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ABSTRACT: The most popular approach to decision-making in the setting of fuzzy

sets is the maximin ranking of solutions. This method is natural when interpreting

the fuzzy sets as flexible constraints that cannot compensate with one another.

However the obtained ranking of solutions is very coarse. Two kinds of refinements

to this ordering are introduced: a partial ordering according to the least satisfied

discriminating constraint, and a lexicographical ranking. The latter refines the former

and combines utilitarist and egalitarist points of view on the  aggregation of feasibility

degrees. These orderings are characterized in several ways and their representation by

means of two place numerical functions is studied. Dual refinements of the maximax

ranking are provided.

KEY-WORDS: Fuzzy constraints, maximin problems, vector-maximization, partial

ordering, leximin ordering.

     1. Introduction

In their seminal paper, Bellman and Zadeh [2] established a link between fuzzy set

theory and multiple criteria decision-making. The basic idea is that the set of good

solutions according to a criterion is a fuzzy set, and that the set of optimal solutions is

obtained by means of the intersection of these fuzzy sets. More recently, Dubois,

Fargier and Prade [9] have pointed out that this maximin paradigm for fuzzy

optimization actually models flexible constraints, rather than objective functions.

Indeed, the characteristic property of a constraint, namely it cannot be violated, still

applies to the maximin approach to fuzzy optimization. Any solution with zero

membership grade for a single constraint is rejected as impossible. No compensation

between partial satisfaction levels is allowed. On the contrary, the tradition of multiple

criteria decision-making is based on the idea of trade-off (e.g., Keeney and Raiffa [24]):

the point is that a bad local degree of satisfaction for a criterion can be compensated by

a good partial satisfaction level for another criterion. This is not the case in the

maximin approach, in which the global satisfaction level for a solution to a set of

fuzzy constraints is the level of satisfaction of the least satisfied constraint.

The authors have previously noticed that the calculus of fuzzy restrictions

introduced by Zadeh [34] can be used as a tool for flexible constraint propagation [9, 10].



2
The main merit of the maximin paradigm of fuzzy optimization is that almost all

classical constraints propagation techniques developed in Artificial Intelligence (e.g.,

arc and path consistency algorithms (Montanari [27], Mackworth [26]) carry over to the

setting of flexible constraint propagation. The main defect of the  maximin approach is

its lack of discrimination power between solutions that strongly differ with respect to

the fulfilment of membership to the various constraints, except for the smallest

membership grades.

This paper proposes various techniques for refining the min-based ordering of

solutions that cope with this defect. The first improvement (Section 3) consists in

deleting flexible constraints which do not discriminate among maximin solutions,

and considering maximin solutions to the set of remaining constraints. The second

improvement (Section 4), which further refines the first one, focuses on the number

of flexible constraints satisfied to a given degree, and leads to a lexicographic ordering

of the maximin solutions. This ordering is known in the literature of social choice

under the name of "leximin" (e.g., Moulin, [29]). These definitions of optimality are

compared to the standard Pareto ordering of vector-maximization. Dual notions

refining maximax solutions are also defined and studied (Section 5). Relationships

between these concepts of optimality, fuzzy set inclusion and fuzzy cardinality are also

established.  The next section discusses the difference between an objective and a fuzzy

constraint. The contents of this paper are based on results that appear in the second

author's Ph.D. thesis (Fargier [19]); some of these results have been presented earlier by

Fargier et al. [18].

2. Multiple objective decision-making versus fuzzy constraints satisfaction

The notion of constraint is widely used in many decision making problems :

design, planning, scheduling, etc. A constraint describes what are the potentially

acceptable decisions (the solutions) and what are the  absolutely unacceptable ones :  it

is an all-or-nothing matter. Moreover, no constraint can be violated. The idea of an

objective is quite different : attaining an objective is a matter of degree and leads to

introducing a preference  ordering on the the solutions; moreover, in the presence of

multiple conflicting objectives, trade-offs are allowed.

2.1 Objectives versus fuzzy constraints

An objective function gi associates to each solution su to a problem a value gi(su) in

a totally ordered set <L, !> (for instance, L = [0,1] or L = [0, + ")). The best solutions

according to gi are those maximising gi(su). In other terms, gi induces a complete pre-
order !gi on the set of feasible solutions (a complete, reflexive and transitive relation)

defined by : su !gi sv if and only if gi(su) ! gi(sv) ; this will be interpreted by "the

criterion gi prefers sv to su". However, there is not necessarily thresholds a < b such
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that below a a solution is rejected whatever its ratings for other criteria, nor such that

above b the objective is totally fulfilled.

A classical hard constraint is represented by a classical set, i. e., only using two

satisfaction levels 0 or 1. The notion of fuzzy constraint as introduced by Bellman and

Zadeh [2] meant to represent constraints as well as objectives by fuzzy subsets Ci of S,

the set of possible decisions,
µCi : S # L = [0,1]

su $ S |# µCi(su) = ui $ [0,1]

Viewed as a constraint, Ci is called a fuzzy constraint : µCi(su) = 1 means that su

totally satisfies Ci while µCi(su) = 0 means that it totally violates Ci (su is unfeasible). If

0 < µCi(su) < 1, su satisfies Ci only partially ; µCi(su) < µCi(sv) indicates that Ci is more

satisfied by sv than by su (Ci prefers sv to su). Hence, like an objective function, a fuzzy

constraint rank-orders the feasible decisions. However, contrary to an objective

function a fuzzy constraint also models a threshold below which a solution will be

rejected and a threshold above which solutions are just equally feasible. In fact, a fuzzy
constraint can be viewed as the association of a constraint (defining the support of Ci)

and a criterion which rank-orders the feasible solutions according to preference.

Remark : using fuzzy constraints to represent priorities

Constraints are understood as imperative. However, Dubois, Fargier and Prade [9]

have shown that fuzzy constraints can also handle the notion of priority, in

accordance with early attempts at coping with antagonistic constraints, for instance the

work of Descottes and Latombe [8]. Priorities will be represented by means of levels in

the scale [0,1]: a coefficient pi is attached to a crisp constraint Ci and called its priority

degree. If pi = 1, Ci is an imperative constraint; if pi = 0, it is completely possible to

violate Ci (Ci has no incidence in the problem);  pi > pj means that the satisfaction of Ci

is more necessary than the satisfaction of Cj: if Ci and Cj cannot be satisfied

simultaneously, solutions compatible with Ci only are preferable to solutions

compatible with Cj only.

Priorities on constraints can be transformed, without any loss of information, into

satisfaction degrees on values. Indeed, since pi represents to what extent it is necessary

to satisfy Ci, 1 – pi indicates to what extent it is possible to violate it. In other words,

any potential decision u satisfies Ci to a degree greater than or equal to 1 – pi. Hence,

the pair (Ci ,pi), where Ci is a crisp constraint, can be modelled as a fuzzy constraint

C'i:
    µC'i(su)  = 1 if su satisfies Ci

         = 1 – pi if su violates Ci.
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If Ci is itself a soft constraint with priority pi, it will be modelled by the fuzzy

constraint C'i,: µC'i(su) = max(1–pi, µCi(su)). These definitions, originally due to Yager

[32], make sense on any ordinal scale equipped with an order-reversing map, and are

in accordance with the treatment of certainty-qualified assertions in possibility theory

(Dubois and Prade [15]), and the principle of minimum specificity, interpreting priority

levels as necessity degrees. When constraints are crisp, they are in full agreement with

possibilistic logic (Lang [25]; Schiex [31]; Dubois, Lang and Prade [13]). This treatment of

prioritized constraints relies on the assumption that it is not possible to fully violate a

constraint that is not imperative. As a consequence priority weights can only decrease

the importance of constraints, since, when no weight is attached, constraints are

considered as imperative. The setting of possibility theory suggests that fuzzy

constraints subsume prioritized constraints.

