk D.
We define the logarithmic interaction energy F(XN ,m0) as:

(1.1) F(XN ,m0) :=
1

2

x

(R2×R2)\△
− log |x− y|(dXN −Ndm0)(x)(dXN −Ndm0)(y),

where △ denotes the diagonal in R
2×R

2. Recalling that − log is (up to a multiplicative constant)
the Coulomb kernel in R

2, we can think of F(XN ,m0) as being the electrostatic interaction energy
of a neutral system made of N point charges placed at (x1, . . . , xN ) together with a continuous
background Nm0 of opposite charges.

We also introduce an auxiliary function ζ, which vanishes on D and is set to:

(1.2) ζ(x) := − log |x| +
1

2
|x|2 − 1

2
on R

2 \ D.

Let β > 0 be fixed. Throughout this paper, we will work with the probability measure P
β
N on(

R
2
)N

whose density is given by:

(1.3) dPβ
N (XN ) :=

1

Kβ
N

exp

(
−β
(

F(XN ,m0) + 2N

N∑

i=1

ζ(xi)

))
dXN ,
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where dXN := dx1 . . . dxN is the Lebesgue measure on (R2)N and Kβ
N is the normalizing constant,

or partition function, namely the following integral:

(1.4) Kβ
N :=

∫

(R2)N

exp

(
−β
(

F(XN ,m0) + 2N

N∑

i=1

ζ(xi)

))
dXN .

The measure P
β
N is called the canonical Gibbs measure of a 2DOCP at inverse temperature β.

Remark 1.1. Some authors define the two-dimensional log-gas in a seemingly different way.
To a N -tuple XN , one first associates an energy HN (XN ) given by the sum of all the pairwise
logarithmic interactions between points plus the effect of a strong harmonic (“confining”) potential
on each particle, namely:

(1.5) HN (XN ) :=
1

2

∑

1≤i6=j≤N

− log |xi − xj | +N

N∑

i=1

|xi|2,

and then one defines the canonical Gibbs measure of a 2DOCP as:

(1.6) dPβ
N (XN ) :=

1

ZN,β
exp (−β (HN(XN ))) dXN , ZN,β :=

∫

(R2)N

exp (−β (HN(XN ))) dXN .

In fact, both (1.3) and (1.6) give rise to the same probability measure on (R2)N , and the expres-
sion (1.3) can be obtained from (1.6) by introducing the so-called equilibrium measure m0 and
“splitting” the interaction energy as in [SS15, Sec. 2]. For convenience, here we prefer to work
with the “next-order” formulation of the interaction energy as in (1.1).

In the physics literature about the 2DOCP, the Gibbs measure is often written down as in
(1.3) but with an “effective confinement” ζ set to +∞ outside D (“perfect confinement”). Our
analysis in the present paper applies to this model as well (the only differences would appear when
studying properties close to the boundary, which is not our purpose).

Henceforth, we fix N ≥ 2 and an arbitrary value of β > 0. We let XN be a random

variable in (R2)N distributed according to the Gibbs measure P
β
N , and let XN be the

associated random point measure on R
2 as defined above. Unless specified otherwise,

expectations in what follows are taken under P
β
N .

Main result. Define the “Coulomb gas potential” generated by XN = (x1, . . . , xN ) as the follow-
ing random scalar field on R

2:

(1.7) PotN : z 7→
N∑

i=1

log |z − xi| −N

∫

D

log |z − x|dm0(x).

In physical terms, PotN (z) corresponds to the value at z of the electrostatic potential generated
by the system of charges and the background measure m0. Obviously PotN (z) is equal to −∞
whenever z coincides with one of the point charges. Our main result is the following description
of the maximum of PotN over closed disks in the interior of D:

Theorem 1 (LLN for the max of the 2D Coulomb gas potential). For all r ∈ (0, 1) we have:

(1.8)
1

logN
max

z∈D(0,r)
PotN (z) −→ 1√

β
as N → ∞, in probability.

The case β = 2 of Theorem 1 corresponds to the Ginibre ensemble of (complex) random
matrices, and was obtained in [Lam20] based on its determinantal structure.

As a byproduct of our proof, we obtain a control on a certain regularization of PotN at
microscopic scale (see Corollary 3.9), which allows us to state a uniform control on the fluctuations
of linear statistics for a certain class of C2 test functions (see Proposition 3.10).
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1.2. Connections with the literature. Our interest in Theorem 1 is motivated by connections
with the theory of random matrices and the theory of logarithmically correlated fields.

The Ginibre ensemble and normal matrix models. For the specific value β = 2 of the inverse

temperature in (1.6), Pβ
N describes the joint distribution of eigenvalues for Ginibre matrices, i.e.

matrices whose entries are i.i.d. complex Gaussians normalized by 1/
√
N (see [For10] or the

recent survey [BF22] for background). In this case, as proved (using determinantal methods)
in [RV07] following a prediction of Forrester, the counting measure of eigenvalues minus Nm0,
converges to the sum of a 2d-Gaussian free field (GFF) supported on D and an independent
1d-GFF on the unit circle. There the Coulomb gas potential PotN can be interpreted as the
logarithm of the (absolute value of the) determinant of the associated (complex) Ginibre matrix,
and as noted above the counterpart of Theorem 1 was proved in [Lam20].

For more general normal matrix models (still with β = 2 but replacing |x|2 in (1.5) by suitable
polynomial potentials), a CLT for the log-characteristic polynomial (with variance logN/4) has
been obtained in [AKS21] together with a description of the local (determinantal) point pro-
cess around the singularity. Such a connection with Gaussian fields motivates the study of the
maximum, as we now explain.

Logarithmically correlated structure at arbitrary temperature. More generally, for all β > 0, the
central limit theorems of [BBNY19] and [LS18] imply that PotN converges in some weak sense to
a Gaussian Free Field (even in mesoscopic scales). Is it thus natural to ask whether the maximum
of PotN behaves like the maximum of a 2d logarithmically correlated field, and Theorem 1 shows
that the leading order is indeed the expected one.

One-dimensional analogues. The density (1.6) restricted to either the real line or to the unit circle
S1 in the complex plane gives rise to the classical GβE and CβE ensembles. For these, similar
logarithmically correlated fields can be constructed (see e.g. [DS94] and [HKO01] for early results
concerning the CUE). The extremes for the (logarithm of the) characteristic polynomial of these
matrix models have generated much interest (especially in the case of the CUE, corresponding
to β = 2) due to a celebrated conjecture of Fyodorov, Hiary and Keating [FHK12] that predicts
the limiting form of the fluctuations of the maximum and links these to analogous fluctuations
for the Riemann zeta-function. This has stimulated much recent work, starting with [ABB17],
[PZ18] (for the CUE), [CMN18] and [PZ22] (for the CβE); the last article indeed proves a version
of the FHK conjecture. On a related subject, it has been established that powers of the CUE
characteristic polynomial converges to Gaussian multiplicative chaos (GMC) measures in the
so-called L1 phase [NSW20] and that these measures describe the fluctuations of thick points
(extreme level sets) of the characteristic polynomial [JLW22]. Weaker analogous results for the
case of GUE are contained in [LP19] and [CFLW21], see also [BMP22] and [ABZ23] for the GβE.

1.3. Comments on the strategy. A general methodology to handle extremes of Gaussian
logarithmically correlated fields has been developed in the last decades; due to space limitations,
we do not review here the history, and refer instead to [DRZ17] and [Bis20] for details. When
applied outside the Gaussian context, this methodology requires the evaluation of exponential
moments and characteristic functions of the field, together with the introduction of certain
barriers. These seem crucial in obtaining sharp results (at the level of O(1) fluctuations for
the extremes), and are often hard to implement outside the Gaussian setup. The above works
concerning the extremes of the electrostatic potential of Coulomb gases on the real line or S1

use, at different levels of precision, variants of these methods, with much technical work going
into inserting appropriate barriers and controlling comparisons with the Gaussian setup.

For our needs, a crucial observation was made in [LOS18] and [CFLW21], by using the theory
of Gaussian multiplicative chaos (GMC): in order to obtain the leading order of fluctuations, one
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can bypass the use of barriers, at the cost of obtaining sharp estimates on exponential moments
(without need to consider characteristic functions). This is the approach taken in this paper.

The evaluation of exponential moments in the context of Coulomb gases is at the heart of many
proofs of the central limit theorem for linear statistics. An early application of this method is due
to Johansson [Joh98] in the context of one-dimensional log gases, and for the two-dimensional
case this was done in [LS18, BBNY19, Ser20]. Here we crucially use some key results of the
latter paper, together with the general “energy” approach to 2DOCP’s as developed by Serfaty
and co-authors, starting with [SS15] - in particular we will rely on the more recent [AS21]. As in
[LS18, Ser20] we follow a fairly general approach based on transportation of measures (and not on
“loop equations” as e.g. in [BBNY19], although the two methods are related), a technique that
has proven to be fruitful in the one-dimensional case - see for example [Shc14, BFG15, BLS18].
Our method relies on computing the asymptotics of (joint) exponential moments of PotN , the
potential with the 2d Coulomb gas and the background measure m0. These asymptotics are also
related to the problem of determining the statistics of types of quantum quasi-particles arising in
fractional Hall experiments by considering a certain modification of Laughlin function as a trial
state. This connection is explained in further details in [LLR22, Section 1.3], we just emphasize
that the estimates required for that problem go beyond the precision achieved here.

1.4. Open problems. Theorem 1 only gives the leading order of the maximum of PotN . In order
to actually see the influence of the underlying logarithmically correlated structure, one needs to
evaluate (at least) the next order correction, which is expected to be 3

4
√

β
log logN(1 + o(1)) due

to the log-correlated structure. The techniques for achieving that go beyond our methods.
In a different direction, it is natural to consider replacing |x|2 in (1.5) by other growing (real)

functions f . Applying our methods to that case requires three ingredients: first, one needs
regularity of the background density m0, and to modify the electrostatic potential h0, see (A.15)
accordingly. Second, one would need to modify the background function g of (3.2), which is easy
to do in the radial case. And third, one should look for a replacement for Claim A.10, whose
proof is based on a scaling argument. In the case of monomials f(x) = |x|q , it is simple to carry
out the adaptations, but already in the case of a general (even) polynomial f(|x|) one needs to
find a replacement for the scaling argument.

