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Abstract 

Fuzzy rules have been advocated as a key tool for expressing pieces of knowledge in "fuzzy logic". However, there does 
not exist a unique kind of fuzzy rules, nor is there only one type of "fuzzy logic". This diversity has caused many 
a misunderstanding in the literature of fuzzy control. The paper is a survey of different possible semantics for a fuzzy rule 
and shows how they can be captured in the framework of fuzzy set and possibility theory. It is pointed out that the 
interpretation of fuzzy rules dictates the way the fuzzy rules should be combined. The various kinds of fuzzy rules 
considered in the paper (gradual rules, certainty rules, possibility rules, and others) have different inference behaviors and 
correspond to various intended uses and applications. The representation of fuzzy unless-rules is briefly investigated on 
the basis of their intended meaning. The problem of defining and checking the coherence of a block of parallel fuzzy rules 
is also briefly addressed. This issue has been neglected in the fuzzy control literature although it looks important for 
validation purposes. 

Keywords .  Fuzzy rules; Knowledge representation; Gradualness; Certainty; Possibility; Exceptions; Consistency; Ap- 
proximate reasoning 

"Associer le mot flou avec le mot logique est choquant. La logique, au sens vulgaire du mot, est une conception des mbcanismes de la pensbe 
qui ne devrait ~tre jamais floue, mais toujours rigoureuse et formelle. [ . . .  ] 
La pensbe humaine, superposition d'intuition et de rigueur, c'est-it-dire d'une prise en compte globale ou parallble (n~cessairement floue) et 
d'une prise en compte logique ou s~quentielle (nbcessairement formelle), est un mbcanisme flou. Les lois de la pens~e que nous pouvons faire 
entrer dans les programmes des ordinateurs sont obligatoirement formelles, les lois de la pensbe dans le dialogue homme-homme sont floues." 

Arnold Kaufmann 
[23, Chapter 3, p. 191] 

1. Introduction 

If/then rules offer a convenient  format  for ex- 
pressing pieces of knowledge. But it is just a format  
which can cover different intended semantics and 
uses. The consequent  of a rule may  be qualified 

with various modalities expressing, for instance, 
s trong ones such as certainty, obligation, or  weaker 
ones such as possibility or  feasibility. Rules may  
have implicit exceptions, or may  universally hold. 
Depending on their interpretation, rules have to be 
represented and processed in a specific way at the 
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inference level. Strangely enough, in spite of the 
acknowledged importance of fuzzy rules and of the 
great number of works in fuzzy set-based approx- 
imate reasoning, there has been very little concern 
until now about the possible intended meanings of 
a fuzzy rule, although fuzzy rules seem to play an 
important role in our thinking mechanisms. This 
paper is a systematic attempt to analyzing what 
fuzzy rules are. 

Fuzzy if/then rules are rules whose antecedents, 
consequences or both are fuzzy rather than crisp. 
The most common and widely used interpretation 
considers a fuzzy rule "if x is A then y is B" as 
a fuzzy point A x B and a collection of fuzzy rules 
"ifx is Ai then y is Bi" i = 1 . . . . .  n as a fuzzy graph 
providing a rough description of the relation be- 
tween x and y (e.g., [36, 37]). Then the benefit of 
having fuzzy antecedents is to provide a basis for an 
interpolation mechanism. In this view a fuzzy rule 
is defined by means of a conjunction (for defining 
a fuzzy Cartesian product A x B) rather than in 
terms of a multiple-valued logic implication. How- 
ever, for a long time there has been, especially in an 
approximate reasoning perspective, a considerable 
interest for fuzzy rules modelled by multivalued 
implications under the form A --* B (see [2, 27, 30] 
as noticeable examples of early contributions). The 
variety of implication operators existing in the 
fuzzy set framework has always been seen as a rich 
potential for modelling different shades of expert 
attitude in the inference process (e.g., [24, 25]), al- 
though no precise, practical interpretation was pro- 
vided for the different implication operators. 

The proper use of implication-based fuzzy rules 
is often misunderstood in fuzzy control. For 
example, in a recent introduction to fuzzy logic by 
Mendel [26] for a special issue of Proceedings of 
IEEE on fuzzy logic engineering applications, the 
author criticizes fuzzy implications that produce 
output fuzzy sets with an unlimited support, and 
concludes that it is "a result that violates engineer- 
ing commonsense". Although Mendel [-26] asks 
himself if this situation "is a result of a poor choice 
for P a ~ " ,  he apparently does not notice that there 
indeed exist genuine implications which do not 
have this behavior, such as G6del implication, or 
Goguen implication. Moreover, Mendel [26] inter- 
prets the fact that Vv,/~a(Uo) --*/~(v) = 1 as soon as 

the input Uo is such that ]AA(Uo) ~--- O, as "the rule will 
be fired", and concludes that "this does not make 
much sense from an engineering perspective". 
However, anybody familiar with material implica- 
tion in logic, knows that a formula p ~ q is true 
when p is false, and that the rule is then not trig- 
gered at all. Indeed, there is no way of producing 
q from p -~ q and ~ p. This is an example of a lim- 
ited, often encountered, view of what a fuzzy rule is, 
which may work for simple control engineering 
applications, but which is clearly insufficient in 
a knowledge engineering perspective. 

Several authors [2, 9, 15-18, 28] have pointed 
out that fuzzy rules of the form "if x is A then y is 
B", modelled by a Cartesian product A x B, have 
a significantly different meaning from rules 
modelled in terms of genuine implications A ~ B, 
and should serve different purposes. In the follow- 
ing, such a view is developed further by insisting on 
the meaning of fuzzy rules. Understanding the 
semantics of fuzzy rules is a key issue for their 
intended applications, and for processing them. 
Moreover fuzzy "unless rules" (of the form "if x is 
A then y is B unless z is C") are also considered in 
this perspective. "Unless rules" have been already 
discussed by Driankov and Hellendoorn [7, 8]. 
They have advocated the interest of these context- 
dependent rules. They have proposed to model 
fuzzy "unless rules" by means of a ternary relation 
whose behavior obeys some inferential constraints. 
The approach proposed in the paper also briefly 
relates the semantical view of fuzzy rules previously 
developed to the possibilistic logic treatment of 
nonmonotonic reasoning for handling rules with 
exceptions [3, 11]. 

Section 2 first discusses different representa- 
tions of rules in a nonfuzzy setting and then ex- 
tends these representations to rules with a fuzzy 
conclusion part. Section 3 introduces the different 
types of fuzzy rules, derives their representation 
in the framework of fuzzy sets and possibility 
theory from their intended semantics, and gives 
their inference behaviors. Section 4 deals with 
fuzzy unless rules. Section 5 briefly discusses the 
coherence of parallel rules. This issue is parti- 
cularly important for the validation of expert- 
generated systems of fuzzy rules, and has not been 
very often considered. 
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2. From if/then rules to fuzzy rules 

To properly understand what a fuzzy rule may 
mean, it might be useful to start with the meaning 
ofa  nonfuzzy rule of the form "ifx is A, then y is B' ,  
and then to investigate what are the different pos- 
sible meanings of the rule when B becomes fuzzy, 
while A remains an ordinary set. The case where A, 
and possibly B, are fuzzy is fully addressed in Sec- 
tion 3. In the whole paper it will be assumed that 
the fuzzy sets are normalized (i.e., there exists at 
least one element with a membership grade equal to 
1), unless stated otherwise, 