2. 2 Pareto-optimal solutions

A multi-criteria decision problem typically involves a set of n criteria. The question

is to determine the best decision in the set of all feasible decisions (say, S) according to

several objectives. More generally, we have to build a (partial) ordering on S from

different rankings. The comparison between solutions can be expressed in terms of

comparison of utility vectors, where each component represents the rating of a

solution with respect to an objective function. The vector of satisfaction levels of a

solution su will be denoted u = (u1, … , un) with ui = gi(su) % i. In terms of fuzzy

constraints, the notion of utility vector corresponds to the (fuzzy) set of constraints

satisfied by a solution. Let us denote by  = {C1, … , Cn} the set of fuzzy constraints

involved in a decision problem. The set of constraints satisfied by a solution su,

noticed u, is the fuzzy subset of defined by :
 µ u:  #  L = [0,1]

Ci $  |# µ u(Ci) = ui = µCi(su) $ [0,1].

In other words, the utility vector u corresponding to su provides the same

information as u. In the following, we shall not distinguish between solutions that

have exactly the same rating according to all objective functions, or fuzzy constraints.

Also by convention we shall suppose that the rating scales are all identical to the unit

interval. Hence the problem is to find a suitable ordering over a subset U  of [0,1]n

where n is the number of criteria or fuzzy constraints involved in the problem.

Social choice theory proposes a wide variety of decision rules like the majority rule,

the unanimity rule, etc…, depending on some conditions like unanimity, non-

dictatorship or independence of irrelevant alternatives. These properties have been

applied to fuzzy sets by Fung and Fu [22], Cholewa[6], Montero de Juan [28], Yager,  [33],

Dubois and Koning [11] among others. Social choice theory traditionally considers so-

called social welfare orderings (SWO); see for instance (Moulin [29]) : a SWO is a
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preordering on S (or, equivalently, on [0,1]n). A SWO M can be defined by a preference

relation >M and an indifference relation &M. Moulin [29] assumes that a SWO satisfies

two additional properties :

(a) Anonymity : if u can be obtained from v by exchanging coordinates, u  &M v.

(b) Unanimity (weak Pareto principle) : if ui ' vi for i = 1, n, then u   M v.

Moreover, if ui > vi for i = 1, n, then u   >M v.

Anonymity presupposes that each individual constraint is equally important.

Intuitively, the unanimity principle means that if all criteria rate decision su better

than decision sv, decision sv should not be considered. The most elementary and least

demanding SWO is the Pareto ordering (denoted by Pareto), which is a well-known

quasi-order defined by :

• u >Pareto v if and only if % Ci, ui ' vi and u ( v;

• u &Pareto v if and only if % Ci, ui = vi or ) Ci, Cj such that ui > vi and uj < vj.

Denoting S the set of potential decisions, the Pareto optimality condition can be

expressed as :

• su is Pareto-optimal if and only if there is no sv $ S such that u ( v and ui !

vi for i=1,n.

A Pareto-optimal decision su is such that, for any other decision sv, if there is a

criterion preferring sv to su, then there is another one that prefers su to sv. Clearly,

>Pareto is a strict partial order  : many optimal decisions can be incomparable. In terms

of fuzzy sets, the Pareto principle corresponds to a fuzzy set inclusion. Indeed :

 u >Pareto v      *       v + u,

where +  stands for the fuzzy set inclusion. So, the larger the set of constraints

satisfied by a solution, the better this solution. The Pareto-optimal decisions

correspond to vectors u such that there is no v such that u + v.

When u &Pareto v  and corresponding decisions satisfy the same fuzzy set of

constraints ( v = u, i.e., u = v) they are indifferent. Otherwise, the relation &Pareto

rather models incomparability. Notice that it is not transitive.

2. 3 Egalitarism versus utilitarism

To select among Pareto-optimal solutions in S,  we have to build a more selective

global pre-order  on S from the different utility vectors. Our claim is that this preorder

will depend upon whether each Ci is really as imperative as a constraint, i.e., whether

it is not allowed to violate it, or if Ci is just describing an objective function among

other ones.

In some cases, the global ranking can be represented by a collective utility function

(CUF), i. e. a real valued function W on the vectors. In this case, u will be preferred to
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v according to W ( u >W v) if and only if W( u) > W( v). Similarly, u and v  are

equivalent ( u &W v) if and only if W( u) = W( v). CUF are supposed to satisfy the

properties of anonymity and unanimity.

Two particular classes of CUF are usually pointed out in social choice theory: the

utilitarist ones and the egalitarist ones.

2.3.1 Utilitarist approaches for compensatory objectives

The utilitarist approaches refer to additive CUF (sums, averages, products). W(u) =

i = 1,n ui represents the cost of a decision and the best decisions are those maximizing

W.  In that case, ui is understood as a financial reward. Notice that the -optimal

solutions are Pareto-optimal : this utilitarist ordering is a refinement of the Pareto

ordering.

Pareto-optimal decisions

,-optimal decisions

Figure 1

A utilitarist CUF models a compensation between well-satisfied criteria and less

satisfied ones.  Note that if L = {0,1}, i.e., if the objectives can only be totally satisfied or

violated (no partial satisfaction), utilitarist solutions will be those which maximise the

number of attained objectives (Freuder [20]; Freuder and Wallace, [21]). In extreme

cases, it can lead to decisions totally missing some objectives.

2.3.2 Egalitarist approaches for imperative constraints

The egalitarist approaches are more qualitative. Utilities are combined using a

minimum or a maximum operation, which do not induce any compensatory effect.

For instance, each constraint estimates to what extent the decisions satisfy some

security regulations : W(u) = min i=1,n ui indicates to what extent su is a safe solution;

we recognize here Bellman and Zadeh's approach to decision making : the best

decisions, also called maximin decisions, are those maximizing the satisfaction degree

of the least satisfied constraint. As they notice, the global ordering over S is a complete

preorder which corresponds to a fuzzy set C :

   µC : S # L = [0,1]
               su $ S |# µC(su) = min i=1,n µCi(su)

That is to say, C is nothing but the fuzzy set corresponding to the intersection of the

fuzzy constraints : C = C1 - … - Cn. As shown by Dubois, Fargier and Prade [9,10],

 = {C1, …, Cn} defines a fuzzy constraint satisfaction problem (FCSP) whose best
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solutions can be found using extensions of classical CSP methods. Adopting the

possibilistic approach to prioritized constraints as explained in the previous section,

the egalitarist approach comes down to minimizing the priority of the violated

constraint which is the most prioritary, a strategy used by Descottes and Latombe [8]

and refined by them.

In terms of social choice, the min-ordering corresponds to a society where every

member has a veto power. On the contrary, W( u) = max i=1,n ui corresponds to a

society where every member is a dictator. Notice that some authors (see for instance

[5]) propose to deal with symbolic preferences, instead of numerical ones. In fact, these

approaches are equivalent to numerical egalitarist approaches (maximin) which are

more qualitative than quantitative.

2. 4 Drawbacks of utilitarist and egalitarist approaches for handling fuzzy constraints

Using a satisfaction rating on [0,1] the difference between a fuzzy constraint and an

objective function pertaining to a criterion seems to vanish. And indeed, tradition

assumes that a constraint is hard, by definition. However the difference between a set

of fuzzy constraints and a set of objective functions really makes sense if we consider

the two modes of aggregations, i.e., egalitarist and utilitarist. The egalitarist approach

preserves a basic property of a set of constraints, that is : any solution violating a single

constraint is considered as not feasible. On the contrary, a best solution in the

utilitarist sense is allowed to get a 0 on one (or several) of the ratings, although

utilitarist best solutions are always Pareto-optimal. This is not acceptable in terms of

constraints, even fuzzy ones.  Hence, Bellman and Zadeh's paradigm for fuzzy

optimization [2] is really one of decision under flexible constraints. Given the non-

compensatory property of fuzzy constraints, while objective functions do admit

compensations, it is not clear that, in a given decision-making problem, an objective

function can be made commensurate to the membership function of a fuzzy

constraint1. Due to their imperativeness, fuzzy constraints, even the less important

ones, should always have priority over objective functions and one should refrain

from aggregating a degree of feasibility with a degree of preference (in the sense of an

objective function) (see Dubois and Prade [17]).

1 In fact it is possible to reconcile compensation and fuzzy constraints, changing the minimum into a

product. Clearly this is equivalent to a utilitarist approach where the utilities can take on the value -",
using a logarithmic transformation.  However this approach, as does the utilitarist approach, requires
that the set of constraints be non-redundant,  a condition that is not easy to achieve in practice, and which
is not at al requested by the egalitarist CUF.
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Example 1.