A particular case of interest, concerns the real Ginibre ensemble, see [FN07]. There, one needs
to deal with the symmetry of the point configuration XN , as well as with the special role of the
real axis. This would require significant changes in our derivation, and we leave this as an open
problem.

Finally, we expect the result of Theorem 1 to remain true if one considers the maximum of
PotN over the whole unit disk (or even the whole plane). We also expect that Proposition 4.2
holds without any regularization; see Remark 4.3.

1.5. Sketch of the proof and plan of the paper. In the evaluation of exponential moments,
a crucial role is played by a version of the logarithmic interaction energy (1.1) defined locally at
scale ℓ ≥ N−1/2, denoted EnerPts, see (2.5), for which a-priori exponential moment bounds are
available from [AS21], see (2.7).

Exponential moments of linear statistics for smooth enough test functions of a single (possibly
mesoscopic or microscopic) scale can be controlled either by purely energy-based considerations
(see Lemma 2.3) or in a more precise fashion in terms of the H1 norm of the test function and
the ratio of two partition functions corresponding to the original background measure m0 and
to a perturbed version ms. This ratio can itself be studied using the transportation technique,
see Lemmas 2.4 and 2.5.

Since the linear statistics we care about is generated by the logarithm, it is not based on a
single scale. We thus need to be able to consider test functions living on different scales, and
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we develop the required tool in Proposition 2.8. All these preliminary steps are carried out in
Section 2, with proofs (building on [Ser20]) postponed to the appendices.

The proof of Theorem 1 is split into an upper bound (provided in Section 3) and a lower
bound (provided in Section 4). Concerning the former, since the logarithm is not smooth and
not compactly supported1, to apply the estimates discussed in the preliminaries we need to
regularize it and center2 it; the centering is constructed in Section 3.1, and Proposition A.7 gives
an a-priori control of the centering term. The exponential moments of the regularized (at scale
ℓ) test function has exponential moments that can be evaluated using the preliminary results
of Section 2. Those estimates are enough (using Chebyshev’s inequality and a union bound) to
yield the claimed upper bound on a lattice of stepsize of order N−1/2−δ with δ small, see Lemma
3.7. To extend the result from a lattice to the whole of Dr requires a multi-scale estimation of
the difference between the logarithm centered at different points, and is presented in Proposition
3.8.

The proof of the lower bound is provided in Section 4. As mentioned above, it follows the
recipe of [CFLW21], and is based on the construction of a sequence of measures obtained from ex-
ponentiating a regularized version of the linear statistic constructed from the (shifted) logarithm
function, see (4.3). The heart of the proof is to show that this sequence of measures converges to
a Gaussian Multiplicative Chaos (GMC), which is the limit of similar measures constructed from
a Gaussian process, see Proposition 4.5. The general recipe from [CFLW21] establishes that these
measures converge if one obtains asymptotics of exponential moments of linear combinations of
the regularized logarithm, centered at different points, see (4.6). The proof of the latter is done
by induction, using in a crucial way the two-scale asymptotics of Proposition 2.8.

1.6. Notation.

• If Ω is a measurable subset, XN (Ω) denotes the number of points of XN contained in Ω.
• We denote measures with a bold typeface (e.g. m) and their densities with respect to the

Lebesgue measure on R
2 with a roman typeface (e.g. m).

• If ϕ is a function, whenever applicable we denote by |ϕ|0 a uniform bound on ϕ, and by |ϕ|k
a uniform bound on its kth derivative(s).

• Integrals with respect to the Lebesgue measure are often written without explicitly mentioning
the volume form, ie

∫
ϕ =

∫
ϕ(x)dx.

• If A,B are two quantities (depending on various parameters) we write A � B (or A = O(B))
when |A| is bounded by some universal constant times |B|. We write A = o(B) or A ≪ B
if A/B → 0 when a (sometimes implicit) parameter goes to infinity. When no parameter is
mentioned, it is understood that the parameter is N . We write A ≍ B when A = O(B) and
B = O(A).

• When m is a probability measure on R
2 with continuous density m, we denote its relative

entropy (with respect to Lebesgue) by E(m) :=
∫
R2 m log m.

Acknowledgment. We thank Sylvia Serfaty for communicating early versions of [Ser20] to us
and making some statements thereof more easily citable for our purposes.

2. Preliminaries

2.1. Energy at global and local scales. Let m be a probability measure on D with a density
that is continuous and bounded below by a positive constant on the interior of D.

1Technically speaking, the real issue is not the lack of compact support, but rather the fact that the total
mass of its Laplacian is not 0.

2Namely, we substract some well-chosen test function so that the Laplacian of the difference has total mass 0.
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Global energy. If XN is a N -tuple of points and XN is the associated atomic measure of mass
N , we extend the definition (1.1) and define the “global energy” F(XN ,m) as:

(2.1) F(XN ,m) :=
1

2

x

(R2×R2)\△
− log |x− y|(dXN −Ndm)(x)(dXN −Ndm)(y).

We introduce the associated Gibbs measure (where3 ζ is as in (1.2))

(2.2) dPβ
N,m(XN ) :=

1

Kβ
N (m)

exp

(
−β
(

F(XN ,m) + 2N

N∑

i=1

ζ(xi)

))
dXN ,

with the corresponding partition function:

(2.3) Kβ
N (m) :=

∫

(R2)N

exp

(
−β
(

F(XN ,m) + 2N

N∑

i=1

ζ(xi)

))
dXN .

It is known (see e.g. the pioneering analysis of [SS15, Thm. 1]) that for all β > 0:

(2.4) log Kβ
N(m) =

β

4
N logN +Oβ(N).

One should thus think of the energy F(XN ,m) as being equal to − 1
4N logN plus a random term

which is typically of order N .

Length scales and local laws. For many interesting questions it is crucial to understand the system
at local scales i.e. in squares (or disks) of size ℓ ≪ 1. One distinguishes between mesoscopic scales
ℓ such that N−1/2 ≪ ℓ ≪ 1 and the microscopic scale ℓ ≃ N−1/2. A constant ρβ ≥ 1 depending
only on β was introduced in [AS21, (1.15)], it corresponds to the “minimal lengthscale” above
which good controls on the energy can be obtained. In this paper when considering a length
scale ℓ we will always assume that4 ℓ ≥ ρ̃β := ρβN

−1/2 (note that since ρβ ≥ 1, we always have
Nℓ2 ≥ 1).

The proper notion of a local energy, however, is a bit subtle due to the long-range nature of
the logarithmic potential. Suitable definitions were given in [Leb17, AS21], unfortunately they
are rather involved and for simplicity we will use them as a black box. For z ∈ D and any
length scale ℓ, we denote by F(z,ℓ)(XN ,m) the “local energy in the disk D(z, ℓ)” as defined in
[AS21, (2.24)] (they mostly consider small squares rather than small disks but the distinction is
irrelevant). In this paper, we denote by EnerPts(z, ℓ) the quantity

(2.5) EnerPts(z, ℓ)(XN ) :=

(
F(z,ℓ)(XN ,m) +

1

4
n logN

)
+ n, n = XN (D(z, ℓ)) .

Due to a weaker understanding of the system near the boundary ∂D, one needs to introduce the
following condition on (z, ℓ) (where z is a point of D and ℓ is a length scale):

(2.6) dist (D(z, ℓ), ∂D) ≥ CβN
−1/4,

where Cβ is some constant depending only on β introduced in the assumptions of [AS21, Thm.1].
Then [AS21] prove the following “local laws”:

Lemma 2.1 (Local laws for EnerPts). If (z, ℓ) satisfies (2.6) and the parameter t is smaller than
some constant depending only on β, then:

(2.7) logE
P

β
N,m

[exp (tEnerPts(z, ℓ))] = O
(
tNℓ2

)
,

3The function ζ plays almost no role in our analysis, as we are focused on the bulk of the system. For simplicity
we keep “the same ζ” in all cases.

4Since [AS21] work with a different scaling than us, we need to rescale their ρβ by N−1/2.
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with an implicit constant depending only on β.

Thus the local laws of [AS21] ensure that F(z,ℓ) is equal to − 1
4n logN , where n is the number

of points in D(z, ℓ), plus a (fluctuation) term of order Nℓ2 in exponential moments, and so down
to the microscopic scale ℓ ≃ N−1/2 (a crucial improvement over [Leb17]). The number of points
n is also of order Nℓ2.

Remark 2.2. To be specific, the statement of [AS21, Theorem 1] treats the electric energy
and the number of points separately. They work with a different scaling so their length scale R
corresponds to N1/2ℓ for us.
Their statement concerning the electric energy ([AS21, (1.17)]) involves the quantity F

�R(x) (their
notation) which is short for F

�R(x)(XN , U) with U = R
2 as defined in [AS21, (2.24)]. The

potential u appearing there is defined in [AS21, Sec. 2.3] but as used in the main statement of
[AS21] it coincides with the true potential (because, with their notation, U = R

2 in this case).
It remains to observe that Theorem 1 in [AS21] states a control on F

�R(x) which can be turned
into a control on the electric energy only, this is precisely the purpose of [AS21, Lemma B.2] and
in particular their equation (B.8), which shows that one can indeed control the electric energy in
terms of F

�R(x). As a last technical comment for the careful reader: note that since here U = R
2

(in their notation) the various truncations r, r̃, ˜̃r all coincide.
In [AS21, Theorem 1] there are two statements concerning the number of points, here we can
use [AS21, (1.18)] which controls exponential moments of the discrepancy (which corresponds to
XN (D(z, ℓ)) − πNℓ2). It is not hard to see that it implies (and is in fact a lot stronger than)
a bound on the number of points of the form; under (2.6) and for t smaller than a constant
depending only on β,

(2.8) logE
P

β
N,m

[exp (tXN (D(z, ℓ)))] = O
(
tNℓ2

)
.

2.2. Fluctuations. When ϕ is a m-integrable test function, we define “the fluctuation Lm

N (ϕ)
of the linear statistics associated to ϕ for the configuration XN ”, as:

(2.9) Lm

N (ϕ) :=

N∑

i=1

ϕ(xi) − N

∫

D

ϕ(x)dm(x).

