
ar
X

iv
:2

10
4.

05
10

9v
3 

 [
m

at
h-

ph
] 

 2
0 

Fe
b 

20
23

The two-dimensional one-component plasma is

hyperuniform

Thomas Leblé
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We prove that at all positive temperatures in the bulk of a classical two-dimensional one-
component plasma (also called Coulomb or log-gas, or jellium) the variance of the number of
particles in large disks grows (strictly) more slowly than the area. In other words the system
is hyperuniform.

1. Introduction

Let N ≥ 1 be an integer, let ΣN be the disk of center 0 and radius
√

N
π , let XN := (x1, . . . , xN ) denote

a N -tuple of points in ΣN and let XN :=
∑N
i=1 δxi be the associated atomic measure. We let fN be the

signed “fluctuation” measure on ΣN defined by fN := XN − m0, where m0 is the Lebesgue measure on
ΣN . We think of XN as a collection of point particles in ΣN and of m0 as the background measure. We
define the logarithmic interaction energy FN (XN ) as:

FN (XN ) :=
1

2

x

(x,y)∈ΣN×ΣN ,x 6=y
− log |x− y|dfN (x)dfN (y). (1.1)

Let β be a positive real number that will be fixed throughout the paper. We define a probability density
P
β
N on the space of N -tuples of points in ΣN by setting:

dP
β
N(XN ) :=

1

Kβ
N

exp (−βFN (XN )) dXN , (1.2)

with a normalizing constant Kβ
N :=

∫
ΣN×···×ΣN

exp (−βFN (XN )) dXN called the partition function. Here

and below, dXN denotes the Lebesgue measure on the Cartesian product ΣN × · · · × ΣN ⊂ (R2)N . The

probability measure P
β
N is the canonical Gibbs measure of the two-dimensional one-component plasma

(2DOCP) at inverse temperature β. We denote the expectation under P
β
N by E

β
N .

Let Ω some (Borel measurable) subset of ΣN . We denote by Pts(XN ,Ω) the number of points of XN

in Ω and by Dis(XN ,Ω) the discrepancy (of XN ) in Ω, defined by:

Dis(XN ,Ω) := Pts(XN ,Ω) − m0(Ω).

By construction we have Dis(XN ,ΣN ) = 0, which corresponds to the fact that the system is globally
neutral. However it cannot be perfectly locally neutral, and Dis(XN ,Ω) is meant to measure charge

fluctuations in Ω. The number variance in Ω is defined as the variance under P
β
N of Pts(XN ,Ω), or

equivalently of Dis(XN ,Ω).

For all x in R2 and R > 0, we let D(x,R) be the disk of center x and radius R.
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1.1. Main result

Hyperuniformity of a system is defined by the fact that:

[Tor18, Section 1] (...) the number variance of particles within a spherical observation window
of radius R grows more slowly than the window volume in the large-R limit.

Our main conclusion is the following:

Theorem (The 2DOCP is hyperuniform). For each N ≥ 1, let x = x(N) be a point in the bulk of ΣN
and let R = R(N) be such that R(N) → ∞. Then the number variance in D(x,R) is o(R2) as N → ∞.

We give a more precise statement in Section 1.5, explaining what we mean by “the bulk of ΣN” and

specifying a quantitative upper bound on the number variance of the form O
(

R2

logc(R)

)
for some c > 0.

Hyperuniformity of the 2DOCP at all positive temperatures is a forty year old prediction1 from statistical
physics, see [MY80; Leb83; Mar88; JLM93; LWL00] (which use a different terminology), or [Tor18] again:
“OCP fluid phases at [all] temperatures must always be hyperuniform”. In fact, the full physical prediction
says not only that the number variance is negligible with respect to the area of the disk, but that it should
even be comparable to the perimeter (O(R) and not only o(R2)). We give here the first mathematical
proof of hyperuniformity at all temperatures, however our upper bound on the number variance remains
far from the conjectured sharp estimate.

1.2. The 2DOCP

The two-dimensional one-component plasma is a well-studied model of statistical physics. Besides the
papers cited above, let us refer to [For10, Chapter 15] for a presentation of exact and approximate results.

When defining the energy FN in (1.1) and the canonical Gibbs measure PβN in (1.2), we think of (x1, . . . , xN )
as the positions of point particles in ΣN which all carry the same electric charge +1, and which are
immersed in a uniform neutralizing background of constant density on ΣN . The logarithmic potential
is then the electrostatic interaction potential in dimension 2. Instead of directly placing a background
measure, one sometimes imposes an harmonic confining potential. This would not change our analysis,
see Appendix A for a discussion.

Mathematical aspects of Coulomb gases

As mathematical objects, Coulomb gases (under various forms: one-, two- or three-dimensional, with one
or two components...) have attracted much interest. Concerning the 2DOCP itself, topics that have been
investigated in the last years alone are very diverse and include: lower bounds on the minimal distance
between points [Ame18], concentration inequalities for the empirical measure of the particles [CHM18;
GZ19b], upper bounds for the local density of points [LRY19], generalizations to Riemannian manifolds
[Ber19], Wegner’s and clustering estimates [Tho22]... to quote only a few among many others. We refer
to [Ser18] for an overview of motivations, ranging from constructive approximation to the study of the
Quantum Hall Effect, via random matrix theory. The long-range and singular nature of the pairwise
potential raises considerable analytic challenges.

In [LS18; BBNY19; Ser20] it was shown that the 2DOCP exhibits strong forms of rigidity at all scales and
for all values of the temperature as far as fluctuations of smooth linear statistics are concerned. Regarding
fluctuations of charges, i.e. the statistics of an indicator function, [AS21] (see also [Leb17; BBNY17] for
weaker controls) imply that the discrepancy within a disk of radius R is O(R) with high probability. Our
goal here is improve such bounds to o(R) and to thus prove hyperuniformity.

1Those results are rigorous to the extent that authors make use of so-called “clustering assumptions”, i.e. they assume
properties of the two-point correlation function at large distances in order to derive certain identities (called “sum
rules”) which, among other things, imply hyperuniformity. As explained in [Mar88]: “The results obtained in this
way are exact (i.e. do not follow from approximations), but not all of them are rigorously proven, in so far as some
reasonable properties (e.g. the type of decay of the correlations) are assumed to hold a priori.”. Unfortunately, obtaining
mathematically rigorous statements about the large-distance properties of the 2DOCP’s two-point correlation function
(for β 6= 2) is extremely challenging.
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The Ginibre ensemble

When the inverse temperature parameter β is equal to 2, the probability measure P
β
N admits an interpre-

tation as the joint law of the complex eigenvalues of a N ×N non-Hermitian random matrix, known as the
(finite) Ginibre ensemble, after [Gin65]. The model belongs to the class of determinantal processes (see
e.g. [HKPV06, Section 4.3.7]) and is amenable to exact computations. In that specific case, the standard
deviation of the number of points in a disk of radius R is known: it scales like R

1

2 (in accordance with
predictions from physics), see [Shi06] and [OS08]. Thus for β = 2 our result is not new, and our bound is
far from the optimal one.

The hierarchical model

In [Cha19], S. Chatterjee studied Coulomb gases in dimensions {1, 2, 3} (see [GS20] for an extension to
higher dimensions), giving sharp estimates on the number variance up to logarithmic corrections. His model
is a hierarchical Coulomb gas, where the physical space is decomposed into a tree-like structure following an
old recipe of Dyson. The hierarchical model has two built-in properties: conditional independence of sub-
systems and a self-similar nature. A large part of the present analysis is devoted to finding approximate
analogues of those features for the “true” (non-hierarchical) model.

1.3. Hyperuniformity

The term “hyperuniform(ity)” has been coined in the theoretical chemistry literature by S. Torquato (see
[TS03; Tor18] for surveys), an alternative terminology due to J. Lebowitz is “superhomogeneous/ity”. As
we already mentioned, a system is hyperuniform when the number variance in a large ball is asymptotically
negligible with respect to the volume of said ball. Of course the definition of hyperuniformity needs an
adaptation for finite systems, as one should take both the size of the system and of the “spherical window”
to infinity. We refer to [Cos21] for a mathematical presentation of hyperuniformity and a survey of related
results.

Examples of hyperuniform systems

For non-interacting random particles (forming a Bernoulli point process or a Poisson point process with
constant intensity) the number variance grows exactly like the volume, hence hyperuniformity can be
thought of as the property of systems that are “much more rigid” than independent particles regarding
discrepancy at large scales. Examples of two-dimensional objects that are proven to be hyperuniform
include: the Ginibre ensemble (as mentioned above) and its generalizations (see [CE19] for a recent result
in connection with the Quantum Hall Effect), averaged and perturbed lattices (see [GS75]), the zeroes of
random polynomials with i.i.d Gaussian coefficients (see [FH99; SZ08])...

In some cases (see [Tor18, Section 5.3.2]) the number variance grows as the perimeter (in fact that was
initially chosen as the definition of hyperuniformity in [TS03] but is now called “class I hyperuniformity”),
which is the slowest possible growth (see [Bec87]). The 2DOCP is predicted to be class I hyperuniform at
all temperatures, with good tails on the probability of large charge fluctuations, as we explain next.

The Jancovici-Lebowitz-Manificat law

In [JLM93], Jancovici, Lebowitz and Manificat made precise predictions concerning the probability of
observing large charge fluctuations within the 2DOCP (and its three-dimensional version). Their statement
is significantly more precise2 than hyperuniformity, as they argue that for all α > 1

2 :

P [Discrepancy of size Rα in a disk of radius R] ∼ exp(−Rϕ(α)) (“JLM law”) (1.3)

where the rate ϕ(α) > 0 is an explicit piecewise affine function of α. This was later checked for β = 2
through explicit computations, see [Shi06; FL21], while the general case is open. Remarkably, although
the original prediction of [JLM93] deals with Coulomb gases, it was first verified in [NSV08] for a different
model, namely the zeros of the Gaussian Entire Function (see [GN18] for a survey of related results).

2Tail estimates as in (1.3) readily imply the strongest type of hyperuniformity (Type I).
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Fekete points and the low temperature regime

A situation of interest that we do not consider here is the case of energy minimizers, which formally
corresponds to taking β = +∞ i.e. a zero temperature. A long-standing conjecture posits that minimizers
of FN form a lattice as N → ∞ and in that regard Fekete points should exhibit excellent rigidity properties
at finite N . For studies of such questions we refer to [AOC12; Ame17] and, in a different line of work,
to [NS15, Thm. 3]. See also [AR22; MR22] or the β-dependent statements of [AS21] for a more general
“low-temperature” regime where β is large but not necessarily infinite.

1.4. Open questions

Besides the obvious natural goal of obtaining the sharp number variance estimate as well as proving the
aforementioned “JLM laws”, let us mention three other open directions of research.

The 3DOCP. The claims of [JLM93] are made in dimension 2 and 3, moreover sharp hyperuniformity
estimates were obtained for the hierarchical model in dimension 3 in [Cha19], it is thus natural to ask
whether one can prove hyperuniformity for the 3DOCP. Unfortunately, in dimension 3 there is no (known)
value of β for which the model would be integrable and predictions could be tested. Some understanding
of fluctuations of smooth linear statistics was recently obtained in [Ser20] but with considerable new
difficulties compared to the two-dimensional case.

Riesz interactions. The 2DOCP can be seen as a member of one-parameter family of two-dimensional
systems called Riesz gases for which the interaction potential is taken as a certain power |x − y|−s of the
distance (the case s = 0 corresponds by convention to the logarithmic interaction). Rigidity properties
of those systems depend on the value of s as it governs both the level of repulsiveness at 0 and, most
importantly, the long- or short-range nature of the interaction. Rough bounds on the discrepancies were
given in [LS17, Lemma 3.2] in the infinite-volume limit, which say that the number variance in a disk of
radius R grows at most as R2+s. We believe the sharp estimate to be R1+s and thus that two-dimensional
Riesz gases should remain hyperuniform for s < 1. For one-dimensional systems, such questions were
recently answered in [Bou21].

High temperature regime. There has been recent interest in studying the “high-temperature” regime
where β → 0 as N → ∞ for Coulomb gases (and other related systems), see e.g. [AB19; Lam21] in
the two-dimensional setting. Those results have put forward that the inverse temperature regime where
β ∼ c

N is the threshold that distinguishes between “Ginibre-like” (c → +∞) and “Poisson-like” (c → 0)
properties. It is thus tempting to ask whether the 2DOCP stays hyperuniform as long as βN → ∞, and
whether one can observe an interesting transition along β = c

N , as c moves down from +∞ to 0.

1.5. Precise statement of the result, proof strategy and tools

Theorem 1. Let δ > 0 be fixed. For all N and R large enough (both depending on β and δ), for all x in
ΣN such that x is “in the bulk” in the following sense:

dist(D(x,R), ∂ΣN ) ≥ δ
√
N, (1.4)

we have:
P
β
N

({
|Dis(XN ,D(x,R))| ≥ R(logR)−0.3

})
≤ exp

(
− log1.5 R

)
. (1.5)

Since good exponential tails for Dis at values higher than R are already known (see e.g. [AS21, Thm 1]),
this new sub-algebraic tail valid for values of the discrepancy between R log−0.3 R and R imply that:

Var[Dis(XN ,D(x,R))] ≤ E
β
N

[
Dis2(XN ,D(x,R))

]
= O

(
R2

log0.6 R

)
= o(R2),

and the 2DOCP is thus indeed hyperuniform. The proof will be given in Section 7.
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General strategy

Our main source of inspiration is [NSV08, Section 4], in which Nazarov-Sodin-Volberg prove JLM-like
estimates on the probability of having large “charge” fluctuations in the disk D(0, R) for zeros of the
Gaussian Entire Function. Their argument can be roughly summarized as follows: fix α ∈ (1

2 , 1) and
assume there is a discrepancy of size Rα in the disk D(0, R).

1. Show that the discrepancy can be captured along the boundary ∂D(0, R).

2. Split that boundary into ≈ R pieces of size ≈ 1. Take M large and apply a basic pigeonhole argument:
there exists a family of ≈ R

M pieces that capture a discrepancy of size at least Rα

M and which are
“well-separated” (distances between pieces are multiples of M).

3. Then comes the main probabilistic work:

a) Show that these well-separated pieces are approximately independent.

b) Show that the discrepancy on each piece (of size ≈ 1) is typically O(1).

c) Show that the discrepancy on each piece is centered.

4. Apply Bernstein’s concentration inequality: if {Di}i is a family of ≈ R
M independent centered random

variables of size O(1) then:

P

({
∑

i

Di ≥ Rα

})
. exp

(
−R2α−1

M

)
.

This gives them sharp bounds on the number variance and the correct tail probabilities. Whilst not aiming
so high, we follow here a similar strategy, with much effort to translate it to the context of the 2DOCP
(besides point (2) and (4), which are easy).

Electric approach, sub-systems

The technical core is the the “electric approach” to Coulomb gases as developed by S. Serfaty and co-
authors. In that regard, our main imports are:

• The general spirit of controlling fluctuations through the electric energy (see Section 2.3).

• Local laws (up to microscopic scale) as in [AS21] (see Proposition 2.4 and Proposition 5.8).

• Optimal bounds for fluctuations of smooth linear statistics as in [LS18; Ser20; BBNY19]. Point (1), for
example follows fairly easily from such bounds.

• “Smallness of the anisotropy”, for which we refer to [LS18; Ser20] (see also [BBNY19]).

In addition, we put forward the role of so-called “sub-systems”, which arise as restrictions of the full system
to some region and which we view as two-dimensional Coulomb systems in their own right, possibly with a
small global non-neutrality, and (most importantly) feeling the effect of some harmonic exterior potential.
As such, this object is not new - it has been sometimes called a “conditional” or “local” measure in the
literature (see e.g. [BBNY19; BEY14]). We provide here a thorough study of its behavior, through global
and local laws, and show that with high probability the sub-systems, although under the influence of an
external potential, retain most of the rigidity properties of the full system - as is the case “for free” in the
hierarchical model studied in [Cha19]. This requires a precise study of the external potential “felt” by a
sub-system and of the perturbation of the equilibrium measure that it induces within the sub-system (for
which we rely on the analysis of [BBNY17, Section 2.], with some modifications). The proof of local laws
given in [AS21; Leb17] extends to sub-systems. This allows one for example to treat Point (3) (b), which
seem unsurprising, but which requires to consider objects of size ∼ 1, hence to control the system down to
the smallest scales. Such local laws are also crucial for the approximate translation-invariance argument
which we present now.
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Approximate translation-invariance

Step (3) (c) is void in the context of [NSV08] because the underlying point process is infinite and
translation-invariant (which implies that linear statistics are centered). However, it turns out to be a
major roadblock when adapting the proof to a Coulomb gas context. Indeed, in sub-systems (or even
in the full system if one does not impose artificial boundary conditions) there is absolutely no obvious
translation-invariance. We introduce an “approximate translation-invariance” result, valid for both the
full system and sub-systems, which is crucial for Step (3) (c). The point being that shifting a function (or
more precisely, averaging over shifts) acts as a mollification and enables us to compare the expectation of
a discrepancy, or of any non-smooth linear statistic, to that of a smoother one.