Assume you have to dispatch 100 KF between 3 persons. The satisfaction of

each person is the proportion of the budget it will receive. It is clear that every
partitioning of the budget is Pareto-optimal, and -optimal. There is only one

maximin decision : giving the third of the 100 KF to each person. There are 3

maximax decisions : giving the totality of the 100 KF to one single person.

Suppose that the dispatching of the money should satisfy the fuzzy constraint

"everybody should have some money". This problem can be represented by
means of 3 fuzzy constraints Ci, where µCi(x) = x / 100 measures the level of

satisfaction of the constraint Ci pertaining to individual i. Since any decision is

optimal from an utilitarist point of view, it is clear that some of them violate two

constraints over three (the maximax solutions). This example shows that the

utilitarist approach is not adapted to the handling of fuzzy constraints.

Another drawback of the utilitarist approaches is that they do not lend themselves

easily to a generalization of classical constraint propagation techniques. On the

contrary the min-based aggregation is associative and idempotent, as the conjunction

in the Boolean case, and as pointed out earlier, all the methods developed for

constraint propagation in Artificial Intelligence carry over to the maximin setting :

this is the calculus of fuzzy restrictions (Zadeh [34]).

The egalitarist approach also has some drawbacks. First, is worth noticing that the

min-ordering satisfies the weak Pareto principle but not strong Pareto optimality.

Consider for instance S = {su, sv}, the corresponding utility vector being u = (0.3 0.3 0.4),

v = (0.3 1 1) according to a set of 3 criteria. Then u &min v although u <Pareto v : u

and v are paradoxically judged equivalent although u and  v  being equivalent for

the first criterion and v being much better for the others. Nevertheless, the weak

Pareto condition is verified :

 if ui ' vi for i = 1, n, then u min v

The same criticisms can be formulated against the max-ordering (see Figure 2).

Pareto-optimal decisions

maximin  
decisions maximax 

decisions

Figure 2.
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Note that it may happen that some maximax decisions are also maximin ones, but

it is not always the case. On the other hand, there is always a subset of the maximin

decisions which are Pareto-optimal and a subset of the maximax decisions which are

Pareto-optimal.

A second drawback of the egalitarist approach is its lack of discrimination power. In

order to keep the egalitarist aspect of min, to increase the discrimination among

solutions and to satisfy Pareto-optimality which is intuitive, our aim is to define

suitable refinements of these orderings.

Example 2.

Assume that a tutorial course is to be organized. Ideally, it should be composed of

less than 8 sessions (possibly 9 which is less acceptable, or at most 10). Prof. A, who will

give the training part of the tutorial, wants to have exactly 3 sessions (imperative

constraint). Ideally, pedagogical principles require that there must be more lecture

sessions than training sessions (ideally the difference must be equal or greater than 2

sessions, possibly equal to 1, or equal to 0 in the least acceptable case). Moreover, there

must be the same number of lectures as exercise sessions (ideally, exactly the same

number; a difference of 1 session is “half-acceptable”, a difference of 2 being the

maximal acceptable difference). This problem can be modelled as follows:

x = number of lectures y = number of exercise sessions

z=number of training sessions = 3 
C1: x + y + 3 $ (.", About_8] C2: x - 3 $ [About_2, +")   C3: |x - y| $ About_0

1 4 5

 /

60 2 3 7 8

1

µAbout_0

µ[About_2, +") µ (-",About_8]

9 10

 0

Figure 3

There are 6 maximin decisions (x,y) : s1 = (3, 1), s2 = (3, 2), s3 = (3, 3) , s4 = (3, 4) , s5 =

(4, 2)  and s6 = (4, 3) . For each of them, the satisfaction degree of the least satisfied Ci is

/; see Figure 4 .

It is clear that it is not very reasonable not to discriminate between these solutions,
since, for instance, s2 satisfies the first two constraint to the same degree as s1  but is

better for C3 : the former should be preferred to s1.
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Some of these maximin decisions are Pareto-optimal : s2 , s3,  s5  and s6  ; but there

are Pareto-optimal decisions which are not maximin, for instance : (5, 6)  whose utility

vector is ( 0, 1, 0).

•

1

0

/

•
•

C1 C2 C3
s = (x :=3, y := 1)

1

0

• •
C1 C2 C3

/
•

s  = (x :=3, y := 4)4

1

0

/

•

C 1 C2 C3

•
•

s  = (x :=3, y := 2)21

1

0

/
• •

C1 C2 C3

•

s   = (x :=3, y := 3)3

C 1 C2 C3

1

0

/ •
• •

s  = (x :=4, y := 2)5

1

0

C1 C2 C3

/
•

•
•

s  = (x :=4, y := 3)6

Figure 4

Notice that these orders do not depend on the values of 0 and / : L = {0, 0, /, 1} is

used as an ordinal scale rather than a cardinal one. This is not the case using the

utilitarist ordering : as soon as 0 + / < 1, all 1-optimal decisions have a CUF equal to 2

(they totally violate one constraint and completely satisfy the 2 others) ; for instance (5,

5) is 1-optimal if we assume 0 + / < 1. Let us point out the fact that these 1-optimal

decisions totally violate a constraint. If 0  + /  ' 1, the 1 -optimal decisions are
completely different (s2  and s3 ) ; they are among the maximin decisions. In this case,

the sum of the satisfaction degree is 1 + 0+ / ' 2.

3. Refining the min- ordering : the least satisfied discriminating constraint

As shown previously, the Pareto ordering, which corresponds to the notion of

fuzzy-sets inclusion, is not a refinement of the min-ordering. Keeping in mind this

idea of inclusion, we propose to define a refinement of both these orderings by
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comparing the decisions on the basis of level-cut inclusion. Hence, we get a new

ordering (a new preference relation), >LSDC ; as we will show in the next sections, this

ordering is also based on the comparison of the Least Satisfied Discriminating

Constraint (LSDC), as first hinted by Fargier et al. [18], i.e., it also refines the min-

ordering, thus improving its discrimination power.

3.1 The LSDC-ordering.

The idea of this refinement is to compare satisfaction degrees pointwise like in

>Pareto, and to focus on the lowest satisfaction degrees among the constraints satisfied

at different degrees by the competing  decisions : decisions are compared on the basis of

the least satisfied discriminating constraints. This seems to be in accordance with the

intuition, since only the constraints making a difference between two alternatives can
help make a final decision. To wit,  in example 2 of the previous section, solution s2
with u2 = (1, /, 0) is better than solution s1 with u1 = (1, /, /), because only constraint

C3 discriminates between these solutions.

Let us denote by (u,v) the set of constraints which are satisfied by su and sv to

different levels : (u,v) = {Ci $  / ui ( vi}. A definition of >LSDC has been proposed by

Fargier et al. [18] :

 u >LSDC v * MinCi $ (u, v) ui > MinCi $ (u, v) vi.

In the following, we suppose that S is finite, and so is also L. Note that >LSDC is

irreflexive and transitive : it is a strict partial ordering.

When u = v, (u,v) is the empty set. Moreover, when the two competing
decisions are incomparable using >LSDC, MinCi $ (u, v) ui = MinCi $ (u, v) vi. Indeed,

let 2 be the next element greater than this value in L. It is then obvious that while for

all / < 2, ( u)/ = ( v)/, we cannot have ( u)2 + ( v)2 nor ( u)2 3 ( v)2. This is because
MinCi $ (u, v) ui = uk = MinCi $ (u, v) vi = vl with k ( l. In summary :

 u &LSDC v * MinCi $ (u, v) ui = MinCi $ (u, v) vi

It is worth noticing that this formulation of LSDC implies that this SWO cannot be

represented by a CUF. Indeed, suppose there is a function f such that u >LSDC v * f(u)

> f(v). Then clearly the relation u R v * f( u) = f(v) is an equivalence relation
expressing that neither u >LSDC v nor v >LSDC u. But the relation  MinCi $ (u, v) ui =

MinCi $ (u, v) vi, is not an equivalence relation (it is not transitive) contrary to R.

However the formulation indicates that there exists a 2-argument function M(u, v)

such that u>LSDC v * M(u, v) > M(v, u).