We write LN (ϕ) for Lm0

N (ϕ). If ϕ is Lipschitz, one can always use the following possibly non-
optimal but uniform control on LN (ϕ):

Lemma 2.3. Let z be a point of D and ℓ be a length scale such that (z, ℓ) satisfies (2.6). Denote
by Lz,ℓ the set of all functions that are 1

ℓ -Lipschitz and compactly supported on D(z, ℓ). Then
for all t such that |t| is smaller than some constant depending on β, we have:

(2.10) logE

[
sup

ϕ∈Lz,ℓ

exp (tLN (ϕ))

]
= O

(
t
(
Nℓ2

) 1
2

)
,

with an implicit constant depending only on β. A similar estimate holds for L, the set of all
1-Lipschitz function with compact support in D(0, 2) with ℓ = 1.

Proof. This can be traced back to the analysis of [SS15, Lemma 3.9], see also [RS16, Theorem
5]. The basic idea is that we have a configuration-wise bound of the form:

|LN (ϕ)| ≤ |ϕ|1 × ℓ× EnerPts(z, ℓ)
1
2 ≤ |ϕ|1 × ℓ ×

(
EnerPts(z, ℓ)

(Nℓ2)
1
2

+ (Nℓ2)
1
2

)
,

(see e.g. [AS21, Lemma B.5] for a precise statement), and the result follows from an application
of the “local laws” as presented in the previous section, see e.g. (2.7), and our convention that
ℓ ≥ N−1/2. �



8 GAULTIER LAMBERT, THOMAS LEBLÉ, AND OFER ZEITOUNI

If ϕ is assumed to have more regularity, the results of [LS18, BBNY19, Ser20] give a much
better estimate on the exponential moments of LN (ϕ), but they are only stated function-wise.
Our method, which relies on those results, yields a uniform control for the fluctuations of a
certain class of C2 linear statistics; see Corollary 3.9 and Proposition 3.10 below.

2.3. Re-writing the Laplace transform.

Lemma 2.4 (Laplace transforms as ratio of partition functions). Let ϕ be a C2 function whose
Laplacian is supported on D and satisfies

∫
∆ϕ = 0. Let t, s be such that:

(2.11) |t| ≤ βN |ϕ|−1
2
, s :=

−t
2πNβ

.

Let ms be the probability measure on D with density ms := m0 + s∆ϕ. The following identity
holds:

E

[
etLN (ϕ)

]
= exp

(
t2

4πβ

∫

R2

−ϕ∆ϕ

)
Kβ

N (ms)

Kβ
N (m0)

.

Of course, if ∇ϕ is compactly supported then one can integrate by parts and write the “vari-
ance” term as

∫
R2 |∇ϕ|2.

Proof. This follows from elementary manipulations that can be found e.g. in [LS18, Section 2.6].
It is, however, a much older idea see [Joh98] or [AHM11, Sec 7.2] and the references therein. �

2.4. Comparison of partition functions.

Proposition 2.5 (Main comparison result). Let ℓ be a lengthscale and let z ∈ D such that (z, ℓ)
satisfies (2.6). Let C be some positive constant. Let m be a probability measure on D, whose
density m is of class C3 and satisfies:

(2.12)
1

2
≤ m ≤ 2, |m|k ≤ Cℓ−k for k = 1, 2, 3.

Moreover, let f be a function of class C2 supported in D(z, ℓ), such that:

(2.13)

∫

R2

f = 0, |f |k ≤ Cℓ−(k+2) for k = 0, 1, 2.

Then there exists a constant C
′ depending only on C and β such that the following holds. For

all s ∈ R such that:

(2.14) |s| ≤ 1

C′ ℓ
3/2N−1/4,

let ms be the probability measure with density ms := m + sf . We have:

(2.15) log
Kβ

N(ms)

Kβ
N (m)

= N

(
β

4
− 1

)
(E(ms) − E(m)) + sO

(
N3/4ℓ−1/2

(
1 + log

(
Nℓ2

)) 1
2

)
,

with an implicit multiplicative constant depending only on C and β.

We postpone the proof of Proposition 2.5 to Section A.2.

Remark 2.6. In the statement of Proposition 2.5 we assume that the parameter s is smaller
than O

(
ℓ3/2N−1/4

)
, but we eventually apply this result with s of order N−1 as in (2.11), which

is always a valid choice for ℓ ≥ ρβN
−1/2. On the other hand, the well-definiteness of ms as

m + sf only requires s to be O(ℓ−2). However, for values of s between ℓ3/2N−1/4 and ℓ2 we do
not get an interesting estimate.
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In Proposition 2.5, we assumed that (z, ℓ) satisfies (2.6) to avoid the case where the perturba-
tion is near the boundary. The following auxiliary lemma treats the latter case for a “macroscopic
perturbation” (ℓ = 1), which will be enough for our purposes.

Lemma 2.7 (Main comparison - macroscopic case). Let f = 2π (χ− m0), where m0 is the uni-
form density on D and χ is a smooth, radially symmetric function which is compactly supported
in Dr for some r < 1, such that

∫
χ = 1 and |χ|k ≤ C for k = 0, 1, 2. Then there exists a constant

C
′ depending only on C, β and r such that the following holds: for all s ∈ R with |s| ≤ 1

C′ , let m′
s

be the probability measure with density m′
s := m0 + sf . We have:

(2.16) log
Kβ

N (m′
s)

Kβ
N (m0)

= sO(N),

with an implicit multiplicative constant depending on C, β and r.

Lemma 2.7 is proven along the same lines as Proposition 2.5, the radial symmetry of both f
and m0 provides a simplification which allows us to efficiently treat the boundary case (note also
that we are aiming at a less precise estimate, compare (2.16) with (2.15)). We give the proof in
Section A.2.

The next result builds upon Proposition 2.5 and treats a situation where the perturbation f
is made of two pieces living at different scales.

Proposition 2.8 (Comparison with mass transfer between scales). Let ℓa < ℓb be two length
scales and let za, zb ∈ D be two points such that both (za, ℓa) and (zb, ℓb) satisfy (2.6). Let C be
some positive constant and let m be a probability measure on D with a density m is of class C3

such that:

(2.17)
3

4
≤ m ≤ 3

2
, |m|k ≤ Cℓ−k

b for k = 1, 2, 3.

Moreover, let fa, fb be two functions of class C2 supported on D(za, ℓa) (resp. D(zb, ℓb)), such
that, with f = fa + fb,:

(2.18)

∫

R2

f = 0, |fa|k ≤ Cℓ−(k+2)
a , |fb|k ≤ Cℓ

−(k+2)
b for k = 0, 1, 2.

Assume that D(za, ℓa) and D(zb, ℓb) are both contained in Dr for some r < 1, so that for N large
enough (depending on r), condition (2.6) is satisfied. Then there exists a constant C

′ depending
only on C and β such that the following holds. For all s ∈ R such that:

(2.19) |s| ≤ 1

C′ ℓ
3/2
a N−1/4,

let ms be the probability measure with density ms := m + sf . We have:

(2.20) log
Kβ

N (ms)

Kβ
N(m)

= N

(
β

4
− 1

)
(E(ms) − E(m)) +O

(
sN3/4ℓ−1/2

a

(
1 + log(Nℓ2

a)
) 1

2

)
,

with a multiplicative constant depending only on C, β and r.

We postpone the proof of Proposition 2.8 to Section A.3.

Remark 2.9. It is important to observe that in the conclusions of Proposition 2.5 (resp. Propo-
sition 2.8), if we work at the microscopic scale ℓ = ρβN

−1/2 (resp. ℓa = ρβN
−1/2), then for s

of order N−1 (which will be our choice later on) the error term is O(1), whereas as soon as ℓ
(resp. ℓa) is mesoscopic there is a gain and the error term becomes o(1).
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As we record in the next remark, Proposition 2.5 yields the classical CLT for (arbitrary smooth
mesoscopic) test functions supported inside D, see [LS18] and [BBNY19] for the original results.
A CLT-like precision will be required to show that the exponential of a regularization of PotN

converges to a certain GMC measure in Section 4, which in turn is instrumental in obtaining a
lower-bound for the maximum of PotN .

Remark 2.10. Let ϕ ∈ C4(R2 → R) be a function (possibly depending on N) and assume that
∆ϕ = f , where f is as in Proposition 2.5 or Proposition 2.8 Then by combining Lemma 2.4 and
Propositions 2.5 or 2.8, we get:

E

[
eLN (ϕ)

]
= exp

( −1

4πβ

∫

R2

ϕf

)
exp

(
N
(

β
4 − 1

)
E(m) + o(1)

)

where m = m0 − f
2πNβ . Here we used that m0 satisfies the conditions (2.12) and (2.17) and that

E(m0) = 0. Moreover, since f is supported in D with
∫
f = 0 and |f |0 ≤ Cℓ−2, we have

E(m) =

∫

R2

log
(
1 − f(x)

2πNβ

)(
1 − f(x)

2πNβ

)
dx = o(N−1).

In particular, LN (ϕ) converges in distribution to a Gaussian random variable with mean 0 and
variance 1

2πβ

∫
R2 |∇ϕ|2 (this last expression follows by an integration by parts).

3. Law of large numbers: upper bound

The goal of this section is to prove the upper bound part of Theorem 1, namely:

Proposition 3.1. Recall the definition (1.7) of PotN . For all fixed r ∈ (0, 1) and all α > 1, we
have:

(3.1) lim
N→∞

P
β
N

(
max

z∈D(0,r)
PotN (z) ≥ α logN√

β

)
= 0.

In the rest of this section we fix some r < 1.

3.1. An auxiliary linear statistics. For z ∈ D, let logz : x 7→ log |z−x|. The value PotN (z) of
the Coulomb gas potential at z corresponds to the fluctuations LN (logz) of the linear statistics
associated to logz, see (2.9). An important technical observation is that

∫
∆ logz = 1 so that

(even after a mesoscopic regularization), one cannot directly apply Proposition 2.5 to control the
exponential moments of LN (logz). To fix this issue, we can consider instead the fluctuation of the
test function logz −g where g is any nice function with

∫
∆g = 1. It is particularly convenient to

make the following choice: we take χ to be a radially symmetric smooth function (independent
of N) supported in Dr, and we let

(3.2) g be a solution of Poisson’s equation ∆g = 2πχ.

Then, the following estimate shows that the fluctuations of LN (g) are negligible compared to the
maximum of PotN .

