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In classical Constraint Satisfaction Problems (CSPs) knowledge is embedded in a set of hard constraints, each one restricting the possible values of a set of variables. However constraints in real world problems are seldom hard, and CSP's are often idealizations that do not account for the preference among feasible solutions. Moreover some constraints may have priority over others. Lastly, constraints may involve uncertain parameters. This paper advocates the use of fuzzy sets and possibility theory as a realistic approach for the representation of these three aspects. Fuzzy constraints encompass both preference relations among possible instanciations and priorities among constraints. In a Fuzzy Constraint Satisfaction Problem (FCSP), a constraint is satisfied to a degree (rather than satisfied or not satisfied) and the acceptability of a potential solution becomes a gradual notion. Even if the FCSP is partially inconsistent, best instanciations are provided owing to the relaxation of some constraints.

Fuzzy constraints are thus flexible. CSP notions of consistency and k-consistency can be extended to this framework and the classical algorithms used in CSP resolution (e.g., tree search and filtering) can be adapted without losing much of their efficiency. Most classical theoretical results remain applicable to FCSPs. In the paper, various types of constraints are modelled in the same framework. The handling of uncertain parameters is carried out in the same setting because possibility theory can account for both preference and uncertainty. The presence of uncertain parameters lead to ill-defined CSPs, where the set of constraints which defines the problem is not precisely known.

Introduction

Classical Constraint Satisfaction Problems (CSPs) only consider a set of hard constraints that every solution must satisfy. This rigid representation framework has several drawbacks. First, some problems are over-constrained and have no solutions. A relaxation of the less rigid or important constraints must be performed in order to obtain a solution.

Discovering that a problem has no solution may be time-consuming and devising an efficient constraint relaxation method is far from easy. Alternatively, other problems lead to a large set of equally possible solutions, although there often exist preferences among them which remain unexpressed. But, a standard CSP procedure will pick a solution at random. As a matter of fact, in practice, constraints are not always strict and it is desirable to extend the CSP framework in order to accommodate flexible constraints. Devising a framework for representing the flexibility of constraints will avoid artificially unfeasible problems (constraints being self-relaxable), and will avoid the random choice of solutions to loosely constrained problems. By flexible constraints, we mean either (i) soft constraints, which directly express preferences among solutions (i.e., this is a ranking of instantiations which are more or less acceptable for the satisfaction of a soft constraint), or (ii) prioritized constraints, that can be violated if they conflict with more prioritary constraints.

In soft constraints, the flexibility accounts for the possibility of going away from instantiations that satisfy the constraints ideally. Notice that the interest in soft constraints can be traced back to the early CSP litterature; in 1975, Waltz [START_REF] Waltz | Understanding line drawings of scenes with shadows[END_REF] mentioned that he heuristically distinguished between "likely" instanciations of a constraint and "unlikely" ones which are only considered if necessary. Also in computer vision, in 1976 Rosenfeld et al. [START_REF] Rosenfeld | Scene labeling by relaxation operations[END_REF] modelled preference in the detection of convex objects for scene labeling problems, and proposed to use a fuzzy degree of constraint satisfaction. The idea of representing relative preferences by means of weights is also at work in the relaxation labeling process described in 1983 by Hummel and Zucker [START_REF] Hummel | On the foundations of relaxation labeling processes[END_REF]. More recent works either propose to use fuzzy sets in modeling such constraints [4] [START_REF] Bowen | Lexical imprecision in fuzzy constriant networks[END_REF][6] [START_REF] Freuder | Improved relaxation and search methods for approximate constraint satisfaction with a maximin criterion[END_REF] [START_REF] Martin-Clouaire | Dealing with soft constraints in a constraint satisfaction problem[END_REF] or to progressively relax the constraints when preferences are in conflict [START_REF] Faltings | Dynamic constraint propagation with continuous variables[END_REF].

In prioritized constraints the flexibility lies in the ability to discard constraints involved in inconsistencies, provided that they are not too important. Generally, a weight is associated with each constraint and the request is to minimize the greatest priority levels of the violated constraints [START_REF] Descottes | Making compromises among antagonist constraints[END_REF] [START_REF] Schiex | Possibilistic constraint satisfaction problems or how to handle soft constraints[END_REF]. More generally, Brewka et al. [START_REF] Brewka | Constraint relaxation and nonmonotonic reasoning[END_REF], and Borning et al. [START_REF] Borning | Constraint hierarchies and logic programming[END_REF] identify different forms of constraint relaxation, viewing each constraint as a strict partial order on value assignment and weighting the importance of constraints; in particular, Brewka et al. provide a formal semantics in relation to nonmonotonic reasoning by means of maximal-consistent subsets of constraints.

Freuder [START_REF] Freuder | Partial constraint satisfaction[END_REF], Freuder and Wallace [START_REF] Freuder | Partial constraint satisfaction[END_REF], and Satoh [START_REF] Satoh | Formalizing soft constraint by interpretation ordering[END_REF] have devised theoretical foundations for the treatment of flexibility in CSPs. Satoh tries to apply results in nonmonotonic reasoning based on circumscription to the handling of prioritized constraints so as to induce preference relations on the solution set. A similar point of view is adopted by Lang [START_REF] Lang | Possibilistic logic as a logical framework for min-max discrete optimization problems and prioritized constraints[END_REF] where prioritized constraints are expressed in possibilistic logic (i.e., a logic with weigthed formulas which has a nonmonotonic behaviour in case of partial inconsistency). Taking a dual point of view, Freuder [START_REF] Freuder | Partial constraint satisfaction[END_REF] regards a flexible problem as a collection of classical CSPs. A metric can then be defined that evaluates the distance between them. Then, the question is to "find the solutions to the closest solvable problems".

In order to take into account both types of flexibility, a generalization of the CSP framework has been proposed [START_REF] Dubois | The calculus of fuzzy restriction as a basis for flexible constraint satisfaction[END_REF], based on Zadeh's possibility theory [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF]: the Fuzzy Constraint Satisfaction Problem framework (FCSP). The main point is that both types of flexible constraints are regarded as local criteria that rank-order (partial) instantiations and can be represented by means of fuzzy relations. In a FCSP, constraint satisfaction or violation are no longer an all-or-nothing notion: an instanciation is compatible with a flexible constraint to a degree (belonging to some totally ordered scale). The notion of consistency of a FCSP also becomes a matter of degree. The question is then to combine the satisfaction degrees of the fuzzy constraints in order to determine the total ordering induced over the potential solutions and to choose the best ones. Making a step further, we propose to use this framework also to handle more complex constraints, e.g., nested conditional constraints.

Moreover, the framework offered by possibility theory enables us to represent illknown parameters, whose precise value is neither accessible nor under our control, under the form of so-called possibility distributions (where the possible values are rank-ordered according to their level of plausibility). Ill-known parameters contrast with decision variables on which a decision-maker has control. This paper shows that constraints whose satisfaction depends on these ill-known parameters can be represented in the setting of possibility theory as well. In the presence of ill-known parameters, robust solutions should be searched for, such that the constraints be satisfied whatever the values of these ill-known parameters. Possibility theory implements this idea in a flexible way. Lastly, ill-known parameters lead to the idea of ill-defined CSPs; by ill-defined CSP we mean a CSP for which we are uncertain about the precise set of constraints which defines it, this uncertainty being due to ill-known factors. This aspect can also be accounted for in our framework.

From an algorithmic point of view, the possibility of extending Waltz' algorithm to fuzzy constraints has been pointed out by Dubois and Prade [START_REF] Dubois | Processing fuzzy temporal knowledge[END_REF] and by Yager [START_REF] Yager | Some extensions of constraint propagation of label sets[END_REF]. As we will show, all the classical CSP algorithms (e.g., tree search, AC3, PC2) can easily be adapted to FCSPs. More generally, our framework reveals itself powerful enough to accommodate the definitions of local consistency of a problem (arc-consistency, 3-consistency, k-consistency)interestingly enough, investigations by the second author [START_REF] Fargier | Problèmes de satisfaction de contraintes flexibles -Application à l'ordonnancement de production[END_REF] indicate that the theoretical results relating levels of local consistency of a CSP to its global consistency [START_REF] Freuder | A sufficient condition for backtrack-free search[END_REF] [START_REF] Dechter | From local to global consistency[END_REF] remain valid in FCSPs.

The next section deals with representation issues concerning flexible constraints. Fuzzy subsets on Cartesian products of domains, i.e., fuzzy relations, are used to model soft and/or prioritized constraints. An illustrative example is provided. The agreement of this representation with the preferential semantics of possibility theory is emphasized. Then the extension (resp.: projection) of fuzzy constraints to larger (resp.: smaller) Cartesian products of domains is recalled as well as the conjunctive or disjunctive combinations of fuzzy relations for representing compound constraints. Finally, this section devoted to representation issues discusses the modelling of more sophisticated constraints, namely prioritized constraints with safeguard (in order to guarantee the satisfaction of a weaker constraint in case of violation of the prioritized one) and conditional constraints. Then Section 3 formally defines the FCSP framework and compares it to other approaches to flexibility in CSP. This section then presents the essentials of a Branch and Bound algorithm performing the search for the best solutions.