2.1. Nonfuzzy rules 

Let us consider a rule "if x e A then y ~ B", where 
A and B are ordinary subsets and x and y are 
variables ranging on the domains U and V respec- 
tively. The rule provides a partial and imprecise 
description of a relationship between the variables 
x and y. It means in terms of characteristic func- 
tions that 

if/~A(X) = 1 then #8(Y) = 1. (1) 

Clearly, the pairs (u, v) of values of the variables 
(x, y) such that gA(U)= 1 and /~B(v)= 0 are not 
compatible with (1), while the pairs such that 
/~A(U) = 1 and #B(v)= 1 agree with (1). However, 
nothing is said for the pairs (u, v) of values of (x, y) 
such that t~A(U) = 0; for them ~B(v) remains uncon- 
strained according to (1). Let R be the set of pairs 
(u, v) of values of(x, y) compatible with (1). It can be 
checked that its characteristic function is such that 

t~a(U) A ,B(V) <~ ~a(U, V) <<. n(#A(U)) V ItB(v) (2) 

where A denotes the Boolean conjunction opera- 
tion, (i.e., a / ~ b = l  iff a = b = l  and a / ~ b = 0  
otherwise), n(a) = 1 iff a = 0 and n(a) = 0 if a = 1, 
and V denotes a disjunction operation (i.e., 
a V b = 0 i f f a = b = 0  and a V b = l  otherwise). 
Indeed, R contains at least the pairs such that 
I~A(U) = 1 and ps(v)= 1, which are such that 
~A(U) /~ ~n(V) = 1. R also contains at most all the 
pairs such that Ira(U)= 0 together with the ones 
such that I~A(U)= 1 and /~B(v)= 1, i.e., the pairs 
such that n(Ita(U)) V/~a(v) = 1. (2) can be written 
equivalently in set theoretic terms under the form 

A x B _c R c__/~ + B where the overbar denotes the 
complementation and + is the operation dual to 

the Cartesian product x : A + B = A x B .  
Thus, (2) expresses that any representation of the 

rule "if x e A then y c B" is lower bounded by the 
representation of the conjunction "x ~ A and y e B" 
and upper bounded by the representation of the 
material implication x E A ~ y e B, i.e., x41A or y e B. 
This view is the starting point of the modelling of 
a rule "if x ~ A then y ~ B" in terms of "conditional 
objects" (or "conditional events"), namely, "ye  B 
given that x e A ' ,  or BIA for short. See [22] for 
a study of the algebraic aspects of conditional ob- 
jects and [21] for their logical study in the scope of 
nonmonotonic reasoning applications. Although 
Bouchon [4] has studied fuzzy rules in the scope of 
conditioning, and Weber [32] has already studied 
extensions of conditional objects when A and B are 
fuzzy, we shall not investigate fuzzy rules in that 
perspective here. Rather we are going to deal separ- 
ately with the two inequalities in (2) and to view 
each of them as the partial specification of a possi- 
bility distribution nylx pertaining to the value of 
y given the value of x. Namely 
- the inequality 

7['y]x(V , U) ~ ¢[A(U) /~ ~IB(U), (3) 

means that all the values v in B are allowed for 
y when x takes a value in A, i.e., ~ylx(v, u ) =  1, 
Vv ~ B, Vu e A; for pairs (u, v) such that u e A and 
vCB, as well as for pairs (u, v) such that uCA 
nothing is said by (3) since for them we only have 
the trivial constraint ~yB.~(v, u) ~> 0. Thus, the in- 
equality (3) corresponds to the semantics of 
a rule expressing that "if x ~ A, all the values in 
B are possible (or if we prefer admissible, feasible, 
allowed) for y"; 

- the inequality 

7ryl.,.(V, U) ~ n(,LtA(U)) V kIB(V), (4) 

expresses that the pairs (u, v) of values of (x, y) 
such that u belongs to A and v does not belong to 
B are forbidden (VuEA, Vv(~B, ~,lx(v,u)<~0); 
then the value of y is necessarily among the 
elements of B, when u e A, and the values outside 
B are impossible. When x takes a value u outside 
A, the possible values for y are unrestricted, since 
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then nyl~(v, u) ~< 1. Thus, the inequality (4) means 
that "if x ~ A, it is certain that the value of y is 
in B". 
The two semantics, respectively in terms of possi- 

bility (or feasibility) and in terms of certainty, of the 
two models of an if/then rule appear to be clearly 
distinct by the way conclusions are combined when 
dealing with two parallel rules. Indeed, the two 
rules "if x G A  1 then y • B ~ "  and "if x • A  2 then 
y • B2" induce the following constraints on the pos- 
sibility distribution ~rylx describing the relationship 
between x and y: 
- in the conjunction-based model 

7[ylx(U , U) ~ ]/AI(U) A ]/BI(U), 

~,~(v, u) > / ~ ( u )  A ~*B~(v), 

and then 

Informally, the conjunction-based model of 
a rule comes down to viewing the rule as a piece of 
data (the rule is then considered as a pair (A, B)). 
The disjunctive combination of rules is then a data 
accumulation procedure. On the contrary, the im- 
plication-based model of a rule comes down to 
viewing the rule as a constraint that restricts a set of 
possible solutions. The conjunctive combination is 
then a refinement, a solution elimination procedure 
aiming at improving precision (see also [28]). 

Note. The two semantics cannot always be en- 
forced simultaneously in the sense that the two sets 
of constraints A~ x B~ _~ R~ ~_ AI + BI and 
A2 x B2 -~ R2 -~/12 + B2 are sometimes incompat- 
ible with a unique relation I~R,(U, V)= /IR~(U, V)= 
n~.I~(V, U), VU, VV, since (A1 x B1)u(A2 x B2) is, gen- 
erally not included into (A1 + B1)n(/12 + B2). 

This expresses that interpreting the rules as "if 
x • A1, all the values in B1 are possible for y" and 
"if x • A2, all the values in B2 are possible for y", 
we indeed conclude that "if x6Axc~A2 then all 
the values in B1 or B2, i.e., in B1 ~B2, are possible 
for y"; 
in the implication-based model 

TC~,Ix(V , U) ~ n(flAl(U)) V ]2B,(V), 

and then 

~,l~(v, u) ~< [n(~A,(u)) V ~8,(v)] 

A [n(t~a~(U)) V p~(v)]. 

This expresses that interpreting the rules as "if 
x • A ~ ,  it is certain that the value o f y  is in B~" 
and "ifx • Az, it is certain that the value ofy  is in 
B2", we indeed conclude that "if x • A~ c~A2 then 
it is certain that the value o fy  is in B~ and in B2, 
i.e., in BIc~B2". 
Thus depending on the interpretation of the 

rules, conclusions of parallel rules will have to be 
combined disjunctively in the conjunction-based 
model (whose semantics is in terms of possibili- 
ty/feasibility), and conjunctively in the implica- 
tion-based model (whose semantics is in terms of 
necessity/certainty). 