The relation >LSDC is a refinement of >min. Indeed, it is obvious to see that

u >Min v 4 u > LSDC v

The converse implication is not verified. We only have :
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 u >LSDC v 4 u Min v

In other terms, this new preference relation is more selective than the egalitarist

one : it introduces some preferences over the decisions which are considered

equivalent by Min. If the constraints are all-or-nothing (i.e., allowing satisfaction

degrees in {0,1}), >LSDC prefers su to sv if and only i all the Ci satisfied by sv are also

satisfied by su and there are some Ci satisfied by su which are violated by sv. In other

terms, >LSDC is equivalent to >Pareto in the non-fuzzy case.

If several satisfaction degrees are allowed, it is a refinement of the Pareto-ordering.

Indeed it is easy to see that:  u >Pareto v 4 u > LSDC v

The converse implication is not verified. We only have :

u >LSDC v 4 u Pareto v

It means that the LSDC-optimal decisions are both maximin and Pareto-optimal: LSDC

refines the Min-ordering and the Pareto-ordering. Nevertheless, all decisions being

both maximin and Pareto-optimal are not LSDC-optimal. Consider for instance that S =
{su, sv}, u = (0.4 0.9 0.1 0.3),  v = (0.9 0.4 0.1 0.2) ; su and sv are maximin and Pareto-

optimal, but sv is NOT LSDC-optimal: u > LSDC  v. Going back to Example 2, decisions

(3, 2), (3 , 3), (4, 2) and (4, 3) are maximin, Pareto-optimal and LSDC-optimal.

Pareto-optimal decisions
Maximin decisions

LSDC-optimal decisions

Figure 5

3.2 Other formulations of the LSDC-ordering

3.2.1. Comparing level-cuts.

The ordering >LSDC  can also be described from an inclusion-based point of view,

that is as a refinement of the Pareto-ordering (Fargier et al.[18]). Let ( w)2 denote the 2-
cut of w, the fuzzy set of constraints satisfied by decision sw: ( w)2 = {Ci $  / µCi(sw) '

2}. This approach consists in comparing the level-cuts of fuzzy sets of satisfied

constraints, u and v, from the lower levels to the greatest ones, until reaching a

level 0 such ( u)0 ( ( v)0. At this level, if ( u)0 3 ( v)0, su is preferred to sv ; if ( u)0 +

( v)0, sv is preferred to su. Otherwise, the decisions are incomparable and will be

considered as indifferent. When the satisfaction scale L is finite, the following result

holds:

Proposition 1: u >LSDC v if and only if ) 0 $ L such that 
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(i) % / $ L such that / < 0, ( u)/ = ( v)/

 (ii) ( u)0 3 ( v)0.

Proof (L finite):

Let 2 be such that % / < 2 , {Ci / ui ' /} = {Ci / vi ' /} and {Ci / ui ' 2} 3 {Ci / vi ' 2}. Then if ui < 2 and

vi < 2, it implies that ui = vi ; indeed, if ui < vi, then putting  / = vi, obviously , {Ck / uk ' /} ( {Ck /

vk ' /} (contradiction) ; and similarly if ui > vi. Now let Ck be such that vk < 2 and uk ' 2. Ck  exists

due to the second condition (ii). Clearly, Ck $ (u,v), while %  i, ui < 2  and vi < 2  implies Ci 5

(u,v). Hence MinCi $ (u, v) ui > MinCi $ (u, v) vi.

Suppose MinCi $ (u, v) ui > MinCi $ (u, v) vi and let vk = MinCi $ (u, v) vi. Choose 2 the next

element greater than vk in the scale L. With this choice of 2, % / < 2 , {Ci / ui ' /} = {Ci / vi ' /} and

{Ci / ui ' 2} 3 {Ci / vi ' 2}, obviously.

As soon as the set of decisions S is finite, L is also finite. Otherwise, it remains possible

to compare the level-cuts, using the following definition :
 • u >LSDC v if and only if ) 0 $ L such that (i) % / $ L such that / ! 0, ( u)/ = ( v)/

                (ii) ) 2 > 0 % / $ (0, 2], ( u)/ 3 ( v)/

3.2.2 Comparing level-sections.

In fact, comparing the level-cuts is equivalent to compare, for each level in L, the set of

constraints which are satisfied to this degree exactly, that is, level-sections.

Proposition 2: u >LSDC v * ) 2 $ L such that

(i) % / $ L such that / < 2 , {Ci / ui = /} = {Ci / vi = /}

(ii) {Ci / ui = 2} + { Ci / vi = 2 }

Proof (L finite).

 ) 2 $ L such that (i) % / $ L such that / < 2, {Ci / ui = /} = {Ci / vi = /}

(ii) {Ci / ui = 2} + { Ci / vi = 2 }

* ) 2 $ L such that (i) % / $ L such that / < 2, {Ci / ui ! /} = {Ci / vi ! /}

(ii)  {Ci / ui ! 2} + { Ci / vi ! 2 }

* (by complementation) ) 2 $ L such that (i) % / $ L such that / < 2,  {Ci / ui > /} = {Ci / vi > /}

(ii) {Ci / ui > 2} 3 { Ci / vi > 2 }

Choosing 0 as the lowest level in L greater to 2, the last condition formulates as follows :

 ) 0 $ L such that (i) % / $ L such that / < 0 {Ci / ui ' /} = {Ci / vi ' /}

(ii) {Ci / ui ' 0} 3 { Ci / vi ' 0 }

Note that, in condition (ii) of Proposition 2, the inclusion direction is not the same

as when using level-cuts as in the former definition. Indeed, u >LSDC v as soon as

there is a level 0 such that the set of satisfied constraints are not the same. The

decision corresponding to the best vector is the one satisfying the smaller set of Ci to
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the degree 0 , since the constraints not satisfied to degree 0  and not considered

previously by (i) are satisfied to a higher degree.

3.2.3 Using increasingly arranged utility vectors

Finally, let us establish a third definition of >LSDC  [18] that we will need in the next

section. Consider the increasingly arranged utility vector corresponding to u : it is a
vector u * = (ui1, ui2, …, uin) such that ui1! ui2! …! uin (uik is the satisfaction degree

of Cik). When several constraints are satisfied to the same degree by u , the

corresponding utilities are ranked in increasing index values: uik comes before uik' in

u * if and only if uik < uik' , or uik =uik' and ik< ik'.

The comparison of two potential decisions using >LSDC corresponds to a pointwise
comparison of u * = (ui1, ui2, …, uin) and v * = (vj1, vj2, …, vjn) : we have to find the

lower index k such that uik ( vjk or ik ( jk. If uik > vjk , then u >LSDC v ; if uik < vjk ,

then v >LSDC u ; otherwise, u and v are indifferent (since incomparable). Formally :
Proposition 3 : u >LSDC v * )m$ {1, … , n} such that (i) %6 < m, i6 = j6 and ui6 = vj6

         (ii) uim> vjm

Proof : u >LSDC v * MinCi $ (u, v) ui > MinCi $ (u, v) vi. Hence  uik > vjm for some k and  m. Now

%6 < m, Cj6 5 (u, v), and constraint  Cj6 does not discriminate. Hence if i =  j6 then ui = vi. Hence  %6 <  m

i6  =  j6.  Now since Cjm $ (u, v),  uim '  uik > vjm. The converse is obvious.

3.3 Relationships to preferred sub-bases in logic

The LSDC preference relation is well known in syntactical non-monotonic

reasoning. It has been proposed by Brewka [4] and studied by Geffner [23], Nebel [30] ,

Cayrol, Royer and Saurel [5] , Dubois, Lang and Prade [12], Benferhat et al. [3]. Let us

recall some definitions concerning layered knowledge bases. A layered knowledge base

K is a set of weighted propositional formulas (7i, pi) where pi > pj indicates that 7i has

priority over 7j. Following Lang [25] each formula 7i is understood as a constraint, each

weight pi as a priority, and and each logical interpretation as a solution su to a

constrained problem. The utility vector u attached to solution su is of the form (u1, …,

un) where ui = 1 if su satisfies 7i and ui = 1 - pi otherwise (as pointed out in section 2.1).

By definition, we assume p1 ' … ' pn.