Nonmonotonic aspects of FCSPs are also outlined. Different notions of local consistency (arcconsistency, k-consistency) of a FCSP are defined in Section 4; the complexity of extensions of filtering algorithms (e.g., AC3) to the fuzzy set framework is also discussed. Section 5 explains how to handle ill-known parameters pervaded with uncertainty in FCSPs. Before the general conclusion, Section 6 briefly discusses the modelling of ill-defined CSPs in the possibilistic framework. In this setting, ill-defined hard CSPs, where the belonging to the problem of each constraint is (individually) uncertain, are shown to be formally equivalent to FCSPs made of prioritized hard constraints. The relation between ill-defined hard CSPs and CSPs with ill-known parameters is also briefly discussed. 

Representing Flexible Constraints

Fuzzy Model of a Soft Constraint

A soft constraint C will be described by means of an associated fuzzy relation R [START_REF] Zadeh | Calculus of fuzzy restrictions[END_REF],

i.e., the fuzzy subset of 

µ R (d 1 , …, d n ) = 1 means (d 1 , …, d n ) totally satisfies C µ R (d 1 , …, d n ) = 0 means (d 1 , …, d n ) totally violates C 0 < µ R (d 1 , …, d n ) < 1 means (d i , …, d n ) partially satisfies C
Hard constraints are particular cases of soft constraints, since they involve levels 0 and 1 only. The assumption of a totally ordered satisfaction scale underlying the above setting may be questioned. The very use of a satisfaction scale instead of just an ordering relation is crucial when it comes to the aggregation of local satisfaction levels. Indeed due to the famous Arrow theorem (e.g., Moulin [START_REF] Moulin | Axioms of Cooperative Decision Making[END_REF]), it is very difficult to merge several ordering relations that are not commensurate. The satisfaction scale needs not be totally ordered stricly speaking, since a complete lattice will do as well. In the following we assume that L is a totally ordered set, i.e., a chain. But the scale of membership grades needs not be numerical, as pointed out years ago [START_REF] Goguen | L-fuzzy sets[END_REF]. A qualitative scale makes sense on finite domains. However on continuous domains, as in the case of temporal constraints with continuous time, it is much more natural and simple to assume that the satisfaction scale is the unit interval; then levels of satisfaction reflect distances to ideal values in the domain.

Fuzzy Model of a Prioritized Constraint

Fuzzy relations also offer a suitable formalism for the expression of prioritized constraints. When it is possible to a priori exhibit a total preorder over the respective priorities of the constraints, these priorities will be represented by levels in another scale V: In fact, the scale V can be interpreted as a "violation scale": the greater Pr(C), the less it is possible to violate C. This remark leads us to relate the satisfaction scale L to the violation scale V, considering that there exists an order-reversing bijection from V to L such that L = c(V) = {c(v), v ! V}: c(0) and c(1) are respectively the top element and the bottom element of L, and v " v' in V implies c(v) # c(v') in L. This is one of the basic modeling assumptions in this paper: the c-complement of the level of priority of a constraint is interpreted as the extent to which the constraint can be violated, using the reversed priority scale L = c(V) as a satisfaction scale; L is nothing but V put upside down. 

µ R (d 1 , …, d n ) = c(0) = 1 if (d 1 , …, d n ) satisfies C; µ R (d 1 , …, d n ) = c(Pr(C)) if (d 1 , …, d n ) violates C. 1 0 crisp set of values satisfying C µ R (d) d = (d 1 , …, d n ) 1 -$ Figure 1. A hard (or crisp) constraint C with priority Pr(C) = $ when c(x) = 1 -x.
Note that when Pr(C) = 1, the characteristic function of C is recovered, while when Pr(C) = 0 the constraint C degenerates into the whole domain D.

Conversely, a soft constraint C where preferences are described in terms of a finite number of satisfaction degrees 0 = $ 0 < $ 1 <… < $ p < 1 in a scale L, can be represented by a finite set of prioritized constraints {C j , 0 # j < p} using the scale L put upside down as a priority scale, via an order-reversing map c:

Pr(C j ) = c($ j ) defining R j = {(d 1 , …, d n ), µ R (d 1 , …, d n ) " $ j+1 }, j = 0, p -1.
If moreover it is assumed that c is involutive, that is c(c($)) = $ (this hypothesis is made throughout the whole paper), then it is straightforward to reconstruct the soft constraint C by means of the set of prioritized constraints {(C j , Pr(C j )), 0 # j < p} as shown in Figure 2 where:

µ R (d) = min j max(c(Pr(C j )), µ R j (d)) for every tuple d = (d 1 , …, d n ) (1) $ j+1 $ j $ 1 $ 0 = 0 µ R (d) 1 $ p d = (d 1 , …, d n ) values satisfying C p-1 , priority 1 -$ p-1
values satisfying C j , priority 1 -$ j values satisfying C 0 , priority 1 -$ 0 = 1 To conclude with representation issues, prioritized and soft constraints can be cast in a unique setting that we call "flexible constraints", modelled by fuzzy sets, where flexibility means the capabibility of self-relaxation. This capability is locally imbedded in the description of the constraint, thus avoiding the necessity of a specific constraint relaxation procedure to be triggered when a set of constraints is found inconsistent. This unification presupposes a strong link between levels of constraint satisfaction, and levels of constraint priority, using a single ordered scale L for both priority and satisfaction and an order-reversing map c that changes one notion into the other. For simplicity, we sometimes use L = [0,1] and c(x) = 1 -x in the following. However all results to be presented remain valid on a qualitative scale.

Possibility as Preference

The above approach to the joint handling of soft and prioritized constraints is in complete accordance with the basic principles of possibility theory (Zadeh [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF], Dubois and Prade [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF]). A possibility distribution % is a mapping from a domain D to a linearly ordered scale L ([0,1] in general). Attached to a variable x, a possibility distribution expresses that the value of x is incompletely specified, as soon as & d 1 ' d 2 , %(d 1 ) > 0 and %(d 2 ) > 0. %(d) = 0 means that it is impossible, or ruled out, that x = d. A normalized possibility distribution % is such that %(d) = 1 for some d, expressing that no conflict on the value of x is present. In the context of constraint satisfaction problems, x is a decision variable, i.e., its value is controllable, and the problem is to select a suitable value for x. The fuzzy set of admissible values for x according to the associated constraint (more generally the fuzzy relation in case x is a vector of elementary variables) can be viewed as a possibility distribution prescribing to what extent a value is judged to be suitable for x according to the constraint. Hence the degree of possibility %(d) is the degree of preference for choosing x = d, with the convention that when %(d) = 0, d is a forbidden value of x, and when %(d) = 1, d is among the values which are definitely preferred, or, more specifically, against which no objection exists. Hence flexible constraints are naturally described by means of possibility distributions.

Given a possibility distribution % attached to a variable x, the occurrence of events of the form x ! A can be assessed by means of possibility and necessity degrees, respectively defined as (see, e.g., [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF])

((A) = sup d!A %(d) , N(A) = inf d)A c(%(d)) ( 3 
)
where c is the order-reversing map on L. They are such that ((A) = c(N(A)), where the overbar denotes complementation, i.e., an event necessarily occurs if its contrary is impossible.

((A) = 1 only means that A is consistent with the constraint represented by % while N(A) = 1 means that the satisfaction, even partial, of the constraint represented by % entails the occurrence of A (i.e., the fuzzy set of solutions which more or less satisfy the constraint represented by % is included in A).

In the case of prioritized constraints, the degree of priority $ of a contraint C is viewed as a degree of necessity of the subset R modelling the constraint, i.e., corresponds to the higher level constraint N(R) " $. The possibility distribution that accounts for the priority level $, as pictured in Figure 1, is the least specific, or equivalently, the largest, the least restrictive

possibility distribution % such that N(R) " $ holds, i.e., %(d) is maximal for each d ! D. Indeed N(R) " $ is equivalent to inf d)A c(%(d)) " $ , that is %(d) # c($) for all d ) A. The least restrictive soft constraint that respects this condition is %*(d) = 1 if d ! A and c($)
otherwise. This is a formal justification of the treatment of prioritized constraints in the previous section.

When R is itself a possibility distribution modelling a soft constraint, whose priority is $, the notion in possibility theory that can account for priority is the necessity of the fuzzy event R,

N(R) = inf d!D %(d) * µ R (d) " $ (4) 
where the arrow * is a multiple-valued implication, that is, a function that is decreasing in the first argument and increasing in the second one; N(R) is the degree of inclusion in R of the fuzzy set with membership function %. When $ = 1, the least specific solution of the above inequality should be % = µ R . Indeed "R is fully imperative" is equivalent to the soft constraint R itself. This forces the multiple-valued implication to satisfy

%(d) * µ R (d) = 1 iff %(d) #
µ R (d) (that is, when the constraint R is looser than the one described by %). Moreover, if $ = 0, then the least specific solution of the above inequality should again be %(d) = 1, +d (the non-informative possibility distribution, expressing no constraint). This condition enforces 1

* µ R (d) = 0 if µ R (d) < 1.
Finally, a simplicity requirement, in agreement with the latter, is that

%(d) * µ R (d) should depend only on (and is decreasing with) %(d) when %(d) > µ R (d). Hence %(d) * µ R (d) = c(%(d)) if %(d) > µ R (d) (
where c is the order-reversing mapping considered in Subsection 2.2; often for simplicity c(a) = 1 -a). With this choice we do have the fuzzy model of a soft, prioritized constraint suggested at the end of the previous subsection, i.e.

Pr(C) = $ , %(d) = max(c($), µ R (d)) (5) 
when Pr(C) = $ is interpreted as N(R) " $. The fuzzy set of admissible values with respect to a soft constraint with priority $, is thus included to degree $ in the set of values compatible with the same constraint with maximal priority, and thus the satisfaction of this prioritized constraint cannot fall under level c($).