2.2. Rules with fuzzv conclusion parts" 

If/then rules with a nonfuzzy condition part and 
a fuzzy conclusion part  express the existence of 
more or less possible conclusions when the condi- 
tion is satisfied. A particular case of such a situation 
is an uncertain rule. Following an idea, already 
presented in Dubois and Prade [14], an uncertain 
rule can be obtained from a nonfuzzy, completely 
certain rule, under a default information assump- 
tion pertaining to a subpart of its condition part. 
Namely, let us consider the rule 

"if x • A  and z • C  then y • B " ,  

where A, B and C are ordinary subsets of U, V and 
W respectively. Let us assume that we have some 
default information about the value of z with re- 
spect to C, of the type "it is almost sure that z • C". 
Such a piece of information can be modelled by 
a simple possibility distribution of the form 

1 if w • C  
~rz(w) = )~ < 1 if w ¢ C  = max(~c(W), ;0. (5) 

This special kind of fuzzy set with unlimited sup- 
port expresses that the degree of certainty of"z  • C" 
is then equal to N(C) = infw¢c 1 - ~ (w)  = 1 - ).. 
The smaller £, the less possible z¢C and the more 
certain the default information " z •  C". Using the 



D. Dubois, H. Prade / Fuzzy Sets and Systems 84 (1996) 169-185 173 

implication-based model  of  the rule, we have 

7r~,lx,,(v, u, w) <~ n(#a(U)) V n(#c(W) V/~8(v)). (6) 

Combining conjunctively n~ and n~,l~ ' ~ and project- 
ing on V x U, according to Zadeh 's  [35] possibility 
theory-based approach  to approximate  reasoning, 
we easily get 

SUpw min(nz(w), nxl~,z(v, u, w)) = nylx(v, u) 

~< max(n(/aa(u)), /IB[v), 2). (7) 

Thus the possibility distribution which is obtained 
expresses that the possible values for y, when the 
value of  x is in A, are in B with a possibility degree 
at most  equal to 1, and outside B with a possibility 
at most  ),. Let B* be the fuzzy set defined by 
#B*(v) = max(/iR(v), 2), then we recognize that (7) is 
an implication-based model of the rule "if x e A  
then y is restricted by B*", where the underlying 
implication is defined by 

a ~ b* = max(n(a), b*) = max(n(a), b, 2) 

f 2  if a =  1 and b = 0  

1 otherwise. 

The fuzzy rule so obtained is actually a crisp rule 
with an uncertain conclusion of the form "'if x e A 
then y is B is (1 - 2)-certain". 

Thus, a special kind of  rule with a fuzzy con- 
clusion part  having unlimited support  has been 
obtained here as an approximat ion  of a rule with- 
out  any uncertainty, taking into account  default 
information. Limited support  fuzzy sets in the con- 
clusion part  of the rule may be obtained as well. Let 
us now consider the two rules 

"if x ~ A and z e C then y ~ B", 

"if x e A and z¢C then y ~ B' " 

This kind of fuzzy rules is the one encoded by weighted clauses 
in possibilistic logic [11], where the fuzzy set of models of the 
clause (-np V q, :0 representing the piece of information "it is 
:~-certain that if p is true then q is true", is given by 
l~M~vvq. ~1 = max(/~M~ ~rvq~, 1 - ~) where M(~p V q) is the 
classical set of models of ~ p  V q. The term "model" is under- 
stood here in the sense of logic, i.e., the set of interpretations 
which makes a formula true. 

Then nxlx.z is upper  bounded  by (6) and by 
n(llA) k/ gc V /IB,. Combining  nz (defined by (5)) and 
ny~.,,~ and projecting the result, it can be checked 
that we finally obtain 

ny I x(v, u) ~ max [n(/~A(u)), max(~B(v), min(fi,/ts,(v)))]. 

Again we obtain the implication-based model of 
a rule of the form "ifx ~ A then y is restricted by B*" 
with/~B*(v) = max(l~B(v), rain(2, #,,(v))), i.e., B* is 
a fuzzy set with support  B'uB and core B. More  
generally, starting with a collection of  rules 

" i f x e A a n d z e C i t h e n y e B / "  f o r i =  1 . . . . .  n(9) 

where the Ci's make a part i t ion of  W, and using 
a default information of the form 

n z ( w ) = 2 i i f z e C i a n d ) q  = 1 > ... > 2 n > 0 ,  (10) 

by combinat ion  and projection of (10) and of the 
upper bounds  of  nylx.z induced by the rules (9), it 
can be shown that we get 

7r~,l_,-(v, U) <~ max(n(tlA(U)), ///3*(v)), 

with 

tzs*(v) = maxi -  1., min(2/,//B,(v)). (11) 

Moreover  B* is a fuzzy set whose 2/-level cut is Bi 
for i = l, ... , n, ifB1 c B 2 c  . . .B, .  

Using the conjunct ion-based model of the rules, 
we can also obtain a rule with a fuzzy conclusion by 
an approximat ing process. Indeed the conjunc- 
t ion-based model of rules of the form (9) is 

7~ylx.z(t? , U, W) ) V [IA(U) A ~lci(W ) A ]IBI(U), (12) 
i - l . n  

which gives with the default information (10), by 
combinat ion  and projection 

nylx(v, u) ) min(/~(u), #B*(v)), (13) 

with #B*(v) = max/= L,  min(2/, pB,(v)) again. 
To conclude, a rule with a fuzzy conclusion part  

can be seen as approximating,  but also summariz-  
ing, a collection of  nonfuzzy rules, taking into ac- 
count  a default information. This view can be ex- 
tended to cont inuous membership  functions when 
V and W are subsets of the real line. 
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3. Representat ion  o f  different k inds  o f  f u z z y  rules 

3.1. Making the condition part of a rule fuzzy 

We just saw that the conclusion-part of a rule "if 
x ~ A then y is B*" can be made fuzzy in order to 
express the existence of more or less possible values 
of y when the condition x ~ A holds for true. The 
reason for having the condition part, say, x is A, 
fuzzy is of a different nature. 

Let us consider a rule of the form "if x is A then 
y is B" where A and/or B might be fuzzy. When A is 
a fuzzy set, we distinguish between typical values 
in the core of A (i.e., the u's such that #a(U) = 1) 
and less typical values which are such that 
1 >/aa(u) > 0. Then the idea is to say that if the 
value o fx  is no longer in the core of A, but still close 
to the values u such that #A(U) = 1, the possible 
values of y are in some subset not too much differ- 
ent from B. The ways B can be modified in order to 
represent the set of possible values of y when the 
value o fx  is no longer in the core of A but still close 
to it, will depend on the representation of the rule 
that is used. 

If we use an implication-based model, B is viewed 
as an upper bound of the possible values of y when 
x is in A, i.e., B restricts the possible values of y. 
Then it seems natural, when the input condition is 
no longer fully satisfied, to modify B into a less 
restrictive fuzzy set (where the possibility degrees 
attached to values can only increase). This can be 
done in two different ways (e.g., [5, 6, 16]). 
- One way is to attach some uncertainty to B by 

expressing that the possibility degree of values 
outside of the support  of B is no longer strictly 
zero, but progressively increases as the value of 
x moves away from the core of A. This can be 
done whether B is fuzzy or not. If  the support  of 
B is the whole domain V, the possibility degrees 
of the less possible values for y will simply in- 
crease when x moves away from the core of A. 
This corresponds to a rule of the type "the more 
x is A, the more certain y is B" (in other words 
the less possible the values outside B). An 
example of such a rule is "the younger a person 
is, the more certain the person is single". 

- The other way of using a genuine implication 
consists in enlarging the core of B in such a way 

that when the value of x is in the e-cut of 
A (xE {u, pA(u) ~> c~}), all the values v in the e-cut 
of B become fully possible (i.e., possible at the 
degree 1). Thus, when the value of x is somewhat 
close to the core of A, the value of y remains 
somewhat close to the core of B. Clearly, this 
second way requires that B be a fuzzy set too. 
Then there still exist two slightly different man- 
ners to implement it depending on the interpreta- 
tion of the rule when x is in the core of A: we may 
either consider that the possible values of y are 
restricted by the core of B, or by B itself (unmodi- 
fied in this case). With the first manner, we model 
a purely gradual rule of the form "the more x is 
A, the more y is B", while with the second one 
some fuzziness on the conclusion is acknow- 
ledged (since we associate a fuzzy set of values 
to y). 
If we use a conjunction-based model, B is viewed 

as a lower bound of the possible values of y when 
x is in A, i.e., B is viewed as a set of values which 
are guaranteed to be possible for y. Then, when 
the value of y moves away from the core of A, 
we may only think of reducing the minimal level 
of guaranteed possibility or the range of values 
whose possibility is assessed. Again there are two 
cases [18-1: 
- In the first case, the lower bound on the level of 

possibility of the values in B will be diminished 
down to the degree of membership of x to A. This 
can be done whether B is fuzzy or not. This 
corresponds to a rule of the type "the more x is A, 
the more possible y is B". An example of such 
a rule is "the older a person is, the more possible 
the person has/had been married". 