There is a series of results in mathematical statistical mechanics à la H.-O. Georgii devoted to prove
translation invariance of infinite volume Gibbs measures in contexts where stationarity is not built-in,
see e.g. [Geo99; Ric07], following earlier works by Fröhlich-Pfister [FP81; FP86]. The basic idea is to
construct suitable “localized translations” in the form of diffeomorphisms acting as a given translation in
a large box while leaving the majority of the system unchanged, and to control the effect on the energy
of such changes of variables. Following the wisdom found in a remark of [Sim14, Chap. 3, Sec. III.7], we
construct a localized translation that varies very slowly (in terms of its H1 norm), and a careful revisit of a
computation done in [Ser20], together with Serfaty’s “smallness of anisotropy” trick, allows us to conclude
that this localized translation can be chosen to have an arbitrarily small effect on the energy.

Approximate independence

Finally, one needs to find some kind of independence between the sub-systems. We introduce a new
“approximate independence” argument (which we believe to be of interest on its own) for sub-systems
that are well-separated, conditionally on the number of points in each of them. The simple idea is that
two domains Λi,Λj with ni, nj points contribute an interaction energy given to first order by:

− (ni − |Λi|) (nj − |Λj |) log dist(Λi,Λj),

while the precise arrangements of the points inside each domain should matter only to a lower order.

Remark 1.1. In the rest of the paper we often use results found in [AS21] and [Ser20]. It is worth noting
that although both papers deal (among other things) with the same 2DOCP model, they do not use the
same scaling convention. In [AS21] the authors work with the so-called “blown-up scaling” (as in the
present paper), which is more common in the physics literature and for which lengthscales range from
∼ 1 (the nearest-neighbor scale) to ∼ N1/2 (the diameter of the system), whereas [Ser20] uses the random
matrix theory convention where the local scale is ∼ N−1/2 and the global scale is ∼ 1. In particular, a
length scale ℓ in the present paper translates into N1/2ℓ in [Ser20], and the corresponding modifications
must be applied when quoting results.
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2. Preliminary results

2.1. Some notation.

We denote indicator functions by 1. We denote by |Ω| the Lebesgue measure of a measurable subset Ω. For
x ∈ R2 and r > 0 we let D(x, r) be the (closed) disk of center x and radius r. We let �(x, r) be the square of
center x and sidelength r (with sides parallel to the axes of R2). We recall the notation Dis for discrepancies:
if X is a point configuration and Ω is a measurable subset, we let Dis(X,Ω) := Pts(X,Ω) − |Ω|.

Size of derivatives. If M is a matrix we let ‖M‖ be its Euclidean norm. If ϕ is a bounded map we
write |ϕ|0 for its sup-norm. If ϕ is differentiable, we let Dϕ be its differential and introduce the following
notation:

• |ϕ|1,⋆(x) is the size of Dϕ at a given point x, |ϕ|1,⋆(x) := ‖Dϕ(x)‖.

• |ϕ|1,loc(x) is the size of Dϕ around a given point x, |ϕ|1,loc(x) := sup|x′−x|≤1 |ϕ|1,⋆(x′)

• |ϕ|1,Ω is the size of Dϕ in a given domain Ω, |ϕ|1,Ω := supx∈Ω |ϕ|1,⋆(x).

• Finally, |ϕ|1 is the sup-norm of Dϕ.

We define similarly |ϕ|k,⋆, |ϕ|k,loc, |ϕ|k,Ω and |ϕ|k for k ≥ 2.

Point configurations. For all Borel subsets Λ of R2, we let Conf(Λ) be the space of locally finite3

point configurations on Λ, endowed with the vague topology of Radon measures and the associated Borel
σ-algebra. When Λ is not specified, we use the notation Conf for point configurations on R

2. We will
denote by X 7→ X ∩ Λ the natural projection Conf ։ Conf(Λ). We may write “x ∈ X” to express the
fact that X has an atom at a given point x ∈ R2. We say that a measurable function G on Conf is Λ-local
when for all X in Conf we have G(X) = G(X ∩ Λ). We say that a measurable subset (an “event”) E of
Conf is Λ-local when its indicator function 1E is Λ-local.

Constants. Unless specified otherwise, C denotes a universal constant (which may change from line to
line) and Cβ a constant that depends only on β. We will use C̄ for constants that may depend on β and
the parameter δ (as in (1.4)). We write A � B or A = O(B) if |A| ≤ C|B|.

Fluctuations. If ϕ is a piece-wise continuous function on R2 we define the fluctuation of (the linear
statistics associated to) ϕ as the following random variable:

Fluct[ϕ] :=

∫

ΣN

ϕ(x)dfN (x).

2.2. Electric fields

We recall that − log satisfies −∆(− log) = 2πδ0 on R2 in the sense of distributions. In particular for all
smooth enough test functions f , the following identity holds:

f(x) =
−1

2π

∫

R2

− log |x− y|∆f(y). (2.1)

Let Λ ⊂ R2 and let X be a point configuration in Λ.

Definition 2.1 (True electric potential and electric field). We let hX (resp. ∇hX) be the true electric
potential (resp. true electric field) generated by X (in Λ), namely the map (resp. vector field) defined on
R2 by:

hX(x) :=

∫

Λ

− log |x− y|d (X − m0) (y), resp. ∇hX(x) =

∫

Λ

−∇ log |x− y|d (X − m0) (y).

It is easy to check that ∇hX is in ∩p∈[1,2)L
p
loc(R

2,R2) but fails to be in L2 around each point charge, and
that the following identity is satisfied on Λ in the sense of distributions:

−∆hX = − div ∇hX = 2π (X − m0) .
3In fact all of the point configurations considered in this paper are finite.
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Definition 2.2 (Compatible electric fields). Let E be a vector field in ∩p∈[1,2)L
p
loc(R2,R2). We say that

E is an electric field compatible with X on Λ whenever we have: − div E = 2π (X − m0) on Λ in the sense
of distributions.

Obviously the true electric field is a compatible electric field, however it is not the only one as can be
seen by adding any divergence-free smooth vector field on Λ to ∇hX.

In order to “take care” of the singularities, one often proceeds to a truncation of the fields near each
point charge.

Definition 2.3 (Truncation and spreading out Dirac masses). For η > 0 we let fη be the function:

fη(x) := max

(
− log

|x|
η
, 0

)
=

{
− log |x| + log |η| if x ≤ η

0 if x ≥ η
.

For each point x of X, let η(x) be a non-negative real number. The data of ~η = {η(x), x ∈ X} is called
a truncation vector. If hX is the true electric potential, we let hX

~η (resp. ∇hX

~η ) be the (true) truncated
electric potential (resp. field) given by:

hX

~η := hX −
∑

x∈X

fη(x)(· − x), resp. ∇hX

~η = ∇hX −
∑

x∈X

∇fη(x)(· − x).

We are thus effectively replacing − log |x − ·| by − log η near each point charge. Another way to think
about fη is that we are truncating the singularities by smearing out the point charge δx à la Onsager.
Indeed when computing the divergence of ∇hX

~η one finds that the atom at each point x ∈ X has been
replaced by a uniform measure of mass 1 on the circle of center x and radius η(x). We refer to [AS21,
Section 2.2 & Appendix B.1] or to [Ser20, Sec 3.1] for more details. The truncation procedure can be
extended to define E~η, where E is any electric field compatible with X, by setting:

E~η := E −
∑

x∈X

∇fη(x)(· − x).

For every point x of X we define the “nearest-neighbor” distance r(x) as:

r(x) :=
1

4
min

(
min

y∈X,y 6=x
|x− y|, 1

)
. (2.2)

In particular r(x) is always smaller than 1/4. We let~r = (r(x), x ∈ X) be the associated truncation vector.
We will sometimes use instead the vector s~r with s < 1.

2.3. Logarithmic energy and electric fields

The logarithmic interaction energy FN defined in (1.1) can be expressed in terms of the true electric field
generated by XN (Definition 2.1) as follows.

• Taking a uniform truncation vector η(x) = η > 0 for all x in XN , we have the following equality in the
limit as η → 0:

FN (XN ) =
1

2
lim
η→0

(
1

2π

∫

R2

|∇h
XN

~η |2 +N log η

)
.

(This quantity is “almost” non-decreasing as η → 0, see e.g. [AS21, Lemma B.1.].)

• On the other hand, taking for each x a truncation η(x) ≤ r(x), we get a non-asymptotic identity:

FN (XN ) =
1

2

(
1

2π

∫

R2

|∇h
XN

~η |2 +
∑

x∈XN

log η(x)

)
−
∑

x∈XN

∫

D(x,η(x))

fη(x)(t− x)dt. (2.3)
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The first formulation can be found in [SS12; RS16] and the second one in [LS18] or [AS21, Lemma 2.2.].
Of course, expressing electrostatic interactions in terms of the electric field and “smearing out” point
charges are both old ideas. One sees that in the small truncation limit there is a compensation between
the explosion of

∫
R2 |∇h

XN

~η |2 and the very negative terms
∑
x∈XN

log η(x), hence the name “renormalized

energy” given in [SS15] (this renormalization procedure appeared in [BBH94] and the idea of using nearest-
neighbor distances was borrowed from [GP77]). Despite their apparent mutual cancellation, in general
the “positive” and “negative” parts can both be compared to FN (XN ) as explained e.g. in [AS21, Lemma
B.2].

In the sequel we use the expression “electric energy” when referring to quantities of the type
∫

Ω
|E~η|2

where E is an electric field, ~η a truncation vector and Ω is some subset of R2, and we write:

Ener(XN ,Ω) :=

∫

Ω

|∇h
XN

~r |2, Eners(XN ,Ω) :=

∫

Ω

|∇h
XN

s~r |2 (for s ∈ (0, 1)). (2.4)

From the identity (2.3) we deduce that for s < 1:

Eners(XN ,Ω) = Ener(XN ,Ω) − Pts(XN ,Ω) log s, (2.5)

For convenience, we will sometimes write EnerPts for the sum of Ener and Pts in a given domain.

2.4. Global and local laws

The following properties of FN are well-known (see [AS21, Lemma 3.7]):

• It is bounded below: there exists a universal constant C such that for all N ≥ 2 and for all XN , we
have FN (XN ) ≥ −CN .

• It is typically of order N in the sense that for some constant Cβ depending only on β:

E
β
N

[
exp

(
β

2
FN (XN )

)]
≤ exp (CβN) . (2.6)

We refer to (2.6) as a “global law”, controlling the system at macroscopic scale. The next proposition
expresses the fact that the system is also well-behaved down to some large microscopic scale. Let us first
introduce two important distances that will play a role in Proposition 2.4 and in the rest of the paper.

The smallest microscopic scale ρβ. We refer to a certain minimal lengthscale introduced in [AS21]
and denoted by ρβ. It is a positive constant that depends only on β, and corresponds to the length-scale
above which good rigidity properties are proven.

Distance to the boundary. For technical (and possibly physical) reasons, properties of the full-system
are easier to understand when one looks “away from the edge”, namely at some non-trivial distance of the
boundary ∂ΣN . For x a point in ΣN and ℓ > 0, we will say that “(x, ℓ) satisfies (2.7)” when:

dist(�(x, ℓ), ∂ΣN ) ≥ CβN
1/4, (2.7)

where Cβ is some large enough constant introduced in [AS21, (1.16)].

Let us note that in the statement of Theorem 1 we assume that dist(D(x,R), ∂ΣN ) ≥ δ
√
N which is

clearly a stronger assumption, at least for N large enough depending only on δ, β.

Proposition 2.4 (Local laws). There exists some universal constant C, and a “local laws” constant CLL

depending only on β such that the following holds. Let x be a point in ΣN and ℓ a lengthscale such that:

1. ℓ ≥ ρβ (the length-scale ℓ is larger than the “minimal” one)

2. (x, ℓ) satisfy (2.7) (we are sufficiently “far from the edge”).

Then we control the electric energy in �(x, ℓ) in exponential moments:

logEβN

(
exp

(
β

2
Ener (XN ,�(x, ℓ))

))
≤ CLLβℓ

2.
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Moreover, we have the following control on the number of points:

logEβN

(
exp

(
β

C
Pts (XN ,�(x, ℓ))

))
≤ CLLβℓ

2, (2.8)

together with a discrepancy bound:

logEβN

(
exp

(
β

C

Dis2 (XN ,�(x, ℓ))

ℓ2

))
≤ CLLβ. (2.9)

Proof of Proposition 2.4. This is a subset of the statements in [AS21, Theorem 1], see Section B.1 for a
technical discussion.

As can be seen from Proposition 2.4, Ener(XN ,�(x, ℓ)),Pts(XN ,�(x, ℓ)) and EnerPts(XN ,�(x, ℓ)) are
all expected to be of the same order as the area ℓ2.

Remark 2.5. For our purposes, we will repeatedly use the local laws under the following form: for Cβ
large enough, the probability of having more than Cβℓ

2 points (or an energy higher than Cβℓ
2) in a given

square �(x, ℓ) is smaller than exp
(
−ℓ2/Cβ

)
.

One can replace squares by disks (or by any “reasonable” shape) in the previous statement, however
it is worth observing that local laws do not directly yield interesting controls the energy (or number of
points) on very thin strips, rectangles with diverging aspect ratio, boundaries of squares, thin annuli etc.
In those situations, one must resort to splitting the region into squares, applying the local laws to each
square and then using a union bound.

2.5. The electric energy controls fluctuations

The next lemma expresses how the electric energy controls linear statistics of Lipschitz functions.

Lemma 2.6 (Bounds on fluctuations - Lipschitz case). Let X be a point configuration in R2, and let ϕ
be a function in C1(R2) with compact support. Let E be any electric field compatible with X on suppϕ in
the sense of Definition 2.2. Let Ω be a domain containing a 1-neighborhood of supp ∇ϕ. We have:

∣∣∣∣
∫
ϕ(x)d (X − m0) (x)

∣∣∣∣ ≤
(∫

R2

|∇ϕ|2
) 1

2
(∫

Ω

|E~r|2
) 1

2

+ |ϕ|1,ΩPts(X,Ω) (2.10)

Localized case Assume that Ω̃1, . . . , Ω̃m cover supp ∇ϕ, and that for each i the domain Ωi contains a
1-neighborhood of Ω̃i, then we can replace the right-hand side of (2.10) by:

m∑

k=1

|ϕ|1,Ωi ×
((∫

Ωi

|E~r|2
) 1

2

× |Ωi|
1

2 + Pts(X,Ωi)

)
(2.11)

Remark 2.7. Controls of the type (2.10) have appeared under various forms in previous works see e.g.
[SS15, Lemma 5.1], [LS18, Proposition 2.5] or [AS21, Lemma B.5], they are usually phrased as: “the
electric energy controls the fluctuations”. The electric energy in a given domain Ω is typically of order |Ω|
and so is the number of points in Ω, cf. Proposition 2.4, thus (2.10) bounds the typical fluctuations of ϕ
by |ϕ|1| supp ∇ϕ| whereas a naive L∞ bound would rather give |ϕ|0 × | suppϕ|. Since our test functions
often live on some large lengthscale ℓ with |ϕ|1 comparable to ℓ−1|ϕ|0, there is indeed an improvement.

We give the proof of Lemma 2.6 in Section B.2. Compared to existing results, here we simply emphasize
the role played by the support of the gradient (instead of the whole support of the test function), which
yields more accurate estimates when ϕ is a sharp cut-off function. We will repeatedly use its “localized
version” (2.11), whose proof is a straightforward of (2.10).
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2.6. Finer bound on fluctuations for smooth test functions

For test functions with higher regularity the bound of Lemma 2.6 on fluctuations of linear statistics can
be improved (see [LS18; BBNY19; Ser20] as well as [RV07; AHM11] for the β = 2 case). In particular
if ϕℓ(x) := ϕ̄(x/ℓ) for a fixed reference smooth test function ϕ̄, then ϕℓ lives at scale ℓ ≫ 1 yet its
fluctuations remain bounded as ℓ → ∞ (with high probability). One can refer e.g. to [Ser20, Thm. 1] and
[Ser20, Cor. 2.1] for such results.

In this paper we will occasionally need a more specific statement valid in the radially symmetric case.

Proposition 2.8 (Finer bound, the C2 radially symmetric case). There exists a constant Cβ depending
only on β such that the following holds. Let x be a point in ΣN and let ϕ be a test function which is
radially symmetric around x, with compact support. Assume that ϕ is in C2(R2) and let A be an annulus
containing (a 1-neighborhood of) the support of ∆ϕ. Let s be a real number satisfying:

|s| ≤ πβ

4|ϕ|2
. (2.12)

Then the exponential moments of the fluctuations of ϕ satisfy:

logEβN [exp (sFluct[ϕ])] =
s2

4πβ

∫

R2

|∇ϕ|2 + logEβN [exp (s|ϕ|2Cβ (EnerPts(XN ,A)))] .

Although it does not appear as such in the literature, Proposition 2.8 can be easily deduced from the
tools of [Ser20], we give a proof in Section B.3.

2.7. Wegner’s estimates

The recent paper [Tho22] provides upper bounds on the k-point correlation functions of Coulomb gases (in
dimension 2 and higher). Among many other things, it states so-called “Wegner’s estimates” i.e. uniform
controls of the form ρ1 ≤ Cβ , where ρ1 is the one-point correlation function. We will use [Tho22, Theorem
1.6], which is valid even for r ≪ 1 (sub-microscopic scale):

Lemma 2.9. There exists Cβ such that for all x in ΣN and for all r > 0, if (x, r) satisfies (2.7) we have:

P
β
N ({Pts(D(x, r)) ≥ 1}) ≤ Cβr

2. (2.13)

3. Locating discrepancies near the boundary

Let 0 ≤ εR ≤ 1 (to be chosen later). The goal of this section to show that any “large” discrepancy εRR
within a disk of radius R can be found (with high probability) near the boundary of the disk.