A strongly maximal consistent subset of K is defined as follows : let K1 be the subset

of K containing the formulas of higher priority. Let 1 be a maximal consistent subset

of K1. Then let K2 be the subset of K containing the formulas of second priority. Then

2 is the maximal consistent subset of formulas formed by adding to 1 as many

formulas from K2 as possible. Continue down to the lowest priority level. The

consistent subset of K so obtained is a strongly maximal consistent subset (SMCS) of K.

This notion is also called "preferred sub-base" by Brewka [4].
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Proposition 4 : Any solution to a strongly maximal consistent subset of constraints

is LSDC-optimal and conversely.

Proof.

If K is consistent, then, for best solutions, ui = 1 ,  % i, and the proposition trivially holds. Otherwise,

let su be a solution to a SMCS of K. Assume it is not a LSDC-optimal, i.e., )sv such that v > LSDC u.

This means that for some 0 $ L we have : (i) % / $ L such that / < 0 ( u)/ = ( v)/ and (ii) ( v)0 3

( u)0. Assume 0 = 1 - pi (it is always possible to assume it). This means that su and sv violate the

same constraints of priority levels higher than pi and that there is a constraint of priority pi that is

violated by su but not by sv. Hence the subset of constraints of priority higher or equal to pi satisfied

by su is not maximal. It is possible to add one more constraint of priority pi and remain consistent.

Hence su is not solution to a SMC subset of constraints.

The converse is proved as follows : if su is not a solution to a SMC subset of constraints, it means that

there is a level of priority pi such that the set  of constraints of priority higher than or equal to pi

is not maximal : adding another constraint of priority pi to  is possible while preserving consistency.

It is then obvious that any solution to this new set of constraints is LSDC-better than su.

3.4 Representation of LSDC orderings by an inclusion index

As shown previously, >LSDC is a generalisation of the Pareto-ordering when

restricted to non-fuzzy constraints : if the Ci's take on values in {0,1}, su is preferred to

sv as soon as the (non-fuzzy) set of constraints satisfied by sv is included in the (non-

fuzzy) set of constraints satisfied by su. The Pareto ordering is also a generalisation to

fuzzy constraints of this inclusion-based order, since u >Pareto v as soon as v + u. In

the following, we argue that >LSDC , which is technically a stratified inclusion

(inclusion of level-cuts) also relates to a fuzzy set inclusion index. Indeed, we have :

Proposition 5:
u >LSDC v * MinCi $  µ u(Ci)#µ v(Ci) < MinCi $ µ v(Ci)#µ u(Ci)

where # stands for Gödel's implication, which is defined by :

a # b = 1 if a ! b

= b otherwise.

Proof :

• Let us denote :

 8(u, v) = {Ci $ (u, v) such that ui > vi}

8(v, u) = {Ci $ (u, v) such that vi > ui}

We have : (u, v) = 8(u, v) 9 8(v, u) (disjoint union)

• for Ci 5 (u, v) : ui#vi = vi#ui= 1; hence :

MinCi $ ui#vi < MinCi $ vi#ui * MinCi $ (u, v) ui#vi < MinCi $ (u, v) vi#ui

Note that the strict inequality forbids the  case when (u, v) = Ø since the latter enforces vi#ui =

vi#ui = 1 for all i.
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• for Ci $ (u, v) :

i f Ci $ 8(v, u) then  ui#vi= 1 and vi#ui = ui ;

i f Ci $ 8(u, v) then  ui#vi = vi and vi#ui = 1.

Hence :

MinCi $ (u, v) ui#vi = MinCi $ 8(u, v) vi (= 1 if 8(u, v) = Ø)

and MinCi $ (u, v) vi#ui = MinCi $ 8(v, u) ui (= 1 if 8(v, u) = Ø)

• From the two previous points, we have :

MinCi $ ui#vi < MinCi $ vi#ui        * MinCi $ 8(u, v) vi < MinCi $ 8(v, u) ui  (1)

 (hence 8(u, v) ( Ø )

• Moreover, by definition of 8(u, v) :

MinCi $ 8(u, v) vi < MinCi $ 8(u, v) ui (2)

MinCi $ 8(v, u) vi > MinCi $ 8(v, u) ui (3)

• Let us denote :

A = MinCi $ 8(u, v) vi; B = MinCi $ 8(u, v) ui; C = MinCi $ 8(v, u) vi; D = MinCi $ 8(v, u) ui.

(2) can be written as: A < B, (3) as C > D and (1) as A < D

It can be shown that (A < B and C > D) 4 (: < D * min(A, C) < min (B, D)

Hence, it holds that :

MinCi $ ui#vi < MinCi $ vi#ui

* min (MinCi $ 8(u, v) vi, MinCi $ 8(v, u) vi) < min(MinCi $ 8(u, v) ui, MinCi $ 8(v, u) ui)

* MinCi $ (u, v) vi< MinCi $ (u, v) ui

*  u > LSDC v

I( u, v) = MinCi $  µ u(Ci)#µ v(Ci) is a fuzzy set inclusion degree of u in v

(Bandler and Kohout [1]); in particular, it is equal to 1 if v ; u, i. e., if u 'Pareto v.2

This last formulation shows that su is preferred to sv if v is more included in u than

u is in v. The above result confirms that the LSDC ordering can be numerically

represented by means of a two-place numerical index that plays the role of a multi-

objective utility function. This Gödel-implication-based index is also proposed by De

Baets [7] in order to compare solutions in multi-criteria decision making problems.

However, he exploits the level cuts of the fuzzy relation induced on the solution set by

the index I( u, v), while the LSDC ordering  coincides with the crisp relation obtained

by comparing I( u, v) and I( v, u).

2 MinCi $  ui # vi is also a generalization of the degree of guaranteed possibility (Dubois and Prade,

[16]): 8<(A) = inf i $ A <(i) of event A, (where < is a possibility distribution over {1, 2, …, n} ) to when A is
a fuzzy set such that µA(i) = ui and <(i) = vi. In other terms, for A = u and < = v ,   minCi $ ui# vi =

8 v ( u). 8(A) evaluates to what extent all the elements of A are possible. It holds that

minCi $  ui # vi ' 0 * vi ' min (0, ui) for all i.



17
4. Refining the min-ordering : the leximin ordering

Moulin [29] describes another refinement of the egalitarist ordering : the leximin

ordering. This ordering is implicitly adopted by Descottes and Latombe [8] for

compromising among antagonistic decision rules of various priorities. The idea is to

consider the above introduced increasingly arranged vectors u* of satisfaction degrees

by means of a lexicographic criterion. Consider for instance two utility vectors u1 = (.2,
.2, .3, .9) and u2 = (.7, .2, .2, .8). It is easy to see that they cannot be compared by means

of >LSDC. Yet, it is clear that u2 can be viewed as a utility vector better than u1, since

with  u2 two constraints are reasonably satisfied (at least .7) while with  u1 only one is

such. This ordering can be found by comparing the increasingly arranged vectors  u*1

and  u*2 componentwise in a lexicographic way, from the lowest rank to the highest

ones. It can be checked that u*2 dominates u*1 on the third component. This section

makes this comparison procedure more precise.

4.1 Properties of the leximin ordering

Let u and v  be two vectors whose components are such that u1 ! u2 !…!un and v1

! v2 !…!vn. Define a lexicographic ranking of such vectors as follows:

u  >Lex v if and only if ) k ! n such that % i<k, ui = vi and uk > vk

The two vectors are equally ranked only if they are the same. More generally, the

leximin SWO  Lex over U is extended to any vectors u and v  as follows:

 u >Lex v * u * >Lex v*
 u &Lex v * u * = v* * % i,  u*i = uji = v*i  = vji

where u* and v* are the increasingly arranged vectors (ui1, ui2, …, uin) and  (vj1,

vj2, …, vjn) induced by u and v as in Section 3.2.3. Clearly  >Lex is a strict partial order,

Lex a complete preorder on U (hence &Lex is transitive). A decision su is said to be

Leximin-optimal is there is no better decision according to >Lex:

 u is Leximin-optimal * there is no v $ U such that v >Lex u

Going back to Example 2, the decisions s3 and s2 which are also maximin, Pareto-

optimal and LSDC-optimal, are the only leximin-optimal decisions. In particular,
these solutions are preferred to s5 and s6, which are not leximin-optimal although

they are maximin, Pareto-optimal and LSDC-optimal.