Proposition 3.2. One has (for N large enough depending on β, r)

P
β
N

[
|LN (g)| ≥ (logN)0.8

]
≤ exp

(
−1

2
(logN)1.5

)
.

The value 0.8 is arbitrary, the point being that 0.8 < 1 while 1.5 > 1 and thus the probabilistic
tail is better than algebraic in N . The proof of Proposition will be given in Section A.4 and the
argument actually shows that LN (g) is typically of order 1 as expected, see Corollary A.8.
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3.2. A regularized version of the potential. Let ρ be a radial C∞ mollifier supported on
the unit disk and for ε ∈ (0, 1), let ρε := ε−2ρ

( ·
ε

)
and let ϕz,ε be defined as:

ϕz,ε := ρε ⋆ logz −g

where g satisfying (3.2) is independent of N, z and ε. We think of ϕz,ε as being an alternative
to logz which is regularized in two ways: the singularity near z is removed by convolving with a
mollifier, and the Laplacian of ϕz,ε has total mass 0. Then, in view of Proposition 3.2, in order
to prove Proposition 3.1, we first focus on controlling the exponential moments of LN (ϕz,ε).

Proposition 3.3. For some constant C ≥ 1 depending only on β, for all fixed r ∈ (0, 1), for all
N large enough (depending on r,β), for all ε such that CN−1/2 ≤ ε ≤ 1−r

2 and for all t such that

|t| ≤ C
−1Nε2, for any z ∈ Dr, we have:

(3.3) E

[
etLN (ϕz,ε)

]
= exp

(
t2 log ε−1

2β
+ t2Oε(1) + tON (1)

)
,

with Oε(1) depending only on β and ON (1) depending on β, r.

Proof of Proposition 3.3. First, we impose that C is large enough (depending only on β) so that
the length scale CN−1/2 is larger than the minimal length scale ρ̃β mentioned in Section 2.1.
Next, observe that ϕz,ε is a C∞ function whose Laplacian is supported in Dr+ε and has mean
zero. Moreover, |ϕz,ε|k is of order ε−k for any k ∈ N. Hence, for |t| ≤ C

−1Nε2 (with C large
enough depending only on β) we may apply Lemma 2.4 and write:

E

[
etLN (ϕz,ε)

]
= exp

(
t2

4πβ

∫

R2

−ϕz,ε∆ϕz,ε

)
Kβ

N(ms)

Kβ
N(m0)

,

with s = −t
2πNβ and ms := m0 + s∆ϕz,ε. We have:

−
∫

R2

ϕz,ε∆ϕz,ε = −2π

∫

R2

(log | · | ⋆ ρε) ρε +Oε(1),

and by scaling we can see that:
∫
R2 (log | · | ⋆ ρε) ρε = log ε+Oε(1), so we may write:

(3.4) E

[
etLN (ϕz,ε)

]
≤ exp

(
− t2 log ε

2β
+ t2Oε(1)

)
Kβ

N(ms)

Kβ
N (m0)

.

The assumptions of Proposition 2.8 are fulfilled with m = m0, fa = 2πρε, fb = −2πχ, za = z,
zb = 0, ℓa = ε and ℓb fixed (independent of ε and N). We obtain:

log
Kβ

N (ms)

Kβ
N (m0)

= N

(
β

4
− 1

)
E(ms) +O

(
sN3/4ε−1/2

(
1 + log(Nε2)

) 1
2

)
,

where we used that E(m0) = 0 and we recall that the implicit multiplicative constant depends
only on β and r. A direct computation shows that E(ms) is s = O(t/N) – cf. Remark 2.10 – so
we conclude that

log
Kβ

N (ms)

Kβ
N (m0)

= O(t) +O
(
sN3/4ε−1/2

(
1 + log(Nε2)

) 1
2

)
,

Using that ε ≥ CN−1/2, this completes the proof, the dominant error term being the first one in
the right-hand side. �

Corollary 3.4. There exists C ≥ 1 depending only on β, such that for all λ ≥ C, taking ε =
λN−1/2 and |t| ≤ λ2

C
−1 we have:

(3.5) E

[
etLN (ϕz,ε)

]
≤ exp

(
t2 logN

4β
+O(t2 + t)

)
,
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with an implicit constant depending on β, r, λ.

3.3. Lattice approximation and proof of the LLN upper bound. We have obtained in
Corollary 3.4 a control on the exponential moments of LN (ϕz,ε) for a fixed z ∈ Dr. In the first
step below, we show that it yields an upper bound on PotN (z) (still for a fixed z). Then we get
a bound controlling the values of PotN at all points z on a sub-microscopic lattice contained in
Dr. Finally, we turn it into a uniform control of PotN over Dr.

1. Regularization and one-point tail estimate. First, we observe in Lemma 3.5 below that we can
regularize the log in the definition of PotN at the microscopic scale with a small cost. For ε > 0,
let PotN,ε be the map:

(3.6) PotN,ε : z 7→ LN (ρε ⋆ logz) ,

with ρε as in Section 3.2. The test function l̃ogz := ρε ⋆ logz is smooth, and for z, x ∈ R
2, we

have:

(3.7) |∇l̃ogz(x)| � max (ε, |z − x|)−1
, ‖D2 l̃ogz(x)‖ � max (ε, |z − x|)−2

.

Lemma 3.5. For ε > 0 and z ∈ D we have, with a universal implicit constant:

PotN (z) ≤ PotN,ε(z) +O
(
Nε2

)
.

Proof. By subharmonicity of log, we have logz ≤ ρε ⋆ logz pointwise. On the other hand, for the
centering term, a direct computation (using e.g. Newton’s theorem) yields:

∣∣∣∣
∫

R2

logz(x)dm0(x) −
∫

R2

(ρε ⋆ logz) (x)dm0(x)

∣∣∣∣ = O
(
ε2
)
.

�

For the rest of the section, we fix:

(3.8) ε = λN−1/2, λ2 = C
2 max

(
4
√
β, 1
)
,

where the constant C is as in Corollary 3.4 (depending only on β). By Lemma 3.5 we have, with
an implicit constant depending only on β:

(3.9) PotN (z) ≤ PotN,ε(z) +O (1) .

Lemma 3.6. Fix a point z ∈ Dr and let α ∈ (1, 2). We have:

(3.10) P
β
N

[
|PotN,ε(z)| ≥ α logN√

β

]
≤ exp

(
−α2 logN +O(1)

)
,

with an implicit constant depending on β, r.

Proof. Take t := 2α
√
β ≤ 4

√
β so that, in view of (3.8), t ≤ λ2

C
−2 ≤ λ2

C
−1 with C as in

Corollary 3.4. Then, we may thus use (3.5) and write:

E

[
etLN (ϕz,ε)

]
= exp

(
t2 logN

4β
+O(t2 + t)

)
= exp

(
α2 logN +O(1)

)
,

with an implicit constant depending only on r, β. So, Markov’s inequality yields:

(3.11)
P

β
N

[
LN (ϕz,ε) ≥ α logN√

β

]
≤ exp

(
− tα logN√

β

)
E

[
etLN (ϕz,ε)

]

≤ exp
(
−α2 logN +O(1)

)
.

Note that since (3.4) is valid for t ∈ R, the same bound holds for −LN (ϕz,ε) as well. On the other
hand, by Proposition 3.2, we have |LN (g)| ≤ (logN)0.8 with probability 1 − exp

(
−(logN)1.5

)
.
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Since by definition LN (ϕz,ε) = PotN,ε(z)+LN (g), we may convert the control (3.11) on LN (ϕz,ε)
into a similar estimate for PotN,ε(z), as stated. �

2. Tail estimate on a lattice. For α ∈ (1, 2) and fix δ (depending on α) such that:

(3.12) 0 < δ <
α2 − 1

2

Let ℓδ := N− 1
2 −δ (in particular, ℓδ is sub-microscopic) and consider the square lattice Λδ :=

(ℓδZ)2.

Lemma 3.7 (Tail estimate on the lattice). Let α be in (1, 2). We have:

(3.13) P
β
N

[
max

z∈Λδ∩D(0,r)
|PotN,ε(z)| ≥ α logN√

β

]
≤ exp

(
(1 + 2δ) logN − α2 logN +O(1)

)
,

with an implicit constant depending on β, r. In particular we have:

(3.14) P
β
N

[
max

z∈Λδ∩D(0,r)
|PotN,ε(z)| ≥ α logN√

β

]
→ 0,

as N → ∞ – the decay being algebraic in N .

Proof. The number of points of Λδ that fall into Dr is bounded above and below by positive
constants (depending only on r) times N1+2δ. Thus (3.13) follows from a simple union bound,
using the one-point estimate (3.10). From our choice (3.12) for δ we easily deduce (3.14). �

3. Extension to the whole disk. It remain to prove a result comparing the maximum of the
Coulomb gas potential over the lattice points versus the whole unit disk. Recall that ε corre-
sponds to the “microscopic” scale, see (3.8).

Proposition 3.8 (The lattice vs. the whole disk). One has

(3.15) P
β
N

[
max

z∈D(0,r)
PotN,ε(z) ≥ 1 + max

z′∈Λδ∩D(0,r)
PotN,ε(z′)

]
→ 0 as N → ∞.

Proof of Proposition 3.8. Let z ∈ Dr, there exists a point z′ in Λδ ∩ Dr such that |z − z′| ≤ 4ℓδ.
We now show that, with high probability, the values of the regularized potential at z and z′ are
close. Recall the definition (3.6) of PotN,ε. We can write the difference PotN,ε(z) − PotN,ε(z′)

as LN (Gz,z′

), where Gz,z′

is the function

Gz,z′

(x) := ρε ⋆ logz(x) − ρε ⋆ logz′(x) = l̃ogx(z) − l̃ogx(z′).

In view of the bounds (3.7) on the derivatives of l̃og, and since |z − z′| ≤ 4ℓδ, we get:

|Gz,z′

(x)| � ℓδε
−1, |∇Gz,z′

(x)| � ℓδε
−2 for x ∈ D(z′, 4ε),

|Gz,z′

(x)| � ℓδ|z − x|−1, |∇Gz,z′

(x)| � ℓδ|z − x|−2 for x /∈ D(z′, 4ε).