- In the second case, we can consider that when the 
value of x is in the core of A, all the values in the 
support  of B are possible without restriction, 
while, as x gets away from the core of A, the 
subset of values with some guaranteed possibility 
for y becomes smaller and smaller inside B. 
Clearly, in this second interpretation B should be 
a fuzzy set. Again, there are two subcases here: 
when x is in the core of A, we can consider that 
either, only the values in the support  of B (i.e., 
{v, #B(V) > 0} have a degree of possibility guaran- 
teed to be equal to 1, or the lower bound on 
degrees of possibility for y is described by the 
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fuzzy set B itself. In the first subcase, we capture 
a rule of the type "the more x is A, the larger the 
set of possible values for y around the core of B". 
An example of such a rule is "the more experi- 
enced a cook, the larger the set of dishes he can 
prepare". In the second subcase some fuzziness is 
also acknowledged. 

In the following, it is shown that these different 
approaches we may have in mind for a fuzzy rule 
can be indeed captured by different extensions of 
the framework described in Section 2. 

3.2. Modelling fuzzy rules 

We now restate the main results of Dubois and 
Prade, [18] about the representation of the differ- 
ent kinds of fuzzy rules. In this reference, the reader 
can find detailed justifications, in terms of possibili- 
ty and certainty qualifications and in terms of grad- 
uality, of the representations proposed for the dif- 
ferent rules. 

3.2.1. Certainty rules 
A first kind of fuzzy rule corresponds to state- 

ments of the form "the more x is A, the more certain 
y lies in B". Interpreting the rule as "Vu, if x = u, it 
is at least #a(u)-certain that y lies in B", the degree 
1 - pa(U) assesses the possibility that y is outside of 
B when x = u, since the more x is A, the less 
possible y lies outside B, and the more certain y lies 
in B (indeed the certainty of an event corresponds 
to the impossibility of the contrary event). By ap- 
plication of (7) we get the following constraint for 
the conditional possibility distribution modelling 
the rule 

Vue  U, Vve  V, r~yrx(V, u) <<. max(1 - IAA(U), lAB(V)). 
(14) 

We recognize Kleen~Dienes implication (a--* b 
= max(1 - a, b)) for combining A and B in (14). 

In the particular case where A is an ordinary 
subset, (14) yields 

Vu ~ A, zcyl~(v, u) <~ lAB(V) 

VuCA, r~yl~(v, u) is completely unspecified. (15) 

This corresponds to the implication-based model- 
ling of a fuzzy rule with a nonfuzzy condition part 

described in Section 2.2. Note that B may be any 
kind of fuzzy set in (14), hence in (15) as well. 
Particularly, B may itself include some uncertainty; 
for instance, the membership function of B may be 
of the form lAB = max(lA~, 2) in order to express that 
when x is A,/~ is the range (maybe fuzzy but with 
a limited support) of y with a certainty 1 - 2 (any 
value outside the support of/~ remains a possible 
value for y with a degree equal to 2). Default rules 
are conveniently modelled by (14). For  instance the 
rule "if x is a bird then it is rather certain that it 
flies" is modelled with A not fuzzy and B of the 
form lAB = max(lAB, 2), while the rule "the more 
typical a bird is, the more certain it flies" is 
modelled by means of a fuzzy A and a non-fuzzy B. 

As can be seen from (14), B is modified by 
applying a function p~(t)= max(t, 1 -  ~)), Vt~ 
[0, 1] to lAB with ~ = lAa(U), (14) can be rewritten 
~.lx ~< P~ ~ lAB; z is pictured in Fig. l(b) and can be 
seen as a fuzzy truth-value in the sense of Zadeh 
[34]. This fuzzy truth-value approach to fuzzy rules 
is originally due to Baldwin [1]. 

3.2.2. Gradual rules 
This second kind of implication-based fuzzy rule 

has been discussed in detail in [19]. Gradual rules 
correspond to statements of the form the more x is 
A, the more y is B. Statements involving "the less" 
in place of "the more" are easily obtained by chang- 
ing A or B into their complements A and B due 
to the equivalence between "the more x is A" and 
"the less x is A" (with PA = 1 - PA). More precisely, 
the intended meaning of a gradual rule can be 
understood in the following way: "the greater the 
degree of membership of the value of x to the fuzzy 
set A and the more the value ofy  is considered to be 
in relation (in the sense of the rule) with the value of 
x, the greater the degree of membership to B should 
be for this value of y", i.e. 

~/uE U, min(pa(U), rrylx(v, u)) ~< pn(v) (16) 

or, usin9 the equivalence min(a, t) ~ b ,~  t <~ a ~ b 
where --, denotes G6del's implication, 

VU e U, /[ylx(V, u) ~ lAA(U) --+ lAB(V) 

J" 1 if lAa(U) <~ lAB(v), 
(17) 

lAB(v) if IAA(U) > lAB(V). 
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Fig. 1. Four basic types of fuzzy truth-values 

Note  that  if A is not  fuzzy, we recover 
n~,l~(v, u) ~ Us(V) if u ¢ A  and nyl~(v, u) ~< 1 if u6A, 
i.e., the implication-based model  of a rule with 
a fuzzy conclusion part. Eq. (17) can be equivalently 
written 

Vu ~ U, 7ryl~(v, u) <<. max(ulu,¢u>, 1~ (Us(v)), Us(v)) 

= ut..~.>. , l ~ ( ~ B ( v ) )  (18) 

where Utu,~,). 11 is the characteristic function of the 
interval [UA(U), 1] and where T is the fuzzy set on 
[-0, 1], defined by Vt~ [0, 1], UT(t) = t, which mod- 
els the fuzzy truth-value "true" in fuzzy logic [-34]. If 
we remember  that "x is A is r - t rue" is represented 
by the possibility distribution [34] 

Vu ~ u ,  ~ ( u )  = U+(UA(U)), (19) 

where r is a fuzzy truth-value modelled by the fuzzy 
set ~ of [0, 1], we can interpret  the meaning of 
gradual rules in the following way using (18) and 
(19): "Vu~ U, if x = u then it is at least UA(U)-true 
that y is B". The membership function of the fuzzy 
truth-value "at least :c-true" is pictured in Fig. l(a). 
As it can be seen, it is not  a crisp "at least :c-true" 

(which would correspond to the ordinary subset 
[:c, 1]), but a fuzzy one in agreement with the truth- 
qualification in the sense of (19), indeed "at least 
1-true" corresponds to the fuzzy truth-value T. 

