
Possibility theory in constraint satisfaction problems:
Handling priority, preference and uncertainty

Didier DUBOIS – Hélène FARGIER – Henri PRADE

Institut de Recherche en Informatique de Toulouse (I.R.I.T.) – CNRS
Université Paul Sabatier, 118 route de Narbonne

31062 Toulouse Cedex – France
Tel.: (+33) 61.55.69.42 – Fax: (+33) 61.55.62.39

Email: {dubois, fargier, prade}@irit.fr

Abstract

In classical Constraint Satisfaction Problems (CSPs) knowledge is embedded in a set of
hard constraints, each one restricting the possible values of a set of variables. However
constraints in real world problems are seldom hard, and CSP's are often idealizations that do
not account for the preference among feasible solutions. Moreover some constraints may have
priority over others. Lastly, constraints may involve uncertain parameters. This paper advocates
the use of fuzzy sets and possibility theory as a realistic approach for the representation of these
three aspects. Fuzzy constraints encompass both preference relations among possible
instanciations and priorities among constraints. In a Fuzzy Constraint Satisfaction Problem
(FCSP), a constraint is satisfied to a degree (rather than satisfied or not satisfied) and the
acceptability of a potential solution becomes a gradual notion. Even if the FCSP is partially
inconsistent, best instanciations are provided owing to the relaxation of some constraints.
Fuzzy constraints are thus flexible. CSP notions of consistency and k-consistency can be
extended to this framework and the classical algorithms used in CSP resolution (e.g., tree
search and filtering) can be adapted without losing much of their efficiency. Most classical
theoretical results remain applicable to FCSPs. In the paper, various types of constraints are
modelled in the same framework. The handling of uncertain parameters is carried out in the
same setting because possibility theory can account for both preference and uncertainty. The
presence of uncertain parameters lead to ill-defined CSPs, where the set of constraints which
defines the problem is not precisely known.

Keywords: Constraint satisfaction problem; possibility theory; fuzzy restriction; softness;
uncertainty; preference; priority.

2

1. Introduction

Classical Constraint Satisfaction Problems (CSPs) only consider a set of hard

constraints that every solution must satisfy. This rigid representation framework has several

drawbacks. First, some problems are over-constrained and have no solutions. A relaxation of

the less rigid or important constraints must be performed in order to obtain a solution.

Discovering that a problem has no solution may be time-consuming and devising an efficient

constraint relaxation method is far from easy. Alternatively, other problems lead to a large set of

equally possible solutions, although there often exist preferences among them which remain

unexpressed. But, a standard CSP procedure will pick a solution at random. As a matter of

fact, in practice, constraints are not always strict and it is desirable to extend the CSP

framework in order to accommodate flexible constraints. Devising a framework for

representing the flexibility of constraints will avoid artificially unfeasible problems (constraints

being self-relaxable), and will avoid the random choice of solutions to loosely constrained

problems. By flexible constraints, we mean either (i) soft constraints, which directly express

preferences among solutions (i.e., this is a ranking of instantiations which are more or less

acceptable for the satisfaction of a soft constraint), or (ii) prioritized constraints, that can be

violated if they conflict with more prioritary constraints.

In soft constraints, the flexibility accounts for the possibility of going away from

instantiations that satisfy the constraints ideally. Notice that the interest in soft constraints can

be traced back to the early CSP litterature; in 1975, Waltz [1] mentioned that he heuristically

distinguished between "likely" instanciations of a constraint and "unlikely" ones which are only

considered if necessary. Also in computer vision, in 1976 Rosenfeld et al. [2] modelled

preference in the detection of convex objects for scene labeling problems, and proposed to use a

fuzzy degree of constraint satisfaction. The idea of representing relative preferences by means

of weights is also at work in the relaxation labeling process described in 1983 by Hummel and

Zucker [3]. More recent works either propose to use fuzzy sets in modeling such constraints

[4][5][6][7][8] or to progressively relax the constraints when preferences are in conflict [9].

3

In prioritized constraints the flexibility lies in the ability to discard constraints involved

in inconsistencies, provided that they are not too important. Generally, a weight is associated

with each constraint and the request is to minimize the greatest priority levels of the violated

constraints [10][11]. More generally, Brewka et al. [12], and Borning et al. [13] identify

different forms of constraint relaxation, viewing each constraint as a strict partial order on value

assignment and weighting the importance of constraints; in particular, Brewka et al. provide a

formal semantics in relation to nonmonotonic reasoning by means of maximal-consistent

subsets of constraints.

Freuder [14], Freuder and Wallace [15], and Satoh [16] have devised theoretical

foundations for the treatment of flexibility in CSPs. Satoh tries to apply results in

nonmonotonic reasoning based on circumscription to the handling of prioritized constraints so

as to induce preference relations on the solution set. A similar point of view is adopted by Lang

[17] where prioritized constraints are expressed in possibilistic logic (i.e., a logic with weigthed

formulas which has a nonmonotonic behaviour in case of partial inconsistency). Taking a dual

point of view, Freuder [14] regards a flexible problem as a collection of classical CSPs. A

metric can then be defined that evaluates the distance between them. Then, the question is to

"find the solutions to the closest solvable problems".

In order to take into account both types of flexibility, a generalization of the CSP

framework has been proposed [18], based on Zadeh's possibility theory [19]: the Fuzzy

Constraint Satisfaction Problem framework (FCSP). The main point is that both types of

flexible constraints are regarded as local criteria that rank-order (partial) instantiations and can

be represented by means of fuzzy relations. In a FCSP, constraint satisfaction or violation are

no longer an all-or-nothing notion: an instanciation is compatible with a flexible constraint to a

degree (belonging to some totally ordered scale). The notion of consistency of a FCSP also

becomes a matter of degree. The question is then to combine the satisfaction degrees of the

fuzzy constraints in order to determine the total ordering induced over the potential solutions

and to choose the best ones. Making a step further, we propose to use this framework also to

handle more complex constraints, e.g., nested conditional constraints.

4

Moreover, the framework offered by possibility theory enables us to represent ill-

known parameters, whose precise value is neither accessible nor under our control, under the

form of so-called possibility distributions (where the possible values are rank-ordered

according to their level of plausibility). Ill-known parameters contrast with decision variables

on which a decision-maker has control. This paper shows that constraints whose satisfaction

depends on these ill-known parameters can be represented in the setting of possibility theory as

well. In the presence of ill-known parameters, robust solutions should be searched for, such

that the constraints be satisfied whatever the values of these ill-known parameters. Possibility

theory implements this idea in a flexible way. Lastly, ill-known parameters lead to the idea of

ill-defined CSPs; by ill-defined CSP we mean a CSP for which we are uncertain about the

precise set of constraints which defines it, this uncertainty being due to ill-known factors. This

aspect can also be accounted for in our framework.

From an algorithmic point of view, the possibility of extending Waltz' algorithm to

fuzzy constraints has been pointed out by Dubois and Prade [20] and by Yager [21]. As we will

show, all the classical CSP algorithms (e.g., tree search, AC3, PC2) can easily be adapted to

FCSPs. More generally, our framework reveals itself powerful enough to accommodate the

definitions of local consistency of a problem (arc-consistency, 3-consistency, k-consistency) —

interestingly enough, investigations by the second author [22] indicate that the theoretical

results relating levels of local consistency of a CSP to its global consistency [23][24] remain

valid in FCSPs.

The next section deals with representation issues concerning flexible constraints. Fuzzy

subsets on Cartesian products of domains, i.e., fuzzy relations, are used to model soft and/or

prioritized constraints. An illustrative example is provided. The agreement of this representation

with the preferential semantics of possibility theory is emphasized. Then the extension (resp.:

projection) of fuzzy constraints to larger (resp.: smaller) Cartesian products of domains is

recalled as well as the conjunctive or disjunctive combinations of fuzzy relations for

representing compound constraints. Finally, this section devoted to representation issues

5

discusses the modelling of more sophisticated constraints, namely prioritized constraints with

safeguard (in order to guarantee the satisfaction of a weaker constraint in case of violation of the

prioritized one) and conditional constraints. Then Section 3 formally defines the FCSP

framework and compares it to other approaches to flexibility in CSP. This section then presents

the essentials of a Branch and Bound algorithm performing the search for the best solutions.

Nonmonotonic aspects of FCSPs are also outlined. Different notions of local consistency (arc-

consistency, k-consistency) of a FCSP are defined in Section 4; the complexity of extensions of

filtering algorithms (e.g., AC3) to the fuzzy set framework is also discussed. Section 5

explains how to handle ill-known parameters pervaded with uncertainty in FCSPs. Before the

general conclusion, Section 6 briefly discusses the modelling of ill-defined CSPs in the

possibilistic framework. In this setting, ill-defined hard CSPs, where the belonging to the

problem of each constraint is (individually) uncertain, are shown to be formally equivalent to

FCSPs made of prioritized hard constraints. The relation between ill-defined hard CSPs and

CSPs with ill-known parameters is also briefly discussed.

2. Representing Flexible Constraints

A hard constraint C relating a set of decision variables {x1, …, xn} ranging on

respective domains D1, …, Dn is classically described by an associated relation R: R is the

crisp subset of D1 × …× Dn that specifies the tuples d = (d1, …, dn) of values which are

compatible with C. The set {x1, …, xn} of variables related by R will be denoted by V(R).

6

2.1. Fuzzy Model of a Soft Constraint

A soft constraint C will be described by means of an associated fuzzy relation R [25],

i.e., the fuzzy subset of D1 × …× Dn of values that more or less satisfy C. R is defined by a

membership function µR which associates a level of satisfaction µR(d1, …, dn) in a totally

ordered set L (with top denoted 1 and bottom denoted 0) to each tuple (d1, …, dn) ! D =

D1 ×… × Dn. This membership grade indicates to what extent d = (d1, …, dn) is compatible

with (or satisfies) C. Thus, the notion of constraint satisfaction becomes a matter of degree:

µR(d1, …, dn) = 1 means (d1, …, dn) totally satisfies C

µR(d1, …, dn) = 0 means (d1, …, dn) totally violates C

0 < µR(d1, …, dn) < 1 means (di, …, dn) partially satisfies C

Hard constraints are particular cases of soft constraints, since they involve levels 0 and 1 only.

A soft constraint involving preferences between values is regarded as a local criterion ordering

the instantiations of C, preferences levels being represented in the scale L: µR(d1, …, dn) >

µR(d'1, …, d'n) means that the first instantiation is preferred to the second one. Interpreting

the preference degrees as membership degrees leads to represent a soft constraint by a fuzzy

relation.

The assumption of a totally ordered satisfaction scale underlying the above setting may

be questioned. The very use of a satisfaction scale instead of just an ordering relation is crucial

when it comes to the aggregation of local satisfaction levels. Indeed due to the famous Arrow

theorem (e.g., Moulin [26]), it is very difficult to merge several ordering relations that are not

commensurate. The satisfaction scale needs not be totally ordered stricly speaking, since a

complete lattice will do as well. In the following we assume that L is a totally ordered set, i.e.,

a chain. But the scale of membership grades needs not be numerical, as pointed out years ago

[27]. A qualitative scale makes sense on finite domains. However on continuous domains, as in

the case of temporal constraints with continuous time, it is much more natural and simple to

7

assume that the satisfaction scale is the unit interval; then levels of satisfaction reflect distances

to ideal values in the domain.