As shown by Moulin [29], the leximin-ordering is a refinement of both the Pareto-

ordering and the Min-ordering :

• u > Min v 4 u > Lex v • u > Pareto v   4 u > Lex v

But it is NOT a refinement of the utilitarist 1-ordering: a solution u whose least

satisfied constraint is less satisfied than the least satisfied constraint of another one v

will not be leximin-preferred, regardless of the sum of the other partial satisfaction
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degrees. The leximin ordering is still egalitarist. Finally, Moulin [29] has shown that

this ordering is a SWO which cannot be represented by a CUF, despite the fact that it is

a complete preordering.

In the remainder of this section, after comparing the leximin ordering with the

LSDC-ordering, we propose a representation theorem with a 2-place numerical

function.

4.2 Leximin ordering  versus LSDC-ordering

A first way to relate >LSDC and >Lex is to consider the definition of >LSDC as the

comparison of two potential decisions based on a pointwise comparison of the
increasingly arranged vectors u* = (ui1, ui2, …, uin) and v * = (vj1, vj2, …, vjn). Recall

from Section 3.2.3 that:
 u >LSDC v * )k $ {1, … , n} such that (i) %6 < k, i6 = j6  and ui6 = vj6

(ii) uik > vjk

Using the leximin comparison, we only drop the component equality condition in

(i) since the leximin ordering can be expressed as :
 u >Lex v * )k $ {1, … , n} such that (i) %6 < k, ui6 = vj6

(ii) uik > vjk

It obviously follows that >Lex is a refinement of >LSDC :

 u >Min v 4 u >LSDC v 4 u >Lex v

Leximin optimal decisions are always LSDC-optimal decisions, and thus maximin

and Pareto-optimal : >Lex is the most selective among these preference relations.

Reciprocal implications are not verified ; we only have :

 u >Lex v 4 u LSDC v ; u >Lex v 4 u Min v

 The leximin ordering discriminates among equivalent optimal decisions according

to the Min-ordering (min ui = min vi) and among incomparable ones with respect to

>Pareto and >LSDC. It remains true that two potential decisions satisfying exactly the

same set of constraints will be indifferent according to any of these SWO.

Pareto-optimal decisions
Maximin decisions

LSDC-optimal decisions Leximin-optimal decisions

Figure 6
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4.3 Relation to lexicographically preferred sub-bases

The leximin ordering has been introduced in the setting of possibilistic logic as a

tool for selecting maximal consistent subsets of formulas in certainty-layered logical

databases (Dubois, Lang and Prade, [12]). Referring to notations of Section 3.3, a

lexicographically maximal consistent subset of a possibilistic knowledge-base K is
obtained as follows: rank the consistent subsets S of K by considering the weights pi
bearing on formulas 7i not in S. If S is to serve as a consistent substitute of K, the

more formulas it contains, the better. The higher the weights of formulas in S the
better, since pi is handled as a degree of priority of the constraint modelled by the

formula 7i. Assume K has n formulas in it, S is a consistent subset of K and  let pS
be the vector of weights such that pSi = pi if 7i 5  S, and 0 otherwise. Vector pS
accounts for formulas not in S. Let pS- be the same vector with components

pSi6ranked in decreasing  order. Then S >Lex T if and only if )k, positive integer,

such that (i) %6 < k, pSi6 = pTj6
                       (ii) pSik < pTjk

S is lexicographically equivalent (&Lex) to T if  pS- = pT-. A lexicographically

maximal consistent subset (LMCS) of  K is a maximal element of the so-built

complete partial ordering Lex.  Let s be an interpretation (in the logical sense) of K,
viewed as a Boolean vector such that si = 1 if 7i is true for s and 0 otherwise. The

subset of formulas true for s is denoted S(s). Let us be the vector of satisfaction

degrees attached  to s, and whose components are defined by ui = 1- pi if si =0 and 1

otherwise. In possibilistic logic (Dubois et al., 1994) the degree of membership of
interpretation s to the fuzzy set of models of K is mini = 1,n ui. It is clear that if s and

t are two interpretations of K, S(s) Lex S(t)  if and only if us Lex  ut in the sense of

the leximin ordering defined in the previous section; just notice that the
components in vectors pS(s) and us are such that ui ! uj if and only if pS(s)i '

pS(s)j. More details on the links between maximal consistent subbases and the

various orderings studied in this paper appear in [3].

4.4 Leximin ordering and cardinality of level-cuts

When the satisfaction scale L is finite, we can propose another formulation of the

Leximin-ordering . Let |A| be the cardinality of A.

Proposition 6  : u >Lex v is equivalent to any of the following statements:

1) ) 0 ( 0 $ L such that       (i) % / $ L such that / < 0, |{ Ci / ui = /}| = |{Ci / vi = /}|

                   (ii) |{ Ci / ui = 0}| < |{ Ci / vi = 0}|

2) ) 0 ( 0 $ L such that       (i) % / $ L such that / < 0, |{ Ci / ui ! /}| = |{Ci / vi ! /}|

       (ii) |{ Ci / ui ! 0}| < |{ Ci / vi ! 0 }|

3) ) 0 ( 0 $ L such that       (i) % / $ L such that / < 0, |{ Ci / ui > /}| = |{Ci / vi > /}|

       (ii) |{ Ci /ui > 0}| > |{ Ci /vi > 0 }|
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4) ) 0 ( 0 $ L such that       (i) % / $ L such that / < 0, |{ Ci / ui ' /}| = |{Ci / vi ' /}|

       (ii) |{ Ci /ui ' 0}| > |{ Ci /vi ' 0 }|

5) ) 0 ( 0 $ L such that      (i) % / $ L such that / < 0, |{ Ci / ui < /}| = |{Ci / vi < /}|

      (ii) |{ Ci /ui < 0}| > |{ Ci /vi < 0 }|  .

Proof :

 The first equivalence is obvious. The second statement follows obviously from the first by simple

addition, and the third from the second, getting strong level-cuts by complementation.The fourth

statement obtains by putting together the  first and  the third  statement. The fifth one is obtained by

complementation.

In other terms, the leximin comparison is based on a notion of cardinality of level-

cuts of fuzzy sets: the successive level-cuts of u and v are compared bottom up, as
with the LSDC-ordering, until reaching a level 0 where the cardinalities of ( u)0 and

( v)0 are different. The decision corresponding to the greatest of the two cardinalities

is considered as better than the other.

When constraints are non-fuzzy (i.e., either satisfied or not satisfied), u >Lex v if

and only if the number of constraints satisfied by su is greater than the number of

those which are satisfied by sv, or, equivalently, if the number constraints violated by

su is lower than the number of those which are violated by sv. It then collapses with

the utilitarian SWO.

Indeed, if L involves only two levels (e.g., L= {0,1}), the second formulation of >Lex

becomes :

 u >Lex v * | u | > | v | * | uc | < | vc |

 u &Lex v * | u | = | v | * | uc | = | vc |

where uc is the complement of the set of constraints satisfied by su, i.e., the set of

constraints violated by su. Decision su is preferred to decision sv if it satisfies more

constraints - which is equivalent to say that su is preferred to sv if it violates less

constraints. In a sense, the leximin ordering combines the utilitarist and egalitarist

approaches, being egalitarist when considering different satisfaction levels, but

utilitarist at a fixed satisfaction level.

4.5 Leximin ordering and fuzzy cardinality

Using fuzzy sets theory, a utilitarist aspect of leximin approach can be made clearer :

as we shall show, its aim is to minimise the number of violated fuzzy constraints, in

the sense of a fuzzy-valued cardinality.

First, notice that since ui estimates to what extent u satisfies Ci, 1 - ui estimates to

what extent it violates this constraint. The set of constraints violated by su is nothing

but the complement of u, the fuzzy set of constraints it satisfies :



21
µ uc :  # L = [0,1]

            Ci  |# µ uc (Ci) = 1 - µ u (Ci) = 1 - ui .

The question is now to determine the fuzzy number of constraints partially

violated by a solution su, i.e., to determine the fuzzy cardinality of uc. Suppose that a

constraint Ci is considered as satisfied as soon as ui ' 0; then any Cj sucht that uj ' 0 

should be considered as satisfied as well. Conversely, if one considers that Ci is

violated when its violation degree is at least 1 - ui ' 0 , one must accept that any Cj

such that 1 - uj  ' 0  is also violated by the decision. The main idea here is that the

same level of violation (resp. satisfaction) should be used to describe the violation

(resp. satisfaction) of all the constraints at the same time.