We introduce a sequence of intermediate length scales ℓ0 < · · · < ℓn by taking c, n such that:

n = ⌊log

(
1 − r

4ε

)
⌋, log c :=

1

n
log

(
1 − r

4ε

)
,

and by setting ℓk := ckε for k = 0, . . . , n. Note that c ∈ [1, 2], that n = O(logN), that ℓ0 = ε
and that ℓn = 1−r

4 . We also set ℓn+1 = M , with M large (depending on β but not on N) to be
chosen later. Next, we take a family (χi)0≤i≤n+1 of functions such that:

n+1∑

i=0

χi ≡ 1 on D(0,M),

n+1∑

i=0

χi ≡ 0 outside D(0, 2M),
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each χi living at scale ℓi around z′, namely:

|χi|0 ≤ 1, |χi|1 � ℓ−1
i , χi ≡ 0 outside D(z′, 4ℓi) \ D(z′, ℓ1/2),

and we let Gz,z′

i := χiG
z,z′

for 0 ≤ i ≤ n. Using the bounds on Gz,z′

,∇Gz,z′

and the ones on

χ,∇χi, a direct computation ensures that Gz,z′

i is (up to some multiplicative constant) ℓδℓ
−2
i -

Lipschitz for each i - in other words, the function G̃z,z′

i := ℓi

ℓδ
Gz,z′

i is 1
ℓi

-Lipschitz and thus
satisfies the assumptions of Lemma 2.3. We may write, using a convexity inequality for exp:

exp

(
N δ/2

n+1∑

i=0

LN (Gz,z′

i )

)
= exp

(
N δ/2

n+1∑

i=0

ℓδ

ℓi
LN (G̃z,z′

i )

)

� 1

logN

n+1∑

i=0

exp

(
N δ/2ℓδ logN

ℓi
LN (G̃z,z′

i )

)
,

where we used that n is of order logN . Since Nδ/2ℓδ log N
ℓi

≪ 1, we may use the control in
exponential moments given by Lemma 2.3 and write:

logE

[
exp

(
N δ/2ℓδ logN

ℓi
LN (G̃z,z′

i )

)]
= O

(
N δ/2ℓδ logN

ℓi

(
Nℓ2

i

) 1
2

)
= O

(
N−δ/2 logN

)
.

We obtain a similar control for the (macroscopic) scale ℓn+1, see the last comment in Lemma 2.3.
Then Markov’s inequality yields:

(3.16) P
β
N

[
n+1∑

i=0

LN (Gz,z′

i ) ≥ 1

]
≤ exp

(
−N δ/2

)
.

We emphasize that since we are using Lemma 2.3, which provides uniform control for fluctuations
of all Lipschitz functions living at scale ℓ around a given point, then for fixed z′, the control (3.16)
is in fact uniform in z i.e.

(3.17) P
β
N

[
max

z,|z−z′|≤4ℓδ

n+1∑

i=0

LN (Gz,z′

i ) ≥ 1

]
≤ exp

(
−N δ/2

)
.

On the other hand, since by construction
∑n+1

i=0 χi ≡ 1 on D(0,M), any difference between

PotN,ε(z) − PotN,ε(z′) = LN (Gz,z′

) and
∑n+1

i=0 LN (Gi) comes from hypothetical outliers living
far away from the unit disk, namely outside D(0,M). A simple large deviation estimate (see
e.g. [SS15, (1.48)]) shows that the probability of any point being outside D(0,M) decays as
exp

(
−βNM2

)
as N → ∞ for M large enough depending only on β (indeed the non-negative

confinement term 2ζ(x) appearing in the Boltzmann factor grows as |x|2 for large x as can be
seen in (1.2)).

Finally, we obtain (by symmetry) for any fixed z′:

(3.18) P
β
N

[
max

z,|z−z′|≤4ℓδ

|PotN,ε(z) − PotN,ε(z′)| ≥ 1

]
≤ exp

(
−N δ/2

)
.

A union bound over z′ ∈ Λδ ∩ D concludes the proof. �

Combining Lemma 3.7 and Lemma 3.8 proves the LLN upper bound stated in Proposition 3.1.
Moreover, using (3.18), we obtain a quantitative tail estimate:

Corollary 3.9. For all α > 1, there is a small ν > 0 (depending on α) such that

P
β
N

[
max

z∈D(0,r)
|PotN,ε(z)| ≥ α logN√

β

]
≤ exp (−ν logN +O(1)) .



LLN FOR THE MAXIMUM OF THE 2D COULOMB GAS POTENTIAL 15

3.4. Uniform control of fluctuations for smooth linear statistics. A direct consequence
of the previous estimates is a uniform bound for the fluctuations of linear statistics for a class of
C2 test functions with, say, | · |2 ≤ 1. Let

FN :=
{
f ∈ C2(Dr), f is supported in some disk D(z, ℓ) with ℓ ≥ λN−1/2, and |f |2 ≤ ℓ−2

}
,

where λ is the constant depending only on β chosen above in (3.8).

Proposition 3.10. For any k ∈ N, there is a constant Ck = Ck(β) so that if N is sufficiently
large (depending on β, k and r),

P
β
N

[
sup

f∈FN

|LN (f)| ≥ Ck logN

]
≤ N−k

Proof. We use again ε = λ/
√
N . Let (�j = �(zj, ε))

M
j=1 be a collection of squares centered at

points zj ∈ εZ2 such that D(0, r) ⊂ ⋃M
j=1 �j ⊂ D(0, 1 − δ) for a small δ > 0. The collection can

be chosen so that M ≤ CβN for some constant depending on β. Using the local laws (2.8) and
a union bound, we deduce that for all k ∈ N, there is a constant Ck = Ck(β) such that if N is
sufficiently large,

(3.19) P
β
N

[
max
j≤M

XN (�j) ≤ Ck logN

]
≥ 1 −N−k.

Let f ∈ FN , ℓ be the associated length scale, and let fε = f ⋆ ρε. Since ρ is a radial mollifier
(with compact support in D) and |f |2 ≤ ℓ−2, one has

|fε − f |0 ≤ (ε/ℓ)2

and both f, fε are compactly supported in D(z, 2ℓ) since ℓ ≥ ε. One can tile D(z, 2ℓ) with at
most 16(ℓ/ε)2 squares of sidelength ε, thus on the event introduced in (3.19) we have:

(3.20) |LN (fε) − LN (f)| ≤ 16Ck(1 + logN).

Moreover, by an integration by parts we can write
∫

∆f PotN,ε = LN (fε), and using again that
|f |2 ≤ ℓ−2 and that ∆f supported in D(0, r), we deduce:

|LN (fε)| ≤ max
z∈D(0,r)

|PotN,ε(z)| .

The RHS is controlled by Corollary 3.9 and, by (3.20), on the event introduced in (3.19) we can
use this to control LN (f) uniformly for all f ∈ FN . Adjusting the constants Ck, this proves the
claim. �

4. Regularized multiplicative chaos: lower bound

This section is devoted to the proof of the lower bound in Theorem 1.

4.1. Reduction to a regularized version of the potential. Recall that ϕz,ε := ρε ⋆ logz −g,
see (3.2), is a regularization of logz at scale ε > 0 and let U ⊂ D be a (non-empty) open set. By
Proposition 3.2, we know that for any (small) δ > 0:

lim inf
N→∞

P

[
sup
z∈U

LN (ρε ⋆ logz) ≥ (β−1/2 − δ) logN

]
≥ lim inf

N→∞
P

[
sup
z∈U

LN (ϕz,ε) ≥ (β−1/2 − δ/2) logN

]
.

In addition, recall that PotN (z) = LN (logz) so that

LN (ρε ⋆ logz) = LN

(∫
ρε(x) logz−x(·)dx

)
=

∫
ρε(x)PotN (z − x)dx.
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The right-hand side is the convolution of the function PotN with a non-negative function of total
mass 1 and as such

max
z∈K

PotN (z) ≥ sup
z∈U

LN (ρε ⋆ logz)

where K is a closed ε-neighborhood of U .
Altogether, this implies that for any (small) δ > 0,

(4.1) lim inf
N→∞

P

[
max
z∈K

PotN (z) ≥ (β−1/2 − δ) logN

]

≥ lim inf
N→∞

P

[
sup
z∈U

LN (ϕz,ε) ≥ (β−1/2 − δ/2) logN

]
.

Let U ⊂ D be some fixed (small) ball, it suffices to show that the probability on the RHS of
(4.1) converges to 1 as N → ∞. It turns out that this is the case if the scale ε(N) ≤ Nν−1/2

for some ν > 0 sufficiently small (depending on δ > 0). For technical reasons, we also need that
ε(N) ≫ N−1/2 is larger than the microscopic scale. We claim the following:

Proposition 4.1. Let ε(N) be a sequence so that ε(N) → 0 as N → ∞ in such a way that
ε(N) ≫ N−1/2. Then, for any α > 2,

(4.2) lim
N→∞

P

[√
β sup

z∈U
LN (ϕz,ε) ≥ α log ε(N)−1

]
= 1.

Combining (4.1) and (4.2), we get: limN→∞ P [supz∈U PotN (z) ≥ ᾱ logN ] = 1 for any value

ᾱ > β−1/2, which yields the lower bound in Theorem 1.
The proof of Proposition 4.1 relies on the theory of Gaussian multiplicative chaos and in

particular on [CFLW21] and [LOS18]. We review these results in the next section and present
the main steps of the proof.

4.2. Multiplicative chaos. We introduce new notations. Let ℓ(k) = e−k for k ∈ N and set

Φk(z) :=
√
β LN (ϕz,ℓ(k)), z ∈ D.

For γ > 0, define a sequence of random measure (µγ
k)k∈N with density function

(4.3) µγ
k =

eγΦk

EeγΦk
.

This density obviously depends on the N and β even though it is not emphasized in the notation.

According to Proposition 3.3, if ℓ(k) ≥ CN−1/2, it holds uniformly for x ∈ K,

(4.4) E[eγΦk(x)] = exp

(
γ2k

2
+ON (1)

)
≍ ℓ(k)−γ2/2.

These asymptotics corresponds to [CFLW21, Assumptions 3.1]. In fact, using the method devel-
oped in [CFLW21, Section 3], [LOS18, Section 2], we will obtain the following convergence result
(with respect to the vague topology for positive measures on D).