The present semantics of possibility distributions in terms of preference over the possible values of a variable, among which one must choose, contrasts with the alternative semantics in terms of plausibility that a parameter supposedly uncontrollable, or unknown, takes some value. The latter semantics will be envisaged in Section 5.

Example

A course must involve 7 sessions, namely x lectures, y exercise sessions and z training sessions (C1). There must be about 2 training sessions (C2), i.e., ideally 2, possibly 1 or 3.

Dr. B, which gives the exercise part of the course, wants to manage 3 or 4 sessions (C3).

Prof A, which gives the lectures, wants to give about 4 lectures (C4), i.e., ideally 4 lectures, possibly 3 or 5). The request of Dr.B is less important than the one of Prof. A and is itself less important than the imperative constraints C1 and C2. In this example, flexibility is modeled

using a five level scale L = ($ 0 = 0 < $ 1 = c($ 3 ) < $ 2 = c($ 2 ) < $ 3 = c($ 1 ) < $ 4 = 1),
where c is the order-reversing operation. The priorities of C3 and C4 are respectively $ 2 and $ 3 ($ 2 < $ 3 ). The domain of variables x, y and z is the set {0,1,2,3,4,5,6,7}. The following model can be used:

C 1 : classical hard constraint µ R1 (x,y,z) = 1 if x + y + z = 7;
µ R1 (x, y, z) = 0 otherwise.

C 2 : soft constraint (see Figure 3a) 

µ R2 (z) = 1 if z = 2; µ R2 (x) = $ 3 if z = 1 or z = 3; µ R2 (z) = 0 otherwise. C 3 : prioritized constraint Pr(C 3 ) = $ 2 (see Figure 3b) µ R3 (y) = 1 if y = 3 or y = 4; µ R3 (y) = c($ 2 ) = $ 2 otherwise. 3 1 2 0 4 5 6 7 $ 1 $ 2 $ 3 1 3 1 2 0 4 5 6 7 $ 1 $ 2 $ 3 1 µ R 2 3 1 2 0 4 5 6 7 $ 1 $ 2 $ 3 1 µ R 3
µ R4 (x) = 1 if x = 4; µ R4 (x) = max($ 3 , c($ 3 )) = $ 3 if x = 3 or x = 5; µ R4 (x) = c($ 3 ) = $ 1 otherwise. µ R 4 3 1 2 0 4 5 6 7 $ 1 $ 2 $ 3 1 x Figure 4
. Modeling of C 4 by means of a fuzzy unary restriction

Operations on Fuzzy Relations

Flexible constraints are modelled by qualitative fuzzy relations. The usual operations on crisp relations can be easily generalized to fuzzy relations (Zadeh [25]). To do so, we exploit the fact that , being totally ordered, the satisfaction scale L is a complete distributive lattice, where the minimum and the maximum of two elements make sense. The following definitions extend classical set-theoretic notions used in constraint-directed problem-solving:

• A fuzzy relation R' is said to be included into R if and only if (see Figure 5):

+ (d 1 , …, d n ) ! D 1 ×… × D n , µ R' (d 1 , …, d n ) # µ R (d 1 , …, d n ).
This definition is a generalization of the classical set inclusion. In terms of constraints, C' is tighter that C and C is a relaxation (or a weakening) of C'. 

1 0 d = (d 1 , …, d n ) µ R µ R' µ R"
} / V(R) is a fuzzy relation R 0{x k1 ,…,x kn k } on {x k 1 , …, x kn k } such that: µ R 0{x k1 ,…,x kn k } (d k1 , …, d kn k ) = µ R ((d k1 , …, d kn k ) .V(R) )
This definition is a generalization of the cylindrical extension of ordinary relations. • The conjunctive combination (or join) of two fuzzy relations R i and R j is a fuzzy relation

R i 1R j over V(R i )2V(R j )= {x 1 , …,
x k } such that (see Figure 6):

µ Ri1Rj (d 1 , …, d k ) = min(µ Ri ((d 1 , …, d k ) .V(R i ) ),µ Rj ((d 1 , …, d k ) .V(R j ) )). µ Ri1Rj (d 1 , …, d k ) estimates to what extent (d 1 , …, d k ) satisfies both C i and C j . When V(R i ) = V(R j ),
1 is a generalization of classical set intersection. All properties of the standard intersection (associativity, commutativity, etc.) hold as long as negation is not involved; in particular, there holds

(R i 1 R j ) .V(R i ) -R i and (R i 1 R i ) = R i . 1 0 µ R j µ R i µ R i 1R j d = (d 1 , …, d k )
Figure 6. Conjunctive combination of two fuzzy relations R i and R j

Note that the use of the combination rule, allowed by the presence of a unique satisfaction scale, underlies an assumption of commensurability between satisfaction levels pertaining to different constraints: the user who specifies the constraints must describe them by means of this unique scale L (or by means of the dual scale L T ). For instance, in the example of Section 2.4, the satisfaction level $ 3 of C4 for x ! {3,5} is assumed to be equal to the satisfaction level for z ! {1,3} and $ 1 < c(Pr(C3)) < c(Pr(C4)). Although natural and often implicit, this assumption must be emphasized.

• The disjunctive combination of two fuzzy relations R i and R j is a fuzzy relation R i 3R j over V(R i )2V(R j )= {x 1 , …, x k } such that (see Figure 7):

µ Ri3Rj (d 1 , …, d k ) = max(µ Ri ((d 1 , …, d k ) .V(R i ) ),µ Rj ((d 1 , …, d k ) .V(R j ) )). µ Ri3Rj (d 1 , …, d k ) estimates to what extent (d 1 , …, d k ) satisfies either C i or C j . When V(R i ) = V(R j ),
3 is a generalization of classical set union. All properties of set union (associativity, commutativity, distributivity over intersection, etc.) hold, if negation is not involved.

1 0 µ R i 1R j µ R i µ R j d = (d 1 , …, d k )
Figure 7. Disjunctive combination of two fuzzy relations R i and R j

Prioritized Constraints with Safeguard

The framework of fuzzy constraints offers a convenient tool for representing more sophisticated constraints than the previously encountered ones, for instance prioritized constraints with safeguard, as well as nested conditional constraints as we are going to see.

First one may like to express that a constraint C, even with a rather low priority Pr(C) = $, cannot never be completely violated, in the sense that if C is violated, at least a more permissive, minimal, constraint C' is still satisfied. Let R and R' be the fuzzy relations associated with C and C' respectively, with R -R' (C' is more permissive than C, i.e., C' is a relaxation of C). The whole constraint C* corresponding to the pair (C, C') can be viewed as the conjunction of a prioritized constraint (C) and a weaker but imperative, possibly soft, constraint (C'). This conjunction is represented by the fuzzy relation R*, pictured in Figure 8, and expressed by: See [START_REF] Dubois | Tolerant fuzzy pattern matching: An introduction[END_REF] for the use of such constraints in fuzzy database querying systems. Interestingly enough, R* can be decomposed either as a disjunction or as a conjunction of two fuzzy relations, depending on which fuzzy relation, R or R', the priority weight is combined with.

+ d ! D 1 × …× D n , µ R *(d) = min(max(µ R (d), c($)), µ R '(d)). ( 6 
) 1 0 R' R* R 1 -Pr(C) d = (d 1 , …, d n )
Indeed µ R *(d) = min(max(µ R (d), c($)), µ R '(d)) = min (max(µ R (d), c($)), max(µ R (d), µ R '(d))) since R -R' = max(µ R (d), min (c($), µ R '(d))).
It expresses that satisfying a constraint with safeguard corresponds to either satisfying its stronger form C, or its weaker form C' the satisfaction degree being upper-bounded in this second case by c($).

For instance, a flexible C 5 constraint prescribing: "Prof. A wants to give about four lectures; anyway, he will never accept to give no lecture" is represented by the fuzzy relation R 5 * pictured in Figure 9:

1 3 1 2 0 4 5 6 7 $ 1 $ 2 $ 3 x µ R 5 ' µ R 5 * µ R 5
Figure 9. Modeling of C 5 by fuzzy constraint with safeguard constraint

Conditional and Hierarchically Organized Constraints

A conditional constraint is a constraint which applies only if another one is satisfied. This notion will be interpreted as follows: A constraint C j conditioned by a hard constraint C i (associated with fuzzy relations R j and R i respectively) is imperative if C i is satisfied and can be dropped otherwise. More generally, the level of satisfaction µ Ri (d) of a soft conditioning constraint C i by an instance d is viewed as the level of priority of the conditioned constraint C j , i.e., the greater the level of satisfaction of C i , the greater the priority of C j is. A conditional constraint is then naturally represented by a fuzzy relation R i satisfies the proposition "if C i is satisfied, then C j must be satisfied too"; the function max(b, 1 -a) is indeed a multiple-valued implication. Note that the conjunction of the two constraints "C i " and "C j conditioned by C i " is not equivalent to the conjunction "C i and C j " in general, since min(a, max(1 -a, b)) ' min(a,b). The equivalence holds however if C i is a crisp constraint (a = 1 or 0). This is not equivalent when C i is a soft constraint since when C i is not completely satisfied, C j has a priority less than the one of C i .