If we are only looking for the crisp possibility 
distributions nylx (i.e., the {0, 1}-valued ones) which 
satisfy (16), because we assume that there is a crisp 
relation between y and x which underlies the rule 
"the more  x is A, the more  y is B", then we obtain 
the constraint  

1 
VUC U, ~z+,ix(v, u) ~< 0 

if UA(U) <~ UB(V) 

if UA(U) > UB(V) 

= /X[p.A(U), 1] (UB(V)), (20) 

which expresses that the rule is now viewed as 
meaning: " r u e  U, if x = u then it is at least UA(U)- 
true that y is B", where the truth-qualification is 
unders tood in a crisp sense. In terms of :c-level cuts 
it is equivalent to V:c, x 6 A~ ~ y 6 Be which clearly 
expresses that the greater the membership grade of 
x, i.e., the closer the value o f x  to typical values in A, 
the greater the membership grade of y and the 
closer the value of y to typical values in B. The 
implication a - - * b =  1 if a~<b and a - - * b = 0  if 
a > b is called Rescher-Gaines implication in the 
fuzzy set literature. Then the fuzzy rule summarizes 
the collection of ordinary rules "if x~A~ then 
yeB~," for :c~(0, 1]. Indeed, it can be checked that  
nvl x is then upper bounded by the membership 
function of the crisp relation R = (']~lo+ 1~ A, wB~. 

Observe a striking difference between (18) and 
(20): in (18), B is modified into a fuzzy set larger 
than B (UA(U) --* UB(V) >~ UB(V), VV), while in (20) the 
conclusion of the rule when x = u is a crisp subset 
which is not larger than B (nor included in B); it just 
focuses on the values of B with high membership 
grades. 

3.2.3. Possibility rules 
A first kind of conjunct ion-based fuzzy rule cor- 

responds to statements of the form "the more  x is A, 
the more  possible B is a range for y". If we interpret 
this rule as "Vu, if x = u, it is at least UA(u)-possible 
that B is a range for y", a straightforward extension 
of(13), yields the following constraint  on the condi- 
tional possibility distribution nyl~, (', u) representing 
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the rule when x = u 

Vu~ U, VvE V, min(pA(U), I~B(V)) <<, rc~.I~(V, U) (21) 

Then the degree of possibility of the values in B is 
lower bounded by #A(U), and the values in B are 
considered as possible values for y at least at the 
degree pa(U). As expressed by (21), B is modified 
into a fuzzy set with membership function p~ o #B 
where p~(t) = min(t,~), Vt~[0,  1] and ct = pA(U); 
Z can be seen as a special kind of fuzzy truth value 
and is pictured in Fig. l(c). When A is not fuzzy, we 
recover/tB(v) ~< ~yl~(v, u) if u e A and 0 ~< gyl~(v, u) if 
uCA, i.e., the conjunction-based representation of 
a rule with a fuzzy conclusion part discussed in 
Section 2.2. 

3.2.4. Anti-gradual rules 
This is a second kind of conjunction-based fuzzy 

rules. The inequality (16) looks like (21) when ex- 
changing pB(V) and ~ytx(v, u), while (17), which is 
equivalent to (16), is analogous to (14) in the sense 
that in both cases ~ylx is bounded from above by 
a multiple-valued logic implication function. It 
leads formally to considering the inequality con- 
straint obtained from (14) by exchanging #B(V) and 
~ylx(V, u), i.e., 

Vu~ U, Vve V, max(~ylx(v, u), 1 - #A(U)) >>- #B(V). 

(22) 

This corresponds to a new kind of fuzzy rules, the 
intended meaning of which we now investigate. 
Eq. (22) is perhaps more easily understood by tak- 
ing the complement to 1 of each side of the inequal- 
ity, i.e., 

V u ~ U ,  V v ~ V ,  

1 -/~B(v) >~ min(#A(u), 1 -- ~yl~(v, u)), 

which can be interpreted as "the more x is A and 
the less y is related to x, the less y is B'.  Using the 
equivalences min(a, 1 - t) ~< 1 - b.*~l - t ~< a-~ 
(1 - b) ~ t ~> 1 - (a ~ (1 - b)), where -~ is G6del's 
implication, we can still write (22) in the form 

Vue U, Vve V, 

0 if pA(U) + #B(V) <~ 1 

nyl~(v, u) >>. ~LB(V) if #A(U) + I~B(V) > 1 

= min(#~l-,A~,), 1] (ps(V)), I~B(V)) 

= u .  -.a~.~, 11nT(m,(v)). (23) 

Unsurprisingly, the lower bound of ~ylx(v, u) which 
is obtained, is a multiple-valued logic conjunction 
function of pa(U) and #B(V) (indeed f ( a , b ) =  0 if 
a + b <~ 1 and f (a ,b)  = b otherwise, is such that 
f(0,0)  = f ( 0 ,  1) = f (1 ,0 )  = 0 and f(1,  1) = 1). More- 
over (23), when A is not fuzzy, reduces to the con- 
junction-based model of a rule with a fuzzy con- 
clusion part. From (23) we see that this type of rules 
can be interpreted in the following way: the values 
whose degree of membership to B is not more than 
1 - pA(U) do not belong to the guaranteed possible 
values of y according to the rule. The rule could 
be understood, in terms of fuzzy truth values in 
the sense of (19), as "if x = u then it is at least 
(1-/~a(U))-true that y is B" (however in a way 
different from the fuzzy truth value pictured in Fig. 
l(a)), or if we prefer "if x = u then it is at most 
#a(u)-false that y is B". The membership function of 
the corresponding fuzzy truth-value which modifies 
B in (23) is given in Fig. l(d). As it can be observed 
by comparing Figs. l(a) and l(d), they correspond 
to two points of view in (fuzzy) truth-qualification 
of level ~, one leaving completely possible the values 
corresponding to degrees of truth greater than 
:~ (enlarging the core), the other assigning no possi- 
bility to the values corresponding to the degrees of 
truth less than or equal to 1 -  c~ (reducing the 
support). This agrees with the last kind of rules 
described in Section 3.1. Indeed (23) expresses that 
the values which sufficiently belong to B are 
guaranteed as possible for y (in relation to their 
level of belonging to B). 

Let us now consider the crisp solution to (22). 
Taking x in the :~-cut of A, i.e., x ~ {u, ~A(U) >~ ~}, it 
expresses that the values v such that #B(V) <~ 1 -- C~ 
have no guaranteed possibility (gylx(V, u) >~ 0) while 
other values are fully possible. Thus if x e A ,  it 
corresponds to saying that the pairs (x,y) with 
guaranteed possibility 1 are of the form 

(x, y) E A, x B. 1 _~, 

where BT~_ ~ denotes the strict (1 - c0-cut of B, i.e., 

{v, pB(v) > 1 - e}. Thus the larger #a(X), the larger 
the subset of values for y guaranteed as possible. 
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More generally, with (23), the larger ],IA(X ) the 
larger the subset of values for y, which are guaran- 
teed to be somewhat possible. Thus, these rules 
may be called "anti-gradual rules", since gradual 
rules are such that "the larger Ira(X), the smaller the 
core of the subset of possible values for y". 

Let e o m p  a n d  a n t  be two transformations on the 
truth-scale reflecting the ideas of complementation 
and antonymy respectively, and defined by 
eomp(f(t)) = 1 - f ( t )  and an t ( f  (t)) = f ( 1  - t), 
Vt~[O, 1] and f ranging in [0,1]. Note that 
c o m p  o a n t  = a n t  o c o m p ,  and that comp and a n t  are 
involutive. 