3.1. Cornering the discrepancy in an annulus close to the boundary

Let L ≥ 100 be a lengthscale to be chosen later. Let z be a point and R ≥ ρβ such that D(z,R) satisfies
(2.7). In this section we sometimes simply write Dr (for r > 0) instead of D(z, r). Assume that the disk
D(z,R) contains εR ·R too many4 points. Compare two idealized situations: in the first one, the excess of

charges is spread uniformly over DR, in the sense that Dis(XN ,Dr) behaves like r2

R2 × εR ·R for r ≤ R. In
the second situation, the excess is concentrated in a thin strip near ∂DR and immediately compensated by
a default on the other side of the boundary. According to [JLM93], the physically realistic picture is the
second one: “Macroscopic electrostatics of conductors implies that, for a given value of [the discrepancy]
Q, the dominant configurations are such that Q is concentrated in a layer on the inner side of the boundary
of the disk, while a charge −Q accumulates in a layer on the outer side.”. In order to give a corresponding
mathematical statement, observe that the event

⋂

R−2L≤r≤R−L

{
Dis(XN ,D(z, r)) ≥ 1

2
εR ·R

}

4We mean Pts(XN ,DR) ≥ πR2 + εR · R. points
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expresses that some excess of charges is found in the disks Dr for a fairly wide region r ∈ [R− 2L,R− L]
and that the discrepancy is thus not “concentrated in a layer on the inner side of the boundary of the
disk”.

Proposition 3.1. There exists a constant C3.1(β) depending only on β such that the following holds. Let
s be a real parameter. Assume that R,L, εR, s satisfy:





C3.1
1
εR

≤ L ≤ R
10

0 ≤ s ≤ 1
C3.1

min
(
L3

R , LεR

)
.

(3.1)

Then we have:

P
β
N


 ⋂

R−2L≤r≤R−L

{
Dis(XN ,D(z, r)) ≥ 1

2
εR ·R

}
 ≤ exp

(
−sεR · R

4

)
. (3.2)

We postpone the proof of Proposition 3.1 to Section B.4. It relies on Proposition 2.8.
Next, we argue that if the complementary event occurs, then one can find an annulus of width ≈ L near

the boundary of DR that carries a large discrepancy.

Lemma 3.2 (Finding discrepancy in an annulus). If Dis(XN ,DR) ≥ εR ·R and if, in contrast to the event
considered in (3.2), there exists a radius r with R − 2L ≤ r ≤ R− L such that:

Dis(XN ,Dr) <
1

2
εR ·R (3.3)

then there exists an integer k with 0 ≤ k ≤ R2 such that the discrepancy in the annulus DR \ DR−2L+ kL

R2

is larger than 1
4εR · R.

Proof. Let r be such that (3.3) holds and let 0 ≤ k ≤ R2 be the integer such that:

rk := R− 2L+
kL

R2
≤ r < R− 2L+

(k + 1)L

R2
.

It is easy to see that Dis(XN ,Drk) ≤ 3
4εR · R (a rough bound), indeed we have:

Dis(XN ,Drk) ≤ Dis(XN ,Dr) + |Dr \ Drk |,

with equality if and only if there is no point in the annulus Dr \ Drk , whose area is of order RL
R2 ≤ 1.

Since the total discrepancy in DR is at least εR ·R and the one inside Drk is at most 3
4εR ·R then the

annulus DR \ Drk must carry a discrepancy of size at least 1
4εR ·R.

Remark 3.3. If there is a negative discrepancy i.e. a default of points instead of an excess, one proceeds
the same way, except that in Proposition 3.1 we bound the probability of Dis(XN ,Dr) ≤ −εR·R

2 for all
R − 2L ≤ r ≤ R − L instead. The complementary event is that for some r with R − 2L ≤ r ≤ R − L,
we have Dis(XN ,Dr) > − −εR·R

2 . Then in Lemma 3.2 instead of taking rk a bit smaller than r we take
it a bit larger and observe that the discrepancy cannot go down too much between Dr and Drk . Hence
Dis(XN ,Drk) ≥ −3εR·R

4 , so the annulus DR \ Drk carries a default of points at least εR·R
4 (in absolute

value).

3.2. A well-separated family of boxes carrying the discrepancy

Let r be in [R − 2L,R− L].
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Decomposition in boxes We split the annulus DR \ Dr into smaller parts that we call boxes.

Definition 3.4 (Decomposition in boxes). For i ∈ {0, . . . , RL − 1}, we let the i-th “box” Bi be the
intersection of the annulus DR \ Dr with a certain angular sector of center z:

Bi := (DR \ Dr) ∩
{
z′ ∈ R

2 ≃ C, i ≤ arg(z′ − z)

2π
× R

L
≤ i+ 1

}
.

The boundary of each such box is made of two line segments of equal length in (L, 2L) and two concentric
circular arcs which subtend the same angle at the center and whose arclengths are different but both in(
L
2 , L

)
. The shape is symmetric with respect to the straight line joining the midpoints of both arcs. We

sometimes call “a box of size L” any domain B that fits the previous description.
We let ωi be the center of mass of Bi, which only serves as a convenient reference point.

Introducing the parameters M and T Let T be a lengthscale, and M be an integer, both to be chosen
at the end, such that:

T ≥ 10L, 100 ≤ M ≤ R

L
, T ≤ ML

100
, T 2 logT ≤ ML. (3.4)

(The fourth condition (which could be weakened), implies the third one but for clarity we write them all
down.)

Lemma 3.5 (Some well-separated boxes carry the discrepancy). Assume that the discrepancy in DR \Dr

is larger than 1
4εR · R. Then there exists l ∈ {0, . . . ,M − 1} such that:

∑

i≡l mod M

Dis(XN ,Bi) ≥ εR · R
4M

. (3.5)

Proof of Lemma 3.5. It follows from a straightforward pigeonhole argument.

From now on, we assume to have chosen such a l ∈ {0, . . . ,M−1} and we write the corresponding boxes
as B1, . . . ,BN , where N = O

(
R
ML

)
is the number of box in each “well-separated” family. Moreover, we

see each box Bi as being contained in a large disk Λi := D(ωi, T ), where T is as above.

Let dij be the distance between Λi and Λj.

Claim 3.6. We have for each fixed i:

∑

j,j 6=i

1

dij
= O

(
logR

ML

)
,

∑

j,j 6=i

1

d2
ij

= O
(

1

M2L2

)
(3.6)

Proof. Let us observe that between two “consecutive” boxes in the family {i ≡ l mod M} considered in
(3.5), there is a distance of order ML (since ML ≥ 100T by assumption, this is also comparable to the
distance between two consecutive disks). We can compare the sum to an harmonic sum (in the first case)
or a converging Riemann series (in the second case).

Plan for the next two sections

We now want to treat each box Bi as living in its own smaller version of a 2DOCP contained in Λi, which
leads us to the next two sections.

Think of a “sub-system” as the random collection of particles contained in a given sub-domain Λ ⊂ ΣN
with a reasonable shape (e.g. a square or a disk). These particles feel the influence of each other, but
also of the full system in ΣN because the logarithmic interaction is long-range. Hence sub-systems are
typically not isolated and not independent from each other.

1. In Section 4 we observe that if we condition on the values of the discrepancies (or equivalently of the
number of particles) in domains that are well-separated, then the corresponding sub-systems acquire a
form of independence.

2. In Section 5 we show that “typical” sub-systems, seen as slight generalizations of the 2DOCP model
introduced earlier (in (1.1), (1.2)), retains most of the properties of the full system mentioned in
Section 2.
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4. Approximate conditional independence for sub-systems

In this section, we consider a family {Λi, 1 ≤ i ≤ N } of N ≥ 2 disjoint disks in ΣN (forming our “sub-
systems”). We will eventually apply the results below to the Λi’s chosen in Section 3.2, but the statements
in the present section are general.

Let Ext be the complement Ext := ΣN \ ∪N
i=1Λi. Let Vext be the logarithmic potential generated by the

system in Ext, namely:

Vext(x) :=

∫

Ext

− log |x− y|dfN(y). (4.1)

The potential Ext is harmonic on all the Λi’s and depends only on the configuration in Ext.

4.1. Decomposition of the interaction, conditional independence error

We let Int[Λ1, . . . ,ΛN ] be the true logarithmic interaction between the sub-systems, namely:

Int[Λ1, . . . ,ΛN ] :=
1

2

∑

1≤i6=j≤N

x

Λi×Λj

− log |x− y|dfN(x)dfN (y).

By expanding the double integral defining FN , we may write:

FN (XN ) = FExt(XN ∩ Ext) + Int[Λ1, . . . ,ΛN ] +

N∑

i=1

(
FΛi(XN ∩ Λi) +

∫

Λi

Vext(x)dfN (x)

)
(4.2)

with FExt,FΛi defined the obvious way (see (4.7)). On the other hand, for each 1 ≤ i ≤ N , let Di be the

discrepancy of XN in Λi, and let Ĩnt[D1, . . . ,DN ] be the approximation of Int[Λ1, . . . ,ΛN ] given by:

Ĩnt[D1, . . . ,DN ] :=
1

2

∑

1≤i6=j≤N
−DiDj log |ωi − ωj|,

where ωi denotes the center of Λi. We define the quantity ErrorCI as follows:

ErrorCI [XN | (Λ1, . . . ,ΛN )] :=
∣∣∣Int[Λ1, . . . ,ΛN ] − Ĩnt[D1, . . . ,DN ]

∣∣∣ , (4.3)

and we use it below in order to measure a “conditional independence error”.

4.2. Bounds on the conditional independence error

For 1 ≤ i 6= j ≤ N , define the distance dij as dij := dist(Λi,Λj). Assume that for all 1 ≤ i ≤ N the disk
Λi has radius T and that:

max
1≤i≤N

ni ≤ 10T 2, min
1≤i6=j≤N

dij ≥ 10T. (4.4)

Lemma 4.1 (The size of ErrorCI). We have, if (4.4) holds:

|ErrorCI [XN | (Λ1, . . . ,ΛN )]| = O(T 5)
∑

1≤i6=j≤N

1

dij
. (4.5)

Proof of Lemma 4.1. For x ∈ Λi, y ∈ Λj (with i 6= j) since the diameter of the squares is O(T ) and the
mutual distances satisfy (4.4), a Taylor’s expansion yields:

log |x− y| = log |ωi − ωj | + O
(

T

|ωi − ωj |

)
, (4.6)

with a universal implicit constant. Integrating (4.6) against the fluctuation measures in Λi and Λj yields:
∣∣∣∣∣∣

x

Λi×Λj

log |x− y|dfN(x)dfN (y) − DiDj log |ωi − ωj |

∣∣∣∣∣∣
≤ (|Λi| + ni) · (|Λj | + nj) · O

(
T

dij

)
.

Using the bound on ni, nj given by (4.4) and summing over i 6= j, we get (4.5).

Remark 4.2. It is possible to reduce the order of magnitude of ErrorCI by expanding the interaction in
a more precise way.
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4.3. 2DOCP’s with harmonic external field

In the following we consider two-dimensional one-component plasmas whose energy takes into account the
effect of an external field Vext on each particle.

• Let Vext (the external field on Λ) be a lower semi-continuous function on R2 that is harmonic on (the
interior of) Λ. Let us emphasize that Vext is harmonic hence very regular in the interior of Λ but we
do not a priori control Vext or its derivatives near ∂Λ. The situation is thus different from the choice
of an external weight/potential as frequently found in the literature on log-gases.

• Let Xn denote a n-tuple of points Xn = (x1, . . . , xn) in Λ, let Xn :=
∑

n

i=1 δxi be the associated atomic
measure, and let fΛ := Xn − m01Λ be the signed fluctuation measure on Λ. Let FΛ(Xn) be the
logarithmic interaction energy:

FΛ(Xn) :=
1

2

x

(x,y)∈Λ×Λ,x 6=y
− log |x− y|dfΛ(x)dfΛ(y). (4.7)

We define a probability density P
β
n,Λ,Vext on the space of n-tuples of points in Λ by setting:

dP
β
n,Λ,Vext(Xn) :=

exp
(
−β
(
FΛ(Xn) +

∫
Λ Vext(x)dfΛ(x)

))

Kβ
n,Λ,Vext

dXn, (4.8)

where Kβ
n,Λ,Vext is the partition function, namely the normalizing constant:

Kβ
n,Λ,Vext :=

∫

Λn

exp

(
−β
(

FΛ(Xn) +

∫

Λ

Vext(x)dfΛ(x)

))
dXn, (4.9)

and dXn is the Lebesgue measure on Λn. We may now state the main result of this section.

4.4. Approximate conditional independence

Proposition 4.3 (Approximate conditional independence).

• For 1 ≤ i ≤ N , let Gi be a measurable function on Conf with non-negative real values and let Ei be a
measurable subset of Conf. Assume that Gi, Ei are Λi-local in the sense of Section 2.1.

• Let Eext be a measurable subset of Conf, assume that Eext is Ext-local.

• Denote by EN the following event: EN := Eext ∩⋂N
i=1 Ei.

• Finally, we say that a family {ni}1≤i≤N of integers is “admissible” (we write “{ni} adm.” below) when
there exists XN ∈ EN such that Pts(XN ,Λi) = ni for all 1 ≤ i ≤ N .

We have:

E
β
N

[ N∏

i=1

Gi(XN )1EN

]
≤ exp

(
2β sup

XN∈EN
ErrorCI(XN )

)

× sup
Xext∈Eext,{ni} adm.

N∏

i=1

E
β
ni,Λi,Vext

[
Gi(X)

∣∣∣Ei
]
. (4.10)

Moreover, with the same assumptions, the following lower bound holds:

E
β
N

[ N∏

i=1

Gi(XN )1EN

]
≥ exp

(
−2β sup

XN∈EN
ErrorCI(XN )

)
× P

β
N (EN )

× inf
Xext∈Eext,{ni} adm.

N∏

i=1

E
β
ni,Λi,Vext

[
Gi(X)

∣∣∣Ei
]
. (4.11)

Notice that one sup is now an inf, the error term sup ErrorCI now appears in the exponent with a minus
sign, and there is an extra factor P

β
N (EN ).
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Proof of Proposition 4.3. Let us start by using the definition (1.2) of PβN and the decomposition (4.2) of
the logarithmic interaction FN (XN ). We obtain:

E
β
N

[ N∏

i=1

Gi(XN )1EN

]
=

1

Kβ
N

∫

(ΣN )N
exp (−βFExt(XN ∩ Ext)) exp (−βInt[Λ1, . . . ,ΛN ])

×
[ N∏

i=1

exp

(
−β
(

FΛi(XN ∩ Λi) +

∫

Λi

Vext(x)dfN (x)

))
× Gi(XN )

]
1EN (XN )dXN .

Next:

• We use a complete system of events by fixing the number ni of points in each Λi (and thus also the
number next of points in Ext). The knowledge of ni is equivalent to fixing the discrepancy Di in Λi.
Since we are working under the event EN , the {ni} must be admissible as defined in the statement of
Proposition 4.3.

• Up to a combinatorial factor, we may then decompose the N -tuple XN into a next-tuple Xext of points
in Ext, and Xi (1 ≤ i ≤ N ), where each Xi is a ni-tuple of points in Λi.

• We decompose the Lebesgue measure dXN accordingly.

• We write Xext and Xi (1 ≤ i ≤ N ) for the associated atomic measures. We have the identities
Xext = XN ∩ Ext and Xi = XN ∩ Λi (1 ≤ i ≤ N ).

• By our locality assumptions: 1EN (XN ) = 1Eext
(Xext) ×∏N

i=1 1Ei(Xi).

• We use our locality assumption on Gi to write Gi(XN ) = Gi(Xi).

• We introduce the measures fExt := Xext − m01Ext and fΛi := Xi − m01Λi .

• Finally, using the definition (4.3) we may replace Int[Λ1, . . . ,ΛN ] by Ĩnt[D1, . . . ,DN ], up to an error

quantified by ErrorCI. The quantity exp
(

−β Ĩnt[D1, . . . ,DN ]
)

can be taken outside the integrals be-

cause it only depends on the data of {ni}1≤i≤N .

We obtain the following upper bound:

E
β
N

[ N∏

i=1

Gi(XN )1EN

]
≤ 1

Kβ
N

∑

{ni} adm.

(
N

n1 . . . nN

)
exp

(
−β Ĩnt[D1, . . . ,DN ]

)

× exp

(
β sup

XN∈EN
ErrorCI(XN )

)
×
∫

(Ext)next

exp
(
−βFExt(X

ext)
)

1Eext
(Xext)

×
[ N∏

i=1

∫

(Λi)ni

exp

(
−β
(

FΛi(Xi) +

∫

Λi

Vext(x)dfΛi(x)

))
× Gi(Xi)1Ei(Xi)dXi

]
dXext. (4.12)

We may conveniently condense (4.12) using our notation. For 1 ≤ i ≤ N , in view of the definitions (4.8),
(4.9), we write:

∫

(Λi)ni

exp

(
−β
(

FΛi(Xi) +

∫

Λi

Vext(x)dfΛi (x)

))
Gi(Xi)1Ei(Xi)dXi

= E
β
ni,Λi,Vext

[
Gi(X)

∣∣∣Ei
]

× P
β
ni,Λi,Vext [Ei] × Kβ

ni,Λi,Vext ,
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and we may thus re-write (4.12) as:

E
β
N

[ N∏

i=1

Gi(XN )1EN

]
≤ 1

Kβ
N

∑

{ni} adm.