4 R j over V(R i )2V(R j ) = {x 1 , …, x k } such that: µ R i 4R j (d 1 , …, d k ) = max(µ Rj ((d 1 , …, d k ) .V(R j ) ), c(µ Ri ((d 1 , …, d k ) .V(R i ) ))) R i 4 R j is a prioritized constraint with variable priority: C j has a priority 1 if µ Ri ((d 1 , …, d k ) .V(R i ) ) = 1, i.e.,
Let us now show how to represent nested requirements with preferences, such as the ones considered by database authors [30][31], by means of conditional prioritized constraints.

Lacroix and Lavency [START_REF] Lacroix | Preferences: Putting more knowledge into queries[END_REF] deal with requirements of the form "C 1 should be satisfied 

µ R *(d) = min( µ R 1 (d), max[c(µ R 1 (d)), max (µ R 2 (d), c($ 2 ))], max[c[min(µ R 1 (d), µ R 2 (d))], max(µ R 3 (d), c($ 3 ))] = min( µ R 1 (d), max(µ R 2 (d), c[min(µ R 1 (d), $ 2 )]), max(µ R 3 (d), c[min(µ R 1 (d), µ R 2 (d), $ 3 )])
Thus, as soon as C 2 is not satisfied, the satisfaction of C 3 or its violation make no difference; 

Stating and Solving Fuzzy Constraint Satisfaction Problems

Cons(d k 1 , …, d knk ) = µ [1{R i ! R / V(Ri)-{x k1 ,…,x knk }} Ri] (d k 1 , …, d knk ) = min {Ri ! R / V(Ri)-{x k1 ,…,x knk }} (µ Ri ((d k 1 , …, d knk ) .V(R i ) )).
It should be noticed that: These degrees discriminate among the potential solutions since they induce a total preorder over the instantiations; this preorder does not depend on whether L is a numerical scale or not. In other terms, the FCSP approach to flexibility is more qualitative than quantitative.

+ Y -{x k 1 , …, x knk }, Cons ((d k 1 , …, d knk ) .Y ) " Cons (d k 1 , …, d knk ).
Actually, solving a classical CSP means separating the set of all instantiations into two classes:

the instantiations which are solutions to the problem, and those which are not. Introducing flexibility just refines this order.

It should be noticed that the best instantiations of X may get a satisfaction degree lower than 1 if some constraints are conflicting: the FCSP approach can handle partially inconsistent problems. The consistency degree of the FCSP is the satisfaction degree of the best instantiations:

Cons(P) = sup {(d1,…,dn) ! D1×…×Dn} µ 5 (d 1 , …, d n ) = sup {(d1,…,dn)!D1×…×Dn} [min {Ri!R} µ Ri ((d 1 , …, d n ) .V(R i ) )]
The best solutions of P are those which satisfy the global problem to the maximal degree

µ R11 … 1Rm (d 1 , …, d n ) = µ5(d 1 , …, d n ) (= Cons(P)), i.e.
, those which maximize the satisfaction level of the least satisfied constraint. If there are some instantiations which perfectly satisfy all the constraints (Cons(P) = 1), they are the best solutions. Otherwise, an implicit relaxation of flexible constraints is performed, achieving a trade-off between antagonistic constraints in the spirit of [START_REF] Descottes | Making compromises among antagonist constraints[END_REF]: a solution will be found as long as the problem is not totally inconsistent.

Our example of Section 2. 

Discussion

The FCSP approach is in accordance with Freuder's view of constraint relaxation by partial satisfaction [START_REF] Freuder | Partial constraint satisfaction[END_REF]. Indeed, a FCSP involving p different satisfaction levels is equivalent to p CSPs: for each level $ j > 0, $ j ! L, a CSP P $ j is formed by the set of hard constraints C i $ j containing the tuples that satisfy C i to a degree greater than or equal to $ j . Considering that a weight is associated to each possible relaxation of each constraint C i , the metric associated to this space is defined by the maximum among the weights of the relaxations performed. The set of best solutions to the flexible problem is the set of solutions of the consistent P $ j of highest $ j (the closest solvable problem using Freuder's terminology).

The FCSP approach is different from probabilistic or cost-based approaches, where the best solutions are those satisfying the maximal number of constraints [START_REF] Freuder | Partial constraint satisfaction[END_REF] or those for which the sum of satisfaction degrees is maximal [START_REF] Sadeh | Look-ahead techniques for micro-opportunistic job shop scheduling[END_REF]. These additive approaches allow for the violation of a constraint to be counterbalanced by the satisfaction of other constraints. The word "constraint" is then hardly justified. In a FCSP, as soon as an instantiation violates a hard constraint, it is totally inconsistent: µ R11 … 1 Rm (d 1 , …, d n ) = 0. Thus, we are in accordance with the principle of constraint satisfaction: no constraint can be violated -except according to its relaxation capacities, which are expressed by the FCSP formalism. Additive satisfaction pooling methods also presuppose that constraints are independent or at least, not redundant. This ideal is difficult to achieve and looks contradictory with the purpose of constraint propagation, which is to produce redundant constraints. Note that the two methods of aggregation of satisfaction levels correspond to the two basic approaches to the definition of social welfare in utility theory (e.g., Moulin [START_REF] Moulin | Axioms of Cooperative Decision Making[END_REF]): utilitarianism which maximizes the sum of the individual utilities, and egalitarianism which maximizes the minimal individual utility. Only the latter is compatible with the usual treatment of constraints.

Although in accordance with ours, Satoh's approach [START_REF] Satoh | Formalizing soft constraint by interpretation ordering[END_REF] differs in the way priorities between constraints are expressed. Indeed, Satoh uses second-order logic to describe priorities.

Moreover the ordering of solutions depends on how many constraints are satisfied. In our approach, solutions which satisfy a FCSP to the same degree are not discriminated, even if some of them satisfy more constraints. In other terms, the best solutions in the sense of Satoh are among the best according to the FCSP definition. However, a so-called lexicographic ordering may be used in FCSP, if needed, to discriminate solutions sharing the same global satisfaction degree, as for instance in [10][7]. This mode of aggregation is also known in the social welfare literature under the name "leximin aggregation" (see Moulin [START_REF] Moulin | Axioms of Cooperative Decision Making[END_REF]). The definition of the leximin ordering of two vectors v 1 = (µ 1 , …, µ n ) and v 2 = (6 1 , …, 6 n ) in L n is as follows:

1) rearrange the vectors in increasing order, say µ i 1 # µ i 2 #… # µ i n and 6 j 1 # 6 j 2 #… # 6 j n ;

2) perform a lexicographical comparison starting from the first component, i.e., v 2 > v 1 , & k # n such that + m < k 6 j m = µ i m and 6 j k > µ i k .

In the example, the instantiation (z = 2, y = 1, x = 4) which satisfies C1, C2, C3 and C4 to degrees (1, 1, $ 2 , 1) is considered in a FCSP as equally good as (z = 1, y = 1, x = 5) which satisfies the constraints to degrees (1, $ 3 , $ 2 , $ 3 ). The lexicographic ordering, which is a refinement of the min-induced ordering, will prefer the first instantiation to the second one.

Note that if L = {0,1}, i.e., if the FCSP is a classical CSP, the solutions which are the best according to the lexicographic ordering are those satisfying the maximal number of constraints, as in Freuder's view of partial constraint satisfaction [START_REF] Freuder | Partial constraint satisfaction[END_REF]. In other terms, the lexicographic ordering in a FCSP, which is more precisely studied in [33][34], is a generalization of Freuder's ordering in a classical CSP.

As a general model based on possibility theory, the FCSP approach generalizes the frameworks that model softness by means of fuzzy sets [4][7] [START_REF] Martin-Clouaire | Dealing with soft constraints in a constraint satisfaction problem[END_REF] as well as those dealing with constraint priorities by searching to minimize the priority of the violated constraints [10][7][13] [START_REF] Schiex | Possibilistic constraint satisfaction problems or how to handle soft constraints[END_REF]. More precisely, some of them use an inclusion-based refinement of the min-induced ordering [START_REF] Borning | Constraint hierarchies and logic programming[END_REF], or a lexicographic refinement [START_REF] Descottes | Making compromises among antagonist constraints[END_REF][7] -which is itself a refinement of the inclusion-based ordering. See [START_REF] Fargier | Selecting preferred solutions in Fuzzy Constraint Satisfaction Problems[END_REF][34] for a discussion on the selection of preferred solutions in FCSP by means of these three criteria.

A Generic Solving Method for FCSPs

Finding a solution to a classical CSP is a NP-complete task. Hence, finding the best solution of FCSP is at least NP-hard. In fact, it reduces to a sup/min optimization formulation:

Sup {(d1,…,dn) ! D1×…×Dn} [min {Ri ! {R1,…,Rm}} (µ Ri ((d 1 , …, d n ) .V(R i ) ))].
This kind of problem can be solved using classical Branch and Bound algorithms [START_REF] Freuder | Partial constraint satisfaction[END_REF][17] [START_REF] Schiex | Possibilistic constraint satisfaction problems or how to handle soft constraints[END_REF],

such as Depth-First Branch and Bound. It is a natural extension of backtracking, the standard approach to CSPs. Using such a classical tree search algorithm, variables are instanciated in a predetermined sequence, say (x 1 , …, x n ). The root of the tree is the empty assignment. 