2.2. Fuzzy Model of a Prioritized Constraint

Fuzzy relations also offer a suitable formalism for the expression of prioritized

constraints. When it is possible to a priori exhibit a total preorder over the respective priorities

of the constraints, these priorities will be represented by levels in another scale V: a priority

degree Pr(C) is attached to each constraint C and indicates to what extent it is imperative that C

be satisfied. First consider the case of hard constraints. Pr(C) = 1 means that C is an absolutely

imperative constraint while Pr(C) = 0 indicates that it is completely possible to violate C (C has

no incidence in the problem). Given two constraints C and C', Pr(C) > Pr(C') means that the

satisfaction of C is more necessary than the satisfaction of C'. If C and C' cannot be satisfied

simultaneously, solutions compatible with C will be preferred to solutions compatible with C'.

In fact, the scale V can be interpreted as a "violation scale": the greater Pr(C), the less it

is possible to violate C. This remark leads us to relate the satisfaction scale L to the violation

scale V, considering that there exists an order-reversing bijection from V to L such that L =

c(V) = {c(v), v ! V}: c(0) and c(1) are respectively the top element and the bottom element of

L, and v " v' in V implies c(v) # c(v') in L. This is one of the basic modeling assumptions in

this paper: the c-complement of the level of priority of a constraint is interpreted as the extent to

which the constraint can be violated, using the reversed priority scale L = c(V) as a satisfaction

scale; L is nothing but V put upside down. Since Pr(C) represents to what extent it is necessary

to satisfy C, c(Pr(C)) indicates to what extent it is possible to violate C, i.e., to satisfy its

negation. In other words, the constraint C is considered as satisfied at least to degree c(Pr(C))

whatever the considered solution, whether it satisfies C or not. More precisely, the prioritized

constraint (C, Pr(C)) is considered as totally satisfied by a tuple if C is satisfied, and satisfied to

degree c(Pr(C)) if the tuple violates C. Hence c(V) can be identified to a satisfaction scale as in

8

the previous section, and a prioritized constraint C may be represented by the fuzzy relation (see

Figure 1):

µR(d1, …, dn) = c(0) = 1 if (d1, …, dn) satisfies C;

µR(d1, …, dn) = c(Pr(C)) if (d1, …, dn) violates C.

1

0 crisp set of values
satisfying C

µR(d)

d = (d1, …, dn)
1 – $

Figure 1. A hard (or crisp) constraint C with priority Pr(C) = $ when c(x) = 1 – x.

Note that when Pr(C) = 1, the characteristic function of C is recovered, while when Pr(C) = 0

the constraint C degenerates into the whole domain D.

Conversely, a soft constraint C where preferences are described in terms of a finite

number of satisfaction degrees 0 = $0 < $1 <… < $p < 1 in a scale L, can be represented by a

finite set of prioritized constraints {Cj, 0 # j < p} using the scale L put upside down as a

priority scale, via an order-reversing map c:

Pr(Cj) = c($j) defining Rj = {(d1, …, dn), µR(d1, …, dn) " $j+1}, j = 0, p – 1.

If moreover it is assumed that c is involutive, that is c(c($)) = $ (this hypothesis is made

throughout the whole paper), then it is straightforward to reconstruct the soft constraint C by

means of the set of prioritized constraints {(Cj, Pr(Cj)), 0 # j < p} as shown in Figure 2 where:

µR(d) = minj max(c(Pr(Cj)), µRj(d)) for every tuple d = (d1, …, dn) (1)

9

$j+1

$j

$1

$0 = 0

µR(d)

1

$p

d = (d1, …, dn)

values satisfying Cp–1, priority 1 – $p–1

values satisfying Cj, priority 1 – $j

values satisfying C0, priority 1 – $0 = 1

Figure 2. Decomposition of a soft constraint into a family of

prioritized constraints when c(x) = 1 – x.

Finally, a prioritized soft constraint C corresponds to the following fuzzy relation:

µR'(d1, …, dn) = max(c(Pr(C)), µR(d1, …, dn)) (2)

where R is the fuzzy relation describing the preferences of C only. Viewing the soft constraint

expressed by R as a family of nested prioritized constraints, the global priority Pr(C) attached to

the soft constraint C means that we forget the priorities higher than Pr(C) in the expression of R

since

max(c(Pr(C)), µR(d)) = max(c(Pr(C)), minj max(c(Pr(Cj)), µRj(d)))

= minj max(c(min(Pr(C), Pr(Cj))), µRj(d)).

To conclude with representation issues, prioritized and soft constraints can be cast in a

unique setting that we call "flexible constraints", modelled by fuzzy sets, where flexibility

means the capabibility of self-relaxation. This capability is locally imbedded in the description

of the constraint, thus avoiding the necessity of a specific constraint relaxation procedure to be

10

triggered when a set of constraints is found inconsistent. This unification presupposes a strong

link between levels of constraint satisfaction, and levels of constraint priority, using a single

ordered scale L for both priority and satisfaction and an order-reversing map c that changes one

notion into the other. For simplicity, we sometimes use L = [0,1] and c(x) = 1 – x in the

following. However all results to be presented remain valid on a qualitative scale.

2.3. Possibility as Preference

The above approach to the joint handling of soft and prioritized constraints is in

complete accordance with the basic principles of possibility theory (Zadeh [19], Dubois and

Prade [28]). A possibility distribution % is a mapping from a domain D to a linearly ordered

scale L ([0,1] in general). Attached to a variable x, a possibility distribution expresses that the

value of x is incompletely specified, as soon as & d1 ' d2, %(d1) > 0 and %(d2) > 0. %(d) = 0

means that it is impossible, or ruled out, that x = d. A normalized possibility distribution % is

such that %(d) = 1 for some d, expressing that no conflict on the value of x is present. In the

context of constraint satisfaction problems, x is a decision variable, i.e., its value is

controllable, and the problem is to select a suitable value for x. The fuzzy set of admissible

values for x according to the associated constraint (more generally the fuzzy relation in case x is

a vector of elementary variables) can be viewed as a possibility distribution prescribing to what

extent a value is judged to be suitable for x according to the constraint. Hence the degree of

possibility %(d) is the degree of preference for choosing x = d, with the convention that when

%(d) = 0, d is a forbidden value of x, and when %(d) = 1, d is among the values which are

definitely preferred, or, more specifically, against which no objection exists. Hence flexible

constraints are naturally described by means of possibility distributions.

Given a possibility distribution % attached to a variable x, the occurrence of events of the

form x ! A can be assessed by means of possibility and necessity degrees, respectively defined

as (see, e.g., [28])

((A) = supd!A %(d) , N(A) = infd)A c(%(d)) (3)

11

 where c is the order-reversing map on L. They are such that ((A) = c(N(A)), where the

overbar denotes complementation, i.e., an event necessarily occurs if its contrary is impossible.

((A) = 1 only means that A is consistent with the constraint represented by % while N(A) = 1

means that the satisfaction, even partial, of the constraint represented by % entails the

occurrence of A (i.e., the fuzzy set of solutions which more or less satisfy the constraint

represented by % is included in A).

In the case of prioritized constraints, the degree of priority $ of a contraint C is viewed

as a degree of necessity of the subset R modelling the constraint, i.e., corresponds to the higher

level constraint N(R) " $. The possibility distribution that accounts for the priority level $, as

pictured in Figure 1, is the least specific, or equivalently, the largest, the least restrictive

possibility distribution % such that N(R) " $ holds, i.e., %(d) is maximal for each d ! D.

Indeed N(R) " $ is equivalent to infd)A c(%(d)) " $, that is %(d) # c($) for all d) A. The

least restrictive soft constraint that respects this condition is %*(d) = 1 if d ! A and c($)

otherwise. This is a formal justification of the treatment of prioritized constraints in the previous

section.

When R is itself a possibility distribution modelling a soft constraint, whose priority is

$, the notion in possibility theory that can account for priority is the necessity of the fuzzy

event R,

N(R) = infd!D %(d) * µR(d) " $ (4)

where the arrow * is a multiple-valued implication, that is, a function that is decreasing in the

first argument and increasing in the second one; N(R) is the degree of inclusion in R of the

fuzzy set with membership function %. When $ = 1, the least specific solution of the above

inequality should be % = µR. Indeed "R is fully imperative" is equivalent to the soft constraint

R itself. This forces the multiple-valued implication to satisfy %(d) * µR(d) = 1 iff %(d) #

µR(d) (that is, when the constraint R is looser than the one described by %). Moreover, if $ =

0, then the least specific solution of the above inequality should again be %(d) = 1, +d (the non-

12

informative possibility distribution, expressing no constraint). This condition enforces 1 *

µR(d) = 0 if µR(d) < 1. Finally, a simplicity requirement, in agreement with the latter, is that

%(d) * µR(d) should depend only on (and is decreasing with) %(d) when %(d) > µR(d). Hence

%(d) * µR(d) = c(%(d)) if %(d) > µR(d) (where c is the order-reversing mapping considered in

Subsection 2.2; often for simplicity c(a) = 1 - a). With this choice we do have the fuzzy model

of a soft, prioritized constraint suggested at the end of the previous subsection, i.e.

Pr(C) = $, %(d) = max(c($), µR(d)) (5)

when Pr(C) = $ is interpreted as N(R) " $. The fuzzy set of admissible values with respect to a

soft constraint with priority $, is thus included to degree $ in the set of values compatible with

the same constraint with maximal priority, and thus the satisfaction of this prioritized constraint

cannot fall under level c($).

The present semantics of possibility distributions in terms of preference over the

possible values of a variable, among which one must choose, contrasts with the alternative

semantics in terms of plausibility that a parameter supposedly uncontrollable, or unknown,

takes some value. The latter semantics will be envisaged in Section 5.

2.4. Example

A course must involve 7 sessions, namely x lectures, y exercise sessions and z training

sessions (C1). There must be about 2 training sessions (C2), i.e., ideally 2, possibly 1 or 3.

Dr. B, which gives the exercise part of the course, wants to manage 3 or 4 sessions (C3).

Prof A, which gives the lectures, wants to give about 4 lectures (C4), i.e., ideally 4 lectures,

possibly 3 or 5). The request of Dr.B is less important than the one of Prof. A and is itself less

important than the imperative constraints C1 and C2. In this example, flexibility is modeled

using a five level scale L = ($0 = 0 < $1 = c($3) < $2 = c($2) < $3 = c($1) < $4 = 1),

where c is the order-reversing operation. The priorities of C3 and C4 are respectively $2 and

13

$3 ($2 < $3). The domain of variables x, y and z is the set {0,1,2,3,4,5,6,7}. The following

model can be used:

C1: classical hard constraint

µR1(x,y,z) = 1 if x + y + z = 7;

µR1(x, y, z) = 0 otherwise.

C2: soft constraint (see Figure 3a)

µR2(z) = 1 if z = 2;

µR2(x) = $3 if z = 1 or z = 3;

µR2(z) = 0 otherwise.

C3: prioritized constraint Pr(C3) = $2 (see Figure 3b)

µR3(y) = 1 if y = 3 or y = 4;

µR3(y) = c($2) = $2 otherwise.

31 20 4 5 6 7

$1
$2
$3

1

31 20 4 5 6 7

$1
$2
$3

1 µR2

31 20 4 5 6 7

$1
$2
$3

1
µR3

z y

Figures 3a and 3b. Modeling of C2 (a) and C3 (b) by means of fuzzy unary restrictions

C4: soft and prioritized constraint Pr(C4) = $3 (see Figure 4)

µR4(x) = 1 if x = 4;

µR4(x) = max($3, c($3)) = $3 if x = 3 or x = 5;

µR4(x) = c($3) = $1 otherwise.