(
N

n1 . . . nN

)
exp

(
−β Ĩnt[D1, . . . ,DN ]

)

× exp

(
β sup

XN∈EN
ErrorCI(XN )

)
×
∫

(Ext)next

exp
(
−βFExt(X

ext)
)

1Eext
(Xext)

×
[ N∏

i=1

E
β
ni,Λi,Vext

[
Gi(X)

∣∣∣Ei
]

× P
β
ni,Λi,Vext [Ei] × Kβ

ni,Λi,Vext

]
dXext. (4.13)

In (4.12), (4.13), the converse inequalities hold up to adding a minus sign in front of ErrorCI in the
exponent (recall that the Gi’s have non-negative values by assumption). Now, for all Xext ∈ Eext and all
admissible {ni}, we have:

N∏

i=1

E
β
ni,Λi,Vext

[
Gi(X)

∣∣∣Ei
]

≤ sup
Xext∈Eext{ni} adm.

N∏

i=1

E
β
ni,Λi,Vext

[
Gi(X)

∣∣∣Ei
]
,

and the converse inequality holds up to trading the sup for an inf. We get:

E
β
N

[ N∏

i=1

Gi(XN )1EN

]
≤ sup

Xext∈Eext,{ni}adm.

N∏

i=1

E
β
ni,Λi,Vext

[
Gi(X)

∣∣∣Ei
]

× exp

(
β sup

XN∈EN
ErrorCI(XN )

)

× 1

Kβ
N

∑

{ni} adm.

(
N

n1 . . . nN

)
exp

(
−β Ĩnt[D1, . . . ,DN ]

) ∫

(Ext)next

exp
(
−βFExt(X

ext)
)

1Eext
(Xext)

×
[ N∏

i=1

∫

(Λi)ni

P
β
ni,Λi,Vext [Ei] × Kβ

ni,Λi,Vext

]
dXext, (4.14)

and the converse inequality holds up to trading the first sup for an inf and writing − sup ErrorCI instead
of sup ErrorCI in the exponent. We now establish a bound on the partition function Kβ

N in a similar
fashion. By definition, we have:





1

Kβ
N

≤
(∫

(ΣN )N
1EN exp (−βFN (XN )) dXN

)−1

1

Kβ
N

=
(∫

(ΣN )N
1EN exp (−βFN (XN )) dXN

)−1

× P
β
N (EN ).

(4.15)

Arguing as above (taking all the Gi’s equal to the constant 1), we get:

∫

(ΣN )N
1EN exp (−βFN (XN )) dXN

≤ exp

(
β sup

XN∈EN
ErrorCI(XN )

)
×

∑

{ni} adm.

(
N

n1 . . . nN

)
exp

(
−β Ĩnt[D1, . . . ,DN ]

)

×
∫

Extnext

exp
(
−βFExt(X

ext)
)

1Eext
(Xext)

[ N∏

i=1

∫

(Λi)ni

P
β
ni,Λi,Vext [Ei] × Kβ

ni,Λi,Vext

]
dXext, (4.16)

and the converse inequality holds with − sup ErrorCI instead of sup ErrorCI. Combining (4.14), (4.15) and
(4.16) we obtain (4.10) (note that many terms cancel out in the ratio). We have also proven the converse

inequality (4.11), with an extra factor P
β
N (EN ) coming from (4.15).

5. Generalized 2DOCP’s arising as sub-systems

Let Λ be a disk of center ω ∈ R2 and radius T , and let n ≥ 1 be an integer, corresponding to the number
of points in Λ. In general we may have n 6= |Λ|.
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5.1. Good external potentials, good sub-systems

Let Vext be an external field as in Section 4.3 (we will eventually use this for the particular choice (4.1)).

We introduce two definitions to pinpoint “good situations” for the generalized 2DOCP measure P
β
n,Λ,Vext

introduced in (4.8).

Definition 5.1 (Good potential). We say that Vext is a “good external potential on Λ with constant C̄”
when the following holds:

1. Control up to the edge. There exists a function Ṽext on Λ satisfying:

Ṽext(x) = Vext(x) if dist(x, ∂Λ) ≥ 1, Ṽext(x) ≤ Vext(x) + 100 for all x ∈ Λ,

such that: ∣∣Ṽext(x) − Ṽext(ω)
∣∣ ≤ C̄ × T × log3 T.

2. A technical decomposition. Vext can be decomposed as the sum

Vext = hν +R, (5.1)

where hν is the logarithmic potential generated by a positive measure supported on an annulus of width
T̂ := logT right outside Λ, and R is harmonic in Λ, such that we control the derivative of R up to the
edge by:

|R|1,Λ ≤ C̄ × log2 T,

and moreover we control the mass of ν locally at scale T̂ = logT :

sup
x∈∂Λ

ν(D(x, log T )) ≤ C̄ log2 T.

Definition 5.2 (Good sub-system). We consider the event “Λ is a good-system” defined as the sub-set
of all point configurations X ∈ Conf such that:

1. The discrepancy Dis(X,Λ) satisfies: |Dis(X,Λ)| ≤ T log2 T .

2. X belongs to the event EΛ defined by:

a) There is absolutely no point in Λ at distance ≤ e− log2 T from ∂Λ.

b) There is no more than T logT points in Λ at distance ≤ 1 from ∂Λ.

This event is of course Λ-local and even {x ∈ Λ, dist(x, ∂Λ) ≤ 1}-local.

The effective external potential is often good.

Let Λi := D(ωi, T ) (1 ≤ i ≤ N ) be the disks introduced at the end of Section 3.2. We define a common
external potential for all Λi’s by setting (cf. (4.1)):

Vext(x) :=

∫

ΣN\∪N
i=1

Λi

− log |x− y|dfN(y). (5.2)

Proposition 5.3 (The effective external potential is often good). There exists a constant C̄ depending

only on β (and on the choice of δ as in Assumption 1.4) such that the following holds. With P
β
N -probability

greater than 1−N exp
(

− log2 T
C̄

)
, for all i = 1, . . . ,N the external potential Vext is a good external potential

on Λi with constant C̄ (in the sense of Definition 5.1).

The proof of Proposition 5.3 is elementary but cumbersome. We postpone it to Section C. Since the
constant C̄ given by Proposition 5.3 depends only on β, δ, let us keep in mind that if we say that some
constant depends on the “good external potential constant” C̄ then in fact it itself only depends on β, δ.

18



The sub-systems are often good

Lemma 5.4. For Cβ large enough, if T ≥ Cβ, then with P
β
N -probability ≥ 1 − N exp

(
− log2 T

Cβ

)
, for all

i = 1, . . . ,N , the conditions of Definition 5.2 (expressing the fact that “Λi is a good sub-system”) are
satisfied.

Proof. Using the “discrepancy” part (2.9) of the local laws (Proposition 2.4) we see that if T is large
enough (depending on β) then for any fixed i we have:

P
β
N (|Dis(XN ,Λi)| ≥ T logT ) ≤ exp

(
− log2 T

Cβ

)
.

Checking the conditions of EΛ requires more care.

Claim 5.5 (The conditions of EΛ are often met). For any fixed i we have:

P
β
N (EΛi) ≥ 1 − exp

(
− log2 T

Cβ

)
.

Proof of Claim 5.5. From the local laws, it is easy to see that the second condition in Definition 5.2 is
often satisfied. Indeed we can cover the 1-neighborhood of the boundary ∂Λi by CT squares of sidelength

1, each of which contains at most log T
100C

points with probability ≥ 1 − exp
(

− log2 T
Cβ

)
(for T large enough).

We conclude with a union bound, which does not hinder the estimate.
The first condition of Definition 5.2 is more subtle and we rely on the “one-particle cluster” bound from

[Tho22] mentioned in Lemma 2.9. Cover the region Γi := {z ∈ Λ, dist(z, ∂Λi) ≤ e− log2 T } by O(Telog2 T )

disks of radius r = 10e− log2 T . For each disk, we know from (2.13) that the probability of it being occupied
by at least one particle is smaller than Cβr

2. Then an union bound shows that the probability of at least

one point falling anywhere in Γi is bounded by CβTe
− log2 T , which concludes the proof of the claim.

We use a union bound over N such events to handle all the Λi’s at once.

Until the end of Section 5, we consider a “good external potential” Vext” with constant C̄ as in Definition
5.1 and we assume that |n − |Λ|| ≤ T logT .

5.2. 2DOCP’s with non-uniform neutralizing background

Instead of adding Vext, let us consider 2DOCP’s in which the “neutralizing background” is no longer the
uniform one, but a perturbation thereof.

• Let m be a (non-negative) measure on Λ and let ζ be some non-negative function on R2. Assume that
m is supported in Λ and that ζ vanishes on the support of m.

• Assume that the measure m can be written as the sum of a measure which has a bounded density with
respect to the Lebesgue measure m0 on Λ and of a singular measure which has a bounded density with
respect to the arc-length measure ds on ∂Λ. This assumption will be justified later in Section D.2. In
particular, it implies that

s
− log |x− y|dm(x)dm(y) is finite.

• Let Xn be a n-tuple of points in Λ and Xn be the associated point configuration, we let FΛ(Xn,m) be
the logarithmic interaction energy computed with respect to m, namely:

FΛ(Xn,m) :=
1

2

x

(x,y)∈ΣN×ΣN ,x 6=y
− log |x− y|d(Xn − m)(x)d(Xn − m)(y).

We define a probability density P
β
n,Λ(·,m, ζ) on the space of n-tuples of points in Λ by setting:

dP
β
n,Λ(Xn,m, ζ) :=

exp
(
−β
(
FΛ(Xn,m) + n

∑n

i=1 ζ(xi)
))

Kβ
n,Λ(m, ζ)

dXn, (5.3)
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where Kβ
n,Λ(m, ζ) is the partition function, namely the normalizing constant:

Kβ
n,Λ,Vext(m, ζ) :=

∫

Λn

exp

(
−β
(

FΛ(Xn,m) + n

n∑

i=1

ζ(xi)

))
dXn.

It is well-known that there is a way to pass from an external potential Vext (which should be here treated
as a perturbation of a reference potential) as in Section 4.3 to the appropriate “equilibrium” measure and
vice-versa (we refer e.g. to the lecture notes [Ser15, Sec. 2&3]). However, there is here a specific difficulty
due to the behavior of Vext near ∂Λ and we postpone the necessary discussion (inspired by similar concerns
in [BBNY17]) to Section D.1.

Electric formalism for FΛ(Xn,m)

We extend here some of the formalism from Sections 2.2 and 2.3 in a fairly straightforward way. Define
the “true electric potential/field” associated to a point configuration Xn and the background measure m
as (cf. Definition 2.1):

hXn,m := − log ∗(Xn − m), ∇hXn,m = −∇ log ∗(Xn − m),

their truncated versions being defined as in Definition 2.3. Then we have the following identity, which
extends (2.3):

Lemma 5.6. Assume that the total mass of m is equal to n. Let {η(x), x ∈ Xn} be a truncation vector
with η(x) ≤ r(x) (the nearest-neighbor distance introduced in (2.2)) for all x ∈ Xn. We have:

FN (Xn,m) =
1

2

(
1

2π

∫

R2

|∇h
Xn,m
~η |2 +

∑

x∈Xn

log η(x)

)
−
∑

x∈Xn

∫

D(x,η(x))

fη(x)(t− x)dm(t),

provided the disks D(x, η(x)) do not intersect ∂Λ.

Proof of Lemma 5.6. Since we place ourselves away from the singular part of m, the proof works exactly
as when m has a bounded density, see [AS21, Lemma 2.2].

We also extend the notation Ener from (2.4) by setting: Ener(Xn,m,Ω) :=
∫

Ω
|∇h

Xn,m
~η |2.

5.3. Good properties of sub-systems with good external potentials

If Vext is a good external potential, there exists a probability measure µW on Λ and a function ζW such
that:

P
β
n,Λ,Vext(·) = P

β
n,Λ (·, nµW, ζW) , (5.4)

we refer to Section D.2 for a definition and precise study of µW and to Lemma D.6 for a proof of (5.4).
The key features of µW are that:

1. It might be singular on ∂Λ.

2. It might have “holes” near ∂Λ (and ζW > 0 on these holes).

3. It has a constant, positive density 1
n

as soon as one looks at distance ≥ C̄′ logT from ∂Λ (with C̄′

depending on the “good external potential” constant C̄). On that region we have ζW ≡ 0.

For good external potentials, it is thus equivalent to consider the “2DOCP with external background”
P
β
n,Λ,Vext (as in (4.8)) or the “2DOCP with background measure” P

β
n,Λ(·,m, ζ) (with m := nµW) and we

will simply write P
β
n,Λ for the corresponding Gibbs measure (and E

β
n,Λ for expectations under P

β
n,Λ). We

now compare the properties of this “generalized 2DOCP” to the ones of the original Gibbs measure P
β
N .

The “good properties” are easier to obtain away from the boundary of Λ and for simplicity we will often
work in “the bulk” Λbulk defined as:

Λbulk := D(ω, T/2) ⊂ D(ω, T ) = Λ.
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Global law

Recall that the event EΛ was introduced in Definition 5.2.

Proposition 5.7 (Global law for sub-systems with good external potential). There exists a constant
CGlobal depending only on β and the “good potential” constant C̄ such that:

logEβ
n,Λ

[
exp

(
β

2
FΛ(X, nµW)

) ∣∣∣EΛ

]
≤ CGlobalT

2 log5 T. (5.5)

We prove Proposition 5.7 in Section D. The bound (5.5) should of course be compared with (2.6) which
is valid for the full system. When considering sub-systems with good external potentials we are (only)
losing some power of logT , which we have not tried to optimize.

Local laws in the bulk

Proposition 5.8 (Local laws for sub-systems with good external potential). There exists a universal
constant C and a constant CLocal (depending only on β and the “good potential” constant C̄) such that if T
is large enough (depending on β, C̄) then for all ℓ ≥ ρβ, for all x in Λ, provided that the square �(x, ℓ) is
included in Λbulk we have:

logEβ
n,Λ

[
exp

(
β

2
Ener (Xn,�(x, ℓ))

) ∣∣∣EΛ

]
≤ CLocalβℓ

2,

where the “electric energy” is computed with respect to the background measure nµW, and also:

logEβ
n,Λ

[
exp

(
β

C
Pts (Xn,�(x, ℓ))

) ∣∣∣EΛ

]
≤ CLocalβℓ

2.

This should be compared to Proposition 2.4 for the full system.

Proof of Proposition 5.8. This follows from [Leb17; AS21], but it requires some explanation.
We wish to obtain local laws, namely good controls on the electric energy (controls on the number of

points are obtained as a byproduct) that are proportional to the volume down to large enough microscopic
scales as in [AS21, Thm. 1]. Only this time we are in presence of an external potential / a non-uniform
background measure nµW, and we were only able to derive a global bound as in Proposition 5.7, with a
global energy estimate that is slightly larger than the total volume. Our goal is thus twofold:

1. Extend the bootstrap in scales of [Leb17; AS21] to a situation where the background measure is not
constant.

2. Show that the bootstrap in scale not only propagates estimates to smaller scales, but in fact improves
(if needed) the estimates at each step, which allows to get rid of the logarithmic correction in (5.5)

The first point is, in fact, very simple. Indeed, although the methods of [Leb17; AS21] are not suited to
situations where the background measure has singularities or holes (in fact this is the reason why local
laws are not proven near the edge for the full system), they are local by design and work as soon as we
look at distances ≥ C logT from the boundary, because then the background measure nµW is equal to 1
(see Section 5.3). Since we only care about the bulk of Λ, this is fine.

The second point is more interesting. The basic tool for the proof of local laws is the fact that thanks
to the screening construction of Serfaty et al. one can, up to some errors, decouple the system in a given
region Ω ⊂ Λ of characteristic length R from the system in Λ\Ω. The main price to pay is the first energy
error term in [AS21, (4.7)] which reads “ ℓ

ℓ̃
S”. In their framework the quantity ℓ must be such that ℓ3 ≥ S

ℓ̃

([AS21, (4.4)]) and ℓ̃ can be chosen5 of order R, so in fact we are paying a price of order
(
S
R
)4/3

. Moreover
the quantity S can always be bounded by the energy in a domain 2Ω twice as large. So if we know that

the energy E at scale 2R is typically E(2R), then we pay a price O
(
E(2R)

R

)4/3

. In [Leb17; AS21] (see

5The interested reader can find a list of conditions on ℓ, ℓ̃ at the end of the proof of [AS21, Prop. 4.5]. The choice of ℓ̃

mentioned in [AS21, (4.27)] correspond to the smallest possible choice, but increasing ℓ̃ up to R still gives a valid choice.
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also [BBNY17]) one starts from an estimate E(2R) ∼ (2R)2 (the energy scales like the volume) and gets
an error of order O(R4/3) ≪ R2 which is indeed negligible (this can in fact be improved further down by
chosing ℓ, ℓ̃ more cleverly, see the proof of [AS21, Prop. 2.5]).