Cons(d 1 , …, d k ) = µ [1{R i ! R / V(Ri)-{x 1 ,…,x k }} Ri] (d 1 , …, d k ) = min {Ri ! R / V(Ri)-{x 1 ,…,x k }} (µ Ri ((d 1 , …, d k ) .V(R i ) )) " min {Ri!R} (µ Ri ((d 1 , …, d k ) .V(R i ) )) = µ [5. {x1,…,xk} ] (d 1 , …, d k ) Hence Cons (d 1 , …, d k )"µ [5. {x1,…,xk} ] (d 1 , …, d k ).
This bound decreases when extending the nodes of the search tree and becomes exact for the leaves. Moreover, it may be incrementally computed as the tree is explored downward:

Cons(d 1 ,…, d k+1 ) = min(Cons(d 1 ,…,d k ), min {Ri!R,xk+1!V(Ri) and V(Ri)-{x 1 ,…,x k+1 }} µ Ri ((d 1 ,…,d k+1 ) .V(R i ) ))).
Like the incremental computation of consistency in classical CSPs, the incremental computation Figure 11 shows a search tree corresponding to the example of Section 2.4.

Circumstances may impose resource bounds. In particular, real time processing may require immediate answers that can be refined later if time allows. The Depth-First Branch and Bound process is well suited to provide resource-bounded solutions. We can simply report the best instantiation available when, for example, a time limit is exceeded. In our example, the discovery of the best solution requests 10 nodes and 37 checks of consistency (i.e., computations of the satisfaction degree of a constraint): the first solution (consistency: $ 1 ) is reached after 3 node extensions and 10 consistency checks and the best solution (consistency:

Dechter and Meiri [START_REF] Dechter | Experimental evaluation of preprocessing techniques in Constraint Satisfaction Problems[END_REF] may be used, since they only consider structural characteristics.

Dynamic search rearrangement may also be applied: when extending the current instantiation, the variable having the least number of values whose degree of satisfaction is greater than b inf should be chosen first. A variant for assessing the priority of a variable may be to consider the set of the values which are consistent with the current instantiation with a degree greater than b inf :

Priority(x j / d 1 , …, d k ) = Cardinality({d j , Cons(d 1 ,…,d k ,d j ) >b inf }).
For the selection of the value of a variable, the value(s) having the highest degree of satisfaction may be chosen first.

Nonmonotonicity in FCSPs

Using the classical CSP approach, the set of solutions shrinks when new constraints are added, and eventually becomes empty in case of conflicting constraints. In the FCSP framework, adding a new constraint to a problem P may rule out all the previously best solutions if they satisfy the new constraint to a degree lower than Cons(P). But as long as the new problem (say P') is not totally inconsistent, a new set of best solutions appears that satisfies the new problem to a degree Cons(P') # Cons(P). Indeed, it holds that:

R 1 1… 1 R m 1 R m+1 -R 1 1… 1 R m
wherestands for the fuzzy set inclusion, but generally:

{(d 1 , …, d n ) / µ R11 … 1Rm1Rm+1 (d 1 , …, d n ) = Cons(P')} 8 {(d 1 , …, d n ) / µ R11 … 1Rm (d 1 , …, d n ) = Cons(P)}.
Hence, the set of best solutions does not decrease monotonically when new constraints are added. The nomonotonic behaviour of soft constraints has been noticed by Satoh [START_REF] Satoh | Formalizing soft constraint by interpretation ordering[END_REF]. The type of nonmonotononicity at work here is the same as the one captured by possibilistic logic (Dubois and Prade [START_REF] Dubois | Possibilistic logic, preferential models, non-monotonicity and related issues[END_REF]) and appears only in the presence of inconsistency. It has been precisely characterized by Benfehrat et al. [START_REF] Benfehrat | Representing default rules in possibilistic logic[END_REF] as the class of preferential inference relations satisfying the rational monotonicity property of Lehmann [START_REF] Lehmann | What does a conditional knowledge base entail?[END_REF]. In fact, adding a new constraint may lead to four situations:

-the new constraint is redundant: R 1 1… 1 R m -R m+1 ; the set of best solutions remains unchanged.

-the new constraint is totally compatible with P: Cons(P) = Cons(P'); the set of best solutions is included in the previous one but may remain unchanged.

-the new constraint is partially inconsistent with P: Cons(P') < Cons(P); constraints are implicitly relaxed according to their flexibility and the set of best solutions is not necessarily included in the previous one.

-the new constraint is totally incompatible with P: Cons(P') = 0; the set of best solutions is empty.

In the example of Section 2.4, the consistency of the problem is $ 3 and the set of best solutions consists of a single one, namely {(x = 3, y = 3, z = 1)}:

-adding the redundant hard constraint z # 3 does not change the consistency of the problem nor the set of best solutions.

-adding the compatible hard constraint y + z = 4 neither changes the consistency of the problem nor the set of best solutions; however, the satisfaction degrees of other instanciations decreases (e.g., the satisfaction degrees of (x = 4, y = 1, z = 2) become 0 instead of $ 2 ).

-adding the hard constraint y + z = 3, the consistency of the the problem becomes $ 2 and the new set of best solutions is {(x = 4, y = 1, z = 2), (x = 4, y = 2, z = 1), (x = 4, y = 0, z = 3)}.

-adding the hard constraint x + y = 3, the problem becomes totally inconsistent.

As a consequence of this nonmonotonic behavior, the problem of solution maintenance in FCSPs appears to be more complex than in classical CSPs: pruned branches in a previous search through the tree have to be developed contrary to the method proposed by

Van Hentenryck [START_REF] Van Hentenryck | Incremental constraint satisfaction in logic programming[END_REF]. The question of relaxing or deleting a constraint is not separately considered in the FCSP model, since the relaxation capacities of the constraints are supposed to be explicitly represented by means of preference among values and priority degrees. In other terms, in the FCSP model, the allowed weakening and deletion of constraints are already captured by the flexibility of the constraints (as far as preferences remain unchanged). On the contrary, when constraints have to be dynamically added or strengthened, e.g., the priority of a constraint (resp. the satisfaction degree of a value) increase (resp. decrease) the nonmonotonicity phenomena described above takes place.

Local Consistency in FCSPs

In the classical CSP framework, local consistency techniques can be used to improve the eficiency of the search algorithms. The most common techniques enforce arc-consistency (e.g., the AC-3 algorithm proposed by Mackworth [START_REF] Mackworth | Consistency in networks of relations[END_REF] which is a generalization and a simplification of the earlier "filtering" algorithm by Waltz [START_REF] Waltz | Understanding line drawings of scenes with shadows[END_REF]) or path-consistency (e.g., the PC-2 algorithm proposed also by Mackworth [START_REF] Mackworth | Consistency in networks of relations[END_REF]). These preliminary notions of local consistency have been generalized by the concept of k-consistency [START_REF] Freuder | Synthetising constraint expressions[END_REF]. Actually, the theoretical foundations of the FCSP framework, as presented in the previous sections, allow us to easily extend all these definitions -and the associated algorithms (e.g., AC3) [START_REF] Fargier | Problèmes de satisfaction de contraintes flexibles -Application à l'ordonnancement de production[END_REF].

Local Consistency for Fuzzy Constraints

• k-consistency

A classical CSP is said to be k-consistent if any consistent instantiation of k -1 variables can be extended to a consistent instantiation involving any k th variable. A FCSP is said to be k-consistent if any instantiation of k -1 variables can be extended to a partially consistent instantiation involving any k th variable, and this instanciation must be as consistent as the instantiation of k -1 variables. Formally, a FCSP is k-consistent if and only if:

+ {x j 1 , …, x j k-1 } -X, + x j k ! X such as x j k ) {x j 1 , …, x j k-1 }, + (d j 1 , …, d j k-1 ) ! D j 1 ×… × D j k-1 , & d j k ! D j k such as Cons(d j 1 , …, d j k-1 ,d j k ) = Cons(d j 1 , …, d j k-1 )
A FCSP is strongly k-consistent if it is j-consistent for every j#k. According to this definition, a necessary and sufficient condition for k-consistency is:

+ {x j 1 , …, x j k-1 } -X, + x jk ! X such as x j k ) {x j 1 , …, x j k-1 }, 1 {Ri,V(Ri)-{xj 1 ,…,xj k-1 }} R i = [1 {Ri,V(Ri)-{xj 1 ,…,xj k }} R i ] .{x j1 ,…,x jk-1 }

• Arc-consistency

A network of fuzzy constraints is arc-consistent (or equivalently 2-consistent) if and only if:

+ x i ! X, + x j ! X such as x i ' x j , R i -[R ij 1Rj] .{x i }
R i , R j and R ij respectively denoting the relation associated to the unary constraint on x i , x j and the binary constraint relating x i and x j . This condition is a generalization to fuzzy relations of the usual condition of arc consistency.

• 3-consistency

A network of fuzzy constraints is 3-consistent if and only if: Other classical filtering algorithms can be straightforwardly extended by changing the "revise" procedure. For instance, PC2 is to be performed as defined by Mackworth [START_REF] Mackworth | Consistency in networks of relations[END_REF], replacing the updating pattern by its fuzzy counterpart:

+ {x i ,x j } -X, + x k ! X -{x i ,x j }, R i 1 R ij 1 Rj -[R ik 1 R k 1 R kj ] .{x i, x j }
R ij : R ij 1 [R ik 1 R k 1 R kj ]
.{x i, x j } 1 and . denoting the fuzzy conjunctive combination and projection.