The number of constraints which are violated by a decision, in other terms the

cardinality of uc  is thus a fuzzy number nv(u) defined by Zadeh [36] (see also Dubois

and Prade [14]) :

µnv(u) (x) = max {0 / |( uc)0| = x}

Note that |( uc)0 | evaluates the number of constraints that are violated at least

at level 0, i.e., satisfied at most at level 1-0. Consequently, the number of constraints

violated by a decision is not independent from the number of constraints violated by

another one. Let us take an example, outside decision-making.  Suppose a set of six

coloured objects : O1 (deep blue), O2 (turquoise), O3 (turquoise), O4 (apple green), O5

(deep blue), O6 (turquoise), O7 (apple green) and O8 (sea green). The colour "blue" is a

gradual concept, which can be described by means of a fuzzy subset of the set of existing

colours (see Figure 7).

Red Deep blue Turquoise Apple greenSea greenPurple

•

•

•

•
• •

1

0

/

0

Figure 7 : The colour blue as a fuzzy concept.

Suppose Paul owns objects O1, O2, O3, O4 and John objects O5, O6, O7, O8. If

turquoise is not considered as a blue, both guys own exactly one blue object. If

turquoise is accepted among the blue colours (degree 0), Paul owns 3 blue objects and

John 2. If sea-green is also a blue colour (degree /), both have 3 blue objects, since

turquoise is more a blue colour than sea green. But one could never say that Paul has 3

blue objects and John only one (why assuming turquoise is blue for Paul and not for
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John ?). Similarly the fuzzy values nv(u) and nv(v)  of constraints violated by u and v

are restricted by a joint relation :
 µnv(u), nv(v) (x, y) = max {0 / |( uc)0| = x and |( vc)0| = y }

This relation is not decomposable in the sense that

µnv(u), nv(v) (x, y) < min(µnv(u)(x), µnv(v) (y)), generally.

When the numbers of violated constraints are fuzzy numbers, determining wether

u or v violates the least number of constraints Ci is a problem of fuzzy number

comparison. Possibility theory (Zadeh [35]) provides a tool for comparing two fuzzy

numbers X and Y whose values are restricted by a joint relation R, by means of

possibility and necessity measures :
= (X = Y) =  sup x µ R (x, x)

> (X = Y) =  1 - sup (x, y) such that x ( y µ R (x, y)

= (X < Y) =  sup (x, y) such that x < y µ R (x, y)

N (X !Y) =  1 - sup (x, y) such that x > y µ R (x, y)

We shall consider that X < Y if = (X < Y) > = (Y < X), or equivalently N (X !Y) > N(Y

! X). Hence we can compute
 = (nv(u) < nv(v)) = sup (x, y) such that x < y  µnv(u), nv(v) (x, y)

= sup (x, y) such that x < y max {0 / |( uc)0| = x and |( vc)0| = y }

            = max {0 / |( uc)0| < |( vc)0| }

It can be proved that (see appendix) :

 % u, v nv(u) ( nv(v) if and only if = (nv(u) < nv(v)) ( = (nv(v) < nv(u))

That is to say that the possibility measure is discriminating enough to determine

the least of two fuzzy cardinalities. In particular, nv(u) = nv(v) is equivalent to

=(nv(u) < nv(v)) = = (nv(v) < nv(u)) = 0. Hence we can claim that  su violates less

fuzzy constraints than sv if and only if = (nv(u) < nv(v)) > = (nv(v) > nv(u)).

We can now prove that preferring the decision violating the least fuzzy constraints

is equivalent to ordering them with the leximin SWO. Namely, viewing the leximin

ordering in the context of fuzzy sets theory, we can interpret it in terms of fuzzy

cardinality. Formally :

Proposition 7:   u > lex v * = (nv(u) < nv(v)) > = (nv(v) < nv(u))

Proof (finite L): suppose  = (nv(u) < nv(v)) > = (nv(v) < nv(u)).

Let  0* = = (nv(u) < nv(v)) = max {0 / |( uc)0|< |( vc)0 | }.

 = (nv(u) < nv(v)) > = (nv(v) < nv(u))  is equivalent to the three conditions:

 (i)          |( uc)0?| < |( vc)0?| 

(ii) % / > 0*,|( uc)/| ' |( vc)/|

(iii) 0* > = (nv(v) < nv(u)), i.e., % / > 0*,|( uc)/| ! |( vc)/|
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(ii) and (iii) summarize in : % / > 0*, |( uc)/ | =|( vc)/|. Hence :

 = (nv(u) < nv(v)) >= (nv(v) < nv(u))

* ) 0* $ [0, 1] such that  (i) |( uc)0? |< |( vc)0? |

(ii) % / > 0*, |( uc)/| =|( vc)/| 

For any fuzzy set A, it holds that : (A c)2 = {x / µA (x) ! 1 - 2 }. So :

=(nv(u) < nv(v)) > =(nv(v) < nv(u))

* ) 0* $ [0, 1] such that

(i) % / > 0*, |{x / µ u(x) ! 1- /}| = |{ x /µ v(x) ! 1./}| 

(ii) |{ x / µ u(x) ! 1- 0*}| < |{ x / µ v(x) ! 1.0*}| 

With 2* = 1 - 0* and @ = 1 - / :  = (nv(u) < nv(v)) > = (nv(u) < nv(v))

* ) 2* $ [0, 1] such that

(i) % @ < 2*, |{ x / µ u(x) ! @}| = |{ x / µ v(x) ! @}| 

(ii) |{ x / µ u(x) ! 2*}| < |{ x /µ v(x) ! 2*}| (using Proposition 6)

* ) 2* $ [0, 1] such that

(i) % @ < 2*, |{ x / µ u(x) ' @}| = |{ x / µ v(x) ' @}| 

(ii) |{ x / µ u(x) ' 2*}| > |{ x /µ v(x) ' 2*}|

* u > lex v

This result motivates two comments: first, the leximin ordering can be represented

by means of a numerical function of the two vectors to be compared. Second, the

leximin-optimal solutions are the ones that minimize the fuzzy number of

violated constraints. In contrast the utilitarist ordering can be interpreted in terms
of scalar cardinality of fuzzy sets since ,i ui is the scalar cardinality of u. It is

noticeable that the two main notions of fuzzy cardinality correspond to two widely

known social welfare functions.

5. Refining the max ordering

The previous section has shown that the leximin SWO corresponds to the

minimisation of the fuzzy number of violated constraints. When constraints are non-

fuzzy, i.e., only degrees of satisfaction 0 or 1 are used, this is equivalent to maximising

the number of satisfied constraints, since fuzzy and scalar cardinalities coincide in that

case. Taking an anthropomorphic example, maximising the number of rich people in

a population is equivalent to minimising the number of poor people, if there are only

rich or poor people (those who are not rich are poor, those who are not poor are rich).

But in the fuzzy case, i.e., when there are different levels of wealth (poor, middle-class,

upper-middle class, rich) the two approaches are not equivalent : maximizing the

number of rich people is compatible with solutions where many become poor instead

of middle-class, while minimizing the number of poor (leximin order) does not

account for the degree of wealth of the richer ones.
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5.1 The anti-Lex (or leximax) ordering

Maximising the fuzzy number of satisfied constraints does not correspond to the

leximin ordering, but to another one which is in fact a refinement of the max-

ordering: we call it the "anti-lex", or "leximax" ordering. It consists in comparing the

cardinalities of the level-cuts from the higher  levels down to the lower ones :

• u > anti-Lex v * ) 0 $ L such that
(i) % / $ L such that / > 0, |{ Ci / ui ' /}| = |{Ci / vi ' /}|

(ii) |{ Ci / ui ' 0}| > |{ Ci / vi ' 0 |

Besides, the number of constraints Ci satisfied by su, i.e., the cardinality of u, is

defined by :
• µns(u) (x) = max {0 / |( u)0 | = x}

The cardinalities of u and v are restricted by a joint relation :
• µns(u),ns(v) (x, y) = max {0 / |( u)0 | = x and |( v)0 | = y }

So, we can compare  u and  v using the possibility degree = (ns(u) > ns(v)).