The key observation6 is that even if we start from a poorer estimate, say with logarithmic corrections

like E(2R) ∼ (2R)
2

log100(R) (cf. the one implied by our global law (5.5)) then the error O
(
E(2R)

R

)4/3

remains much smaller than R2. In fact, a careful inspection of the proof (which we will not need here)
shows that one could start with a “global law” as bad as O(T 5/2), or even o(T 3) instead of (5.5) and still
recover good local laws in the bulk.

5.4. Sub-systems with good external potentials: consequences

Discrepancy bounds

Once local laws hold (in the bulk), we retrieve all statements that rely purely on energy considerations.
In particular the analogous of [AS21, (1.18)] is valid, namely:

Lemma 5.9 (Discrepancy bounds in sub-systems). If �(x, ℓ) ⊂ Λbulk then:

logEβ
n,Λ

[
exp

(
β

C

Dis2(Xn,�(x, ℓ))

ℓ2

) ∣∣∣EΛ

]
≤ CLocal. (5.6)

In particular, we have an a priori Poisson-like bound on the number variance:

E
β
n,Λ

[
Dis2(Xn,�(x, ℓ))

∣∣∣EΛ

]
≤ CCLocalℓ

2,

together with a tail estimate: if ℓ is larger than some constant depending on β, C̄

P
β
n,Λ

[
|Dis(Xn,�(x, ℓ))| ≥ ℓ log ℓ

∣∣∣EΛ

]
≤ exp

(
− log2 ℓ

Cβ

)
.

Proof of Claim 5.9. The proof is as in [AS21], using an inequality that relates the presence of discrepancy
to a certain energy cost, e.g. [AS21, Lemma B.4].

Remark 5.10. As an inspection of the (short) proof of [AS21, Lemma B.4] quickly reveals, there is
nothing specific to a square in the previous claim, and it also applies to a disk of radius ℓ, or to any
“reasonable” shape like the boxes introduced in Definition 3.4.

Treating smooth linear statistics

Following exactly the same proof as in [LS18; Ser20] (or alternatively as in [BBNY19]), one would obtain
a control on linear statistics of smooth enough test functions supported in the bulk Λbulk. We do not need
it here, however it will be crucial for us to retrieve a specific property (the “smallness of the anisotropy”),
but since this only serves as a tool for another result (the quantitative translation-invariance estimate
presented in Section 6) we postpone the corresponding discussion to an appendix (see Section E.4). The
only result that we will quote directly is one about expectations for fluctuations of linear statistics.

Lemma 5.11 (Expectation of linear statistics in the bulk of subsystems). There exists a constant C̄

depending only on β, and on the “local laws” constant CLocal (thus on the “good potential” constant) such
that the following holds.

Let ϕ be a function of class C2, compactly supported on a disk of radius ℓ ≥ ρβ included in Λbulk. Then:

∣∣∣Eβ
n,Λ

[
Fluct[ϕ]

∣∣∣EΛ

]∣∣∣ ≤ C̄|ϕ|2ℓ2. (5.7)

6Having a poorer estimate is equivalent to having the parameter C in [AS21, (4.25)] depend on R. The conditions written at
the end of the proof of [AS21, Proposition 4.5] can still be satisfied as long as C is much smaller than R, which corresponds
to an initial energy estimate in o(R3). If C is smaller than R3/2 then the error term will become smaller than R2 in one
step, otherwise one would need to apply the bootstrap in scales for some time (i.e. go down in scales) before reaching the
desired local laws. Our situation corresponds to C = log5 R, cf. (5.5).
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Proof of Lemma 5.11. This follows from the proofs of [LS18; Ser20] but is not explicitly written as such.
Let t be a small parameter, we know from [LS18, Prop. 2.10] that:

E
β
n,Λ

[
etFluct[ϕ]

∣∣∣EΛ

]
=

Kn,Λ(ms)

Kn,Λ(m)
eO(t2),

where ms is the measure ms := m − s∆ϕ, where s = t
2πβ . This is valid because ϕ is assumed to be

supported in Λbulk, where m has density 1. By e.g. [LS18, Lemma 3.6] we know that we can replace ms

by the approximate measure m̃s := (Id +s∇ϕ)#m up to quadratic terms, i.e.:

E
β
n,Λ

[
etFluct[ϕ]

∣∣∣EΛ

]
=

Kn,Λ(m̃s)

Kn,Λ(m)
eO(t2).

Next, a consequence of [Ser20, Prop. 4.2] is that the ratio of partition functions can be written as:

Kn,Λ(m̃s)

Kn,Λ(m)
= exp

(
sO (|ϕ|2EnerPts(Xn, supp ∇ϕ)) + O(s2)

)
,

and thus taking the limit t → 0 (or equivalently s → 0) and using the local laws we get (5.7) after
identifying the first order terms.

6. Quantitative estimate on translation-invariance

In this section, we denote by ~u be the vector ~u := (0, 1) in R2.

6.1. The “spin wave” and its properties

An auxiliary function For ε ∈ (0, 1), let f (ε) : x = (x1, x2) ∈ R2 → R be defined as:

f (ε)(x) :=





x1 if |x| ≤ 1

x1(1 − ε log |x|) if 1 ≤ |x| ≤ e1/ε

0 if |x| ≥ e1/ε.

The function f (ε) is continuous, piecewise C2 and compactly supported on the disk of radius e1/ε. We
have, by direct computations:

• On (the interior of) the unit disk, ∂1f
(ε) ≡ 1, ∂2f

(ε) ≡ 0 and the second (and third) derivatives of f (ε)

vanish.

• For 1 ≤ |x| ≤ e1/ε, we have :

– ∂1f
(ε)(x) = 1 − ε log |x| − ε

x2

1

|x|2 , ∂2f
(ε)(x) = −εx1x2

|x|2 .

– The second derivatives of f (ε) satisfy the pointwise bound |f (ε)|2,⋆(x) � ε
|x| .

– The third derivatives of f (ε) satisfy the pointwise bound |f (ε)|3,⋆(x) � ε
|x|2 .

In particular, observe that the first partial derivatives of f (ε) are bounded by 1 with a jump of size O(ε)
along both ∂D(0, 1) and ∂D(0, e1/ε), while the second partial derivatives have a jump of size O(ε) along
∂D(0, 1) and of size O(ε/e1/ε) along ∂D(0, e1/ε).

Thus after applying a mollification to f (ε) at scale 1
2 near ∂D(0, 1) and at scale 1

2e
1/ε near ∂D(0, e1/ε)

we may consider a function f̄ (ε) which is smooth, compactly supported in D(0, 2e1/ε) and such that (for
some universal constant C):

• f̄ (ε)(x) = x1 for |x| ≤ 1
2 .

• The first derivatives of f̄ (ε) are bounded by 2 on R2.

• |f̄ (ε)|2,⋆(x) ≤ Cε for |x| ≤ 2 and |f̄ (ε)|2,⋆(x) ≤ C ε
|x| for 2 ≤ |x| ≤ 2e1/ε.

• |f̄ (ε)|3,⋆(x) ≤ Cε for |x| ≤ 2 and |f̄ (ε)|3,⋆(x) ≤ C ε
|x|2 for 2 ≤ |x| ≤ 2e1/ε.
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Definition of the “spin wave” Next, we define our “spin wave”7 W(ε) as the vector field

W(ε) := ∇⊥f̄ (ε) =
(

−∂2f̄
(ε), ∂1f̄

(ε)
)
.

Lemma 6.1. The following properties of W(ε) are straightforward:

1. W(ε) is smooth, compactly supported on D(0, 2e1/ε) (because so is f̄ (ε)).

2. W(ε)(x) = ~u = (0, 1) for |x| ≤ 1
2 (because then f̄ (ε)(x1, x2) = x1).

3. div W(ε) = 0 on R2 (by definition of W(ε) as the perpendicular gradient of a smooth function).

4. |W(ε)|0 ≤ 2 (it is bounded by the first derivative of f̄ (ε)), |W(ε)|1 ≤ Cε and more precisely:

∣∣∣W(ε)
∣∣∣
1,⋆

(x) ≤ C ×
{
ε for |x| ≤ 2
ε

|x| for 2 ≤ |x| ≤ 2e1/ε.

5. |W(ε)|2,⋆(x) ≤ Cε for |x| ≤ 2 and |W(ε)|2,⋆(x) ≤ C ε
|x|2 for 2 ≤ |x| ≤ 2e1/ε.

We have thus constructed a smooth, divergence-free vector field which is constant near the origin and
has an arbitrary small H1 norm (of order ε). The downside is that the size of the support of W(ε) is
exponential with respect to the parameter 1/ε.

6.2. Slowly varying localized translations

For ℓ > 0, let the vector field W(ε,ℓ) be defined for x ∈ R2 as W(ε,ℓ)(x) := W(ε)(x/ℓ). Since W(ε,ℓ) is continuous

and compactly supported, it generates a global flow {Φε,ℓt }t with the following properties:

Lemma 6.2. For all |t| ≤ ℓ
10 we have:

1. Φε,ℓt is an area-preserving diffeomorphism of R2.

2. We have Φε,ℓt (x) = x+ t~u for |x| ≤ ℓ/4.

3. We have Φε,ℓt (x) = x for |x| ≥ 2ℓe1/ε.

Thus for fixed |t| ≤ ℓ
10 the diffeomorphism Φε,ℓt coincides with the translation by t~u on the disk D(0, ℓ/4)

and with the identity outside D(0, 2e1/ε), we call it a localized translation as in [Geo99]. The main difference

with the construction of [Geo99] is that we have
∫

|Φε,ℓt − Id |2
1,⋆ = O(ε) instead of O(1). Interestingly

enough, a bounded (but not small) H1 norm for Φε,ℓt − Id (which induces a bounded, but not small energy
cost, as we will show in Section E) is enough to prove translation-invariance in the infinite-volume setting,
but fails to give anything valuable in finite-volume. However, according to a remark in [Sim14, Sec. III.7]
“it appears that any model in which this weaker property is valid, the [possibility of finding a construction
with arbitrarily small energy cost exists]”. This remains very intriguing to us.

Proof of Lemma 6.2. The fact that Φε,ℓt is area-preserving follows from Liouville’s theorem, since the
vector field W(ε) (and thus W(ε,ℓ)) is divergence-free by construction. Moreover, since we ensured that
W(ε) ≡ ~u on D(0, 1

2 ), the rescaled vector field W(ε,ℓ) coincides with ~u on the disk D(0, ℓ/2) hence we have

Φε,ℓt (x) = x + t~u as long as x + t~u remains in D(0, ℓ/2). In particular, if |x| ≤ ℓ/4 and since |t| ≤ ℓ
10 by

assumption, we have Φε,ℓt (x) = x+ t~u. On the other hand, W(ε,ℓ) vanishes identically outside D(0, 2ℓe1/ε)
and thus the flow there coincides with the identity map.

We will study Φε,ℓt a bit more closely in Section E.1 for technical purposes.

7This terminology alludes to similar constructions used in the theory of continuous spin systems to prove so-called “Mermin-
Wagner” theorems, see e.g. [FV17, Sec. 9.2] or [Sim14, Chapter 3].
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6.3. Effect of localized translations on the energy

We now apply the “spin wave” / “localized translation” construction to a sub-system with good external
potential. Let Λ (a disk of radius T ), n, Vext be as in Section 5, with Vext a good external potential, let
m = nµW be the corresponding non-uniform background and assume that the properties listed in Section
5.3 hold. Let L be as in Section 3 and let us choose ε, ℓ in such a way that:

e
√

log ℓ ≤ L ≤ ℓ

10
, 5ℓe1/ε ≤ T ≤ 10ℓe1/ε, log ℓ ≤ ε−1, ε−1 ≤ ℓ2 ≤ ε−3. (6.1)

Let ErrAve(t, ε, ℓ,X) denote the following “averaging error”:

FΛ(X,m) =
1

2
(FΛ(ΦtX,m) + FΛ(Φ−tX,m)) + ErrAve(t~u, ε, ℓ,X), (6.2)

where ΦtX denotes the configuration obtained after applying Φt to all the points of X.

Proposition 6.3. There exists a constant C depending on β on the “local laws” constant CLocal (and thus
on the good external potential constant) such that:

P
β
n,Λ

[
sup

|t|≤ ℓ
10

|ErrAve(t~u, ε, ℓ,Xn)| ≤ Ct2ε log ε
∣∣∣EΛ

]
≥ 1 − exp

(
−ℓ2

)
.

We prove Proposition 6.3 in Section E and use it next to “mollify” observables before taking expectations.

6.4. Effect of localized translations on expectations

Proposition 6.4. Let G be a measurable function on Conf(Λ), let E ⊂ Conf(Λ) be an event. Assume that
the function G is D(0, ℓ/10)-local and that E is Λ \ Λbulk-local. Recall that |t| ≤ ℓ/10.

For all τ ∈ (0, 1) and for all σ > 0, we have:

E
β
n,Λ

[
G(X)

∣∣∣E
]

= E
β
n,Λ

[
1

2
(G(X + t~u) + G(X − t~u))

∣∣∣E
]

+ ErrorQI(t~u, ε, ℓ, τ, σ,G,X), (6.3)

with an error term ErrorQI bounded as follows:

|ErrorQI(t~u, ε, ℓ, τ, σ,G,X)| ≤ 2
(
E
β
n,Λ

[
G2(X ± t~u)

∣∣∣E
]

+ σ2
) 1

2 ×
(
eβτ − 1

)

+ 2eβτ
(
E
β
n,Λ

[
G2(X ± ~u)

∣∣∣E
]

+ σ2
) 1

2 ×
(
P
β
n,Λ [|G(X ± t~u)| ≥ σ]

) 1

2

+ E
β
n,Λ

[
G2(X)

∣∣∣E
]

×
(
P
β
n,Λ

[
ErrAve(t~u, ε, ℓ,X) ≥ τ

∣∣E
]) 1

2

We postpone the proof of Proposition 6.4 to Section E.5. There is of course nothing special about the
vector ~u, and we may replace it by any unit vector.

6.5. Application: expectation of discrepancies in sub-systems

Proposition 6.5. Let B be a box of size L as introduced in Definition 3.4. Assume that it is contained
in the disk D(0, ℓ/10). Then we have:

∣∣∣Eβ
n,Λ

[
Dis(Xn,B)

∣∣∣EΛ

]∣∣∣ ≤ C̄L (ε log ε logL)
1/3

. (6.4)

The point of (6.4) is that if ε log ε logL is ≪ 1 then the bound on the average discrepancy is ≪ L, and
thus much better than the crude estimate via the standard deviation using Claim 5.9. This is crucial for
us.
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Proof of Proposition 6.5. Let us take G(X) := Dis(X,B), which is clearly D(0, ℓ/10)-local in view of our
assumption on B. Moreover EΛ (by its Definition 5.2) is clearly Λ \ Λbulk-local. Fix the parameter t̄ as:

t̄ := (ε log ε logL)−1/3 . (6.5)

We first check that t̄ has the correct range (using (6.1)):

t̄ ≤ ε−1/3 ≤ ℓ2/3 ≤ ℓ

10
.

In particular, for all vector v ∈ R2 with ‖v‖ ≤ t̄ we may apply the result of Proposition 6.4 to a localized
translation in the direction v

‖v‖ instead of ~u.

Introduce a smooth cut-off function χ equal to 1 for |x| ≤ t̄
2 and to 0 for |x| ≥ t̄, such that |χ|k ≤ Ct̄−k

(for k = 1, 2). We impose that χ be an even function. For all |v| ≤ t̄ we have:

E
β
n,Λ

[
Dis(X,B)

∣∣∣E
]

= E
β
n,Λ

[
1

2
(B(X + v,B) + Dis(X − v,B))

∣∣∣E
]

+ ErrorQI(v, ε, ℓ, τ, σ,Dis(·,B),X).

Integrating this against χ
|χ|L1

(which has mass 1) and using the fact that χ is even we obtain:

E
β
n,Λ

[
]Dis(Xn,B)

∣∣∣EΛ

]
=

1

|χ|L1

∫
χ(v)Eβ

n,Λ

(
Dis(X + v,B)

∣∣∣EΛ

)
+ ErrorQI(v)dv.

Observe that Dis(X + v,B) = Fluct[1B(· + v)](X), so that we may re-write the integral in the right-hand
side as a convolution. Introducing the function ϕ := 1B ∗ χ

|χ|
L1

we get:

∣∣∣Eβ
n,Λ

[
Dis(Xn,B)

∣∣∣EΛ

]
− E

β
n,Λ

[
]Fluct[ϕ]

∣∣∣EΛ

]∣∣∣ ≤ sup
|v|≤t̄

ErrorQI (v, ε, ℓ, τ, σ,Dis(·,B),Xn) . (6.6)

By construction, the function ϕ is now a smooth cut-off function, equal to 1 on {x ∈ B, dist(x, ∂B) ≥ t̄}
and to 0 for {x /∈ B, dist(x, ∂B) ≥ t̄}. In particular, the support of ∇ϕ has an area O(Lt̄), and moreover
we have |ϕ|k ≤ Ct̄−k for k = 1, 2 (by Young’s convolution inequality). From Lemma 5.11, we thus know:

∣∣∣Eβ
n,Λ []Fluct[ϕ]]

∣∣∣EΛ

∣∣∣ � 1

t̄2
× Lt̄ = O

(
L

t̄

)
, (6.7)

with multiplicative constants depending on β, δ.
On the other hand, we know by Proposition 6.3 that choosing C̄ large enough we can ensure:

sup
|v|≤t̄

(
P
β
n,Λ

(
{|ErrAve(v, ε, ℓ,X)}| ≥ C̄ε log εt̄2

∣∣EΛ

])
≤ exp

(
−ℓ2/C̄

)
.