When performed on a FCSP, the complexity of any classical filtering algorithm must at most be augmented by a factor p, if p is the number of different levels of satisfaction used to describe the flexibility of the problem. This result can be intuitively understood since a FCSP is equivalent to p classical CSPs, as outlined in Section 3. As a matter of fact, consider FAC3, d denoting the maximal cardinality of domains, p being the number of different levels of satisfaction, m the number of binary constraints and d the maximal cardinality of domains. The cost of the "revise" procedure remains unchanged. The list Q is increased when a call to revise has succeeded. In classical CSPs, revise(x i ,x j ) is called with success at most d times. In a FCSP, revise(x i ,x j ) is called with success at most p*d times since each possible value for x i may have its degree diminished at most p times: combination is idempotent, leads to decrease satisfaction levels without generating levels other than the original ones. Successful calls of "revise" concern at least one of the d possible values for x i . Hence, the theoretical complexity of FAC3 is O(pd 3 m). More sophisticated algorithms, like AC4 [START_REF] Mohr | Arc and path consistency revisited[END_REF], can also be straighforward adapted to FCSP (see [START_REF] Fargier | Problèmes de satisfaction de contraintes floues[END_REF]). In [45][46][47] the use of hypergraph structures appears to be a generalization of tree clustering [START_REF] Dechter | Tree clustering for constraint networks[END_REF] to fuzzy constraints.

Integrating Uncertain Parameters in FCSPs

So far, each relevant parameter of a CSP (or a FCSP) was supposed to be controllable, i.e., it is a decision variable whose value must be chosen according to the constraints relating it to other decision variables. Nevertheless, many real world decision problems must take into account non-controllable parameters, i.e., ill-known quantities whose precise value is neither accessible, nor under user's control. Uncertain as these parameters can be, some knowledge is often available about their plausible values. For instance, in scheduling problems, the duration of a task may be uncertain, due to possible perturbations ("The task Oi will have a duration of approximately five time units"); for more details about the handling of flexibility and uncertainty in scheduling problems, see [START_REF] Dubois | The use fuzzy constraints in job-shop scheduling[END_REF]. Or, going back to our tutorial problem, the number of possible training sessions in the tutorial (z) may depend on the number of people that will attend the tutorial: 1 session if there are 16 people or more, 2 sessions if there are from 9 to 15 people, 3 sessions otherwise (the greater the number of attendees, the less the number of training sessions which can be offered, due to a limited amount of resources); all that we know is that the number of actual participants is from 7 to 17, more possibly between 10 and 14. In this case, the set of decision variables of the FCSP is X = {x,y}, since the value of z is no longer under our control. In the following z denotes an uncontrollable variable.

Possibility theory (Zadeh [19], Dubois and Prade [START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF]) can represent such uncertain quantities under the form of possibility distributions % z , where the values are ranked according to their level of plausibility, taken in a totally ordered scale U. In the example of the tutorial, can be defined as follows: This assumption corresponds to a very cautious attitude, since the constraint C x will be considered as violated as soon as a totally plausible value z may lead to an actual violation of C xz • µ R x (d) = 0 just means: in the normal course of things C x is violated by decision d. Note that doing so, a form of commensurability between uncertainty degrees and satisfaction degrees is assumed, since here the degree of feasibility of the constraint, that lies in L is computed from a degree of necessity in U via a mapping that equates L and U . It agrees with commonsense which allows the interpretation of "this constraint is not very satisfied" as "it is not very certain that the constraint should be satisfied". trade-off between graded uncertainty, described by % z , and preference described by µ R . It can be axiomatically justified as a qualitative counterpart of a utility function [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF]. In the general case, µ R' (d) "$ means that if it is taken for granted that the actual value of z has plausibility at least c($), then it is sure that the decision d satisfies C at least at level $. This technique has been used to handle imprecise processing times of operations in scheduling problems [START_REF] Dubois | The use fuzzy constraints in job-shop scheduling[END_REF].

% z : Dz * U % z (1) = % z (3) = $ (1 > $ > 0); % z (2) = 1; % z (a) = 0 if a ) {1,
Note that if z becomes controllable, then it is enough to change N(d satisfies C) into ((d satisfies C) = sup a!Dz min(µ T i (a), % z (a)), in order to recover the standard FCSP framework. % z is then regarded as the membership function of just a constraint among other ones. This remark emphasizes the convenience of the possibilistic framework.

Possibilistic Modelling of an Ill-Defined CSP

An ill-known CSP is a CSP for which we are unsure about the set of constraints which defines it. More formally, given a set of possible constraints = {C 1 , …, C n }, the uncertainty about the CSP means that there exist several subsets of which are possible candidates as defining what is the real CSP under concern. For the sake of simplicity, the C i 's are assumed to represent non-fuzzy constraints. Recently, Fargier and Lang [START_REF] Fargier | Uncertainty in constraint satisfaction problems: a probabilistic approach[END_REF] have proposed a probabilistic handling of ill-known CSPs. In their approach, each constraint C i has a probability p i to be present in the real CSP (and 1 -p i to be absent, mind that 1 -p i is not the probability of the presence of the complementary constraint C i !). Then, using an independence hypothesis, the probability that the real problem exactly corresponds to the subset Pof constraints is computed as prob(P) = ( i:C i !P p i • ( j:C j )P (1 -p j ). Clearly = P prob(P) = 1. Thus, a probability is attached to each subset of constraints (including the empty subset) which is a candidate for representing the real problem.

A possibilistic model can be also proposed. The idea is to rank the subsets of constraints which are candidates for describing the real problem, using a scale of possibility levels in order to rely on a purely ordinal structure (rather than the richer additive structure of probabilities).

Thus, a possibility distribution % is defined on 2 , and + P -, % (P) represents to what extent it is possible that P exactly describes the real problem . % is assumed to be normalized. Then, as pointed out by Fargier and Lang [START_REF] Fargier | Uncertainty in constraint satisfaction problems: a probabilistic approach[END_REF] in the probabilistic approach, we are not necessarily interested in the CSP with the highest plausibility, but rather in solving a consistent CSP (i.e., which has a solution) such that its solution(s) has/have a maximal 

Conclusion

The rich expressive power of possibility theory provides a general and unified framework for the representation and the management of flexible constraints involving preferences on values as well as prioritized constraints. It also allows for the representation of conditional constraints and of constraints whose satisfaction depends on uncertain parameters.

The FCSP formalism, which is a generalization of classical CSPs, nevertheless offers a large variety of efficient problem solving tools: most classical CSP algorithms easily extend, as well asmost of the CSP theoretical results and their applications. This is due to the fact that FCSP's are not additive, but solely based on commensurate orderings, so that all useful properties of the Boolean structure underlying classical CSP's remain valid. The FCSP framework is currently applied to constraint-based approaches in jobshop scheduling [START_REF] Dubois | The use fuzzy constraints in job-shop scheduling[END_REF] where flexible constraints and uncertain parameters are usual features.

As it turns out, explicitly taking the flexibility of the problem into account does not drastically increase the worst-case computational cost of the search procedure; the complexity of filtering procedures may be increased by a factor reflecting the number of different levels used to describe flexibility in the application under concern. Moreover the problem of finding a feasible solution is changed into an optimization problem of the bottleneck kind, to which Branch and Bound procedures may apply. Of course, in practice, finding an optimal solution is generally more computationally expensive than finding a feasible solution. Obviously, preferences and priorities can be used for expressing heuristics focusing the search on the more promising instantiations. Since the first solution which is found is feasible and usually good, it is not always necessary to proceed with the search for an optimal solution. Experiments carried out in the area of scheduling indicate that the first feasible solution found in the FCSP framework is often obtained more quickly than when preferences are neglected [START_REF] Fargier | Problèmes de satisfaction de contraintes flexibles -Application à l'ordonnancement de production[END_REF]. Moreover, the FCSP approach bypasses empirical relaxation techniques which are needed when a set of constraint is globally unfeasible. Constraint relaxation often happens to be more expensive, difficult to formulate, and suboptimal. On the contrary, the FCSP approach can handle partially inconsistent problems. A solution (the instantiation with the maximal satisfaction degree) will be provided as long as the problem is not totally inconsistent. Hence fuzzy constraints are also useful to guide the search procedure towards "interesting" solutions. Theoretical extensions of the framework are planned with a view to developing computational tools for handling refinements of the global minimum-based satisfaction ordering used here that may be judged as not enough discriminant [33][34]. Finally, this formalism suggests a nonmonotonic framework for dynamic CSPs, when for instance in computer aided-design, default constraints which are used in a first step analysis, are then dynamically modified by the designer.

A

  hard constraint C relating a set of decision variables {x 1 , …, x n } ranging on respective domains D 1 , …, D n is classically described by an associated relation R: R is the crisp subset of D 1 × …× D n that specifies the tuples d = (d 1 , …, d n ) of values which are compatible with C. The set {x 1 , …, x n } of variables related by R will be denoted by V(R).