Supposef  is the membership function of"at  least 
a-true" as in Fig. l(a) then comp(at least ~- 
true) = at most a-true, and ant(at least a-true) = at 
least a-false = at most(1 - a)-true. 2 I f f  is the mem- 
bership function of "at least a-certainly true" then 
comp(at least a-certainly true) = at least a-possibly 
false and ant(at least a-certainly t rue )=  at least 
a-certainly false. As a consequence, it can be seen 
on Fig. 1 and formally checked that the four fuzzy 
truth-values we have introduced satisfy the two 
duality relations 

at least a-certainly true = 
c o m p  o a n t  (at least a-possibly true), (24) 

at least a-true = e o m p o  a n t  (at most a-false). (25) 

Note that when there are only two degrees of truth, 
0 (false) and 1 (true), "at least a-certainly true" corres- 
ponds to the possibility distribution n(true)= 1, 
n(false) ~< 1 -  a and "at least a-possibly true" to 
n(false) ~> 0 and n(true) >/ a, while the two other 
(fuzzy) truth-values make no sense. Dually when 
there are only two degrees of possibility, 0 (complete 
impossibility) and 1 (complete possibility), then the 
representations of "at least a-true" (in the sense of 
Fig. l(a)) and of "at most a-false" (in the sense of 
Fig. l(d)) respectively coincide with the ordinary 
subsets of truth degrees [a, 1] and (1 - ~, 1]. 

2 Mind that the truth-value of Fig. l(d) can be also read "at least 
(1 - ~)-true" with an understanding of graded fuzzy truth differ- 
ent from the one in Fig. l(a). In Fig. l(a), the fuzzy truth value 
T (Vt, #r(t) = t) is modified by increasing the high membership 
degrees to 1, while in Fig. l(d) the low membership degrees are 
decreased to 0. 

3.3. Inference with a fuzzy rule and a precise input 

The four fuzzy truth-values pictured in Fig. 1 
(with a = ~A(U)) can be viewed as representing 
modifiers m (in the sense of Zadeh [33]) which 
modify the fuzzy set B into a fuzzy set B' such that 
FtB, = m(FtB), in order to specify the subset of interest 
for y in the various rules for a precise input x = u; 
see Bouchon-Meunier [5] on the role of modifiers 
in approximate reasoning. Summarizing, in the 
case of 

certainty rules, the possibility distribution 
nyl~(', u) is bounded from above by m(/~) with 
m(t) = max(t, 1 -I~a(U)), i.e., B is drowned in 
a level of indetermination 1 - :~; 

- gradual rules, the possibility distribution nyl~(', u) 
is bounded from above by m(IzB) with 
m(t) = pA(U) ---" t (where ~ denotes Grdel 's  im- 
plication), i.e., the core of B is enlarged; 

-poss ibi l i ty  rules, the possibility distribution 
nybx(., u) is bounded from below by m(ItB) with 
re(t) = min(pa(U), t), i.e., B is truncated up to the 
height a = pA(u); 
anti-gradual rules, the possibility distribution 
n~'lx(', u) is bounded from below by m(/~B) with 
m(t) = 0 if t~a(U) + t ~< 1 and re(t) = t otherwise, 
i.e., the support of B is diminished, reduced. 
Fig. 2 gives the output B', corresponding to 

a precise input x = u, for the different meanings of 
a rule. It includes the above four types of rules, 
together with the "crisp" counterparts of gradual 
and anti-gradual rules (Fig. 2(c) and 2(g)). For  these 
two types of rules, B' is an ordinary subset, and thus 
B' does not encode any uncertainty. These two 
types of rules take advantage of the gradualness of 
the membership functions of A and B in order to 
(partially) describe the relationship between x and y. 

All the models of fuzzy rules which have been 
discussed until now in this paper only require pure- 
ly ordinal scales for the assessment of the degrees of 
membership, possibility or certainty. Indeed, all the 
connective operators which have been used are 
based on min operation and on an order-reversing 
operation (i.e., the complementation to 1 when us- 
ing the interval [-0, 1]; more generally, negation 
is defined by reversing the scale, e.g., if the scale 
is finite: eo < "-" < el < "-" < e,,, the negation 
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operat ion n is defined by n(ei) = era-i). See [13] for 
the definition of the connective operators  different 
from min and the negation. If we have a scale with 
a "richer" structure, we may thus use the product  

instead of  min, it leads to use Goguen ' s  implication 
(a --* b = 1 if a = 0, a ~ b = min(1, b/a) if a ~ 0; see 
Fig. 2(e)) in place of  G6der s  for instance; see [13] 
for the other operators  related to product.  If max(0, 
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a + b - 1) is used as the basic conjunction, then 
there only exists one type of conjunction and one 
type of implication (see [13]). The associated im- 
plication is Lukasiewicz implication which com- 
bines the effects of GSdel-like and Kleene-Dienes- 
like implications, i.e., the simultaneous enlargement 
of the core and the introduction of a level of inde- 
termination; see Fig. 2(i). 

For the sake of brevity, we do not deal here with 
the effects of fuzzy inputs in the different cases; see, 
e.g., [16] on this question. 

4. Fuzzy "if...  then.., unless..." rules 

Fuzzy "if. . .  then. . ,  unless . . . "  rules of the form 
"if x is A then y is B unless z is C" are often 
encountered in the expression of expert knowledge, 
since the unless part  gives some proviso for excep- 
tions. 

Driankov and Hellendoorn [8] (see also [7]) have 
proposed an approach to the modelling of fuzzy 
"if... then. . ,  unless. . ."  rules. These authors pro- 
pose to model the rule "if x is A then y is B unless z is 
C" as the conjunctive combination of the two rules 
"if x is A and z is not C then y is B" and "if x is A and 
z is C then y is not B", each of the rules being 
represented by means of G6del implication. 

In the light of the different semantics that we can 
imagine for fuzzy "if. . .  t hen . . . "  rules, and which 
have been discussed in Sections 2 and 3, it is clear 
that there exist many types of fuzzy "if.. .  then. . .  
unless . . . "  rules. For  each type of fuzzy "if. . .  
t hen . . . "  rule we described, we can imagine the 
associated fuzzy "if.. .  then. . ,  unless . . . "  rule, and 
what is the intended meaning of having C fuzzy. In 
the following we briefly discuss only a few types of 
such rules. Also the meaning of the unless part  of 
the rule has to be made precise. Apart  from "if x is 
A and z is not C then y is B", does the rule mean 
that "if x is A and z is C then y is not B", as 
suggested by [8] or only that "if x is A and z is 
C then y is unknown"? Moreover, do we expect to 
conclude that "y is B when x is A if nothing is 
known on z"? 

Default reasoning, based on certainty rules, of- 
fers good examples of fuzzy "if.. .  then. . ,  un- 
less . . . "  rules. Let us, for instance, consider the rule 

"usually, birds fly unless they are very big". Such 
a rule means that the less true a bird is very big, the 
more certain it flies. This understanding of the rule 
leads to a model of the form 

rcy,x.r(v, u, w) ~< max(pB(v), pc(W), 1 - pA(u)), (26) 

for the rule "if x is A then y is B unless z is C" (with 
A = b i r d ,  B = f l y i n g ,  C = v e r y  big). In our 
example, A is not fuzzy, but B may include some 
uncertainty pervading the conclusion (to take into 
account the "usually" in the above rule). As can be 
seen in (26), the level of uncertainty pervading the 
conclusion of the rule when pA(U) = 1, is the max- 
imum of the one, 4, associated with B (if B is of the 
form P8 = max(pB,, 2)) and of the degree pc(z) 
which estimates to what extent the bird is very big 
in our example. When z is precisely known, z = w, 
and pc(w) = 0, (26) reduces to the standard certain- 
ty rule as expected. When pc(w) = 1, nothing can be 
concluded about y; this is also the case if z is 
unknown (except if we add a default information of 
the type "generally z is not C", as already discussed 
in Section 2.2). If we want to conclude also that y is 
not B when z is C, we add the other constraint 

7tylx, z(V, U, W) ~< max(1 -- pB*(V), 1 -- pc(W), 

1 - p A ( U ) ) .  (27) 