Moreover Dis(X + v,B) = Dis(X,B− v) and we have by Lemma 5.9: sup|v|≤t̄ E
β
n,Λ

[
Dis2(X,B − v)

∣∣∣EΛ

]
≤

C̄L2 (because the translated object B− v remains a box within Λbulk) and, still by Lemma 5.9, for C̄ large
enough we have:

sup
|v|≤t̄

P
β
n,Λ ({|Dis(X + v,B)| ≥ L logL}) ≤ e− 1

C̄
log2 L.

(Remark that the sup is outside P
β
n,Λ,E

β
n,Λ in those bounds - it would be significantly more challenging

otherwise.)
Thus, choosing τ = C̄ε log εt̄2, σ = L logL in the statement of Proposition 6.4, the error term ErrorQI

reduces to:

ErrorQI(v, ε, ℓ, τ, σ,Dis(X,B),X) � C̄L logL

(
ε log εt̄2 + exp

(
−ℓ2/C

)
+ exp

(
−1

C
log2 L

))
,

uniformly for |v| ≤ t̄ and thus (using (6.1) and keeping only the dominant term):

sup
|v|≤t̄

ErrorQI ≤ C̄L logLε log εt̄2. (6.8)

Combining (6.6) with (6.7) and (6.8), and using our choice (6.5) for t̄, we obtain (6.4).
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Remark 6.6. One can use the same argument to study expectations of discrepancies in the full system.
Then one does not need to use EΛ since local laws are know to hold unconditionally, and one can take ε
as small as log−1 N .

Corollary 6.7 (An application). Assume that L, T satisfy the following relation:

T = 100L exp(10L).

Then we have: ∣∣∣Eβ
n,Λ [Dis(X,B)]

∣∣∣ ≤ C̄L0.67.

Proof. We can take ℓ = 10L and ε = ℓ−1 = 1
10L , and T = 100L exp(10L) = 10ℓe1/ε. The conditions of

(6.1) are clearly satisfied. The right-hand side of (6.4) is then bounded by C̄L2/3 logL = O(L0.67) (for L
large enough).

7. Conclusion: proof of Theorem 1

Let δ > 0 be fixed. Let x,R be such that dist(D(x,R), ∂ΣN ) ≥ δ
√
N as assumed in (1.4). Let εR be

chosen as:
εR := log−0.3(R), (7.1)

For simplicity, we will focus on the case of an excess of points, i.e. a positive discrepancy, the other case
being treated similarly. Define the event AR:

AR := {Dis (XN ,D(x,R)) ≥ εRR}

The conclusion that we want to reach (as stated in (1.5)) is that for R, C̄ large enough (depending on β
and on the parameter δ, but not on x):

P
β
N (AR) ≤ exp

(
− log1.5 R

)
. (7.2)

We have not tried to optimize εR or the exponent in (7.2), what matters for us is that εR → 0 and that
1.5 > 1 so our probabilistic tail is better than algebraic. With the methods of the present paper, there is
a hard limit on the smallness of εR - it has to be at least log−1 R.

Step 1. Choosing L and cornering the discrepancy

Let L be chosen as:
L := log0.99 R. (7.3)

In particular, for R greater than some constant (depending only on β) we have:

C3.1
1

εR
= C3.1 log0.3 R ≤ log0.99 R = L ≤ R/10,

(where C3.1 is the constant depending only on β introduced in Proposition 3.1) so the first condition

of (3.1) is satisfied. Moreover let s be chosen as 1
C3.1

min
(
L3

R , LεR

)
, namely (for R large enough):

s := 1
C3.1

L3

R . By definition, the second condition of (3.1) is then satisfied. Let us compute:

exp

(
−sεRR

4

)
= exp

(
− εRL

3

4C3.1

)
≤ exp

(
− log−2.67 R

Cβ

)
.

For each k with 0 ≤ k ≤ R2, let BR(k) be the event:

BR(k) :=

{
The discrepancy in the annulus DR \ DR−2L+ kL

R2

is larger than
1

4
εR · R

}
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Combining Proposition 3.1 and Lemma 3.2 we obtain:

P
β
N(AR) ≤

R2∑

k=1

P
β
N (BR(k)) + exp

(
− log−2.67R

Cβ

)
, (7.4)

and we now focus on bounding BR(k) (the index k plays no particular role, and for simplicity we forget
about it).

For each k, as explained in Section 3.2, we can decompose the annulus DR \ DR−2L+ kL

R2

into boxes
{
Bi, i ∈ {0, . . . , RL − 1}

}
of size L as in Definition 3.4.

Step 2. Choosing T,M and a well-separated family

Let T be chosen (as in (6.7)) as:

T := 100 × log0.99 R× exp
(
10 log0.99 R

)
= 100L exp(10L) , (7.5)

and let M be chosen as:
M := T 6. (7.6)

Since L = log0.99R (according to (7.3)), the conditions of (3.4) are clearly satisfied for R large enough.
Now, for l ∈ {0, . . . ,M − 1}, let C(l) be the event:

C(l) :=

{
∑

i=l mod M

Dis(XN ,Bi) ≥ εRR

4M
.

}
(7.7)

By Lemma 3.5 we know that:

P
β
N (BR) ≤

M−1∑

l=0

P
β
N (C(l)) , (7.8)

and we now focus on bounding C(l) (again, the index l plays no role in the sequel). The index l being
fixed, we only consider the boxes Bi for i ≡ l mod M and forget about the other boxes. We relabel those
boxes as Bi for i ∈ {1, . . . ,N } where N is the cardinality of that family of boxes, with:

N = O
(

R

ML

)
. (7.9)

As in Section 3.2 we let Λi be the disk D(ωi, T ), where ωi is the “center” of the box Bi, and we recall
that dij denotes the distance between Λi and Λj. Using (3.6) and summing over i = 1, . . . ,N = O( R

ML ),
we get:

max
1≤i≤N

∑

j 6=i

1

dij
= O

(
logR

ML

)
,

∑

1≤i6=j≤N

1

dij
= O

(
R logR

(ML)2

)
.

A “good event”

Let Vext be the logarithmic potential generated by the system outside the Λi’s as in (5.2). For C̄ > 0, let
Eext(C̄) be the event:

Eext(C̄) :=
{

Vext is a “good external potential” on each Λi with constant C̄.
}

(7.10)

(See Definition 5.1). By Proposition 5.3 we know that if C̄ is chosen large enough and if T is large enough
(i.e. R is large enough) depending only on β and on the parameter δ from (1.4), then we have:

P
β
N (Eext(C̄)) ≥ 1 − N exp

(
− log2 T/C̄

)
.

Since N is always smaller than R = elogR (see (7.9)) and since, by our choice (7.5) of T we have:

exp
(
− log2 T/C̄

)
≤ exp

(
− log1.98 R/C̄

)
≪ exp(− logR),
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we deduce that (for R, C̄ large enough depending on β, δ):

P
β
N (Eext(C̄)) ≥ 1 − exp

(
− log2 T/C̄

)
.

On the other hand, for each i = 1, . . . ,N , let Ei be the event: “Λi is a good sub-system”, as in Definition
5.2. By Lemma 5.4, we know that:

P
β
N

( N⋂

i=1

Ei
)

≥ 1 − N exp
(
− log2 T/Cβ

)
,

and by the same parameter comparison as above we get: P
β
N

(⋂N
i=1 Ei

)
≥ 1 − exp

(
− log2 T/Cβ

)
. We thus

have (for R, C̄ large enough):

P
β
N (C) ≤ P

β
N

(
C ∩ Eext(C̄)

N⋂

i=1

Ei
)

+ exp
(
− log2 T/C̄

)
. (7.11)

Using approximate conditional independence

Let ω be chosen as:
ω := L−1.33. (7.12)

For 1 ≤ i ≤ N , let Gi be the following function on Conf, which is clearly non-negative and Λi-local:

Gi(X) := eωDis(X,Bi).

If XN is in C then by definition (see (7.7)) we have:

N∏

i=1

Gi(XN ) = eω
∑N

i=1
Dis(XN ,Bi) ≥ exp

(
ωεRR

4M

)
,

and thus by Markov’s inequality (dropping the C̄-dependency):

P
β
N

(
C ∩ Eext

N⋂

i=1

Ei
)

≤ exp

(
−ωεRR

4M

)
E
β
N

[ N∏

i=1

Gi(XN )1Eext∩N
i=1

Ei

]
. (7.13)

We are in a position to use Proposition 4.3 with EN := Eext ∩N
i=1 Ei. We obtain:

E
β
N

[ N∏

i=1

Gi(XN )1Eext∩N
i=1

Ei

]
≤ exp

(
2β sup

XN∈EN
ErrorCI(XN )

)

× sup
Xext∈Eext,{ni} adm.

N∏

i=1

E
β
ni,Λi,Vext

[
Gi(X)

∣∣∣Ei
]

(7.14)

Let us note that the event
⋂N
i=1 Ei implies that the “admissible” number of points in each Λi is bounded

by 10T 2 (see Definition 5.2) which checks the first condition of (4.4), and that the second condition of
(4.4) is implied by the third condition8 of (3.4). We may thus use Lemma 4.1 which, together with (3.6),
implies that the conditional independence error ErrorCI between the Λi’s is bounded by:

sup
XN∈

⋂N

i=1
Ei

|ErrorCI[XN |Λ1, . . . ,ΛN ]| = O
(
T 5R logR

(ML)2

)
, (7.15)

which controls the first term in the right-hand side of (7.14), and we now focus on the second one.

8The distance between two centers ωi, ωj is bounded below by ML and thus dist(Λi, Λj) ≥ ML − 2T ≥ 98T .
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Controlling expectations in each “sub-system”

Let us fix 1 ≤ i ≤ N and work in Λi. We can assume that Vext is C̄-good on Λi because of (7.10).

Claim 7.1. Let Di := Dis(Xn,Bi). We have:

E
β
ni,Λi

[
eωDi

∣∣EΛi

]
= 1 + O

(
L−0.66

)
≤ eO(L−0.66) (7.16)

Proof. We start by decomposing the expectation as:

E
β
ni,Λi

[
eωDi

∣∣EΛi

]
= E

β
ni,Λi

[
eωDi1|ωDi|≤ 1

2

∣∣EΛi

]
+ E

β
ni,Λi

[
eωDi1|ωDi|> 1

2

∣∣EΛi

]
. (7.17)

Using a Taylor’s expansion, we may write the first term in the right-hand side of (7.17) as:

E
β
ni,Λi

[
eωDi1ω|Di|≤ 1

2

∣∣EΛi

]
= E

β
ni,Λi

[(
1 + ωDi + O

(
ω2D2

i

))
1ω|Di|≤ 1

2

∣∣EΛi

]

≤ P
β
ni,Λi

[
1ω|Di|≤ 1

2

∣∣EΛi

]
+ ωEβ

ni,Λi
[Di
∣∣EΛi ] + O

(
ω2

E
β
ni,Λi

[D2
i

∣∣EΛi ]
)

+ E
β
ni,Λi

[
ω|Di|1ω|Di|> 1

2

∣∣EΛi

]
.

Using Corollary 6.7 to control Eβ
ni,Λi

[Di
∣∣EΛi ] and Lemma 5.9 to control Eβ

ni,Λi
[D2
i

∣∣EΛi ], and inserting into

(7.17) we obtain:

E
β
ni,Λi

[
eωDi

∣∣EΛi

]
≤ 1 + ωO(L0.67) + ω2O(L2)

+ E
β
ni,Λi

[
eωDi1|ωDi|> 1

2

∣∣EΛi

]
+ E

β
ni,Λi

[
ω|Di|1ω|Di|> 1

2

]
− P

β
ni,Λi

[
1ω|Di|> 1

2

∣∣EΛi

]
, (7.18)

and it remains to control the second line of (7.18), using Lemma 5.9. We write:

E
β
ni,Λi

[
eωDi1|ωDi|> 1

2

∣∣EΛi

]
≤ E

β
ni,Λi

[
e2ω2L2

D
2

i

L2 1|ωDi|> 1

2

∣∣EΛi

]

≤ E
β
ni,Λi

[
e4ω2L2

D
2

i

L2

∣∣EΛi

] 1

2

E
β
ni,Λi

[
1|ωDi|> 1

2

∣∣EΛi

] 1

2 ≤ eC̄ω2L2

P
β
ni,Λi

[{
|ωDi| >

1

2

} ∣∣EΛi

]
,

where we have used Cauchy-Schwarz’s ineaquality, then the fact that ω2L2 ≪ 1 (see (7.12)) in order to
apply Hölder’s inequality, and the exponential moment (5.6). Using (5.6) again we get that:

P
β
ni,Λi

[{
|ωDi| >

1

2

} ∣∣EΛi

]
≤ exp

(
−L0.66/C̄

)
,

using Markov’s inequality the fact that L2

ω2 = L0.66 (see (7.12)). We can thus write:

E
β
ni,Λi

[
eωDi1|ωDi|> 1

2

∣∣EΛi

]
= O

(
e−L0.66/C̄

)
.

The two other terms in the second line of (7.18) are handled the same way. We obtain:

E
β
ni,Λi

[
eωDi

∣∣EΛi

]
≤ 1 + ωO(L0.67) + ω2O(L2) + O

(
e−L0.66/C̄

)
,

Inserting9 the value ω = L−1.33 we obtain (7.16).

9There might be a confusion between the error term O
(

e−L0.66/C̄

)
and the fact that we write 1+O

(
L−0.66

)
≤ eO(L−0.66),

but e−L0.66

and eL−0.66

are two different terms.
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Conclusion.

Inserting (7.15) and (7.16) into (7.14) we obtain:

E
β
N

[ N∏

i=1

Gi(XN )1Eext∩N
i=1

Ei

]
≤ exp

(
O
(
T 5R logR

(ML)2

)
+ O

(
R

ML
L−0.66

))
.

Since M = T 6 (by (7.6)) it is easy to check that (for R large enough) the dominant term in the exponent
is by far the second one because T ≫ L. Returning to (7.13) we thus obtain:

P
β
N

(
C ∩ Eext(C̄)

N⋂

i=1

Ei
)

≤ exp

(
−ωεRR

4M

)
exp

(
O
(

R

ML
L−0.66

))
,

and since ω = L−1.33 ((7.12)), L = log0.99 R ((7.3)) and εR = log−0.3 R ((7.1)) the first factor dominates
the second one:

P
β
N

(
C ∩ Eext(C̄)

N⋂

i=1

Ei
)

≤ exp

(
−ωεRR

8M

)
,

and thus after inserting the value of M (7.6) defined in terms of T as in (7.5) we obtain the following
Markov-type inequality:

P
β
N

(
C ∩ Eext(C̄)

N⋂

i=1

Ei
)

≤ exp (− exp (logR+ o(logR))) .

In particular, for R large enough this is smaller than exp
(
−R1/2

)
. Returning successively to (7.11), (7.8),

(7.4) and using the fact that logT ≥ log0.99 R we obtain:

P
β
N (C) ≤ exp

(
− log1.98 R/C̄

)
, P

β
N (BR) ≤ exp

(
O(logR) − log1.98 R/C̄

)
≤ exp

(
− log1.98 R/C̄

)
,

and finally:
P
β
N (AR) ≤ exp

(
O(logR) − log1.98 R/C̄

)
≤ exp

(
− log1.98 R/C̄

)

which proves (7.2) and thus concludes the proof of Theorem 1.

A. Discussion of the model

There are several slightly different ways to define the two-dimensional one-component plasma.

• Some papers work with an “infinitely extended equilibrium” Coulomb system, e.g. [MY80; Leb83;
JLM93]. The mathematical existence of such infinite-volume limits is not yet clear for β 6= 2, see
however [AS21, Corollary 1.1] for existence of infinite-volume limit points in the weak topology.

• In the statistical physics literature, it is common to place N particles in a “uniform neutralizing back-
ground of opposite charge” which occupies a certain domain ΣN with constant density ρN := −N

|ΣN | .
There is perfect confinement in the sense that the particles are not allowed to live outside ΣN . The
domain is not always explicitely chosen, though it often ends up being a disk, mostly by default or for
the convenience of symmetry10. Some authors state their results for different “reasonable shapes” as
e.g. [SM76]. The influence of the background can be seen as applying some potential to each point
charge, while they all interact with each other. Indeed, one may write:

FN (XN ) =
1

2

x
− log |x− y|dXN (x)dXN (y) +

∫
Vback(x)dXN (x) + CN , (A.1)

where Vback is the logarithmic potential generated by the background, namely:

Vback(x) :=

∫

ΣN

− log |x− y|ρNdy,

10There is also some interest for studying the 2DOCP on a sphere, which avoids having to deal with a boundary.
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and CN is a constant (the self-interaction of the background with itself) that does not depend on XN

(only on N) and can thus be absorbed in Kβ
N . This model is sometimes called a jellium.