D 1 ×

 1 …× D n of values that more or less satisfy C. R is defined by a membership function µ R which associates a level of satisfaction µ R (d 1 , …, d n ) in a totally ordered set L (with top denoted 1 and bottom denoted 0) to each tuple (d 1 , …, d n ) ! D = D 1 ×… × D n . This membership grade indicates to what extent d = (d 1 , …, d n ) is compatible with (or satisfies) C. Thus, the notion of constraint satisfaction becomes a matter of degree:

A

  soft constraint involving preferences between values is regarded as a local criterion ordering the instantiations of C, preferences levels being represented in the scale L: µ R (d 1 , …, d n ) > µ R (d' 1 , …, d' n ) means that the first instantiation is preferred to the second one. Interpreting the preference degrees as membership degrees leads to represent a soft constraint by a fuzzy relation.

  a priority degree Pr(C) is attached to each constraint C and indicates to what extent it is imperative that C be satisfied. First consider the case of hard constraints. Pr(C) = 1 means that C is an absolutely imperative constraint while Pr(C) = 0 indicates that it is completely possible to violate C (C has no incidence in the problem). Given two constraints C and C', Pr(C) > Pr(C') means that the satisfaction of C is more necessary than the satisfaction of C'. If C and C' cannot be satisfied simultaneously, solutions compatible with C will be preferred to solutions compatible with C'.
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 2 Figure 2. Decomposition of a soft constraint into a family of prioritized constraints when c(x) = 1 -x.

Figures

  Figures 3a and 3b. Modeling of C 2 (a) and C 3 (b) by means of fuzzy unary restrictions
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  µ R 0{x k1 ,…,x kn k } (d k1 , …, d kn k ) estimates to what extent the instantiation (d k1 , …, d kn k ) satisfies C.

Figure 8 .

 8 Figure 8. Representation of a prioritized fuzzy constraint with safeguard

  , and among the solutions to C 1 (if any) the ones satisfying C 2 are preferred, and among those satisfying both C 1 and C 2 , those satisfying C 3 are preferred, and so on", where C 1 , C 2 , C 3 …, are hard constraints. It should be understood in the following way: satisfayingC 2 if C 1 is not satisfied is of no interest; satisfying C 3 if C 2 is not satisfied is of no use even if C 1 is satisfied.Thus there is a hierarchy between the constraints. For the sake of simplicity, let us consider the case of a compound constraint C made of three nested constraints. Thus, one would like to express that C 1 should hold (with priority 1), and that if C 1 holds, C 2 holds with priority $ 2 , and if C 1 and C 2 hold, C 3 holds with priority $ 3 (with $ 3 < $ 2 < 1). The constraints C 1 ,C 2 and C 3 are supposed to restrict the possible values of the same set of variables (the relations are defined on the same referential D 1 × …× D n ). It is always possible to be in this situation taking the cylindrical extensions of R 1 , R 2 and R 3 in V(R 1 ) 2 V(R 2 ) 2 V(R 3 ). Using the representation of conditional constraints presented above, this nested conditional constraint may be represented by means of the fuzzy relation R* defined on D 1 ×… × D n :
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 10 Figure 10. Levels of satisfaction of a hierarchy of constraints
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 1 Definition A Fuzzy Constraint Satisfaction Problem (FCSP) P involves a set of n decision variables X = {x 1 , …, x n } each ranging on its respective domain D 1 , …, D n and a set of m fuzzy relations R = {R 1 , …, R m } representing a set C = {C 1 , …, C m } of hard, soft or prioritized constraints (domains are assumed to be discrete in the following). A unary relation R j of R is supposed to be associated to each variable x j . It represents the values which are a priori more or less feasible (i.e., here, preferred) for x j (by default, R j = D j ). If all the constraints are unary or binary, the FCSP is called a fuzzy constraint network. Classically, an instantiation of {x k 1 , …, x knk } -X is locally consistent if it satisfies all the constraints in the subnetwork restricted to {x k 1 , …, x knk }. Like constraint satisfaction, the notion of consistency is now a matter of degree. The definition of the conjunctive combination states that µ [R i11 … 1 R ip ] (d k 1 , …, d knk ) estimates to what extent (d k 1 , …, d knk ) satisfies all the constraints C i1 , …, C ip . Hence, the degree of local consistency of (d k 1 , …, d knk ) is defined by:

Considering a complete instantiation

  of X, µ [R11…1Rm] (d 1 , …, d n ) is the satisfaction degree of all the constraints by (d 1 , …, d n ), i.e., the satisfaction degree of problem P by (d 1 , …, d n ). It is the membership degree of (d 1 , …, d n ) to the fuzzy set 5 = R 1 1… 1 R m which is nothing but the (fuzzy) set of solutions of P. As for classical CSPs, solutions are consistent instantiations of X: Cons(d 1 , …, d n ) = µ5(d 1 , …, d n ) > 0, i.e., solutions that are not totally unfeasible.

  4 is partially inconsistent. The best solution is (x = 3, y = 3, z = 1) and the consistency degree is $ 3 < 1: the constraint over the number of training sessions and Prof. A's constraint are slightly relaxed according to their flexibility. The other potential solutions (e.g., (x = 4, y = 1, z = 2) or (x = 2, y = 3, z = 2)) are less consistent (their respective satisfaction degrees are $ 2 and $ 1 ).

  Intermediate nodes (d 1 , …, d k ) denote partial instantiations and leaves are complete instantiations of (x 1 , …, x n ). For each leaf (d 1 , …, d n ) in the tree, we may compute µ 5 (d 1 , …, d n ). The leaves that maximize µ 5 are searched for via a depth-first exploration of the tree. The use of fuzzy constraints makes it possible to prune each branch that necessary leads to suboptimal leaves that can be proved worse than the best of the already evaluated solutions. In other terms, it is useless to extend intermediary nodes (d 1 , …, d k ) such that µ [5. {x1,…,xk} ] (d 1 , …, d k ) # b inf , b inf being a lower bound of Cons(P). The calculation of µ [5. {x1,…,xk} ] (d 1 , …, d k ) requires the extension of (d 1 , …, d k ) into a complete instantiation but the definition of local consistency provides an upper bound for it. Indeed:

of Cons(d 1 ,

 1 …, d k+1 ) considers each constraint only once. Hence, the search starts with a lower bound b inf (for pruning) and an upper bound b sup of Cons(P); b inf and b sup may respectively be initialized to 0 and 1, or to better lower and upper bounds of Cons(P) if available. 7he consistency of the root is taken as b sup . At each step, the current partial instantiation (d 1 , …, d k ) is tentatively extended to variable x k+1 . If there is a value d k+1 such that Cons(d 1 , …, d k+1 ) > b inf , d k+1 is assigned to x k+1 . If no value consistent enough can be found for x k+1 , the algorithm backtracks to the most recent variable assignment. When a solution (d 1 , …, d n ) is reached whose consistency is greater than b inf , it is thus the best current solution; b inf is updated to Cons(d 1 , …, d n ) since it is a better lower bound of Cons(P). If Cons(d 1 , …, d n ) < b sup , the algorithm backtracks in order to find a solution better than the current one. It should be noticed that partial instantiations (d 1 , …, d k ) which have been extended to a solution (d 1 , …, d n ) whose consistency is equal to Cons(d 1 , …, d k ) do not have better extensions; hence, these extensions do not have to be explored.

  for each d j in D j do new-degree : min (µ Ri (d i ), µ Rij (di,dj), µ Rj (d j )) Height : max(new-degree, Height) if new-degree = 0, delete d i from D i . if new-degree ' µ Ri (d i ), do Changed : true µ Ri (d i ) : new-degree. Cons-P-sup : min (Cons-P-sup, Height) return Changed

  2,3}.This interpretation of possibility distributions for uncontrollable parameters is in full contrast with the alternative interpretation in terms of preference for controllable decision variables that was the one in previous sections. Then the possibility measure;(A) = sup d!A % z (d) and the necessity measure N(A) = c(;(A))= inf d)A c(% z (d)), introduced in Section 2.3, are now respectively estimating the extent to which the event A is unsurprizing and the extent to which A is surprizing, i.e., A is believed in spite of the uncertainty pervading the value of z.Let us now study to what extent a classical constraint relating such an uncertain (non controllable) parameter to a decision variable (controllable) will be satisfied. Consider for instance a crisp constraint C xz relating z to x. In order to satisfy C xz , we must choose a value of x such as C xz is satisfied whatever the value of z turns out to be. In other terms, the satisfaction degree of the constraint for the value d ! D x is the necessity degree[START_REF] Dubois | Possibility Theory: An Approach to Computerized Processing of Uncertainty[END_REF] of the event z ! (R xz < {d}) .D z , given that the the possible values of z are restricted by % z :N(x = d satisfies C xz ) = N(z ! (R xz < {d}) .D z ) = inf a)(R xz <{d}) .D z , a!D z c(% z (a)) = c(sup a)(R xz <{d}) .D z , a!D z % z (a))This degree evaluates to what extent it is impossible to have a whatsoever possible value of z violating the constraint: it is equal to 0 if there is a totally plausible value a 1 for z such that (a 1 ,d) violates the constraint and equal to 1 if all the values a such that (z, x) = (a,d) violates C xz are impossible. In the crisp case, % z is the characteristic function of the set A of possible values of z, and N(x = d satisfies C xz ) = 1 if and only if A -(R xz < {d}) .D z and 0 otherwise. In terms of fuzzy sets, this necessity degree evaluates a form of inclusion of the fuzzy set of possible values for z in the set (R xz < {d}) .D z . For instance, if C xz requires x + z # 5, the following satisfaction degrees for the different values of x are obtained: N(x = d satisfies C xz ) = 1 for d ! {0,1,2}; N(x = d satisfies C xz ) = c($) for d ! {3} N(x = d satisfies C xz ) = 0 for d ! {4,5,6,7}. A constraint involving a decision variable x and an uncertain parameter z can thus be interpreted as the unary soft constraint C x on x defined by the fuzzy relation R x : µ R x (d) = N(x = d satisfies C xz ).