Note that B* is used in (27) instead of B in order to 
preserve the normalization assuming that the sup- 
port of B* is strictly included in V (ifp~ = max(pB,, 
2)). By combining (26) and (27), and assuming that 
B* is not fuzzy and ~ = 0 for simplicity, we get 

n~.lx.z(V, u, w) 

~< max(1 - p A ( U ) ,  min [max(pB,(V), pc(W)), 

max(1 - pB,(v), 1 - pc(W))]). (28) 

As it can be seen, when pA(U) = 1, we obtain a non- 
normalized upper bound for 7ZyLx, z if z = w is such 
that 0 < pc(W) < 1. This is due to the uncertainty 
pervading the situation. In our example, we cannot 
say clearly if the considered bird is very big or not; 
it is somewhat in between. If pA(U)= 1 and 
pc(W) = 1 -  pc(W)= 1/2, (28) yields nylx(v,u) <~ 
1/2, Vv, which expresses a conflicting situation. 
When pc(W) < 1/2, B* emerges with a somewhat 
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greater level of possibility, while if t~c(W) > 1/2, it is 
its complement which is emerging (this could be 
emphasized by normalizing the result in each case). 
The denormalization of the result should not be 
surprizing. It expresses a partial inconsistency in- 
duced by the uncertainty about the specific subclass 
to which the situation belongs. This type of prob- 
lem is encountered in nonmonotonic reasoning 
where the existence in the knowledge base of condi- 
tional rules referring to more or less specific con- 
texts and having conflicting conclusions, creates 
a partial inconsistency of the possibilistic logic 
representation of the knowledge base [11]. Then 
a special inference machinery is needed to get 
the expected conclusions; see [-3]. This machin- 
ery needs to be extended in order to allow for 
possible uncertainty about the context to which the 
current situation belongs, when this situation is 
described in terms of vague predicates. Note that 
we have a similar denormalization of the result if 
(27) is combined with ~.1:, ~< max(/~8, l - - / t a ) ,  

representing the rule "usually birds flies" in our 
example, instead of being combined with (26), as 
done in (28). 

Clearly, fuzzy unless rules are not only connected 
with certainty rules. We can for instance, imagine 
a rule of the type "the more x is A, the more y is B, 
unless z is C". Such a rule can be easily understood 
and represented when C is an ordinary subset: the 
unless part restricts the rule to the situation where 
z¢C; then if z ~ C, the relation between x and y may 
be completely different. When C is fuzzy, our un- 
derstanding of the rule may be, for instance, "the 
more z is C, the more certain it is that the more x is 
A, the more y is B", which can be clearly modelled 
by the constraint 

~,!~,~(v, u, w) ~< max(/~A ~B(u, v), 1 -/~c(W)), (29) 

where A ~ B  is modelled by G6del or by Res- 
chef-Gaines implication. This expresses that the 
smaller #c(Z), the less certain we are that the grad- 
ual rule holds. 

Possibility rules may also have an unless part, 
like in the rule "the more is A, the more possible y is 
B unless z is C". If C is an ordinary subset the 
semantics is clear. If C is fuzzy, several interpreta- 
tions can be thought of. For instance, it might mean 
that "the more x is A and the less z is C, the more 

possible y is B' ,  which leads to the representation 

7Zylx.~(v, u, w) ~> min(#a(U), 1 -- I~c(W), I~B(v)). (30) 

A complete investigation of all the types of fuzzy 
unless rules is beyond the purpose of this paper. We 
only emphasize that their proper modelling requires 
the proper modelling of simpler if/then rules and the 
precise understanding of their intended meaning. 

5. Coherence of parallel fuzzy rules 

Fuzzy rules are often used in parallel (by parallel 
we mean that they relate the same variables, i.e., the 
same variable(s) xl . . . .  , x, appear(s) in all the con- 
dition parts of the rules, while all the conclusions 
pertain to the same variable, say y). Then an impor- 
tant issue is then to make sure that a set of fuzzy 
rules is coherent. By coherent, it is meant that for 
any input the result of the system of rules is a nor- 
malized fuzzy set, i.e., at least one value remains 
completely possible for the variable in the con- 
clusion part whatever the input is. Since conjunc- 
tion-based fuzzy rules represented by lower bounds 
of a possibility distribution are combined disjunc- 
tively nothing in the constraints representing the 
rules can forbid the possibility distribution to be 
normalized for any input. Thus, an incoherence in 
the system of rules cannot take place with conjunc- 
tion-based representations 3. By constrast, implica- 
tion-based rules can be incoherent, since after 
combination by means of the rain operation, the 
resulting upper bound of the possibility distribu- 
tion representing the collection of rules can be no 
longer normalized for some input value. In the 
following, we briefly state some results presented in 
[-20] on the coherence of parallel implication-based 
rules. More details are given in [31]. 

Consider first a set of two crisp rules "if x is Ai 
then y is Bi", i = 1,2. If xCAi for some i then rule 
i enforces nothing on the value of y. Hence it is 
always possible to assign a value to y. The only 

3 A form of incoherence might only appear if q/~er deluzztiBcation 
of a no,convex result (obtained by disjunctive combination), the 
precise conclusion, thus obtained, does not belong to the sup- 
port of the non-convex fuzzy set which is defuzzified. 
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situation that may lead to an incoherence is when 
x E A I ~ A 2 .  Then due to the rules, yEBlC~B2, and 
this is impossible if and only if BlmB2 = 0. Conse- 
quently two crisp rules are coherent if and only if 

A t ~ A 2  :# 0 implies B I ~ B 2  :/: O. (31) 

This is clearly equivalent to 

Vu, Sv, min(max(1 - ]/A1(U), ]/~I(V)), 

max(1 -- ]/A2(U), #B:(V)) = 1. (32) 

When n rules are considered, the extension of(32) is 
straightforward, while (31) must be written for all 
subsets of the n rules whose condition parts over- 
lap. 

Let us consider the case of certainty rules. The 
coherence of two certainty rules is defined by (32) 
where the membership functions are valued on 
[0, 1]. Indeed (32) expresses that the projection on 
U of the combination of the two rules does not 
induce any restriction on the variable x, since the 
degree of possibility of any possible value u e U of 
x remains equal to 1. It is easy to see that (32) holds 
for any pair of rules and any u$support (A1)c~ 
support (A2) for a suitable choice ofv in core (B1) or 
core (B2). When u e support (A1)c~support (A2) then 
the only way to satisfy (32) is to select v such that 
/@1@) = ]/B~(v)= 1, i.e., vecore  (B0c~core (B2). It 
means that the characteristic condition for the co- 
herence of two crisp rules (31) is easily adapted to 
certainty rules as follows: two certainty rules are 
coherent if and only if 

support(A1)c~support(A2) :# 0 implies 

core(B1)c~core(e2) 4: 0. (33) 

In other words, we are back to a coherence problem 
in classical logic. This result generalizes to subsets 
of rules with coherent condition parts [20]. 

Coherence condition (32) writes for a knowledge 
base made of two gradual rules 

Vu, ~v, min(]/A,(U) ~ ]/8,(v), ]~as(V) ~ I@~(v)) = 1, 
(34) 

with ]/AI(U)--* ]/B,(v) = 1 if ]/A,(U) ~ ]/,,(t') and 
]/A,(U)--*I~(V) = ]/,,(V) otherwise. Thus (34) is 

equivalent to 

Vu e support(A1)c~support(A2), 3v, 

]/At(U) ~ ]/BI(U) a n d  ]/A2(U) ~ ]/B2(U). (35) 

This is still equivalent to 

'V'~ E (0, 1], (A1)~m(A2):, # 0 ~ (B1)~(B2)~ ¢ 0, 

(36) 

where As, B~ denote the ~-cuts of the fuzzy 
sets A and B (As = {u, ]/A(u)~> ~}). These coher- 
ence conditions have been already pointed out 
in [12]. 