• In the mathematical physics literature around the planar Coulomb gas (e.g. [ZW06; AHM11; SS15]) the
particles/eigenvalues XN are usually not confined a priori in a certain domain of the Euclidean space,
but are rather subject to a certain external “confining” potential/field/weight V acting as Vback in
(A.1) (this model is sometimes called a (two-dimensional) β-ensemble by analogy with well-known one-
dimensional models coming from random matrix theory). Via a certain mean-field energy functional,
the choice of V determines11:

1. A compact subset ΣN , sometimes called the droplet.

2. An equilibrium measure µN on ΣN .

3. An effective confining potential ζN .

After “splitting” (see [SS15, Lemma 3.1]), the energy takes the following form, cf. (1.1) and (A.1):

F̃N (XN ) =
1

2

x
− log |x− y|d (XN − µN ) (x)d (XN − µN ) (y) +

N∑

i=1

ζN (xi) + CN . (A.2)

The confining potential ζN vanishes on ΣN and is positive outside of it - thus penalizing particles that
leave ΣN , and indeed the confinement is strong: few particles fall outside ΣN and if they do they stay
close by (see [Ame21] for a quantitative statement). Hence in typical situations most of the particles
are located on ΣN and arrange themselves according to the density µN . The canonical choice is the
quadratic potential V(x) = |x|2 for which ΣN is a large disk of radius comparable to

√
N and µN is

the uniform measure on ΣN .

We choose to work (a) in a disk (b) with a perfect confinement for the sake of convenience and simplicity
of exposition, but one can certainly replace ΣN by a square or by any “reasonable shape” without affecting
the conclusions of Theorem 1.1 as our argument makes no use of the global geometry of the system. Our
results are also valid without a perfect confinement: adding an effective confining potential ζN to FN as
in (A.2) is transparent as our constructions always take place inside ΣN , so Theorem 1.1 holds for the
two-dimensional β-ensemble/Coulomb gas with quadratic potential. However, considering a non-uniform
density (which might happen if V is not quadratic) would require some care.

B. Auxiliary proofs of preliminary results

B.1. Proof of Proposition 2.4

Proof of Proposition 2.4. The first item corresponds to the first statement in [AS21, Theorem 1], combined
with their Lemma B.2. To be precise, the statement of [AS21, Theorem 1] involves the quantity F�R(x)

which is short for F�R(x)(XN , U) with U = R2 as defined in [AS21, Eq. (2.24)]. The potential u appearing
there is defined in [AS21, Section 2.3] but as used in the main statement of [AS21] it coincides with the
true potential (because, with their notation, “U = R2” in this case). It remains to observe that Theorem
1 in [AS21] states a control on F�R(x) which can be turned into a control on the electric energy only (as
we write in Proposition 2.4), this is precisely the purpose of [AS21, Lemma B.2] and in particular their
equation (B.8), which shows that one can indeed control the electric energy in terms of F�R(x). As a
last technical comment for the careful reader: note that since here “U = R2” (their notation) the various
truncations r, r̃, ˜̃r all coincide.

The second item of Proposition 2.4 is [AS21, (1.18)]. This, or [AS21, (1.19)], implies (2.8).

11Alternatively, one can associate to V a “thermal equilibrium measure” as in [AS21], which has unbounded support and
plays the role of those three objects.
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B.2. Proof of Lemma 2.6

Proof of Lemma 2.6. For x in X let us define the truncation η(x) as:

η(x) =

{
0 if x /∈ Ω

r(x) if x ∈ Ω,

where r is the “nearest-neighbor” distance as in (2.2). Let us recall that, by definition, we always have
|r| ≤ 1/4. Let E be an electric field compatible with X on suppϕ and let E~η be the electric field truncated
accordingly. We have, in the sense of distributions on supp ∇ϕ:

− div E~η = 2π

(
∑

x∈X

δ(η(x))
x − m0

)
,

where we replace the Dirac mass δx by its “smeared out” version δ
(η(x))
x , which is the uniform measure

of mass 1 on the circle of center x and radius η(x). Let us write X~η :=
∑

x∈X
δ

(η(x))
x . The measures X

and X~η coincide outside a 1-neighborhood of supp ∇ϕ and the atoms there have been smeared out at a
distance at most 1, thus: ∣∣∣∣

∫

R2

ϕ(x)d (X − X~η) (x)

∣∣∣∣ ≤ |ϕ|1,Ω × Pts(X,Ω),

which can be localized, if Ω̃1, . . . , Ω̃m cover supp ∇ϕ we have:

∣∣∣∣
∫

R2

ϕ(x)d (X − X~η) (x)

∣∣∣∣ ≤
m∑

k=1

sup
x∈Ωi

|∇ϕ(x)| × Pts(X,Ωi),

where Ωi contains a 1-neighborhood of Ω̃i. Now, let us re-write the fluctuations of ϕ as:

∣∣∣∣
∫

R2

ϕ(x)d (X − m0) (x)

∣∣∣∣ ≤
∣∣∣∣
∫

R2

ϕ(x)d (X~η(x) − m0) (x)

∣∣∣∣+ |ϕ|1,Ω × Pts(X,Ω)

=
1

2π

∣∣∣∣
∫

R2

ϕ(x) div E~η

∣∣∣∣+ |ϕ|1,Ω × Pts(X,Ω).

Integrating by parts and using Cauchy-Schwarz’s inequality yields:

∣∣∣∣
∫

R2

ϕ(x) div E~η

∣∣∣∣ =

∣∣∣∣
∫

supp ∇ϕ
∇ϕ · E~η

∣∣∣∣ ≤
(∫

R2

|∇ϕ|2
) 1

2
(∫

supp ∇ϕ
|E~η|2

) 1

2

.

Finally, it remains to observe that with our choice of truncation η as above and the definition of Ω, we
have: ∫

supp ∇ϕ
|E~η|2 ≤

∫

Ω

|E~r|2,

where ~r is the nearest-neighbor truncation, which concludes the proof of (2.10). This last step can also be
localized by decomposing supp ∇ϕ into several domains.

B.3. Proof of Proposition 2.8

Proof of Proposition 2.8. We start by rewriting the Laplace transform of the fluctuations as a ratio of
partition functions, this is a standard trick that goes back (at least) to [Joh98]. In the two-dimensional
context, it can be found e.g. in [LS18, Proposition 2.10]. Let ms be the signed measure defined by:

ms := m0 − s

2πβ
∆ϕ,

which coincides with m0 outside of A (let us recall that A is some annulus containing supp ∆ϕ). Since
∇ϕ is compactly supported, the total mass of ∆ϕ (seen as a measure) is 0 so ms and m0 have the same
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total mass on A. Moreover as soon as the parameter s satisfies the condition (2.12) (|s| ≤ πβ
4|ϕ|2

) then ms

has a non-negative density which is bounded between 1
2 and 3

2 on A. We introduce the following notation:

FN (XN ,ms) :=
1

2

x

x 6=y
− log |x− y|d (XN − ms) (x)d (XN − ms) (y).

Claim B.1 (Laplace transform as ratio of partition functions). The following identity holds:

E
β
N [exp (sFluct[ϕ])] = exp

(
s2

4πβ

∫

R2

|∇ϕ|2
) ∫

ΣN
N

exp (−βFN (XN ,ms)) dXN∫
ΣN
N

exp (−βFN (XN ,m0)) dXN
(B.1)

Proof of Claim B.1. We have by definition:

E
β
N [exp (sFluct[ϕ])] =

∫
ΣN
N

exp
(

−β
(

FN (XN ,m0) − s
βFluct[ϕ])

))
dXN

∫
ΣN
N

exp (−βFN (XN ,m0)) dXN
.

Since 1
2π∆ log = δ0 (see (2.1)) one may write − s

βFluct[ϕ] as:

− s

β
Fluct[ϕ] := − s

β

∫

ΣN

ϕ(x)d (XN − m0) (x) =
x

− log |x− y|
(

s

2πβ
∆ϕ(y)

)
dyd(XN − m0)(x),

and then “complete the square”.

In order to compare the partition functions in (B.1), it is common to introduce some sort of trans-
portation map from m0 to ms. The fact that the density of m0 is constant and the one of ms has
radial symmetry reduces the computation to a one-dimensional problem which can be solved exactly and
explicitely (the general, non-radial case requires an abstract argument or resorting to an approximate
transportation, which makes the analysis more involved). Proposition 2.8 is then a consequence of [Ser20,
Prop. 4.2].

Claim B.2 (Radial monotone rearrangement). For convenience let us assume that ϕ is radially symmetric
around 0, and let rmax be the outer radius of the annulus A. Let Fs : [0, rmax] → R+ be the cumulative
radial distribution function of the density ms, namely:

Fs := r 7→
∫ r

0

(
1 − s

2πβ
∆ϕ(ρ)

)
2πρdρ = πr2 − s

β

∫ r

0

∆ϕ(ρ)ρdρ,

where we denote by ∆ϕ(ρ) the value of ∆ϕ(x) at any point x with |x| = ρ. Let Φs be the transport map
defined by:

Φs(r) := F−1
s (πr2) (r ≥ 0). (B.2)

Finally, let ~Φs be the map ~Φs(x) := Φs(|x|) x
|x| . Then:

1. ~Φs is a C1-automorphism of the disk D(0, rmax), which transports m0 onto ms.

2. The map ψs := x 7→ ~Φs(x) − x is supported on the annulus A and satisfies:

|ψs|1 � s|ϕ|2.

Proof of Claim B.2. Since s satisfies (2.12), Fs is strictly increasing and continuous, thus Φs = F−1
s is

well-defined (it is the so-called “monotone rearrangement”). Since m0,ms are radially symmetric the map
~Φs transports m0 onto ms (as two-dimensional measures), and we have ~Φs(x) = x for x /∈ A.

A computation in polar coordinates shows that |ψs|1 ≤ |Φ′
s − 1|0, on the other hand the derivatives of

Φs can be estimated in terms of the perturbation measure ∆ϕ by using the transportation identity (B.2),
which reads:

Φs(r)
2 − r2 =

s

πβ

∫ Φs(r)

0

∆ϕ(ρ)ρdρ,

and taking derivatives. In particular one finds (after an integration by parts) that |Φs(r) − r| � s|ϕ|2r,
and then that: |Φ′

s(r) − 1| � s|ϕ|2.
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Next let us extend the notation ~Φs to ~Φs(XN ) :=
∑N

i=1 δ~Φs(xi)
.

Claim B.3 (Effect of the transportation on the energy). We have:

∣∣∣FN (~Φs(XN ),ms) − FN (XN ,m0)
∣∣∣ � s|ϕ|2EnerPts(XN ,A).

Proof of Claim B.3. We apply [Ser20, Prop 4.2] with (in the notation of that paper) Uℓ = A, which
contains the support of ψs and thus of its derivative. Then [Ser20, (4.5)] states that the electric energy

in A stays bounded along the transport by ~Φs, and [Ser20, (4.6)] that in fact its derivative is bounded by
|ψs|1 times the initial electric energy plus the number of points in A.

To conclude, we change variables in (B.1) using ~Φs and use Claim B.3 to estimate the effect on the
energy. The Jacobian term that appears is again of order s|ϕ|2 times the number of points in the support
of ψs and can be incorporated in the previous error term.

B.4. Cornering the discrepancy: proof of Proposition 3.1

Proof of Proposition 3.1. Let ϕ be a nonnegative, non increasing, compactly supported C2 test function
with radial symmetry around z such that:

1. ϕ ≡ 1 on DR−2L, ϕ ≡ 0 outside DR−L, ϕ takes values in [0, 1].

2. |ϕ|1 ≤ 100
L , |ϕ|2 ≤ 100

L2 .

Let ϕ̃ : R2 → R be the function defined by ϕ̃(x) := ϕ(|x − z|). Assume that:

XN ∈
⋂

R−2L≤r≤R−L

{
Dis(XN ,D(z, r)) ≥ 1

2
εR ·R

}
(B.3)

Claim B.4 (ϕ̃ detects the discrepancy). Under (B.3) we have:

Fluct[ϕ̃] ≥ εR · R
2

. (B.4)

Proof of Claim B.4. Without loss of generality we may assume that z = 0. We take advantage of the
radial symmetry of ϕ̃ and re-write Fluct[ϕ̃] as:

Fluct[ϕ̃] =

∫

DR−L

ϕ̃(x)dfN (x) =

∫ R−L

0

ϕ(r)

(
d

dr
Dis(XN ,Dr)

)
dr.

Integrating by parts, we get: Fluct[ϕ̃] = −
∫R−L
R−2L ϕ

′(r)Dis(XN ,Dr)dr. By assumption (B.3) we have

Dis(XN ,Dr) ≥ εR·R
2 for all r in the domain of integration, moreover by construction −ϕ′ ≥ 0 and its

integral is 1. We thus obtain (B.4).

We have constructed a radially symmetric test function ϕ̃ that is of class C2 and detects a fraction of
the discrepancy. Let us compare (B.4) with the control on the size of Fluct[ϕ̃] given by Proposition 2.8.

Claim B.5 (Fluctuations of ϕ̃). With s as in (3.1)

logEβN

[
esFluct[ϕ̃]

]
≤ Cβ(s2 + s)

R

L
. (B.5)

Proof of Claim B.5. By construction, ϕ̃ is a C2 test function with compact support and radial symmetry,

and |ϕ̃|2 ≤ 100
L2 . We assumed L ≤ R

10 and |s| ≤ 1
C3.1

L3

R (see condition (3.1)), hence up to choosing the

constant C3.1 large enough (depending on β) we can ensure that s satisfies |s| ≤ πβ

4|ϕ̃|2

. Moreover the
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support of ∆ϕ̃ is an annulus. In particular we may apply Proposition 2.8 and control the exponential
moment of Fluct[ϕ̃] by:

logEβN [exp (sFluct[ϕ̃])] =
s2

4πβ

∫

R2

|∇ϕ̃|2 + logEβN [exp (s|ϕ̃|2O (CβEnerPts (DR−L \ DR−2L)))] . (B.6)

The quantity
∫
R2 |∇ϕ̃|2 is readily bounded (up to some multiplicative constant) by RL (the area of the

annulus where ∆ϕ̃ is supported) times 1
L2 (the order of magnitude of |ϕ|2

1
), and thus:

s2

4πβ

∫

R2

|∇ϕ̃|2 = O
(
s2R

L

)
. (B.7)

It remains to estimate the contribution of the following term:

Rem := E
β
N [exp (s|ϕ̃|2O (CβEnerPts (DR−L \ DR−2L)))] .

By construction we know that |ϕ̃|2 is of order 1
L2 . Cover the annulus DR−L \ DR−2L by a family {�i}i∈I

of #I = O
(
R
L

)
squares of sidelength O (L) and write:

exp (s|ϕ̃|2O (CβEnerPts (DR−L \ DR−2L))) ≤ exp

(
CβsR

L3

1

#I

∑

i∈I
EnerPts(�i)

)
.

By convexity we get:

Rem ≤ 1

#I

∑

i∈I
E
β
N

[
exp

(
CβsR

L3
EnerPts(�i)

)]
. (B.8)

Up to chosing C3.1 large enough we can ensure that the parameter
CβsR
L3 in the right-hand side of (B.8) is

smaller than any fixed constant. Then for each i ∈ I the local laws (Proposition 2.4) yield:

logEβN

[
exp

(
CβsR

L3
(EnerPts(�i))

)]
≤ CβsR

L3
× CLLL

2 = Oβ

(
sR

L

)
.

Taking an average over i ∈ I yields:

log Rem = Oβ

(
sR

L

)
, (B.9)

and combining it with (B.6), (B.7) and (B.9), we obtain (B.5) as claimed.

Next, applying Markov’s inequality in exponential form to (B.5), we get:

P
β
N

(
Fluct[ϕ̃] ≥ εR ·R

2

)
≤ exp

(
−sεR ·R

2
+ (s2 + s)Cβ

(
R

L

))
.

Since we assume L ≥ C3.1
1
εR

and s ≤ 1
C3.1

LεR, up to choosing C3.1 large enough we can ensure that:

−sεR ·R
2

+ (s2 + s)Cβ

(
R

L

)
≤ −sεR ·R

4
,

which concludes the proof.

C. Study of the external potential: proof of Proposition 5.3

Proof of Proposition 5.3. Let us fix an index i ∈ {1, . . . ,N } and study the external potential Vext (as
defined in (4.1)) on Λi. Let Vi be the potential generated on Λi by “everything outside Λi”, namely:

Vi(x) :=

∫

ΣN\Λi

− log |x− y|dfN(y), x ∈ Λi. (C.1)
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For all x in Λi we have, by definition:

Vext(x) = Vi(x) −
∑

j,j 6=i

∫

Λj

− log |x− y|dfN (y). (C.2)

For convenience, we will first study Vi itself and then use a rough bound on the remaining terms in (C.2).
In the rest of this section we choose an auxiliary length scale T̂ as:

T̂ := logT.

C.1. Decomposition and regularization

Decomposition of Vi

Let us introduce a smooth cut-off function χi equal to 1 on D(ωi, T + T̂ ) and to 0 outside D(ωi, T + 2T̂ ),
with |χi|k ≤ CT̂−k and let:

• R′
i be the field generated by the background measure in the annulus A := D(ωi, T + 2T̂ ) \ D(ωi, T ),

weighted by χi, namely:
R′
i := − log ∗

(
−χi1ΣN\Λim0

)
.