Preferring the decision maximising the number of satisfied constraints formulates as

follows :

• su satisfies more constraints than sv     * = (ns(u) > ns(v)) > = (ns(v) > ns(u)).

We can show that : u > Anti-lex v * = (ns(u) > ns(v)) > = (ns(v) > ns(u))

(proof is similar to the case of the leximin ordering ; see  Fargier's dissertation [19]).

 This new SWO is a refinement of the max SWO and of the Pareto-ordering:

• u > Max v 4 u > Anti-lex v • u > Pareto v 4 u > Anti-lex v

But leximin-optimality neither implies leximax optimality, nor the contrary.

Referring to leximin, we compared the increasingly arranged utility vectors,

discriminating the decisions by the smallest degrees that are different regardless of the

highest degrees. With leximax , the vectors are compared from the higher degrees

down to the lower ones, until there is a difference (hence, without reference to the

lowest degrees). Moreover leximin (resp. leximax)-optimal decisions cannot be

separated using the leximax (resp. leximin) SWO, because Leximin-equivalent

decisions share the same increasingly arranged utility vector, i.e., they are leximax

equivalent.

5.2 The least violated discriminating constraint

Similarly to leximin/leximax, one can imagine a new SWO refining the maximum

and based on the notion of fuzzy sets inclusion : the least violated discriminating

constraint (LVDC) ordering :
• u >LVDC v * MaxCi $ (u, v) ui > MaxCi $ (u, v) vi
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This approach consists in comparing the fuzzy sets of satisfied constraints, u and

v from the highest level-cuts down to the lowest ones (contrarily to LSDC which

makes the comparison from the bottom to the top), until reaching a level 0 such( u)0
( ( v)0. At this level, if ( u)0 3 ( v)0, and u is preferred to v ; if ( u)0 + ( v)0., v is

preferred to u. Otherwise, the decisions are incomparable and will be considered as

indifferent. Two decisions are equivalent, and thus indifferent, if both satisfy all the

constraints to the same degree, i.e., when u  = v. Then

• u >LVDC v * ) 0 $ L such that (i) % / $ such that / > 0, ( u)/ = ( v)/
(ii) ( u)0 3 ( v)0.

If the constraints are all or nothing (i.e., allowing satisfaction degrees in {0,1}),

>LVDC and >LSDC collapse : both prefer su to sv if and only if all the Ci satisfied by sv are

also satisfied by su and there are some Ci satisfied by su which are violated by sv. Both

are equivalent to Pareto in the non-fuzzy case. If several satisfaction degrees are

allowed, LVDC is a refinement of Pareto. Indeed :

• u >Pareto v 4 u >LVDC v

The converse implication is not verified. We only have :

• u >LVDC v 4 u Pareto v

Finally, LVDC can be expressed using inclusion degrees :

• u >LVDC v *

                           MinCi $   (1-µ u(Ci))#(1-µ v(Ci)) > MinCi $ (1-µ v(Ci))#(1-µ u(Ci))

That is, if the degree of inclusion of v in u is greater than the degree of inclusion

of u in v in the sense of the contraposition of Gödel implication.

6. Summary  and concluding remarks

The introduced refinements of the maximin optimization strategy in fuzzy

optimization are not really new since the leximin ordering is borrowed from the social

sciences and the LSDC ordering is borrowed from the nonmonotonic reasoning

literature in Artificial Intelligence. However most works in fuzzy optimisation that

question the maximin strategy rather adopt max-triangular norm schemes or

utilitarist ones and not the proposals made here. The maximin strategy has many

advantages. Among others, it can lend itself easily to constraint-propagation

techniques, and this is not true for the max-triangular norm schemes or utilitarist

ones. By refining the maximin strategy, one may keep some of these advantages and

still overcome the lack of discrimination power of the minimum operation when an

explicit solution to a flexible constraint problem is needed.

In the paper some nice characterizations of the two considered orderings have been

obtained, based on Gödel implication, and fuzzy cardinality respectively. They enable

fuzzy ordering relations to be built for the purpose of comparing fuzzy sets, in

agreement with the lexicographic and LSDC orderings. Dual refinements of the
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maximax strategy have also been laid bare. As a final illustrative example the

following table contains 10 fuzzy sets that model rating vectors of 10 solutions to a

problem involving  5 flexible constraints.

C1 C2 C3 C4 C5

a 0.8 0 .6 0 .7 0 .4 0 .8
b 0 .7 0 .6 0 .7 0 .4 0 .8
c 0 .7 0 .4 0 .8 0 .4 0 .8
d 0.7 0 .9 0 .6 0 .4 0 .9
e 0.9 0 .7 0 .5 0 .4 0 .9
f 0 .8 0 .7 0 .6 0 .4 0 .9
g 0.9 0 .6 0 .7 0 .3 0 .9
h 0 .7 0 .5 0 .8 0 .3 0 .9
i 0 .6 0 .5 0 .7 0 .3 0 .9
j 0 .0 0 .0 0 .0 0 .5 0 .0

As shown in Figure 8, each decision is optimal, depending on the ordering notion that

is used. It should be noticed that d is optimal for all orderings, and that there are

decisions which are both LVDC-optimal and maximin without being LSDC-optimal

(resp. LSDC and maximax, without being LVSC-optimal); viz. solution e (resp. f).

Another advantage of the maximin (or maximax) strategy is that it copes with

redundant constraints due to the idempotency of the min. This is no longer true for

the leximin ordering which is sensitive to the repetition of constraints. Noticeably,

constraint propagation makes implicit constraints explicit and thus produces

redundant constraints. They are useful to eliminate infeasible solutions. The solutions

eliminated via the min-based propagation step are infeasible in the sense of the

leximin criterion too. However these redundant constraints should not be used in the

leximin ordering. By repeating a constraint a sufficient number of times, one may

make a non-leximin optimal solution optimal in a very artificial way. The leximin

ordering makes sense for independent constraints. This limitation does not exist for

the LSDC ordering  which is not affected by the presence of redundant constraints. But

only a strict partial order is obtained while the leximin ordering is complete. If a single

solution is needed a leximin optimal solution sounds reasonable; if a set of good

solutions is required, the LSDC ordering would rather be used; if all solutions must  be

computed,  it  is  more  convenient   to   exploit   the   maximin   propagation methods

for fuzzy constraints, as described in [9,10].



27

 

ab

c

g

h

id
e

f

j

Pareto-optima

maximin

maximax

LSDC - optima

LVDC-optima

Figure 8.

Appendix: A refresher on fuzzy cardinality.

Let F be a fuzzy set on a finite set X.  One of the definitions of fuzzy cardinality |F|

due to Zadeh [36] proposes  the  fuzzy integer

µ|F|(n) = max {0 , |F0| = n} for any non-negative integer n.

where the 0 level cut of F is |F0| = {x, µF (x) ' 0} for 0 > 0. Not all fuzzy sets of the

integers can represent such a fuzzy cardinality. Indeed, a fuzzy cardinality is
normalized: µ|F|(n) = 1 for some n =n0. Moreover if S(|F|) = {x, µ|F|(x) > 0} is the

support of |F| then for any n > m in S(|F|), µ|F|(n) >µ|F|(m). Note that there may be

holes in |F|, that is, n > k > m with µ|F|(n) >µ|F|(m) > 0 but µ|F|(k) = 0.

 If F and G are two fuzzy subsets of X then consider

= (|F| < |G|) = max {0 >0,   | F0 | < | G0 | }

The following properties hold:

i)  = (|F| < |F|) = 0, since  0 >0 implies  | F0 | = | F0 |;

ii) | F0 | = max(|F|0) since µ|F| decreases in its support;

iii) If  = (|F| < |G|) = = (|G| < |F|) =  0 then this value is 0. Indeed suppose 0 > 0.

Then at the same time | F0 | < | G0 | and | G0 | < | F0 | would hold.

iv)|F| = |G| if and only if  = (|F| < |G|) = = (|G| < |F|). The only if part is

obvious. The if part is almost so since = (|F| < |G|) = = (|G| < |F|) = / means that

|F0| ' |G0| and |G0| ' |F0| for all 0 > / and it is known that / = 0.
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