An easy-to-establish consequence of(35) and (36) 
is 

hgt(AlnA2) ~< hgt(Bl~B2). (37) 

This is a necessary condition for coherence. How- 
ever it is not sufficient as shown on Fig. 3. 

In [20], it is shown that in the case of triangular 
membership functions (37) becomes a necessary 
and sufficient condition, when each fuzzy set only 
overlaps with its immediate neighbours and the 
slopes of the decreasing and increasing parts of the 
Ai's are proportional to the ones of the correspond- 
ing parts of the B~'s. Namely let ai denote the peak 
of Ai and [_a~, ci~] its support. If bi, _bi and b~ are 
defined likewise then the condition on slopes is 

U1 - -  (dl a2 - -  ~2 

bl -- bl b2 -- h2 

This encompasses the case where all the Ai's 
are symmetrical and identical up to a translation 
and the same condition holds for the Bi's. A 
well-known particular case of coherence is encoun- 
tered in practice in fuzzy control when triangular 
membership functions such that Vi = 1, n - 1, Vu, 
]/ai(!'l) -~- ]/ai~ ,(H) = l (which entails hgt(Aic~ 
Ai+m) = 1/2) are used on the domain of U and the 
Bi's make a similar fuzzy partition. Practical 
methods for testing the coherence of a set of grad- 
ual rules are under study [31]; especially some 
results are given to cut down the combinatorial 
complexity in the case of rules whose conditions are 
defined on real intervals. 
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Fig. 3. Condition (33) does not hold: (vl~B,(v)/> ~A,(U)}n(Vt#B=(V) /> ~Za2(U)) = 0 

6. Concluding remarks 

The representation of the intended meaning of 
fuzzy rules has received little attention until now in 
spite of the enormous quantity of existing literature 
on approximate reasoning and fuzzy controllers. 
The paper has recalled different kinds of fuzzy rules 
based on very simple semantical considerations. 
Four types of fuzzy rules emerge corresponding to 
very standard alterations of a possibility distribu- 
tion: enlarging its core, shrinking its support, trun- 
cating its height or, drowning it in a uniform level 
of uncertainty. We can also distinguish between 
fuzzy rules where some gradual uncertainty is ex- 
pressed and pure gradual rules where fuzzy sets are 
used in the rules only for describing a local relation 
between variables by means of gradual properties 
(as in rules of the type "the more x is A, the more 
y is B"); then in this latter case a precise input yields 
a nonfuzzy conclusion. 

The proposed semantics systematically exploits 
the gradedness of properties and/or modalities ex- 
pressing certainty or mere possibility. Implication- 
based and conjunction-based representations have 
been contrasted from the points of view of their 
meanings, of the underlying combination mode and 
of coherence analysis. An open question is to decide 
what kind of fuzzy rule is best suited to fuzzy 
control and related tasks. The almost systematic 
use of conjunction-based representations, since 
Mamdani's early works, including Sugeno's 
[29] fuzzy rules with precise conclusions, is surpriz- 
ing from the point of view of logic: conjunction- 

based rules do not fit with the usual meaning of 
rules in expert systems. One possible explanation 
may be that systems engineers and knowledge-en- 
gineers do not have the same background. The 
former are usually data-driven, are used to identi- 
fication methods where models derive from data. 
They also view fuzzy rules as data, and their rea- 
soning methodology is based on accumulating 
data. Incoherence issues are not considered because 
incoherence is unavoidable in a set of data. On the 
contrary knowledge engineers are knowledge- 
driven, and a fuzzy rule is a piece of knowledge that 
constrains a set of possible situations. The more 
fuzzy rules, the more information, and the more 
precise one can get. This methodology that pro- 
ceeds by successive refinements clearly does not 
work if a set of rules is not coherent. A lot remains 
to be done in order to reconcile the data-driven and 
the knowledge-driven approach to information 
technology. Fuzzy rules clearly stand at the cross- 
road of the two traditions. 

A proper representation of the semantic contents 
of expert rules is clearly a basic issue in approxim- 
ate reasoning and looks important for a proper use 
of fuzzy rules in applications. Also, a proper repres- 
entation of the available pieces of knowledge is 
a requirement for analyzing a knowledge base 
made of fuzzy rules, and for validating it. Gradual 
rules, possibility rules, and certainty rules are very 
different in their intended use and should not be 
confused. Gradual rules are oriented towards the 
interpolation and the extrapolation of conclusions 
since the fuzzy sets in their condition parts then 
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encode an idea of similarity, viewing such a rule as 
expressing that "the closer x is to the core of A, the 
closer y is to the core of B". Pure gradual rules 
provide a partial but nonfuzzy description of the 
relation between variables x and y (since A ~ B is 
a crisp subset of U x V, although A and B are fuzzy 
for expressing gradedness). Gradual rules can ap- 
proximate functions; see [10]. Anti-gradual rules 
express that the set of feasible values for y is all the 
larger as the condition part of the rule is better 
satisfied (this does not exclude that other values 
might be feasible as well if it is asserted by other 
rules); anti-gradual rules contrast with gradual 
rules which restrict the set of possible values for 
y all the more as #A(X) is greater. Possibility rules 
also provide weighted conclusions which can be 
accumulated disjunctively. This agrees with forms 
of reasoning like analogical reasoning or abductive 
reasoning where distinct pieces of acceptable, 
plausible conclusions are gathered, such as possible 
actions in a current situation (which resembles situ- 
ations described in the rules), or suggested explana- 
tions for a given set of manifestations. 

Certainty rules are more in the spirit of deductive 
reasoning since their conclusions are combined 
conjunctively, even if they are pervaded with uncer- 
tainty. Certainty rules with fuzzy condition parts 
enable us to relate typicality and certainty, by inter- 
preting "the more x is A" as "the more typical x is", 
as in the example "the more typical a bird, the more 
certain it flies". In such a case, typicality can be 
appreciated in terms of the weight of the bird, the 
length of the wings and so on. So, such a rule 
requires a rather precise information about the 
considered bird in order to get a useful conclusion. 
This differs from the situation dealt with by generic 
rules having exceptions as in the classical example 
"birds fly", "penguins are birds" and "penguins do 
not fly"; there, the "fuzzy" class of birds which fly is 
not explicitly defined. However, some exceptions 
which do not belong to this class are encountered in 
other rules of the knowledge base (here, the pen- 
guins). See [-3] for a treatment of rules having 
exceptions in the framework of possibility theory: 
the rule "generally, if p then q" is then understood 
as "the possibility of having p and q true is strictly 
greater than the possibility of having p and not 
q true". In this latter problem, rules are not fuzzy by 

themselves and the fuzzy set of interpretations com- 
patible with a set of default rules is defined on 
a referential which is not ordered in general. Yet, 
a set of rules with exceptions leads to considering 
that some situations are more plausible than 
others, i.e., induce a nonbinary possibility distribu- 
tion. Fuzziness is thus attached to the whole know- 
ledge base. On the contrary, fuzzy rules with fuzzy 
condition parts are usually defined on referentials 
which are totally ordered, such as numerical 
universes (even if it is not compulsory) and fuzzy 
sets are local, attached to predicates. Fuzzy rules 
thus play an important role at the interface between 
reasoning with symbolic categories and the hand- 
ling of numerical data. 
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