14

µR4

31 20 4 5 6 7

$1
$2
$3

1

x

Figure 4. Modeling of C4 by means of a fuzzy unary restriction

2.5. Operations on Fuzzy Relations

Flexible constraints are modelled by qualitative fuzzy relations. The usual operations on

crisp relations can be easily generalized to fuzzy relations (Zadeh [25]). To do so, we exploit

the fact that , being totally ordered, the satisfaction scale L is a complete distributive lattice,

where the minimum and the maximum of two elements make sense. The following definitions

extend classical set-theoretic notions used in constraint-directed problem-solving:

• A fuzzy relation R' is said to be included into R if and only if (see Figure 5):

+ (d1, …, dn) ! D1 ×… × Dn , µR'(d1, …, dn) # µR(d1, …, dn).

This definition is a generalization of the classical set inclusion. In terms of constraints, C' is

tighter that C and C is a relaxation (or a weakening) of C'.

1

0 d = (d1, …, dn)

µR

µR'
µR"

Figure 5. R'- R and R'' R

• The projection of a fuzzy relation R on {xk1, …, xknk} - V(R) is a fuzzy relation

R.{xk1,…,xknk} on {xk1, …, xknk} such that:

µR.{xk1,…,xknk}(dk1, …, dknk) = sup{d / d.{xk1,…,xknk}= (dk1,…,dknk)} µR(d)

15

where d.{xk1,…,xknk} denotes the classical restriction of d = (d1 , …, dn) to

{xk1, …, xknk}. This definition is a generalization of the projection of ordinary relations.

µR.{xk1,…,xknk}(dk1, …, dknk) estimates to what level of satisfaction the instantiation

(dk1, …, dknk) can be extended to an instantiation that satisfies C.

• The cylindrical extension of a fuzzy relation R to {xk1, …, xknk} / V(R) is a fuzzy relation

R0{xk1,…,xknk} on {xk1, …, xknk} such that:

µR0{xk1,…,xknk}(dk1, …, dknk) = µR((dk1, …, dknk).V(R))

This definition is a generalization of the cylindrical extension of ordinary relations.
µR0{xk1,…,xknk}(dk1, …, dknk) estimates to what extent the instantiation (dk1, …, dknk)

satisfies C.

• The conjunctive combination (or join) of two fuzzy relations Ri and Rj is a fuzzy relation

Ri1Rj over V(Ri)2V(Rj)= {x1, …, xk} such that (see Figure 6):

µRi1Rj(d1, …, dk) = min(µRi((d1, …, dk).V(Ri)),µRj((d1, …, dk).V(Rj))).

µRi1Rj(d1, …, dk) estimates to what extent (d1, …, dk) satisfies both Ci and Cj. When

V(Ri) = V(Rj), 1 is a generalization of classical set intersection. All properties of the

standard intersection (associativity, commutativity, etc.) hold as long as negation is not

involved; in particular, there holds (Ri 1 Rj).V(Ri) - Ri and (Ri 1 Ri) = Ri.

1

0

µRj
µRi

µRi1Rj
d = (d1, …, dk)

Figure 6. Conjunctive combination of two fuzzy relations Ri and Rj

Note that the use of the combination rule, allowed by the presence of a unique

satisfaction scale, underlies an assumption of commensurability between satisfaction levels

pertaining to different constraints: the user who specifies the constraints must describe them by

16

means of this unique scale L (or by means of the dual scale LT). For instance, in the example of

Section 2.4, the satisfaction level $3 of C4 for x ! {3,5} is assumed to be equal to the

satisfaction level for z ! {1,3} and $1 < c(Pr(C3)) < c(Pr(C4)). Although natural and often

implicit, this assumption must be emphasized.

• The disjunctive combination of two fuzzy relations Ri and Rj is a fuzzy relation Ri3Rj over

V(Ri)2V(Rj)= {x1, …, xk} such that (see Figure 7):

µRi3Rj(d1, …, dk) = max(µRi((d1, …, dk).V(Ri)),µRj((d1, …, dk).V(Rj))).

µRi3Rj(d1, …, dk) estimates to what extent (d1, …, dk) satisfies either Ci or Cj. When

V(Ri) = V(Rj), 3 is a generalization of classical set union. All properties of set union

(associativity, commutativity, distributivity over intersection, etc.) hold, if negation is not

involved.

1

0
µRi1Rj

µRi

µRj

d = (d1, …, dk)

Figure 7. Disjunctive combination of two fuzzy relations Ri and Rj

 2.6. Prioritized Constraints with Safeguard

The framework of fuzzy constraints offers a convenient tool for representing more

sophisticated constraints than the previously encountered ones, for instance prioritized

constraints with safeguard, as well as nested conditional constraints as we are going to see.

First one may like to express that a constraint C, even with a rather low priority Pr(C) = $,

cannot never be completely violated, in the sense that if C is violated, at least a more

permissive, minimal, constraint C' is still satisfied. Let R and R' be the fuzzy relations

associated with C and C' respectively, with R - R' (C' is more permissive than C, i.e., C' is a

relaxation of C). The whole constraint C* corresponding to the pair (C, C') can be viewed as

17

the conjunction of a prioritized constraint (C) and a weaker but imperative, possibly soft,

constraint (C'). This conjunction is represented by the fuzzy relation R*, pictured in Figure 8,

and expressed by:

+ d ! D1 × …× Dn, µR*(d) = min(max(µR(d), c($)), µR'(d)). (6)

1

0

R'

R*

R
1 – Pr(C)

d = (d1, …, dn)

Figure 8. Representation of a prioritized fuzzy constraint with safeguard

This is a particular case of the decomposition of a soft constraint into prioritized ones when C

and C' are hard. Indeed, such constraints express both a requirement with priority $ less than 1

and a weaker requirement with priority 1 and R* is of the form (1):

µR*(d) = min(max(µR(d), c($)), max(µR'(d), c(Pr(C')))) with Pr(C') = 1.

See [29] for the use of such constraints in fuzzy database querying systems. Interestingly

enough, R* can be decomposed either as a disjunction or as a conjunction of two fuzzy

relations, depending on which fuzzy relation, R or R', the priority weight is combined with.

Indeed

µR*(d) = min(max(µR(d), c($)), µR'(d))

= min (max(µR(d), c($)), max(µR(d), µR'(d))) since R - R'

= max(µR(d), min (c($), µR'(d))).

It expresses that satisfying a constraint with safeguard corresponds to either satisfying its

stronger form C, or its weaker form C' the satisfaction degree being upper-bounded in this

second case by c($).

18

For instance, a flexible C5 constraint prescribing: "Prof. A wants to give about four

lectures; anyway, he will never accept to give no lecture" is represented by the fuzzy relation

R5* pictured in Figure 9:

1

31 20 4 5 6 7

$1

$2
$3

x

µR5'
µR5*

µR5

Figure 9. Modeling of C5 by fuzzy constraint with safeguard constraint

2.7. Conditional and Hierarchically Organized Constraints

A conditional constraint is a constraint which applies only if another one is satisfied.

This notion will be interpreted as follows: A constraint Cj conditioned by a hard constraint Ci

(associated with fuzzy relations Rj and Ri respectively) is imperative if Ci is satisfied and can be

dropped otherwise. More generally, the level of satisfaction µRi(d) of a soft conditioning

constraint Ci by an instance d is viewed as the level of priority of the conditioned constraint Cj,

i.e., the greater the level of satisfaction of Ci, the greater the priority of Cj is. A conditional

constraint is then naturally represented by a fuzzy relation Ri 4 Rj over V(Ri)2V(Rj) =

{x1, …, xk} such that:

µRi4Rj(d1, …, dk) = max(µRj((d1, …, dk).V(Rj)), c(µRi((d1, …, dk).V(Ri))))

Ri 4 Rj is a prioritized constraint with variable priority: Cj has a priority 1 if µRi((d1, …,

dk).V(Ri)) = 1, i.e., if Ci is satisfied, and has a priority 0 (which means that Cj can be

forgotten), if Ci is not satisfied. µRi4Rj(d1, …, dk) estimates to what extent d = (d1, …, dk)

satisfies the proposition "if Ci is satisfied, then Cj must be satisfied too"; the function

max(b, 1 – a) is indeed a multiple-valued implication. Note that the conjunction of the two

19

constraints "Ci" and "Cj conditioned by Ci" is not equivalent to the conjunction "Ci and Cj" in

general, since min(a, max(1 – a, b)) ' min(a,b). The equivalence holds however if Ci is a crisp

constraint (a = 1 or 0). This is not equivalent when Ci is a soft constraint since when Ci is not

completely satisfied, Cj has a priority less than the one of Ci.

Let us now show how to represent nested requirements with preferences, such as the

ones considered by database authors [30][31], by means of conditional prioritized constraints.

Lacroix and Lavency [30] deal with requirements of the form "C1 should be satisfied, and

among the solutions to C1 (if any) the ones satisfying C2 are preferred, and among those

satisfying both C1 and C2, those satisfying C3 are preferred, and so on", where C1, C2,

C3…, are hard constraints. It should be understood in the following way: satisfaying C2 if C1

is not satisfied is of no interest; satisfying C3 if C2 is not satisfied is of no use even if C1 is

satisfied. Thus there is a hierarchy between the constraints. For the sake of simplicity, let us

consider the case of a compound constraint C made of three nested constraints. Thus, one

would like to express that C1 should hold (with priority 1), and that if C1 holds, C2 holds with

priority $2, and if C1 and C2 hold, C3 holds with priority $3 (with $3 < $2 < 1). The

constraints C1,C2 and C3 are supposed to restrict the possible values of the same set of

variables (the relations are defined on the same referential D1 × …× Dn). It is always possible

to be in this situation taking the cylindrical extensions of R1, R2 and R3 in V(R1) 2 V(R2) 2

V(R3). Using the representation of conditional constraints presented above, this nested

conditional constraint may be represented by means of the fuzzy relation R* defined on

D1 ×… × Dn:

µR*(d) = min(µR1(d),

max[c(µR1(d)), max (µR2(d), c($2))],

max[c[min(µR1(d), µR2(d))], max(µR3(d), c($3))]

= min(µR1(d),

max(µR2(d), c[min(µR1(d), $2)]),

max(µR3(d), c[min(µR1(d), µR2(d), $3)])

20

In the above expression, it is clear that the priority level of C2 is min(µR1(d), $2), i.e.,

is $2 if C1 is completely satisfied and is zero if C1 is not at all satisfied. Similarly, the priority

level of C3 is actually min(µR1(d), µR2(d), $3). Note that it is zero if C1 is not satisfied even

if C2 is satisfied. It is easy to check that:

µR1(d) = 1 and µR2(d) = 1 and µR3(d) = 1 4 µR*(d) = 1

µR1(d) = 1 and µR2(d) = 1 and µR3(d) = 0 4 µR*(d) = c($3)

µR1(d) = 1 and µR2(d) = 0 and µR3(d) = 1 4 µR*(d) = c($2) < c($3)

µR1(d) = 1 and µR2(d) = 0 and µR3(d) = 0 4 µR*(d) = c($2)

µR1(d) = 0 4 µR*(d) = 0

Thus, as soon as C2 is not satisfied, the satisfaction of C3 or its violation make no difference;

in both cases µR*(d) = c($2) < c($3). R* reflects that we are completely satisfied if C1,C2 and

C3 are completely satisfied,we are less satisfied if C1 and C2 only are satisfied, and we are

even less satisfied if only C1 is satisfied. This is pictured on Figure 10.