  More generally, consider a (possibly soft) constraint C relating the set of decision variables Y = {x 1 , …, x n } -X to a set of uncertain parameters Z = {z 1 , …, z k } respectively defined on A 1 , …, A k ; let us denote % z a possibility distribution defined on A z = A 1 ×… × A k modeling our knowledge of the uncertain parameters. The constraint is satisfied by the instanciation d = (d 1 , …, d n ) ! D 1 ×… × D n of the decision variables if, whatever the values of z = (z 1 , …, z k ), these values are compatible with d, i.e., if the set of possible values for z is included in T = (R 1 {(d 1 , …, d n )}) .Z . It is obvious that µ T (a) = µ R (a,d) and N(d satisfies C) = N(z ! T) = inf a!Az max(µ T (a), c(% z (a))) = c(sup a!Az min(c(µ T (a)), % z (a))).

  certainty to be solution(s) of the real problem (if the real problem has a solution). For instance, if = {C 1 , C 2 , C 3 } is consistent and %( ) = 0, %({C 1 ,C 2 }) = %({C 1 ,C 3 }) = %({C 2 ,C 3 }) = 1, a solution to is certainly a solution to the real problem although it is impossible that the real problem be made of the three constraints C 1 , C 2 , C 3 altogether. The certainty N(d) that the instantiation d is a solution of the real problem is computed as the impossibility that d violates some constraint of the real problem , namely N(d) = c(max P:d)sol(P) % (P)) where sol(P) is the set of solutions of the CSP problem represented by the set P of constraints. Note that any solution of P is also a solution of P' such that P' -P, and if d ) sol(P') then d ) sol(P). The possibility that d is a solution of is given by ;(d) = max P:d!sol(P) % (P). Due to the normalization of % , max(;(d), c(N(d))) = 1 and thus ;(d) " N(d). In particular, if d is a solution of the CSP problem corresponding to the whole set of constraints then N(d) = 1. When does not correspond to a consistent CSP, the solutions d of subsets which maximize(s) N(d) and ;(d) must be searched for (taking into account that N(d) = 0 when ;(d) < 1). Note that N(d) = 0 as soon as &P, d ) sol(P), % (P) = 1. Thus, when there exists an inconsistent set of constraints P such that %(P) = 1, it means that we cannot be somewhat certain that the real problem has a solution, since this certainty is expressed by N( has a solution) = c(max P inconsistent % (P)). The possibility that has a solution is given by The above result emphasizes that the problem of finding a certainly feasible solution to an illdefined CSP problem (by maximizing N(d)) comes down to a prioritized classical CSP problem where the priority of constraint C i reflects exactly the degree of possibility that the real problem contains C i . Note that this problem reduces to a non-prioritized problem when % i (C i ) = 1, +i. This is the case when % i (not C i ) < 1, +i, namely it is somewhat certain that all constraints appear in the real problem. Then N(d) = 0 or 1, and N(d) = 1 only if d satisfies all constraints in . When is inconsistent N(d) = 0, +d. The case N(d) ) {0,1} is when it is believed that some constraints are not in the real problem (% i (C i ) < 1, % i (not C i ) = 1). When % i (C i ) = 1, +i and N(d) = 0, one may be interested in maximizing ;(d). Let (d) = {C i such that d satisfies C i } then d ! sol(P) if and only if P -(d). Hence ;(d) = max P-(d) % (P). Let us consider the case where all the C i 's are such that % i (C i ) = 1 and where the above independence assumption holds between the presence or absence of one constraint with respect to another. In that case, n i (C i ) = c(% i (not C i )) estimate to what extent it is certain that C i is in . Then, it holds + P -, % (P) = min i:C i )P c(n i (C i )). An example of the lattice of possible representations of when = {C 1 , C 2 , C 3 }, in the particular case where % i (C i ) = 1, + i = 1,3, is given on Figure 12

  if C i is satisfied, and has a priority 0 (which means that C j can be

forgotten), if C i is not satisfied. µ Ri4Rj (d 1 , …, d k ) estimates to what extent d = (d 1 , …, d k )

$ 3 ) is encountered after 7 node extensions and 23 consistency checks, the remaining computational effort being used to prove that there is no better solution. See Figure 11. y = 3 [START_REF] Waltz | Understanding line drawings of scenes with shadows[END_REF] y = 4 (1) z = 2 (1) z = 1 ($ 3 ) y = 0 ($ 2 ) y = 1 ($ 2 ) y = 3 ($ 3 )

x = 6 ($ 1 ) x = 5 ($ 2 ) x = 3 ($ 3 ) Figure 11. A search tree for the example of Section 2.4.

(The tree is explored from the root to leaves and from left to right)

This kind of algorithm has clearly a worst-case behaviour not worse than classical backtracking: both algorithms, in the worst case, will end up trying all possible combinations of values, and testing all the constraints among them. It may actually save effort as stressed in [START_REF] Freuder | Partial constraint satisfaction[END_REF]. Using a pure backtrack search, 44 nodes and 155 consistency checks were needed, the best solution being reached after 9 node extensions and 28 consistency checks.

The improvement of the search depends on the bounds b inf and b sup : the higher b inf the more efficient the pruning of useless branches and the lower b sup , the sooner the search will stop. For instance, there are:

-6 nodes and 24 consistency checks for b inf = $ 3 and b sup = 1.

-7 nodes and 23 consistency checks for b inf = 0 and bsup = $ 3 .

-3 nodes and 10 consistency checks for binf = bsup = $ 3 .

It is possible to develop a large class of tree search algorithms (e.g., beam search as in [START_REF] Fox | Job-shop scheduling: An investigation in constraintdirected reasoning[END_REF]) based on the same principles and integrating different enhancements or variants (see [START_REF] Schiex | Possibilistic constraint satisfaction problems or how to handle soft constraints[END_REF]). Heuristics for choosing the instatiation ordering of the variables like those proposed by Combination and projection of fuzzy relations share all properties of combination and projection of crisp relations. Hence basic results in classical CSPs extend right away to the FCSP framework, like Mackworth's theorem relating 3-consistency to path consistency [START_REF] Mackworth | Consistency in networks of relations[END_REF] and backtrack-free sufficient conditions of Freuder [START_REF] Freuder | A sufficient condition for backtrack-free search[END_REF] or Dechter [START_REF] Dechter | From local to global consistency[END_REF]. See Fargier [START_REF] Fargier | Problèmes de satisfaction de contraintes flexibles -Application à l'ordonnancement de production[END_REF] for detailed proofs. In fact, properties which cannot be used in FCSPs are the monotonicity, as outlined previously, and properties related to the negation: if R i represents a flexible constraint C i and R i c the constraint not(C i ), R i 1 R i c = 9 does not hold generally. As soon as the description language does not include the negation of constraints, all results in classical static CSPs still hold in FCSPs.

Network Consistency Algorithms for FCSPs

All the classical filtering algorithms extend to FCSPs as well. The following algorithm is an extension of AC3 which ensures arc-consistency in a network of fuzzy constraints (L = [0,1]). It provides in addition an upper approximation of the overall consistency degree Cons(P).

Procedure FAC-3

Cons-P-sup : 1 In that case the possibility distribution % is constructed from the available knowledge of uncontrollable parameter values.

The possibility distribution % over 2 can also obtained from the levels of possibility % i (C i ) that C i belongs to and % i (not C i ) that C i is absent from (which again does not mean that C i is present in !), assuming non-interactivity (see [52][28]) or if we prefer logical independence between the presence or absence of C i , and the presence or absence of C j , +i, +j. Then % = min i % i , i.e., + P -, % (P) = min(min i:C i !P % i (C i ), min j:C j )P % j (not C j )).

Clearly, the normalization condition of the % i 's (max(% i (C i ), % i (not C i )) = 1) entails that % is normalized. Note that % (P) = 0 as soon as &i, C i ! P, % i (C i ) = 0 or &j, C j ) P, % j (not C j ) = 0, i.e., P cannot be the real problem if it contains constraints that cannot be present or it excludes constraints which should be present. Note also that if we consider a constraint C i such that we totally ignore if it is present or absent in (i.e., % i (C i ) = 1 = % i (not C i )), it does not make any difference to have C i or not in P.

In the general case, the degrees of possibility % i (C i ) and % i (not C i ) should be computed from the possibility distribution % , via projection, namely:

Although only an upper bound on % can be recovered from the knowledge of {% i (C i ),% i (¬C i ), i=1,n} it is possible to express N(d) only in terms of {% i (C i ), i=1,n}. Indeed 

It can be easily checked that P' -P 4 %(P) " %(P') when +i, % i (C i ) = 1. It can be checked that in that particular case

Thus a problem with prioritized constraints, as presented in Section 2, is recovered again.

However note the slight difference of interpretation: certainty of presence of the constraint in the real problem versus level of priority attached to constraint in Section 2, this priority level being a part of the specification of a flexible problem. It has also been observed that maximizing the certainty of feasibility of a solution to an ill-defined problem, it also comes down to attach to each constraint a priority level that expresses the level of possibility of presence of the constraint. When these constraints are not fuzzy the three problems (priority handling, certainty of presence of constraints, possibility of presence of constraints) can be addressed in the same setting, which in logical terms is the one of possibilistic logic. A possibilistic logic program can solve a set of prioritized, logically expressed constraints as well as find the best model of a set of uncertain sentences (cf. Lang [START_REF] Lang | Possibilistic logic as a logical framework for min-max discrete optimization problems and prioritized constraints[END_REF]).