Proposition 4.2. Let n(N) be a sequence such that n(N) → ∞ and ℓ(n) := ℓ(n(N)) ≫ N−1/2

as N → ∞. Then for any ) < γ < 2, µ
γ
n(N) → GMCγ in distribution as N → ∞ where GMCγ

is a Gaussian multiplicative chaos measure which is defined shortly.

Remark 4.3. If one consider the sequence of random measures with densities µ̂γ
N = eγ

√
βPotN

Eeγ
√

βPotN

for N ∈ N instead of (4.3), we expect that the result of Proposition 4.2 remains true, that is, for
any 0 < γ < 2, µ̂

γ
N → GMCγ in distribution as N → ∞ for a slightly different GMC (associated
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to the GFF with free boundary condition on D). Note that the regime 0 < γ < 2 corresponds to
the whole GMC L1-phase, as γ = 2 is the critical value with our normalization.

We now turn to the definitions of the random measures (GMCγ)0<γ<2. We consider the
following log-correlated field.

Definition 4.4. Let Ψ be a (distribution-valued) Gaussian process on D with mean zero and
the following correlation structure: for any f, g ∈ Cc(D) with

∫
f =

∫
g = 1,

(4.5) E
[
Ψ(f)Ψ(g)

]
:=

1

(2π)2

x (
f(x) − χ(x)

)(
g(z) − χ(z)

)
log |x− z|−1dxdz

with χ as in (3.2). It is well-known that the RHS defines the covariance of a Gaussian process
(this also follows from the CLT of Remark 2.10 which implies that with ϕ = −∆−1(f −χ) : z 7→
2π
∫

log |x− z|−1(f(x) − χ(x))dx, one has LN (ϕ) → Ψ(f)/
√
β in distribution), so that the field

Ψ has correlation kernel,

Σ(x, z) = log |x− z|−1 + g(x) + g(z) + c

where c ∈ R is a constant.
For any k ∈ N, we define Ψk := ρℓ(k) ⋆ Ψ. This is a (smooth) approximation of Ψ as k → ∞

and, for γ > 0, we also let ν
γ
k be a random measure on D with density function

ν
γ
k(x) =

eγΨk(x)

EeγΨk(x)
, x ∈ D.

Then, the following convergence result follows from the general theory of multiplicative chaos;
e.g. [Ber17].

Proposition 4.5. For any γ < 2 (subcritical phase), the random measure ν
γ
k → GMCγ in

probability as k → ∞. Moreover, for any (non-empty) open set A ⊂ D, GMCγ(A) > 0 almost
surely.

Hence, in the subcritical phase (γ < 2), as a consequence of Proposition 4.2 and [CFLW21,
Theorem 3.4], we obtain Proposition 4.1. Finally, the proof of Proposition 4.2 will be a direct
application of [CFLW21, Theorem 2.4] (reproduced there from [LOS18, Theorem 1.7]). Namely,
it suffices to show that for any j ∈ N, k1, · · · , kj ≤ n(N) and γ1, · · · , γj ∈ R,

(4.6) E
[
eγ1Φk1

(x1)+···+γjΦkj
(xj)] = E

[
eγ1Ψk1

(x1)+···+γjΨkj
(xj)](1 + o(1)

)

uniformly for x1, · · · , xj ∈ Dr (here r < 1 is fixed). The error term is also uniform for k1, · · · kj ≤
n(N), in which case the condition ℓ(n) ≫ N−1/2 as N → ∞ is crucial. The next section is
devoted to the proof of (4.6).

4.3. Exponential moments asymptotics. We deduce (4.6) from the estimates of Proposi-
tion 2.8 by a simple induction.

First observe that since Φk(x) =
√
β LN (ϕx,ℓ(k)) with ∆ϕx,ℓ = ρx,ℓ − g, as a consequence of

Remark 2.10 (with fa = ρx,ℓ = ρ((· − x)ℓ−1)ℓ−2 and fb = g so that the conditions (2.18) hold),
we have

E
[
eγΦk(x)

]
= exp

(−γ2

4π

∫

R2

ϕx,ℓ(k)∆ϕx,ℓ(k)

)(
1 + o(1)

)

uniformly for x ∈ Dr, ℓ(k) ≫ N−1/2 and locally uniformly for γ ∈ R. Moreover (by definition of
the 2d Green’s function for −∆ and by Fubini’s theorem), according to Definition 4.4, we have
for k, n ∈ N and x, z ∈ D,

−1

2π

∫
ϕx,ℓ(k)∆ϕz,ℓ(n) =

x (
ρx,ℓ(k)(u) − g(u)

)(
ρz,ℓ(n)(v) − g(v)

)
log |u− v|−1dudv

= E[Ψk(x)Ψn(z)].(4.7)
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Thus, since Ψ is a (mean-zero) Gaussian process, we obtain for any x ∈ D, γ ∈ R and k ≪ N−1/2,

E
[
eγΦk(x)

]
= E

[
eγΨk(x)

](
1 + o(1)

)

with the required uniformity. This establishes that (4.6) holds when j = 1.
We now proceed by induction to extend these asymptotics for any j ∈ N with j ≥ 2. Without

loss of generality, we assume that k1 ≤ · · · ≤ kj ≤ n(N). Then, according to Lemma 2.4, we
have

E
[
eγ1Φk1

(x1)+···+γjΦkj
(xj)] = E

[
e
√

βLN (ϕj)
]

= exp

(−1

4π

∫

R2

ϕj∆ϕj

)
Kβ

N(m0 + s∆ϕj)

Kβ
N (m0)

where ϕj =
∑

i≤j γiϕxi,ℓ(ki) and s = −1/β1/2

2πN . Moreover, using (4.7), we obtain

E

[
e

∑
i≤j

γiΦki
(xi)
]

= E
[
eγ1Ψk1

(x1)+···+γjΨkj
(xj)]Kβ

N(m0 + s∆ϕj)

Kβ
N (m0)

and, by taking a ratio,

E

[
e

∑
i≤j

γiΦki
(xi)
]

E

[
e

∑
i≤j

γiΨki
(xi)
] =

E

[
e

∑
i<j

γiΦki
(xi)
]

E

[
e

∑
i<j

γiΨki
(xi)
] Kβ

N(m0 + s∆ϕj)

Kβ
N (m0 + s∆ϕj−1)

.

We now apply Proposition 2.8 with fa = γjρxj ,ℓ(kj) and fb = γjg as above. We emphasize
that the conditions (2.18) hold while the reference measure m = m0 + s∆ϕj−1 also satisfies

|m − 1| ≤ Cℓ(n)2/N . In particular, in the regime ℓ(n) ≪
√
N , we obtain

log

(
Kβ

N(m0 + s∆ϕj)

Kβ
N (m0 + s∆ϕj−1)

)
= N

(
β

4
− 1

)
(E(m + s∆ϕj) − E(m + s∆ϕj−1)) + o(1),

with the required uniformity. Now, repeating the argument from Remark 2.10, the entropy
E(m + s∆ϕj) = o(N−1) for any j ∈ N which implies that

Kβ
N(m0 + s∆ϕj)

Kβ
N (m0 + s∆ϕj−1)

= 1 + o(1).

By induction, this concludes the proof of the asymptotics (4.6). �

Appendix A. Auxiliary proofs

A.1. A technical remark about partition functions. We import below several results from
[Ser20], notably we use the comparison between partition functions associated to measures that
coincide outside a small disk (see (A.8) below). It is worth noting that our definition of the

partition function Kβ
N (m) associated to a probability measure m on D, as given above in (2.3),

differs from the one in [Ser20] by a small detail: we always integrate against the Lebesgue measure

whereas Kβ
N (m) is defined in [Ser20, Sec 3.3] as an integral against the product measure m⊗N .

Thus the integrands differ by:

N∏

i=1

m(xi) = exp

(
N∑

i=1

log m(xi)

)
= exp

(
N

∫
log m(x)dm(x) + Lm

N (log m)

)
.

In the first term we recognize NE(m), where E is the relative entropy as in Section 1.6, which
is the reason why our statement of e.g. Lemma A.4 has an extra relative entropy term in (A.8)
compared to the corresponding expressions in [Ser20]. On the other hand, the fluctuation term
Lm

N (log m) contributes O(1), which always gets absorbed into our main error term. This follows
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from the fact that fluctuations of smooth enough test functions are bounded in exponential
moments, see e.g. [Ser20, Sec. 2.3].

A.2. Proof of Proposition 2.5 and Lemma 2.7.

A.2.1. Proof of Proposition 2.5. We combine the following tools from [LS18, Ser20].

(1) Approximate transport and estimates on the approximation error.
(2) Comparison of partition functions along the approximate transport & the anisotropy term.
(3) Relative expansion of partition functions.
(4) “Serfaty’s trick” for proving smallness of the anisotropy term.

We next review the main arguments.
1. Approximate transport. By assumption, the perturbation f is supported in D(z, ℓ) and thus
in a square �(z, ℓ) of sidelength ℓ. Using [Ser20, Lemma 4.8] together with [Ser20, (4.31)] and
applying our assumptions (2.12) and (2.13), we can find a vector field ψ, supported on �(z, ℓ),
such that

(A.1) − div(mψ) = f, |ψ|k ≤ C̄Cℓ−1−k, for k = 0, 1, 2, 3,

where C is as in the statement and C̄ is a universal constant.
For s ∈ R, we define a map Φs and another probability measure m̃s by:

(A.2) Φs := Id + sψ, m̃s := Φs#m.

In view of (A.1) we can guarantee that |Φs −Id|1 ≤ 1
2 as long as the parameter s is chosen smaller

than 1
C
ℓ2 for some C large enough, a condition which is implied by the stronger constraint (2.14)

(recall that Nℓ2 is always larger than 1). We think of Φs as an approximate transport map,
pushing m forward not quite onto ms (whose density is m+sf) but rather on m̃s. The following
lemma quantifies the error in terms of partition functions.

Lemma A.1. The partition functions associated to m̃s and ms are close:
∣∣∣log Kβ

N (m̃s) − log Kβ
N(ms)

∣∣∣ = O
(
s2Nℓ−2

)
,

and so are their relative entropies:

|E(m̃s) − E(ms)| = O
(
s2Nℓ−2

)
,

with implicit constants depending only on (A.1) and β.