1

0

0

0 0

C1

C2

C3

c($2)

c($2)

c($3)

Figure 10. Levels of satisfaction of a hierarchy of constraints

In the preceding example an unconditioned constraint (C1) was refined by a hierarchy of

conditional prioritized constraints (C2,C3). A request looking for candidates such that "if they

are not graduated they should have professional experience, and if they have professional

21

experience, they should preferably have communication abilities", is an example where only

conditional constraints, organized in a hierarchical way, take place. It will be represented by an

expression of the form

min[max(c(µR1(d)), µR2(d)), max(µR3(d), c(min(µR1(d), µR2(d), $))]

with µR1 = c(µgrad.), µR2 = µprof.exp. and µR3 = µcom.ab., i.e.,

min[max(µprof.exp.(d), µgrad.(d)), max(µcom.ab.(d), c(min(c(µgrad.(d)), µprof.exp.(d), $))]

so that if d has professional experience and communication abilities d completely satisfies the

request, as well as if d is graduated; d satisfies the request to the degree c($) if d is not

graduated and has professional experience only. d does not satisfy the request at all if d is

neither graduated nor has professional experience (even if d has communication abilities).

3. Stating and Solving Fuzzy Constraint Satisfaction Problems

3.1. Definition

A Fuzzy Constraint Satisfaction Problem (FCSP) P involves a set of n decision

variables X = {x1, …, xn} each ranging on its respective domain D1, …, Dn and a set of m

fuzzy relations R = {R1, …, Rm} representing a set C = {C1, …, Cm} of hard, soft or

prioritized constraints (domains are assumed to be discrete in the following). A unary relation

Rj of R is supposed to be associated to each variable xj. It represents the values which are a

priori more or less feasible (i.e., here, preferred) for xj (by default, Rj = Dj). If all the

constraints are unary or binary, the FCSP is called a fuzzy constraint network.

22

Classically, an instantiation of {xk1, …, xknk} - X is locally consistent if it satisfies

all the constraints in the subnetwork restricted to {xk1, …, xknk}. Like constraint satisfaction,

the notion of consistency is now a matter of degree. The definition of the conjunctive
combination states that µ[Ri11…1Rip](dk1, …, dknk) estimates to what extent

(dk1, …, dknk) satisfies all the constraints Ci1, …, Cip. Hence, the degree of local

consistency of (dk1, …, dknk) is defined by:

Cons(dk1, …, dknk) = µ[1{Ri ! R / V(Ri)-{xk1,…,xknk}} Ri] (dk1, …, dknk)

= min{Ri ! R / V(Ri)-{xk1,…,xknk}} (µRi ((dk1, …, dknk).V(Ri))).

It should be noticed that:

+ Y - {xk1, …, xknk}, Cons ((dk1, …, dknk).Y) " Cons (dk1, …, dknk).

Considering a complete instantiation of X, µ[R11…1Rm](d1, …, dn) is the satisfaction

degree of all the constraints by (d1, …, dn), i.e., the satisfaction degree of problem P by

(d1, …, dn). It is the membership degree of (d1, …, dn) to the fuzzy set 5 = R1 1… 1 Rm

which is nothing but the (fuzzy) set of solutions of P. As for classical CSPs, solutions are

consistent instantiations of X: Cons(d1, …, dn) = µ5(d1, …, dn) > 0, i.e., solutions that are

not totally unfeasible.

These degrees discriminate among the potential solutions since they induce a total

preorder over the instantiations; this preorder does not depend on whether L is a numerical scale

or not. In other terms, the FCSP approach to flexibility is more qualitative than quantitative.

Actually, solving a classical CSP means separating the set of all instantiations into two classes:

the instantiations which are solutions to the problem, and those which are not. Introducing

flexibility just refines this order.

It should be noticed that the best instantiations of X may get a satisfaction degree lower

than 1 if some constraints are conflicting: the FCSP approach can handle partially inconsistent

23

problems. The consistency degree of the FCSP is the satisfaction degree of the best

instantiations:

Cons(P) = sup{(d1,…,dn) ! D1×…×Dn} µ5(d1, …, dn)

= sup{(d1,…,dn)!D1×…×Dn} [min{Ri!R} µRi((d1, …, dn).V(Ri))]

The best solutions of P are those which satisfy the global problem to the maximal degree

µR11…1Rm(d1, …, dn) = µ5(d1, …, dn) (= Cons(P)), i.e., those which maximize the

satisfaction level of the least satisfied constraint. If there are some instantiations which perfectly

satisfy all the constraints (Cons(P) = 1), they are the best solutions. Otherwise, an implicit

relaxation of flexible constraints is performed, achieving a trade-off between antagonistic

constraints in the spirit of [10]: a solution will be found as long as the problem is not totally

inconsistent.

Our example of Section 2.4 is partially inconsistent. The best solution is (x = 3, y = 3,

z = 1) and the consistency degree is $3 < 1: the constraint over the number of training sessions

and Prof. A's constraint are slightly relaxed according to their flexibility. The other potential

solutions (e.g., (x = 4, y = 1, z = 2) or (x = 2, y = 3, z = 2)) are less consistent (their

respective satisfaction degrees are $2 and $1).

3.2. Discussion

The FCSP approach is in accordance with Freuder's view of constraint relaxation by

partial satisfaction [14]. Indeed, a FCSP involving p different satisfaction levels is equivalent to

p CSPs: for each level $j > 0, $j ! L, a CSP P$j is formed by the set of hard constraints Ci$j

containing the tuples that satisfy Ci to a degree greater than or equal to $j. Considering that a

weight is associated to each possible relaxation of each constraint Ci, the metric associated to

this space is defined by the maximum among the weights of the relaxations performed. The set

of best solutions to the flexible problem is the set of solutions of the consistent P$j of highest

$j (the closest solvable problem using Freuder's terminology).

24

The FCSP approach is different from probabilistic or cost-based approaches, where the

best solutions are those satisfying the maximal number of constraints [15] or those for which

the sum of satisfaction degrees is maximal [32]. These additive approaches allow for the

violation of a constraint to be counterbalanced by the satisfaction of other constraints. The word

"constraint" is then hardly justified. In a FCSP, as soon as an instantiation violates a hard

constraint, it is totally inconsistent: µR11…1Rm (d1, …, dn) = 0. Thus, we are in

accordance with the principle of constraint satisfaction: no constraint can be violated — except

according to its relaxation capacities, which are expressed by the FCSP formalism. Additive

satisfaction pooling methods also presuppose that constraints are independent or at least, not

redundant. This ideal is difficult to achieve and looks contradictory with the purpose of

constraint propagation, which is to produce redundant constraints. Note that the two methods

of aggregation of satisfaction levels correspond to the two basic approaches to the definition of

social welfare in utility theory (e.g., Moulin [26]): utilitarianism which maximizes the sum of

the individual utilities, and egalitarianism which maximizes the minimal individual utility. Only

the latter is compatible with the usual treatment of constraints.

Although in accordance with ours, Satoh's approach [16] differs in the way priorities

between constraints are expressed. Indeed, Satoh uses second-order logic to describe priorities.

Moreover the ordering of solutions depends on how many constraints are satisfied. In our

approach, solutions which satisfy a FCSP to the same degree are not discriminated, even if

some of them satisfy more constraints. In other terms, the best solutions in the sense of Satoh

are among the best according to the FCSP definition. However, a so-called lexicographic

ordering may be used in FCSP, if needed, to discriminate solutions sharing the same global

satisfaction degree, as for instance in [10][7]. This mode of aggregation is also known in the

social welfare literature under the name "leximin aggregation" (see Moulin [26]). The definition

of the leximin ordering of two vectors v1 = (µ1, …, µn) and v2 = (61, …, 6n) in Ln is as

follows:

25

1) rearrange the vectors in increasing order, say µi1 # µi2 #… # µin and 6j1 # 6j2 #… # 6jn;

2) perform a lexicographical comparison starting from the first component, i.e.,

v2 > v1 , & k # n such that + m < k

6jm = µim and 6jk > µik.

In the example, the instantiation (z = 2, y = 1, x = 4) which satisfies C1, C2, C3 and C4 to

degrees (1, 1, $2, 1) is considered in a FCSP as equally good as (z = 1, y = 1, x = 5) which

satisfies the constraints to degrees (1, $3, $2, $3). The lexicographic ordering, which is a

refinement of the min-induced ordering, will prefer the first instantiation to the second one.

Note that if L = {0,1}, i.e., if the FCSP is a classical CSP, the solutions which are the best

according to the lexicographic ordering are those satisfying the maximal number of constraints,

as in Freuder's view of partial constraint satisfaction [15]. In other terms, the lexicographic

ordering in a FCSP, which is more precisely studied in [33][34], is a generalization of

Freuder's ordering in a classical CSP.

As a general model based on possibility theory, the FCSP approach generalizes the

frameworks that model softness by means of fuzzy sets [4][7][8] as well as those dealing with

constraint priorities by searching to minimize the priority of the violated constraints [10][7][13]

[11]. More precisely, some of them use an inclusion-based refinement of the min-induced

ordering [13], or a lexicographic refinement [10][7] — which is itself a refinement of the

inclusion-based ordering. See [33][34] for a discussion on the selection of preferred solutions

in FCSP by means of these three criteria.

26

3.3. A Generic Solving Method for FCSPs

Finding a solution to a classical CSP is a NP-complete task. Hence, finding the best

solution of FCSP is at least NP-hard. In fact, it reduces to a sup/min optimization formulation:

Sup{(d1,…,dn) ! D1×…×Dn}[min{Ri ! {R1,…,Rm}}(µRi((d1, …, dn) .V(Ri)))].

This kind of problem can be solved using classical Branch and Bound algorithms [14][17][11],

such as Depth-First Branch and Bound. It is a natural extension of backtracking, the standard

approach to CSPs. Using such a classical tree search algorithm, variables are instanciated in a

predetermined sequence, say (x1, …, xn). The root of the tree is the empty assignment.

Intermediate nodes (d1, …, dk) denote partial instantiations and leaves are complete

instantiations of (x1, …, xn). For each leaf (d1, …, dn) in the tree, we may compute

µ5(d1, …, dn). The leaves that maximize µ5 are searched for via a depth-first exploration of

the tree.

The use of fuzzy constraints makes it possible to prune each branch that necessary leads

to suboptimal leaves that can be proved worse than the best of the already evaluated solutions.

In other terms, it is useless to extend intermediary nodes (d1, …, dk) such that

µ[5.{x1,…,xk}](d1, …, dk) # binf, binf being a lower bound of Cons(P). The calculation of

µ[5.{x1,…,xk}](d1, …, dk) requires the extension of (d1, …, dk) into a complete instantiation

but the definition of local consistency provides an upper bound for it. Indeed:

Cons(d1, …, dk) = µ[1{Ri ! R / V(Ri)-{x1,…,xk}} Ri] (d1, …, dk)

= min{Ri ! R / V(Ri)-{x1,…,xk}} (µRi ((d1, …, dk).V(Ri)))

" min{Ri!R} (µRi((d1, …, dk).V(Ri))) = µ[5.{x1,…,xk}] (d1, …, dk)

Hence Cons (d1, …, dk)"µ[5.{x1,…,xk}](d1, …, dk).

This bound decreases when extending the nodes of the search tree and becomes exact

for the leaves. Moreover, it may be incrementally computed as the tree is explored downward:

27

Cons(d1,…, dk+1) =

min(Cons(d1,…,dk), min{Ri!R,xk+1!V(Ri) and V(Ri)-{x1,…,xk+1}}µRi ((d1,…,dk+1).V(Ri)))).

Like the incremental computation of consistency in classical CSPs, the incremental computation

of Cons(d1, …, dk+1) considers each constraint only once.

Hence, the search starts with a lower bound binf (for pruning) and an upper bound bsup

of Cons(P); binf and bsup may respectively be initialized to 0 and 1, or to better lower and

upper bounds of Cons(P) if available. 7he consistency of the root is taken as bsup. At each

step, the current partial instantiation (d1, …, dk) is tentatively extended to variable xk+1. If

there is a value dk+1 such that Cons(d1, …, dk+1) > binf, dk+1 is assigned to xk+1. If no

value consistent enough can be found for xk+1, the algorithm backtracks to the most recent

variable assignment. When a solution (d1, …, dn) is reached whose consistency is greater than

binf, it is thus the best current solution; binf is updated to Cons(d1, …, dn) since it is a better

lower bound of Cons(P). If Cons(d1, …, dn) < bsup, the algorithm backtracks in order to find

a solution better than the current one. It should be noticed that partial instantiations

(d1, …, dk) which have been extended to a solution (d1, …, dn) whose consistency is equal to

Cons(d1, …, dk) do not have better extensions; hence, these extensions do not have to be

explored.

Figure 11 shows a search tree corresponding to the example of Section 2.4.

Circumstances may impose resource bounds. In particular, real time processing may

require immediate answers that can be refined later if time allows. The Depth-First Branch and

Bound process is well suited to provide resource-bounded solutions. We can simply report the

best instantiation available when, for example, a time limit is exceeded. In our example, the

discovery of the best solution requests 10 nodes and 37 checks of consistency (i.e.,

computations of the satisfaction degree of a constraint): the first solution (consistency: $1) is

reached after 3 node extensions and 10 consistency checks and the best solution (consistency:

28

$3) is encountered after 7 node extensions and 23 consistency checks, the remaining

computational effort being used to prove that there is no better solution. See Figure 11.

y = 3 (1) y = 4 (1)

z = 2 (1)z = 1 ($3)

y = 0 ($2) y = 1 ($2) y = 3 ($3)

x = 6 ($1) x = 5 ($2) x = 3 ($3)

Figure 11. A search tree for the example of Section 2.4.

(The tree is explored from the root to leaves and from left to right)

This kind of algorithm has clearly a worst-case behaviour not worse than classical

backtracking: both algorithms, in the worst case, will end up trying all possible combinations of

values, and testing all the constraints among them. It may actually save effort as stressed in

[14]. Using a pure backtrack search, 44 nodes and 155 consistency checks were needed, the

best solution being reached after 9 node extensions and 28 consistency checks.

The improvement of the search depends on the bounds binf and bsup: the higher binf

the more efficient the pruning of useless branches and the lower bsup, the sooner the search

will stop. For instance, there are:

– 6 nodes and 24 consistency checks for binf = $3 and bsup = 1.

– 7 nodes and 23 consistency checks for binf = 0 and bsup = $3.

– 3 nodes and 10 consistency checks for binf = bsup = $3.

 It is possible to develop a large class of tree search algorithms (e.g., beam search as in

[35]) based on the same principles and integrating different enhancements or variants (see

[11]). Heuristics for choosing the instatiation ordering of the variables like those proposed by

29

Dechter and Meiri [36] may be used, since they only consider structural characteristics.

Dynamic search rearrangement may also be applied: when extending the current instantiation,

the variable having the least number of values whose degree of satisfaction is greater than binf

should be chosen first. A variant for assessing the priority of a variable may be to consider the

set of the values which are consistent with the current instantiation with a degree greater than

binf:

Priority(xj / d1, …, dk) = Cardinality({dj, Cons(d1,…,dk,dj) >binf}).

For the selection of the value of a variable, the value(s) having the highest degree of satisfaction

may be chosen first.

3.4. Nonmonotonicity in FCSPs

Using the classical CSP approach, the set of solutions shrinks when new constraints are

added, and eventually becomes empty in case of conflicting constraints. In the FCSP

framework, adding a new constraint to a problem P may rule out all the previously best

solutions if they satisfy the new constraint to a degree lower than Cons(P). But as long as the

new problem (say P') is not totally inconsistent, a new set of best solutions appears that

satisfies the new problem to a degree Cons(P') # Cons(P). Indeed, it holds that:

R1 1… 1 Rm 1 Rm+1 - R1 1… 1 Rm

where - stands for the fuzzy set inclusion, but generally:

{(d1, …, dn) / µR11…1Rm1Rm+1(d1, …, dn) = Cons(P')}

8 {(d1, …, dn) / µR11…1Rm(d1, …, dn) = Cons(P)}.

Hence, the set of best solutions does not decrease monotonically when new constraints are

added. The nomonotonic behaviour of soft constraints has been noticed by Satoh [16]. The

type of nonmonotononicity at work here is the same as the one captured by possibilistic logic

(Dubois and Prade [37]) and appears only in the presence of inconsistency. It has been

30

precisely characterized by Benfehrat et al. [38] as the class of preferential inference relations

satisfying the rational monotonicity property of Lehmann [39]. In fact, adding a new constraint

may lead to four situations:

– the new constraint is redundant: R1 1… 1 Rm - Rm+1; the set of best solutions remains

unchanged.

– the new constraint is totally compatible with P: Cons(P) = Cons(P'); the set of best solutions

is included in the previous one but may remain unchanged.

– the new constraint is partially inconsistent with P: Cons(P') < Cons(P); constraints are

implicitly relaxed according to their flexibility and the set of best solutions is not necessarily

included in the previous one.

– the new constraint is totally incompatible with P: Cons(P') = 0; the set of best solutions is

empty.

In the example of Section 2.4, the consistency of the problem is $3 and the set of best solutions

consists of a single one, namely {(x = 3, y = 3, z = 1)}:

– adding the redundant hard constraint z # 3 does not change the consistency of the problem

nor the set of best solutions.

– adding the compatible hard constraint y + z = 4 neither changes the consistency of the

problem nor the set of best solutions; however, the satisfaction degrees of other

instanciations decreases (e.g., the satisfaction degrees of (x = 4, y = 1, z = 2) become 0

instead of $2).

– adding the hard constraint y + z = 3, the consistency of the the problem becomes $2 and the

new set of best solutions is {(x = 4, y = 1, z = 2), (x = 4, y = 2, z = 1), (x = 4, y = 0,

z = 3)}.

– adding the hard constraint x + y = 3, the problem becomes totally inconsistent.

As a consequence of this nonmonotonic behavior, the problem of solution maintenance in

FCSPs appears to be more complex than in classical CSPs: pruned branches in a previous

31

search through the tree have to be developed contrary to the method proposed by

Van Hentenryck [40]. The question of relaxing or deleting a constraint is not separately

considered in the FCSP model, since the relaxation capacities of the constraints are supposed to

be explicitly represented by means of preference among values and priority degrees. In other

terms, in the FCSP model, the allowed weakening and deletion of constraints are already

captured by the flexibility of the constraints (as far as preferences remain unchanged). On the

contrary, when constraints have to be dynamically added or strengthened, e.g., the priority of a

constraint (resp. the satisfaction degree of a value) increase (resp. decrease) the

nonmonotonicity phenomena described above takes place.

4. Local Consistency in FCSPs

In the classical CSP framework, local consistency techniques can be used to improve

the eficiency of the search algorithms. The most common techniques enforce arc-consistency

(e.g., the AC-3 algorithm proposed by Mackworth [41] which is a generalization and a

simplification of the earlier "filtering" algorithm by Waltz [1]) or path-consistency (e.g., the

PC-2 algorithm proposed also by Mackworth [41]). These preliminary notions of local

consistency have been generalized by the concept of k-consistency [42]. Actually, the

theoretical foundations of the FCSP framework, as presented in the previous sections, allow us

to easily extend all these definitions — and the associated algorithms (e.g., AC3) [22].

32

4.1. Local Consistency for Fuzzy Constraints

• k-consistency

A classical CSP is said to be k-consistent if any consistent instantiation of k – 1

variables can be extended to a consistent instantiation involving any kth variable. A FCSP is

said to be k-consistent if any instantiation of k – 1 variables can be extended to a partially

consistent instantiation involving any kth variable, and this instanciation must be as consistent

as the instantiation of k – 1 variables. Formally, a FCSP is k-consistent if and only if:

+ {xj1, …, xjk–1} - X, + xjk ! X such as xjk) {xj1, …, xjk–1},

+ (dj1, …, djk–1) ! Dj1 ×… × Djk–1,

& djk ! Djk such as Cons(dj1, …, djk–1,djk) = Cons(dj1, …, djk–1)

A FCSP is strongly k-consistent if it is j-consistent for every j#k. According to this definition,

a necessary and sufficient condition for k-consistency is:

+ {xj1, …, xjk–1} - X, + xjk ! X such as xjk) {xj1, …, xjk–1},

1{Ri,V(Ri)-{xj1,…,xjk–1}} Ri = [1{Ri,V(Ri)-{xj1,…,xjk}}Ri].{xj1,…,xjk–1}

• Arc-consistency

A network of fuzzy constraints is arc-consistent (or equivalently 2-consistent) if and

only if:

+ xi ! X, + xj ! X such as xi ' xj, Ri - [Rij1Rj].{xi}

Ri, Rj and Rij respectively denoting the relation associated to the unary constraint on xi, xj and

the binary constraint relating xi and xj. This condition is a generalization to fuzzy relations of

the usual condition of arc consistency.

• 3-consistency

A network of fuzzy constraints is 3-consistent if and only if:

+ {xi,xj} - X, + xk ! X – {xi,xj}, Ri 1 Rij 1 Rj - [Rik 1 Rk 1 Rkj].{xi, xj}

33

Combination and projection of fuzzy relations share all properties of combination and projection

of crisp relations. Hence basic results in classical CSPs extend right away to the FCSP

framework, like Mackworth's theorem relating 3-consistency to path consistency [41] and

backtrack-free sufficient conditions of Freuder [23] or Dechter [24]. See Fargier [22] for

detailed proofs. In fact, properties which cannot be used in FCSPs are the monotonicity, as

outlined previously, and properties related to the negation: if Ri represents a flexible constraint

Ci and Ric the constraint not(Ci), Ri 1 Ric = 9 does not hold generally. As soon as the

description language does not include the negation of constraints, all results in classical static

CSPs still hold in FCSPs.

4.2. Network Consistency Algorithms for FCSPs

All the classical filtering algorithms extend to FCSPs as well. The following algorithm

is an extension of AC3 which ensures arc-consistency in a network of fuzzy constraints (L =

[0,1]). It provides in addition an upper approximation of the overall consistency degree

Cons(P).

Procedure FAC-3

Cons-P-sup : 1

Q : {(i,j) / & Rh ! R s.t. V(Rh) = {xi, xj}, i ' j}

While Q not empty, do

 select and delete any arc (k,m) from Q

 if Revise(k, m, Cons-P-sup) do

Q : Q 2 {(i,k) / &Rh ! R s.t. V(Rh) = {xi, xk}, i ' k, i ' m}

return Cons-P-sup.