Proof. The first point follows from combining [Ser20, Lemma 5.1], which bounds |m̃s − ms|k for
k = 1, 2 in terms of the norms of ψ (controlled in (A.1)) and m (controlled by assumption),
and [Ser20, Lemma 4.9], which states a direct comparison of the partition functions in terms of
m̃s − ms. To prove the second point, we use again [Ser20, Lemma 5.1], which bounds |m̃s − ms|0
by O(s2ℓ−4), and plug that estimate into the definition of E . �

2. Comparison of partition functions along a transport. The so-called “anisotropy term” was
introduced in [LS18], cf. also the “angle term” in [BBNY19, Section 8]. We refer to [Ser20,
Section 4] for a careful study of its properties. It can be understood as the first-order correction
to the energy when one pushes both the configuration and the background measure by a small
perturbation of the identity map. Here we will not go into the details and we treat the anisotropy
as a black box. The key estimates that we need to import are contained in the following lemma.
Let s, ψ,Φs, m̃s be as above (in particular ψ is supported on �(z, ℓ)) and recall that EnerPts(z, ℓ)
(defined in (2.5)) controls both the energy and the number of points at scale ℓ near z, and is
typically of order Nℓ2.
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Lemma A.2. There exists a term A1[ψ,m,XN ] (independent of s) satisfying:

(A.3) A1[ψ,m,XN ] = ℓ−2O (EnerPts(z, ℓ)) ,

and such that provided |s| is smaller than ℓ2:

(A.4) F (Φs(XN ), m̃s) = F(XN ,m) + sAni[ψ,XN ,m] + s2
ErrorF,

with a “second order” error term ErrorF bounded by:

(A.5) ErrorF = O
(
ℓ−4(1 + log(ℓN1/2))

)
EnerPts(z, ℓ).

with implicit constants in (A.3) and (A.5) depending only on the constant C in (2.12), (2.13).

Proof of Lemma A.2. We apply [Ser20, Prop. 4.2] to the vector field ψ chosen above. The main
task is to check that [Ser20, (4.7)], which bounds the second derivative of the energy along a
transport, can itself be controlled by our ErrorF.

• We use (A.1) to bound ψ and its derivatives.
• Using our assumptions on m and f we can control the derivatives of ms by:

|ms|k ≤ |m|k + s|f |k ≤ Cℓ−k + sCℓ−k+2,

but we are taking |s| ≪ ℓ2 (see (2.14) and (2.6)) so we can replace |ms|k by Cℓ−k for k = 1, 2.
In particular, N−k/2|ms|k � 1 for k = 1, 2.

Combining these observations and studying [Ser20, (4.8)], we are left with:
(
ℓ−4

C + ℓ−5N−1/2 log(ℓN1/2)C
)

× log(ℓN1/2)EnerPts(z, ℓ) + Cℓ−5N−1/2
EnerPts(z, ℓ).

Simplifying a bit and using that 1
ℓ2N ≤ 1, we can indeed take ErrorF as in (A.5). �

For convenience, we denote by Ani the quantity:

(A.6) Ani[ψ,m,XN ] := A1[ψ,m,XN ] − 1

4

N∑

i=1

div ψ(xi).

We can now state the conclusion of this paragraph:

Lemma A.3 (Comparison of partition functions along a transport). We have:

(A.7) log
Kβ

N (m̃s)

Kβ
N(m)

=

(
β

4
− 1

)
N (E(m̃s) − E(m))

+ logE
P

β
N,m

[
exp

(
sAni[ψ,XN ,m] + s2

ErrorF
)]
.

We recall that the notation P
β
N,m was introduced in (2.2).

Proof of Lemma A.3. It follows the same steps as [LS18, Prop. 4.3]. In short:

(1) We change variables by Φs in the integral defining Kβ
N (m̃s) and use Lemma A.2 to expand

the interaction energy, hence the terms A1 and ErrorF appear in the exponential. We replace
A1 by Ani up to the correction mentioned in (A.6).

(2) The Jacobian of this change of variables is exp
(∑N

i=1 log detDΦs(xi)
)

. The exponent can

be related to the difference of entropies between ms and m, up to a fluctuation term (the
fluctuations of x 7→ log detDΦs(x)), which itself is bounded using Lemma 2.3 and is negligible
compared to the estimate (A.5) for the “second order” error ErrorF.

(3) The difference between Ani and A1 as in (A.6) also happens to be equal to the difference
of relative entropies (up to some multiplicative factor) plus an error term that is negligible
compared to ErrorF.
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�

3. Relative expansion of partition functions. The following is contained in [Ser20, Prop. 6.4]
(keeping in mind the remark of Section A.1).

Lemma A.4 (Relative expansion of partition functions). Let (z, ℓ) such that (2.6) holds, and
let m, m̃ be two probability measures on D such that m = m̃ outside D(z, ℓ). Assume that m, m̃
are of class C1 and satisfy 1

2 ≤ m, m̃ ≤ 2 on D. Assume also that |m|1 + |m̃|1 ≤ Cℓ−1 for some
constant C. Then:

(A.8) log
Kβ

N (m̃)

Kβ
N (m)

=

(
β

4
− 1

)
N (E(m̃) − E(m)) +O

(
Nℓ2

) 1
2
(
1 + log

(
Nℓ2

)) 1
2 ,

with an implicit constant depending only on C and β.

4. Serfaty’s trick. It is hard to prove a bound on Ani that is better than (A.3) and holds
configuration-wise. However one can improve the control on Ani in exponential moments, using
the following trick. Recall the assumption (2.6).

Lemma A.5 (Smallness of the anisotropy). There exists C
′ depending only on on the constant

C in (2.12), (2.13) such that if |s| ≤ 1
C′ ℓ

3/2N−1/4, we have:

(A.9) logE
P

β
N,m

[exp (sAni[ψ,XN ,m])] = O
(
sN3/4ℓ−1/2

(
1 + log

(
Nℓ2

)) 1
2

)
,

with an implicit constant depending only on C
′ and β.

Proof of Lemma A.5. We first take s = s⋆ := 1
C′ ℓ

3/2N−1/4 for some large enough constant C
′ (if

ℓ is of order N−1/2 then ℓ2 and ℓ3/2N−1/4 are comparable, thus we need to divide by C
′ large

enough in order to match our previous assumptions on s. For mesoscopic length scales, this is
irrelevant). By comparing the two expressions (A.7) and (A.8) and discarding negligible terms
one gets:

(A.10) logE
P

β
N,m

[
exp

(
s⋆Ani[ψ,XN ,m] + s2

⋆ErrorF
)]

= O
((
Nℓ2

) 1
2
(
1 + log

(
Nℓ2

)) 1
2

)
.

Using the expression (A.5) for ErrorF and the local law (2.7) we know that:

(A.11) logE
P

β
N,m

[
exp

(
s2

⋆ErrorF
)]

≤ O
(
ℓ−1N−1/2 log(ℓN1/2)Nℓ2

)
= O

(
ℓN1/2 log(ℓN1/2)

)
.

Combining (A.10) and (A.11) and using Cauchy-Schwarz’s inequality we deduce that:

logE
P

β
N,m

[
exp

(
1

2
s⋆Ani[ψ,XN ,m]

)]
≤ O

((
Nℓ2

) 1
2
(
1 + log

(
Nℓ2

)) 1
2

)
+O

(
ℓN1/2 log(ℓN1/2)

)
,

and thus for s = 1
2s⋆:

logE
P

β
N,m

[
exp

(
1

2
s⋆Ani[ψ,XN ,m]

)]
= O

((
Nℓ2

) 1
2
(
1 + log

(
Nℓ2

)) 1
2

)

For smaller values of s, we apply Hölder’s inequality and obtain (A.9). �

5. Conclusion. We compare Kβ
N (ms) and Kβ

N (m̃s) using Lemma A.1 and then apply Lemma

A.3 to compare Kβ
N (m̃s) and Kβ

N (m), using Lemma A.5 to control the anisotropy term. Lemma
A.1 also allows us to replace E(m̃s) by E(ms) up to some error. Finally one can check that for
|s| ≤ s⋆ the dominant error term is the one coming from (A.9), which yields (2.15). �
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Remark A.6. In view of the remark made in Section A.1, one could wonder whether a difference

of order O(1) between the value of log Kβ
N(m) as defined in [Ser20] and the definition used

here might not create a problem when the length scale ℓ is mesoscopic. Indeed in that case
Proposition 2.5 is stated with an error term that is o(1), see Remark 2.6. In fact, one only
needs a comparison of partition functions as stated in [Ser20] in steps 3 and 4 of the proof of
Proposition 2.5, and we apply Lemma A.4 (which is a direct consequence of [Ser20, Prop. 2.4]) for
a “large” value of s (namely s = s⋆ of order ℓ3/2N−1/4 ≫ N−1 for ℓ mesoscopic). At that point
the effective error term is larger than 1 (see (A.10)) and thus one can harmlessly incorporate an
additional O(1) error.

On the other hand, the comparison result of Lemma A.3 does not rely on [Ser20] regarding the
definition of partition functions.

A.2.2. Proof of Lemma 2.7. Compared to the previous proof, we dispense with Step 1 as one
can easily find an exact transport, as well as Steps 3 and 4 because we are not aiming for precise
estimates on the anisotropy.
Since the reference measure is m0 and since f has radial symmetry, it is easy to construct a
bijective, “radial rearrangement” map Φs : D → D that pushes m0 onto m0 + sf and can be
written as Φs = Id + αs(x)x on D, for some radial function αs whose derivative is bounded on
D by sC′′ for some constant C

′′ depending only on C and r. We can always extend αs into a C1,
compactly supported function on D2 with |αs| ≤ 1

2 , |αs|1 ≤ sC′′.
Applying [Ser20, Prop 4.2] (note that now, compared to the proof of Proposition 2.5, we are only
able to use - and in fact only need - results where the vector field ψ is simply assumed to be C1,
see in particular [Ser20, (4.6)]) to Φs and changing variables as in the previous proof, we obtain
(see also [Ser20, (4.3)])

log
Kβ

N (m′
s)

Kβ
N(m0)

= logE [exp (sC′′
EnerPts(D2))] ,

but the number of points in D2 is always ≤ N and the (fluctuations of the) global energy have
exponential moments of order N (this “global law” follows from (2.4)). We thus get (2.16). �

A.3. Proof of Proposition 2.8.