Procedure Revise (i,j,Cons-P-sup)

Changed : false

Height : 0

for each di in Di do

34

for each dj in Dj do

new-degree : min (µRi(di), µRij(di,dj), µRj(dj))

Height : max(new-degree, Height)

if new-degree = 0, delete di from Di.

if new-degree ' µRi(di), do

Changed : true

µRi(di) : new-degree.

Cons-P-sup : min (Cons-P-sup, Height)

return Changed

Other classical filtering algorithms can be straightforwardly extended by changing the "revise"

procedure. For instance, PC2 is to be performed as defined by Mackworth [41], replacing the

updating pattern by its fuzzy counterpart:

Rij : Rij 1 [Rik 1 Rk 1 Rkj].{xi, xj}

1 and . denoting the fuzzy conjunctive combination and projection.

When performed on a FCSP, the complexity of any classical filtering algorithm must at

most be augmented by a factor p, if p is the number of different levels of satisfaction used to

describe the flexibility of the problem. This result can be intuitively understood since a FCSP is

equivalent to p classical CSPs, as outlined in Section 3. As a matter of fact, consider FAC3, d

denoting the maximal cardinality of domains, p being the number of different levels of

satisfaction, m the number of binary constraints and d the maximal cardinality of domains. The

cost of the "revise" procedure remains unchanged. The list Q is increased when a call to revise

has succeeded. In classical CSPs, revise(xi,xj) is called with success at most d times. In a

FCSP, revise(xi,xj) is called with success at most p*d times since each possible value for xi

may have its degree diminished at most p times: combination is idempotent, leads to decrease

satisfaction levels without generating levels other than the original ones. Successful calls of

"revise" concern at least one of the d possible values for xi. Hence, the theoretical complexity

35

of FAC3 is O(pd3m). More sophisticated algorithms, like AC4 [43], can also be straighforward

adapted to FCSP (see [44]). In [45][46][47] the use of hypergraph structures appears to be a

generalization of tree clustering [48] to fuzzy constraints.

5. Integrating Uncertain Parameters in FCSPs

So far, each relevant parameter of a CSP (or a FCSP) was supposed to be controllable,

i.e., it is a decision variable whose value must be chosen according to the constraints relating it

to other decision variables. Nevertheless, many real world decision problems must take into

account non-controllable parameters, i.e., ill-known quantities whose precise value is neither

accessible, nor under user's control. Uncertain as these parameters can be, some knowledge is

often available about their plausible values. For instance, in scheduling problems, the duration

of a task may be uncertain, due to possible perturbations ("The task Oi will have a duration of

approximately five time units"); for more details about the handling of flexibility and uncertainty

in scheduling problems, see [49]. Or, going back to our tutorial problem, the number of

possible training sessions in the tutorial (z) may depend on the number of people that will attend

the tutorial: 1 session if there are 16 people or more, 2 sessions if there are from 9 to 15 people,

3 sessions otherwise (the greater the number of attendees, the less the number of training

sessions which can be offered, due to a limited amount of resources); all that we know is that

the number of actual participants is from 7 to 17, more possibly between 10 and 14. In this

case, the set of decision variables of the FCSP is X = {x,y}, since the value of z is no longer

under our control. In the following z denotes an uncontrollable variable.

Possibility theory (Zadeh [19], Dubois and Prade [28]) can represent such uncertain

quantities under the form of possibility distributions %z, where the values are ranked according

to their level of plausibility, taken in a totally ordered scale U. In the example of the tutorial, can

be defined as follows:

%z: Dz * U

36

%z(1) = %z(3) = $ (1 > $ > 0);

%z(2) = 1;

%z(a) = 0 if a) {1,2,3}.

This interpretation of possibility distributions for uncontrollable parameters is in full contrast

with the alternative interpretation in terms of preference for controllable decision variables that

was the one in previous sections. Then the possibility measure ;(A) = supd!A %z(d) and the

necessity measure N(A) = c(;(A))= infd)A c(%z(d)), introduced in Section 2.3, are now

respectively estimating the extent to which the event A is unsurprizing and the extent to which

A is surprizing, i.e., A is believed in spite of the uncertainty pervading the value of z.

Let us now study to what extent a classical constraint relating such an uncertain (non

controllable) parameter to a decision variable (controllable) will be satisfied. Consider for

instance a crisp constraint Cxz relating z to x. In order to satisfy Cxz, we must choose a value

of x such as Cxz is satisfied whatever the value of z turns out to be. In other terms, the

satisfaction degree of the constraint for the value d ! Dx is the necessity degree [28] of the

event z ! (Rxz < {d}).Dz, given that the the possible values of z are restricted by %z:

N(x = d satisfies Cxz) = N(z ! (Rxz < {d}).Dz)
= infa)(Rxz<{d}).Dz, a!Dz c(%z(a))

= c(supa)(Rxz<{d}).Dz, a!Dz %z(a))

This degree evaluates to what extent it is impossible to have a whatsoever possible value of z

violating the constraint: it is equal to 0 if there is a totally plausible value a1 for z such that

(a1,d) violates the constraint and equal to 1 if all the values a such that (z, x) = (a,d) violates

Cxz are impossible. In the crisp case, %z is the characteristic function of the set A of possible

values of z, and N(x = d satisfies Cxz) = 1 if and only if A - (Rxz < {d}).Dz and 0

otherwise. In terms of fuzzy sets, this necessity degree evaluates a form of inclusion of the

fuzzy set of possible values for z in the set (Rxz < {d}).Dz. For instance, if Cxz requires x +

z # 5, the following satisfaction degrees for the different values of x are obtained:

37

N(x = d satisfies Cxz) = 1 for d ! {0,1,2};

N(x = d satisfies Cxz) = c($) for d ! {3}

N(x = d satisfies Cxz) = 0 for d ! {4,5,6,7}.

A constraint involving a decision variable x and an uncertain parameter z can thus be interpreted

as the unary soft constraint Cx on x defined by the fuzzy relation Rx:

µRx(d) = N(x = d satisfies Cxz).

This assumption corresponds to a very cautious attitude, since the constraint Cx will be

considered as violated as soon as a totally plausible value z may lead to an actual violation of

Cxz · µRx(d) = 0 just means: in the normal course of things Cx is violated by decision d. Note

that doing so, a form of commensurability between uncertainty degrees and satisfaction degrees

is assumed, since here the degree of feasibility of the constraint, that lies in L is computed from

a degree of necessity in U via a mapping that equates L and U . It agrees with commonsense

which allows the interpretation of "this constraint is not very satisfied" as "it is not very certain

that the constraint should be satisfied".

More generally, consider a (possibly soft) constraint C relating the set of decision

variables Y = {x1, …, xn} - X to a set of uncertain parameters Z = {z1, …, zk} respectively

defined on A1, …, Ak; let us denote %z a possibility distribution defined on Az = A1 ×… × Ak

modeling our knowledge of the uncertain parameters. The constraint is satisfied by the

instanciation d = (d1, …, dn) ! D1 ×… × Dn of the decision variables if, whatever the values

of z = (z1, …, zk), these values are compatible with d, i.e., if the set of possible values for z is

included in T = (R 1 {(d1, …, dn)}).Z. It is obvious that µT(a) = µR(a,d) and

N(d satisfies C) = N(z ! T)

= infa!Az max(µT(a), c(%z(a)))

= c(supa!Az min(c(µT(a)), %z(a))).

38

The above extension of the degree of necessity to a fuzzy event T is such that

N(d satisfies C) = 1 if and only if +a, %z(a) > 0 4 µT(a) = 1, i.e., any value of z which is

whatsoever plausible leads to a total satisfaction of constraint C. It is strikingly different from

the necessity of a fuzzy event that is used for expressing the degree of priority of a fuzzy

constraint, as in Section 2.3. In the latter case, the underlying fuzzy set inclusion is Zadeh's

one (F - G , µF # µG) while the inclusion underlying N(d satisfies C) is stricter since it

requires here that the support of %z, (i.e., the support {a, %z(a) > 0} of the fuzzy set of more or

less plausible values of z) be a subset of the core of T, that is, {a, µT(a) =1}. In that situation

only, N(d satisfies C) = 1. Similarly, N(d satisfies C) >0 only if the core of of %z, gathering all

the normal values of z, is contained in the support of T, i.e., the constraint C is normally

satisfied.

The degree of satisfaction of constraint C by decision d is again taken as equal to

N(d satisfies C). If the uncertain parameters are logically independent from each other, our

knowledge about each zj is completely described by a possibility distribution %zj and:

+ a = (a1, …, ak) ! A1 ×… × Ak %z (a) = minj=1,…,k %zj(aj).

Let C' be the constraint on {x1, …, xn} whose associated fuzzy relation R' is defined by

µR'(d) = N(d satisfies C). In practice, applying possibility theory, this fuzzy restriction may be

computed more generally as:

R' = ((R 1 Fz).Y)

where Fz is the fuzzy set whose membership function is %z and where R denotes the

complement of R, i.e., µR = c(µR). The available information about uncertain parameters can

be assimilated by changing each constraint Ci into a companion one C'i using the above

computation. When Fz is not fuzzy and is a set A of possible values for z, the value µR'(d) =

N(d satisfies C) = mina ! A µR(d,a), i.e., it corresponds to a cautious Wald criterion for

decision under uncertainty whereby the worst resulting situation is used to evaluate the worth of

a decision. The index N(d satisfies C) is a qualitative extension of this criterion involving a

39

trade-off between graded uncertainty, described by %z, and preference described by µR. It can

be axiomatically justified as a qualitative counterpart of a utility function [50]. In the general

case, µR'(d) "$ means that if it is taken for granted that the actual value of z has plausibility at

least c($), then it is sure that the decision d satisfies C at least at level $. This technique has

been used to handle imprecise processing times of operations in scheduling problems [49].

Note that if z becomes controllable, then it is enough to change N(d satisfies C) into

((d satisfies C) = supa!Dz min(µTi(a), %z(a)), in order to recover the standard FCSP

framework. %z is then regarded as the membership function of just a constraint among other

ones. This remark emphasizes the convenience of the possibilistic framework.

6. Possibilistic Modelling of an Ill-Defined CSP

An ill-known CSP is a CSP for which we are unsure about the set of constraints which

defines it. More formally, given a set of possible constraints = {C1, …, Cn}, the uncertainty

about the CSP means that there exist several subsets of which are possible candidates as

defining what is the real CSP under concern. For the sake of simplicity, the Ci's are assumed to

represent non-fuzzy constraints. Recently, Fargier and Lang [51] have proposed a probabilistic

handling of ill-known CSPs. In their approach, each constraint Ci has a probability pi to be

present in the real CSP (and 1 – pi to be absent, mind that 1 – pi is not the probability of the

presence of the complementary constraint Ci !). Then, using an independence hypothesis, the

probability that the real problem exactly corresponds to the subset P - of constraints is

computed as prob(P) = (i:Ci!P pi · (j:Cj)P (1 – pj). Clearly =P prob(P) = 1. Thus, a

probability is attached to each subset of constraints (including the empty subset) which is a

candidate for representing the real problem.

A possibilistic model can be also proposed. The idea is to rank the subsets of constraints

which are candidates for describing the real problem, using a scale of possibility levels in order

to rely on a purely ordinal structure (rather than the richer additive structure of probabilities).

40

Thus, a possibility distribution % is defined on 2 , and + P - , % (P) represents to what

extent it is possible that P exactly describes the real problem . % is assumed to be

normalized. Then, as pointed out by Fargier and Lang [51] in the probabilistic approach, we are

not necessarily interested in the CSP with the highest plausibility, but rather in solving a

consistent CSP (i.e., which has a solution) such that its solution(s) has/have a maximal

certainty to be solution(s) of the real problem (if the real problem has a solution). For instance,

if = {C1, C2, C3} is consistent and %() = 0, %({C1,C2}) = %({C1,C3}) = %({C2,C3}) =

1, a solution to is certainly a solution to the real problem although it is impossible that the real

problem be made of the three constraints C1, C2, C3 altogether. The certainty N(d) that the

instantiation d is a solution of the real problem is computed as the impossibility that d violates

some constraint of the real problem , namely

N(d) = c(maxP:d)sol(P) % (P))

where sol(P) is the set of solutions of the CSP problem represented by the set P of constraints.

Note that any solution of P is also a solution of P' such that P' - P, and if d) sol(P') then

d) sol(P). The possibility that d is a solution of is given by

;(d) = maxP:d!sol(P) % (P).

Due to the normalization of % , max(;(d), c(N(d))) = 1 and thus ;(d) " N(d). In particular, if

d is a solution of the CSP problem corresponding to the whole set of constraints then N(d) =

1. When does not correspond to a consistent CSP, the solutions d of subsets which

maximize(s) N(d) and ;(d) must be searched for (taking into account that N(d) = 0 when ;(d)

< 1). Note that N(d) = 0 as soon as &P, d) sol(P), % (P) = 1. Thus, when there exists an

inconsistent set of constraints P such that %(P) = 1, it means that we cannot be somewhat

certain that the real problem has a solution, since this certainty is expressed by

N(has a solution) = c(maxP inconsistent % (P)).

The possibility that has a solution is given by

41

;(has a solution) = maxP consistent % (P).

This possibility will be zero for instance if % (Ø) = 0, +i, % ({Ci}) = 0 and +i, +j, {Ci,Cj}

is inconsistent.

It can be suspected that there is a link between ill-defined problems and CSP's involving

uncertain parameters. In fact, the two models are equivalent in the following sense: given a

possibility distribution % over a set of problems P - , it is enough to introduce a parameter z

ranging on {1, 2, …, 2| |} such z = k if and only if the corresponding problem is Pk = {Ci,

i ! I(k)}, where I(k) is the set of indices of constraints in problem Pk.

Then define a set ' of constraints involving the uncertain parameter z. For each

constraint Ci ! define C'i as follows:

µR'i(d,k) = µRi(d) if i ! I(k)

= 1 otherwise.

Also let %(k) = % ({Ci | i ! I(k)}). Then according to the results of the previous section

N(d sat ') = mini=1,n minz max(c(;(z)), µR'i(d,z))

= minz mini=1,n max(c(;(z)), µR'i(d,z))

= minz max(c(;(z)), mini=1,n µR'i(d,z))

= minz max(c(;(z)), mini!I(z) µRi(d))

= minP! max(c(% (P)), minCi!P µRi(d)) = N(d).

Conversely a problem with constraints C'1, …, C'm involving uncertain parameters z =

(z1, …, zp) can be understood as an ill-defined problem. Namely fixing the uncertain parameter

value to z = a, a set Pa = {Ca1, …, Cam} of constraints involving only controllable variables is

obtained, with possibility % (Pa) = %(a) the set of potential problems is then {Pa, %(a) > 0}.

In that case the possibility distribution % is constructed from the available knowledge of

uncontrollable parameter values.

42

The possibility distribution % over 2 can also obtained from the levels of possibility

%i(Ci) that Ci belongs to and %i(not Ci) that Ci is absent from (which again does not mean

that Ci is present in !), assuming non-interactivity (see [52][28]) or if we prefer logical

independence between the presence or absence of Ci, and the presence or absence of Cj, +i,

+j. Then % = mini %i, i.e.,

+ P - , % (P) = min(mini:Ci!P %i(Ci), minj:Cj)P %j(not Cj)).

Clearly, the normalization condition of the %i's (max(%i(Ci), %i(not Ci)) = 1) entails that % is

normalized. Note that % (P) = 0 as soon as &i, Ci ! P, %i(Ci) = 0 or &j, Cj) P, %j(not Cj) =

0, i.e., P cannot be the real problem if it contains constraints that cannot be present or it

excludes constraints which should be present. Note also that if we consider a constraint Ci such

that we totally ignore if it is present or absent in (i.e., %i(Ci) = 1 = %i(not Ci)), it does not

make any difference to have Ci or not in P.

In the general case, the degrees of possibility %i(Ci) and %i(not Ci) should be computed

from the possibility distribution % , via projection, namely:

%i(Ci) = maxP Ci % (P)

%i(not Ci) = maxP Ci % (P).

Although only an upper bound on % can be recovered from the knowledge of

{%i(Ci),%i(¬Ci), i=1,n} it is possible to express N(d) only in terms of {%i(Ci), i=1,n}. Indeed

{P: d) sol(P)} = {P, & Ci ! P, d violates Ci} = i: d violates Ci {P | Ci ! P}. Hence

 N(d) = c(maxP: d)sol(P) % (P)) = c(maxi: d violates Ci maxCi!P % (P))

= c(maxi: d violates Ci %i(Ci))

= c(maxi min(c(µRi(d)), %i(Ci)))

= mini max(µRi(d), c(%i(Ci))).

43

The above result emphasizes that the problem of finding a certainly feasible solution to an ill-

defined CSP problem (by maximizing N(d)) comes down to a prioritized classical CSP problem

where the priority of constraint Ci reflects exactly the degree of possibility that the real problem

contains Ci. Note that this problem reduces to a non-prioritized problem when %i(Ci) = 1, +i.

This is the case when %i(not Ci) < 1, +i, namely it is somewhat certain that all constraints

appear in the real problem. Then N(d) = 0 or 1, and N(d) = 1 only if d satisfies all constraints

in . When is inconsistent N(d) = 0, +d. The case N(d)) {0,1} is when it is believed that

some constraints are not in the real problem (%i(Ci) < 1, %i(not Ci) = 1).

When %i(Ci) = 1, +i and N(d) = 0, one may be interested in maximizing ;(d). Let

(d) = {Ci such that d satisfies Ci} then d ! sol(P) if and only if P - (d). Hence

;(d) = maxP- (d) % (P).

Let us consider the case where all the Ci's are such that %i(Ci) = 1 and where the above

independence assumption holds between the presence or absence of one constraint with respect

to another. In that case, ni(Ci) = c(%i(not Ci)) estimate to what extent it is certain that Ci is in

. Then, it holds

+ P - , % (P) = mini:Ci)P c(ni(Ci)).

An example of the lattice of possible representations of when = {C1, C2, C3}, in the

particular case where %i(Ci) = 1, + i = 1,3, is given on Figure 12

44

{C1, C2, C3}
% = 1

{C1, C2}
% = 1 – n3

{C2, C3}
% = 1 – n1

{C1, C3}
% = 1 – n2

{C1}
% = min(1 – n2, 1 – n3)

{C2}
% = min(1 – n1, 1 – n3)

{C3}
% = min(1 – n1, 1 – n2)

Ø
% = min(1 – n1, 1 – n2, 1 – n3)

Figure 12.

It can be easily checked that P' - P 4 %(P) " %(P') when +i, %i(Ci) = 1. It can be checked

that in that particular case

;(d) = % ((d))

= mini: Ci) (d) c(ni(Ci))

= mini=1,n max(µRi(d), c(ni(Ci)).

Thus a problem with prioritized constraints, as presented in Section 2, is recovered again.

However note the slight difference of interpretation: certainty of presence of the constraint in the

real problem versus level of priority attached to constraint in Section 2, this priority level being

a part of the specification of a flexible problem. It has also been observed that maximizing the

certainty of feasibility of a solution to an ill-defined problem, it also comes down to attach to

each constraint a priority level that expresses the level of possibility of presence of the

constraint. When these constraints are not fuzzy the three problems (priority handling, certainty

of presence of constraints, possibility of presence of constraints) can be addressed in the same

setting, which in logical terms is the one of possibilistic logic. A possibilistic logic program can

solve a set of prioritized, logically expressed constraints as well as find the best model of a set

of uncertain sentences (cf. Lang [17]).

45

7. Conclusion

The rich expressive power of possibility theory provides a general and unified

framework for the representation and the management of flexible constraints involving

preferences on values as well as prioritized constraints. It also allows for the representation of

conditional constraints and of constraints whose satisfaction depends on uncertain parameters.

The FCSP formalism, which is a generalization of classical CSPs, nevertheless offers a large

variety of efficient problem solving tools: most classical CSP algorithms easily extend, as well

asmost of the CSP theoretical results and their applications. This is due to the fact that FCSP's

are not additive, but solely based on commensurate orderings, so that all useful properties of

the Boolean structure underlying classical CSP's remain valid. The FCSP framework is

currently applied to constraint-based approaches in jobshop scheduling [49] where flexible

constraints and uncertain parameters are usual features.

As it turns out, explicitly taking the flexibility of the problem into account does not

drastically increase the worst-case computational cost of the search procedure; the complexity of

filtering procedures may be increased by a factor reflecting the number of different levels used

to describe flexibility in the application under concern. Moreover the problem of finding a

feasible solution is changed into an optimization problem of the bottleneck kind, to which

Branch and Bound procedures may apply. Of course, in practice, finding an optimal solution is

generally more computationally expensive than finding a feasible solution. Obviously,

preferences and priorities can be used for expressing heuristics focusing the search on the more

promising instantiations. Since the first solution which is found is feasible and usually good, it

is not always necessary to proceed with the search for an optimal solution. Experiments carried

out in the area of scheduling indicate that the first feasible solution found in the FCSP

framework is often obtained more quickly than when preferences are neglected [22]. Moreover,

the FCSP approach bypasses empirical relaxation techniques which are needed when a set of

constraint is globally unfeasible. Constraint relaxation often happens to be more expensive,

difficult to formulate, and suboptimal. On the contrary, the FCSP approach can handle partially

inconsistent problems. A solution (the instantiation with the maximal satisfaction degree) will

46

be provided as long as the problem is not totally inconsistent. Hence fuzzy constraints are also

useful to guide the search procedure towards "interesting" solutions. Theoretical extensions of

the framework are planned with a view to developing computational tools for handling

refinements of the global minimum-based satisfaction ordering used here that may be judged as

not enough discriminant [33][34]. Finally, this formalism suggests a nonmonotonic framework

for dynamic CSPs, when for instance in computer aided-design, default constraints which are

used in a first step analysis, are then dynamically modified by the designer.

References

[1] D. Waltz, "Understanding line drawings of scenes with shadows," in The Psychology
of Computer Vision, edited by P.H. Winston, McGraw-Hill: New York, pp 19-92,
1975.

[2] A. Rosenfeld, R.A. Hummel and S.W. Zucker, "Scene labeling by relaxation
operations," IEEE Trans. on Systems, Man and Cybernetics, vol. 6, pp. 420-433,
1976.

[3] R. Hummel and S. Zucker, "On the foundations of relaxation labeling processes," IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 5(3), pp. 267-287, 1983.

[4] J. Bowen, R. Lai and D. Bahler, "Fuzzy semantics and fuzzy constraint networks," in
Proc. of the 1st IEEE Conf. on Fuzzy Systems (FUZZ-IEEE'92), San Fransisco, 1992,
pp. 1009-1016.