Proof of Proposition 2.8. We introduce a sequence of intermediate length scales ℓa =: ℓ0 < · · · <
ℓn := ℓ := min

(
ℓb,

1
4 (1 − dist(za, ∂D))

)
by defining c, n as:

n = ⌊log (ℓ/ℓa)⌋, log c :=
1

n
log (ℓ/ℓa) ,

and by setting ℓk := ckℓa for k = 0, . . . , n. Note that c ∈ [1, 2] and (za, ℓi) satisfy (2.6) for all
i ≤ n even if the larger length scale ℓb is macroscopic. Moreover, ℓb and ℓ are always comparable.

For each i = 0, . . . , n we fix a smooth cut-off function χ(i) such that:

χ(i) ≡ 1 on D(za, ℓi), χ(i) ≡ 0 outside D(za, 2ℓi), |χ(i)|k ≤ 100ℓ−k

i for k = 1, 2, 3,

and we define m
(i)
s as the probability measure with the following density:

(A.12) m(i)
s := m + sfb + s

(∫

R2

fa

)
χ(i)

∫
R2 χ(i)

.

In particular, in case
∫
fa = 0, this construction is not relevant and we can directly apply

Proposition 2.5 twice to compare Kβ
N (ms) to Kβ

N(m + sfb) and then Kβ
N (m + sfb) to Kβ

N (m).
This is also the case if the scales ℓa and ℓb are comparable, which corresponds to the case where
n is independent of N .
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Using our assumptions on m, fa, fb, χ
(i) and the fact that (2.19) and (2.6) imply that |s| is

of order at most ℓ2
a (the minimal scale in this problem), we obtain that on D the density m

(i)
s

satisfies:

(A.13)
1

2
≤ m(i)

s ≤ 2, |m(i)
s |k � Cℓ−k

i for k = 1, 2, 3.

We decompose the ratio of partition functions as :

Kβ
N(ms)

Kβ
N (m)

=
Kβ

N(ms)

Kβ
N(m

(0)
s )

×
n−1∏

i=0

Kβ
N (m

(i)
s )

Kβ
N (m

(i+1)
s )

× Kβ
N (m

(n)
s )

Kβ
N(m)

.

For each i = 0, . . . , n− 1, in view of (A.12) we may write:

m(i)
s = m(i+1)

s + sf (i), with f (i) := s

(∫

R2

fa

)(
χ(i)

∫
R2 χ(i)

− χ(i+1)

∫
R2 χ(i+1)

)
.

Since
∫
fa is of order 1 (this follows from (2.18)), while

∫
χ(i) is of order ℓ2

i , the perturbation

f (i) satisfies:

(A.14) |f (i)|k � ℓ
−(k+2)
i for k = 0, 1, 2.

In view of (A.13) and (A.14) we can apply Proposition 2.5 with the length scale chosen as ℓi and
we obtain:

log
Kβ

N (m
(i+1)
s )

Kβ
N (m

(i)
s )

= N

(
β

4
− 1

)(
E(m(i+1)

s ) − E(m(i)
s )
)

+O
(
sN3/4ℓ

−1/2
i

(
1 + log

(
Nℓ2

i

)) 1
2

)
,

The same reasoning applies for
Kβ

N
(ms)

Kβ
N

(m(0))
(which corresponds to the smallest length scale ℓa) and

for
Kβ

N
(m

(n)
s )

Kβ
N

(m)
(which corresponds to the largest length scale ℓ – either equal to ℓb or of order 1).

Summing the contributions, we obtain:

log
Kβ

N (ms)

Kβ
N(m)

= N

(
β

4
− 1

)
(E(ms) − E(m)) +O

(
s

n∑

i=0

N3/4ℓ
−1/2
i

(
1 + log

(
Nℓ2

i

)) 1
2

)
.

The sum over dyadic scales can be compared to an integral and we get:
n∑

i=0

N3/4ℓ
−1/2
i

(
1 + log

(
Nℓ2

i

)) 1
2 = O

(
N3/4ℓ−1/2

a

(
1 + log(Nℓ2

a)
) 1

2

)
,

which yields (2.20) as claimed. �

A.4. Proof of Proposition 3.2. Let h0 denote the electrostatic potential generated by the
uniform background m0, namely:

h0 : z 7→
∫

D

log |z − x|dm0(x) =

∫

|x|≤1

log |z − x|dx
π
,

a quantity that already appeared in the definition (1.7) of PotN . An explicit computation gives
the following expression

(A.15) h0 : z 7→
{

log |z| if |z| ≥ 1

− 1−|z|2

2 if |z| ≤ 1.

The potential h0 satisfies Poisson’s equation ∆h0 = 2πm0. In particular, ∆h0 does not have
total mass 0. Yet, using a simple trick that is totally unrelated to the methods of [LS18, Ser20],
we are able to control the size of LN (h0) as expressed in the following proposition:
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Proposition A.7 (Exponential moments of h0). We have, for |t| ≤ Nβ
100 :

logE [exp (tLN (h0))] = O(t + t2),

with an implicit constant depending only on β.

Proposition A.7 gives us the crucial freedom to substract a multiple of h0 from a given test
function and to cancel out the masses of their Laplacians, while making a (typically) bounded
error on the size of the linear statistics. We postpone the proof of Proposition A.7 for now and
deduce from it a generalization of Proposition 3.2.

Corollary A.8. Let χ be a C2, radially symmetric function which is compactly supported in
Dr for some r < 1, such that |χ|k ≤ C for k = 0, 1, 2. Let g be a solution of Poisson’s equation
∆g = 2πχ. Then, one has for |t| ≪ N ,

logE[etLN (g)] = O(t+ t2)

where the implied constant depends only on β.

Proof. Let c =
∫
χ which is of order 1 (by assumptions) and let ϕ = g − ch0. By Lemmas 2.4

and 2.7, one has for |t| ≪ N ,

logE[etLN (ϕ)] = O(t+ t2).

This estimate is comparable to that of Lemma A.7, thus the claim follows directly from Hölder’s
inequality. �

Proof of Proposition A.7. This relies on the following two claims:

Claim A.9. For |t| ≤ βN , we have:

(A.16) logE

[
et
∑

N

i=1
ζ(xi)

]
= o(t).

Proof. This follows from the analysis of [LS18]. We return to the notation of (1.4), (2.3) for
partition functions and make them more explicit by writing:

Kβ
N(m0, ζ) :=

∫

(R2)N

exp

(
−β
(

F(XN ,m0) + 2N
N∑

i=1

ζ(xi)

))
dXN ,

where we explicitly keep track of both the background measure (as in (2.3)) and the “effective
confining potential” ζ. By [LS18, Corollary 1.1] or [LS18, (4.12)] one finds an expansion for

log Kβ
N(m0, ζ) up to order o(N) which does not depend on ζ (see [LS18, Remark 4.3]). Thus in

particular, taking t = ±βN in the left-hand side of (A.16) we get:

logE

[
e±βN

∑N

i=1
ζ(xi)

]
= log Kβ

N (m0, ζ ∓ 1

2
ζ) − log Kβ

N (m0, ζ) = o(N).

The claim follows from Hölder’s inequality. �

Claim A.10. For |t| ≤ Nβ
2 , we have:

(A.17) E

[
et
∑N

i=1
|xi|2

]
= exp

(
− log

(
1 − t

βN

)(
βN(N − 1)

4
+N

))
.

Proof. It follows by a scaling argument using the equivalent expression (1.6) for the joint law of
the particles. �
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We may now prove Proposition A.7. On the one hand, using the expression (A.15) of h0 and
an elementary computation we get:

∫
h0(x)dm0(x) =

∫ |x|2 − 1

2
dm0(x) = −1

4
.

On the other hand, a Taylor’s expansion of (A.17) gives (for |t|
βN small):

E

[
et
∑N

i=1
|xi|2

]
= exp

(
tN

4
+O(t+ t2)

)
,

and we deduce that:

(A.18) E

[
e

t

(∑N

i=1

|xi|2−1

2

)
−tN

∫
h0(x)dm0(x)

]
= E

[
e

t
2

∑N

i=1
|xi|2− tN

2 + tN
4

]

= E

[
e

1
2 ( tN

4 +O(t+t2))− tN
8

]
= E

[
eO(t+t2)

]
.

Since the expression of h0(x) is not always |x|2−1
2 but rather |x|2−1

2 − ζ(x) in general (compare
(A.15) with (1.2)), we can write:

E

[
etLN (h0)

]
= E

[
e

t

(∑N

i=1

|xi|2−1

2

)
−tN

∫
h0(x)dm0(x)−t

∑N

i=1
ζ(xi)

]
.

Using Cauchy-Schwarz’s inequality combined with (A.16) and (A.18) we prove Proposition A.7.
�
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Stockholm

Email address: glambert@kth.se

(Thomas Leblé) Université de Paris-Cité, CNRS, MAP5 UMR 8145, F-75006 Paris, France.

Email address: thomas.leble@math.cnrs.fr

(Ofer Zeitouni) Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.

Email address: ofer.zeitouni@weizmann.ac.il


	1. Introduction
	1.1. Setting and main result
	1.2. Connections with the literature
	1.3. Comments on the strategy.
	1.4. Open problems
	1.5. Sketch of the proof and plan of the paper
	1.6. Notation
	Acknowledgment

	2. Preliminaries
	2.1. Energy at global and local scales
	2.2. Fluctuations
	2.3. Re-writing the Laplace transform
	2.4. Comparison of partition functions

	3. Law of large numbers: upper bound
	3.1. An auxiliary linear statistics
	3.2. A regularized version of the potential
	3.3. Lattice approximation and proof of the LLN upper bound
	3.4. Uniform control of fluctuations for smooth linear statistics

	4. Regularized multiplicative chaos: lower bound
	4.1. Reduction to a regularized version of the potential
	4.2. Multiplicative chaos.
	4.3. Exponential moments asymptotics.

	Appendix A. Auxiliary proofs
	A.1. A technical remark about partition functions
	A.2. Proof of Proposition 2.5 and Lemma 2.7
	A.3. Proof of Proposition 2.8
	A.4. Proof of Proposition 3.2

	References