[5] J. Bowen, R. Lai and D. Bahler, "Lexical imprecision in fuzzy constriant networks," in
Proc. of the National Conf. on Artificial Intelligence (AAAI'92), 1992, pp. 616-620.

[6] Q. Guan and G. Friedrich, "Extending constraint satisfaction problem solving in
structural design," in Proc. of the 5th Inter. Conf. IEA/AIE, Paderborn, Germany, June
1992, pp 341-350.

[7] E.C. Freuder and P. Snow, "Improved relaxation and search methods for approximate
constraint satisfaction with a maximin criterion," in Proc. of the 8th Biennial Conf. of
the Canadian Society for Computational Studies of Intelligence, Ontario, Canada, May
22-25, 1990, pp. 227-230.

[8] R. Martin-Clouaire, "Dealing with soft constraints in a constraint satisfaction problem,"
in Proc. of the Inter. Conf. on Information Processing and Management of Uncertainty

47

in Knowledge-Based Systems (IPMU'92), Mallorca, Spain, July 6-10, 1992,
pp. 37-40.

[9] B. Faltings, D. Haroud and I. Smith, "Dynamic constraint propagation with continuous
variables," in Proc. of the Europ. Conf. on Artificial Intelligence (ECAI'92), 1992,
pp. 754-758.

[10] Y. Descottes and J. C. Latombe, "Making compromises among antagonist constraints,"
Artificial Intelligence, vol. 27, pp. 149-164, 1985.

[11] T. Schiex, "Possibilistic constraint satisfaction problems or how to handle soft
constraints," in Proc. of the 8th Conf. on Uncertainty in Artificial Intelligence, Stanford,
CA, July 17-19, 1992, edited by D. Dubois, M.P. Wellman, B. D'Ambrosio and
P. Smets, Morgan & Kaufmann: San Mateo, CA, pp. 268-275, 1992.

[12] G. Brewka, H. Guesgen and J. Hertzberg, "Constraint relaxation and nonmonotonic
reasoning," German National Research Center (GMD), Report TR-92-02.

[13] A. Borning, M. Maher, A.Marindale and M. Wilson, "Constraint hierarchies and logic
programming," in Proc. of the Inter. Conf. on Logic Programming, Lisbon, Portugal,
June 1989, pp. 149-164.

[14] E.C. Freuder, "Partial constraint satisfaction," in Proc. of the Inter. Joint Conf. on
Artificial Intelligence (IJCAI'89), Detroit, MI, 1989, pp 278-283.

[15] E.C. Freuder and R. Wallace, "Partial constraint satisfaction," Artificial Intelligence,
vol. 58, pp. 21-71, 1992.

[16] K. Satoh, "Formalizing soft constraint by interpretation ordering," in Proc. of the
Europ. Conf. on Artificial Intelligence (ECAI'90), Stockhom, Sweden, 1990,
pp. 585-590.

[17] J. Lang, "Possibilistic logic as a logical framework for min-max discrete optimization
problems and prioritized constraints," in Proc. of the Inter Workshop on Fundamentals
of Artificial Intelligence Research (FAIR'91), Smolenice, Czechoslovakia, Sept. 8-12,
1991, Lecture Notes in Computer Science, Vol. 535, Springer Verlag: Berlin,
pp. 112-126, 1991.

[18] D. Dubois, H. Fargier and H. Prade, "The calculus of fuzzy restriction as a basis for
flexible constraint satisfaction," in Proc. of the 2nd IEEE Inter. Conf. on Fuzzy Systems
(FUZZ-IEEE'93), San Fransico, CA, March 28-April 1st, 1993, pp. 1131-1136.

[19] L.A. Zadeh, "Fuzzy sets as a basis for a theory of possibility," Fuzzy Sets and Systems,
vol. 1, pp. 3-28, 1978.

48

[20] D. Dubois and H. Prade, "Processing fuzzy temporal knowledge," IEEE Trans. on
Systems, Man and Cybernetics, vol. 19(4), pp. 729-744, 1989.

[21] R.R. Yager, "Some extensions of constraint propagation of label sets," Int. J. of
Approximate Reasoning, vol. 3, pp. 417-435, 1989.

[22] H. Fargier, 1994 "Problèmes de satisfaction de contraintes flexibles — Application à
l'ordonnancement de production," Thèse de l'Université P. Sabatier, Toulouse, France,
1994.

[23] E.C. Freuder, "A sufficient condition for backtrack-free search," J. of the ACM, vol.
32(4), pp. 755-761, 1982.

[24] R. Dechter, "From local to global consistency," Artificial Intelligence, vol. 55,
pp. 87-107, 1992.

[25] L.A. Zadeh "Calculus of fuzzy restrictions," in Fuzzy Sets and Their Applications to
Cognitive and Decision Processes, edited by L.A. Zadeh et al., Academic Press: New-
York, pp. 1-39, 1975.

[26] H. Moulin, Axioms of Cooperative Decision Making, Cambridge University Press:
Cambridge, MA, 1988.

[27] J.A. Goguen "L-fuzzy sets," J. of Mathematical Analysis and Application, vol. 18,
pp. 145-174, 1967.

[28] D. Dubois and H. Prade (with the collaboration of H. Farreny, R. Martin-Clouaire and
C. Testemale), Possibility Theory: An Approach to Computerized Processing of
Uncertainty, Plenum Press: New York, 1988.

[29] D. Dubois and H. Prade, "Tolerant fuzzy pattern matching: An introduction," J. of
Fuzzy Logic and Intelligent Systems (Seoul, Korea), vol. 3(2), pp. 3-17, 1993.

[30] M. Lacroix and P. Lavency, "Preferences: Putting more knowledge into queries," in
Proc. of the 13rd Inter. Conf. on Very Large Data Bases, Brighton, UK, 1987,
pp. 217-225.

[31] P. Bosc and O. Pivert, "An approach for a hierarchical aggregation of fuzzy predicates,"
in Proc. of the 2nd IEEE Inter. Conf. on Fuzzy Systems (FUZZ-IEEE'93), San
Francisco, CA, March 28-April 1st, 1993, pp. 1231-1236.

[32] N. Sadeh, "Look-ahead techniques for micro-opportunistic job shop scheduling,"
Carnegie Mellon University, Report CS-91-102.

[33] H. Fargier, J. Lang and T. Schiex, "Selecting preferred solutions in Fuzzy Constraint
Satisfaction Problems," in Proc. of the 1st Europ. Conf. on Fuzzy Information

49

Technologies (EUFIT'93), Aachen, Germany, Sept. 7-10, 1993, Published by ELITE-
Foundation, Aachen, pp. 1128-1134, 1993.

[34] D. Dubois, H. Fargier and H. Prade, "Refinements to the maximin approach to decision-
making in fuzzy environment," Fuzzy Sets and Systems, 1995, to appear.

[35] M. Fox, B. Allen and Strohm, "Job-shop scheduling: An investigation in constraint-
directed reasoning," in Proc. of the National Conf on Artificial Intelligence (AAAI'82),
Pittsburgh, USA, 1982, pp. 155-158.

[36] R. Dechter and I. Meiri, "Experimental evaluation of preprocessing techniques in
Constraint Satisfaction Problems," in Proc. of the Inter. Joint Conf. on Artificial
Intelligence (IJCAI'89), Detroit, MI, 1989, pp. 271-277.

[37] D. Dubois and H. Prade, "Possibilistic logic, preferential models, non-monotonicity and
related issues," in Proc. of the Inter. Joint Conf. on Artificial Intelligence (IJCAI'91),
Sydney, Australia, Aug. 24-30, 1991, pp. 419-424.

[38] S. Benfehrat, D. Dubois and H. Prade H., "Representing default rules in possibilistic
logic," in Proc. of the 3rd Inter. Conf. on Principles of Knowledge Representation and
Reasoning (KR'92), Cambridge, MA, 1992, edited by B. Nebel, C. Rich and
W. Swartout, Morgan & Kaufmann: San Mateo, CA, pp. 673-684, 1992.

[39] D. Lehmann, "What does a conditional knowledge base entail?," in Proc. of the 1st
Inter. Conf. on Principles of Knowledge Representation and Reasoning (KR'89),
Toronto, 1989, pp. 212-221.

[40] P. Van Hentenryck, "Incremental constraint satisfaction in logic programming," in Proc.
ICLP 90, pp. 189-202.

[41] A. K. Mackworth, "Consistency in networks of relations," Artificial Intelligence, vol. 8,
pp. 99-118, 1977.

[42] E.C. Freuder, "Synthetising constraint expressions," in Communications of the ACM,
vol. 21(11), pp. 958-966, 1978.

[43] R. Mohr and T. Henderson, "Arc and path consistency revisited," Artificial Intelligence,
vol. 28, pp. 225-233, 1986.

[44] H. Fargier, "Problèmes de satisfaction de contraintes floues," Technical Report
#IRIT/92-29-R, I.R.I.T., Université P. Sabatier, Toulouse, France, 1992.

[45] G. Shafer and P. Shenoy, "Axioms for probability and belief function preparation," in
Uncertainty in Artificial Intelligence, Vol. 4, edited by R.D. Shachter, T.S. Levitt,
L.N. Kanal and S.F. Lemmer, North-Holland: Amsterdam, pp. 169-198, 1990.

50

[46] D. Dubois and H. Prade, "Inference in possibilistic hypergraphs," in Uncertainty in
Knowledge Bases (Proc. of the 3rd Inter. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU'90), Paris, France,
July 1990), edited by B. Bouchon-Meunier, R.R. Yager and L.A. Zadeh, Lecture Notes
in Computer Science, Vol. 521, Springer Verlag: Berlin, pp. 250-259, 1991.

[47] R. Kruse and E. Schwecke, "Fuzzy reasoning in a multidimensional space of
hypotheses," Int. J. of Approximate Reasoning, vol. 4, pp. 47-68, 1990.

[48] R. Dechter and J. Pearl, "Tree clustering for constraint networks," Artificial Intelligence,
vol. 38, pp. 353-366, 1989.

[49] D. Dubois, H. Fargier and H. Prade, "The use fuzzy constraints in job-shop
scheduling," in Proc. of the IJCAI'93 Workshop on Knowledge-Based Production
Planning, Scheduling and Control, Chambéry, France, Aug. 29, 1993, pp. 101-112.
Extended version to appear in the J. of Intelligent Manufacturing.

[50] D. Dubois and H. Prade, "Possibility theory as a basis for qualitative decision theory,"
in Proc. of the 14th Inter. Joint Conf. on Artificial Intelligence (IJCAI'95), Montréal,
Canada, August 1995, to appear.

[51] H. Fargier and J. Lang, "Uncertainty in constraint satisfaction problems: a probabilistic
approach," in Symbolic and Quantitative Approaches to Reasoning and Uncertainty
(Proc. of the Europ. Conf. ECSQARU'93, Granada, Spain, Nov. 1993), edited by
M. Clarke, R. Kruse and S. Moral, Lecture Notes in Computer Science, Vol. 747,
Springer Verlag: Berlin, pp. 97-104, 1993.

[52] L.A. Zadeh, "The concept of a linguistic variable and its application to approximate
reasoning," Information Science, Part 1: vol. 8, pp. 199-249; Part 2: vol. 8,
pp. 301-357; Part 3: vol. 9, pp. 43-80, 1975.