• hνi be the field generated by the positive measure νi corresponding to the point charges in A, weighted
by χi, namely:

hνi := − log ∗
(
χi1ΣN\ΛiXN

)
.

• Ri be the field generated by the signed measure (1 − χi)fN , namely:

Ri := − log ∗ ((1 − χi)fN ) . (C.3)

Of course, we have hνi +R′
i = − log ∗ (χifN ) and thus the following decomposition holds (cf. (5.1)):

Vi = hνi +R′
i +Ri. (C.4)

Remark C.1. By Newton’s theorem, the logarithmic potential R′
i is constant within the disk Λi thanks to

its radial symmetry. So its derivative and its “interior” normal derivative ∂−
n R

′
i (see (D.7)) are identically

0 there, and it will play no further role in the proof.

Regularization of Vi near the edge.

Since there might be charges in νi located very close to ∂Λi, we cannot expect in general to have an upper
bound on Vi in Λi valid up to the edge. In order to study Vi near ∂Λi, we introduce a smooth cut-off
function χuv : R2 → [0, 1] such that:

χuv(z) = 0 if |z| ≤ 1

4
, χuv(z) = 1 if |z| ≥ 1, |χuv|1 ≤ 10,

and we use χuv to define a regularized version of Vi as follows:

Ṽi(x) :=

∫

ΣN\Λi

− log |x− y|χuv(x− y)dfN (y), x ∈ Λi.

Claim C.2. We have:

• Ṽi(x) ≤ Vi(x) + 100 for all x ∈ Λi.

• Vi(x) = Ṽi(x) for all x ∈ Λi with dist(x, ∂Λi) ≥ 1.

Proof of Claim C.2. For the first point, observe that adding the short-distance cut-off χuv diminishes the
(non-negative) influence of point particles at distance less than 1, as well as the influence of the background
in a small disk (which is negative but uniformly bounded). The second point is obvious.
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We introduce the (regularized) “boundary” term Bi:

Bi : x 7→ Bi(x) :=

∫

ΣN\Λi

χi(y) × log |x− y|χuv(x − y) dfN (y). (C.5)

We can decompose Ṽi as (compare with (C.4)):

Ṽi = Bi +Ri, (C.6)

with Ri as above in (C.3) (observe that for x ∈ Λi and y in the support of 1 − χi we have χuv(x− y) = 1
i.e. the regularization by χuv is transparent and does not appear in Ri).

C.2. Study of the boundary term

Claim C.3. We have, with Bi as in (C.5):

P
β
N

[
sup
x∈Λi

|∇Bi(x)| ≤ Cβ log2 T

]
≥ 1 − exp

(
− 1

Cβ
log2 T

)
.

Proof of Claim C.3. For x ∈ Λi arbitrary and y in the support of χi we have:

‖∇ (log |x− y|χuv(x− y)) ‖ � 1

1 + |x− y|
(this is possible thanks to the regularization due to χuv near ∂Λi). To control |∇Bi(x)| it is thus enough
to bound, for x ∈ Λi: ∫

1ΣN\Λi(y)χi(y)
1

1 + |x− y| (dXN (y) + dy) . (C.7)

By construction χi1ΣN\Λi is supported in the annulus D(ωi, T + 2T̂ ) \D(ωi, T ). Let us cover this annulus

by O(T
T̂

) squares of sidelength T̂ . In each square, by the local laws, we can ensure that there are at most

Cβ T̂
2 points with probability 1−exp

(
− 1

Cβ
T̂ 2
)

and so after an union bound we can ensure that all of them

contain at most Cβ T̂
2 points with probability 1 − exp

(
− 1

Cβ
T̂ 2
)

(T̂ 2 has been chosen in order to beat the

combinatorial loss due to such union bounds). If so, then we have:
∫

1ΣN\Λi(y)χi(y)
1

1 + |x− y|dXN (y) � T̂

∫

y∈∂Λi

1

1 + |x− y|dy,

for which a rough bound is O
(
log2 T

)
. The continuous part of (C.7) is of the same order.

We now focus on studying Ri. In the next sections the constants Cβ will also depend on δ as in
Assumption (1.4).

C.3. Estimate on the first derivative at the center

Lemma C.4. We have, with Ri as in (C.3):

P
β
N [|∇Ri(ωi)| ≤ Cβ ] ≥ 1 − exp

(
− log2 T

Cβ

)
. (C.8)

Proof of Lemma C.4. Let us bound the first partial derivative of Ri. By definition of Ri we have:

∂1Ri(x) = −
∫

ΣN

(1 − χi(y))∂1 log |x− y|dfN (y).

1. The first outer layer. Let σ be a cut-off function with radial symmetry around ωi such that:

σ(z) = 1 if |z − ωi| ≤ 2T, σ(z) = 0 if |z − ωi| ≥ 3T, |σ|k ≤ CT−k for k ∈ {1, 2}.

We start by evaluating the contribution to Ri coming from the support of σ.
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Claim C.5. Let A :=
∫

(1 − χi(y))σ(y)∂1 log |ωi − y|dfN(y). We have:

P
β
N (|A| ≤ Cβ) ≥ 1 − exp

(
− 1

Cβ
T̂ 2

)
. (C.9)

Proof of Claim C.5. We are looking at the fluctuations of ϕ := y 7→ (1 − χi(y)) σ(y)∂1 log |ωi − y| which
is of class C1 and compactly supported within D(ωi, 3T ) \ D(ωi, T + T̂ ). Let us recall that:

• (1 − χi), σ are bounded and ∂1 log |ωi − y| is of order T−1 for y in the support of ϕ.

• |χi|1 is of order T̂−1, |σ|1 is of order T−1 and |∂1 log |ωi − ·||
1,suppϕ is of order T−2.

Moreover let us make the following observations:

• On the annulus A1 := D(ωi, T + 2T̂ ) \ D(ωi, T + T̂ ), of area O(T T̂ ), ‖∇ϕ‖ is of order (T T̂ )−1 (the
dominant contribution comes from differentiating χi).

• On the annulus A2 := D(ωi, 3T ) \ D(ωi, T + 2T̂ ), of area O(T 2), ‖∇ϕ‖ is of order T−2 (χi does not
play a role anymore).

Using Lemma 2.6 in its localized version (2.11) we are left to bound:

A1 :=
(
T T̂
)−1

×
(

Ener(XN ,A1)
1

2 ×
(
T T̂
) 1

2

+ Pts (XN ,A1)

)

and
A2 := T−2 ×

(
Ener(XN ,A2)

1

2 × (T 2)
1

2 + Pts (XN ,A2)
)
.

To control the first term A1, we cover the annulus A1 by O(T
T̂

) squares of sidelength T̂ and use the local
laws. We obtain:

P
β
N

(
EnerPts(XN ,A1) ≥ CβT T̂

)
≤ exp

(
− 1

Cβ
T̂ 2

)
,

where we used a union bound on exp (O(log T )) events and the fact that logT ≪ T̂ 2. In particular this
ensures that:

P
β
N (|A1| ≤ Cβ) ≥ 1 − exp

(
− 1

Cβ
T̂ 2

)
.

On the other hand, to control the second term A2 we may apply the local laws to the full disk D(ωi, 3T )
and see that:

P
β
N

(
EnerPts (XN ,D(ωi, 3T )) ≥ CβT

2
)

≤ exp

(
−T 2

Cβ

)
,

which ensures that P
β
N (|A2| ≤ Cβ) ≥ 1 − exp

(
−T 2

Cβ

)
. We deduce (C.9).

2. Dyadic scales up to the boundary. Let K := log2

(
1

10 dist (Λi, ∂ΣN)
)
. By our assumption (1.4)

we have K ≥ log2

(
δ
√
N

10

)
.

For log2(2T ) ≤ k ≤ K we let τk be a smooth cut-off function such that:

• τk has radial symmetry around ωi and is supported on the annulus A′
k := D(ωi, 2

k+1) \ D(ωi, 2
k) of

area O(22k).

• We have |τk|1 ≤ C2−k and |τk|2 ≤ C2−2k (with C independent of k).

• We have the following “partition of unity”-type of identity:

σ(z) +

K∑

k=log
2

(2T )

τk(z) ≡ 1 for |z − ωi| ≤ 2K−1.
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For each k we let φk be the following map:

φk : y 7→ −τk(y)∂1 log |ωi − y|.

One can check that:
|φk|1 ≤ C2−2k, |φk|2 ≤ C2−3k.

Claim C.6. We have, for k = log2(2T ), . . . ,K:

P
β
N

[
|Fluct[φk]| ≥ Cβ2−k/2

]
≤ exp

(
− 1

Cβ
2k/2

)
.

Proof of Claim C.6. We use the “fine bounds” on fluctuations given by Proposition 2.8. We choose the
parameter s = c2k for some constant c, as allowed by (2.12), and observe that, in view of the bounds
mentioned above:

s2

∫

A′
k

|∇φk|2 � s222k ×
(
2−2k

)2
= O

(
c2
)
.

Moreover we may use the local laws to write (note that we deliberately stopped before reaching the
boundary thanks to our choice of K):

logEβN

(
eCβs|φk|2(EnerPts(XN ,A′

k))
)

≤ logEβN

(
eCβc2

−2k(EnerPts(XN ,A′
k))
)

≤ cCβ.

In summary, we have:

logEβN

[
ec2

kFluct[φk]
]

= O
(
c2
)

+ Oβ (c) ,

and Markov’s inequality yields the claim.

Summing up the controls on φk and using a union bound, we obtain:

P
β
N



∣∣∣∣∣∣

K∑

k=log
2

(2T )

Fluct[φk]

∣∣∣∣∣∣
≥ CβT

−1/2


 ≤ exp

(
− 1

Cβ
T 1/2

)
≪ exp

(
− log2 T

)
.

3. The rest of the system. It remains to study the contribution to ∇Ri coming from the part of the
system far from ωi. Let us introduce an artifical cut-off γ supported on 2ΣN . We have

∫

ΣN


1 −


σ(y) +

K∑

k=log
2

(2T )

τk(y)




 ∂1 log |y − ωi|dfN (y),

=

∫
γ(y)


1 −


σ(y) +

K∑

k=log
2
(2T )

τk(y)




 ∂1 log |y − ωi|dfN (y)

and we may thus apply Lemma 2.6 to the function:

ϕ : y 7→ γ(y)


1 −


σ(y) +

K∑

k=log2(2T )

τk(y)




 ∂1 log |y − ωi|,

whose derivative is of order at most 1
δ2N in view of Assumption 1.4 (this is where the dependency in δ

comes in). The support of ϕ has area N , the number of points is obviously bounded by N and the energy
there is O(N) with high probability by the global law. We obtain:

|Fluct[ϕ]| ≤ Cβ
1

δ2
, with probability 1 − exp

(
− 1

Cβ
N

)
.

Keeping the dominant contributions of these three steps, we obtain (C.8).
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C.4. Estimate on the second derivative up to the boundary.

Lemma C.7. We have, with Ri as in (C.3):

P
β
N

[
sup
x∈Λi

|D2Ri(x)| × (1 + dist(x, ∂Λi)) ≤ Cβ

]
≥ 1 − exp

(
− 1

Cβ
T̂ 2

)
.

Proof of Lemma C.7. We bound one of the four second partial derivatives (they can all be treated the
same way) and use the same decomposition as in the proof of Lemma C.4.

1. The first outer layer. To control the first outer layer, we proceed like for Claim C.3. For x ∈ Λi
arbitrary and y in the support of (1 − χi)σ we have:

‖D2 log |x− y|‖ � 1
(
T̂ + |x− y|

)2

(the points x, y being at distance at least T̂ from each other). It is thus enough to bound:
∫
σ(y) (1 − χi(y))

1
(
T̂ + |x− y|

)2 (dXN(y) + dy) . (C.10)

Assume as above that each square of sidelength T̂ covering the annulus D(ωi, T + 2T̂ ) \D(ωi, T ) contains

at most CT̂ 2 points (an event that occurs with probability 1 − exp
(

− 1
C
T̂ 2
)

and does not depend on x).

We may then compare (C.10) to the following one-dimensional integral:

T̂

∫

y∈∂Λi

1
(
T̂ + |x− y|

)2 dy,

for which a rough bound is C 1
1+dist(x,∂Λi)

.

2. Dyadic scales up to the boundary. We proceed as in the previous proof, but instead of using
the fine bounds of Proposition 2.8 (which are only valid function-wise, so x-wise here) we use the rougher
controls of Lemma 2.6 which allow for a uniform control. For each k we let φk be the following map:

φk,x : y 7→ −τk(y)∂12 log |x− y|.
If x is in Λi and y ∈ A′

k for k ≥ log2(2T ) we have |φk,x|1 ≤ C2−3k. Hence using (2.10) we know that we
can bound Fluct[φk,x] by:

2−3k ×
(
22k + EnerPts(XN ,A′

k)
)
.

Using the local laws, we may control EnerPts(XN ,A′
k) by Cβ22k with probability 1 − exp

(
− 1

Cβ
22k
)

. We

deduce that:

P
β
N

[
sup
x∈Λi

|Fluct[φk,x]| ≥ Cβ2−k
]

≤ exp

(
− 1

Cβ
22k

)
.

Summing again the contributions through an union bound, we get that the contribution to the second

derivative of Ri due to the dyadic annuli is bounded by CT−1 with probability 1 − exp
(

−T 2

Cβ

)
.

3. The rest of the system. We argue as in the previous proof, but thanks to the additional derivative
we gain a factor 1

δ
√
N

≪ dist(x,Λi)
−1.

C.5. Summary and conclusion

Bounding the contributions of other sub-systems

Returning to (C.1), (C.2), a rough bound on ‖D log |x− y|‖ for x ∈ Λi and y ∈ Λj, together with the fact
that each sub-system contains by assumption O(T 2) points, ensures that (using (3.6)):

∣∣Vi − Vext
∣∣
1,Λi

≤ CT 2
∑

j,j 6=i

1

dij
= O

(
T 2 logR

ML

)
. (C.11)

41



(Let us note that it is fairly easy to improve (C.11) by expanding the interaction in a more precise way
and controlling some fluctuations, but it would add technicalities while not making a big difference in our
final statement.)

Summary

1. Control up to the edge. Combining Lemma C.4 and Lemma C.7 and integrating between ωi and any
given x in Λi we deduce that |∇Ri(x)| ≤ C logT for all x in Λi. Combining this with the decomposition
(C.6) and Claim C.3 we deduce that

‖∇Ṽi‖ ≤ Cβ log2 T on Λi...

...and thus after integrating between ωi and any given x in Λi we obtain:

∣∣∣Ṽi(x) − Ṽi(ωi)
∣∣∣ ≤ CβT log2 T

2. Properties of the decomposition. We have already bounded |Ri|1,Λ, and we have used the control of

ν at scale T̂ : logT several times in the argument above.

In conclusion, with probability 1 − exp
(

− T̂ 2

Cβ

)
the potential Vi satisfies the requirements to be a “good

external potential” on Λi. Thus in view of (C.11), since we enforce (3.4), with probability 1 − exp
(

− T̂ 2

Cβ

)

the potential Vext is a “good external potential with constant C̄”, where C̄ is some large enough constant
depending only on β and δ.

We conclude with a union bound on N such events.

D. Global laws for sub-systems: proof of Proposition 5.7

D.1. Effect of an harmonic perturbation on the equilibrium measure

In this section, we revisit (parts of) the analysis of [BBNY17, Sec.3]. Broadly speaking, our goal is
to understand the effect of the external potential Vext on the typical repartition of charges within the
subsystem. In particular, we want to use the fact that Vext is harmonic on Λ and is generated by a “nice”
external configuration. We start by recalling some elements of logarithmic potential theory.

D.1.1. Some potential theory

Let V : R2 → R ∪ {+∞} be a lower semi-continuous function satisfying, for some ε > 0, the following
growth condition:

lim
|z|→∞

(V(z) − (2 + ε) log |z|) = +∞.

If V takes the value +∞, assume that it is not too wild e.g. that V takes finite values on some open disk.
Denote by IV the following functional defined on the space P(R2) of probability measures on R2:

IV : µ 7→
x

− log |x− y|dµ(x)dµ(y) +

∫
Vdµ. (D.1)

The next proposition12 covers well-known properties of the minimization problem associated to IV.

Proposition D.1 (The equilibrium measure). There exists a unique minimizer µV of IV, which we call
the “equilibrium measure” associated to V. Its support, denoted by SV, is compact.

12The statements of Proposition D.1 only hold “quasi everywhere” (q.e.), which means “up to a set of capacity zero”. This
makes no difference for us and, for simplicity, we omit it.
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The equilibrium measure µV is characterized by the following fact: there exists a constant cV (depending
on V) such that the logarithmic potential generated by µV, namely hµV (x) :=

∫
− log |x−y|dµV(y) satisfies

Euler-Lagrange equations of the form:

{
hµV + 1

2 V = cV on SV

hµV + 1
2 V ≥ cV on R2 \ SV.

(D.2)

Moreover, the equilibrium measure is connected to the solution of an obstacle problem in the following
sense: if we define uV : R2 → R ∪ {+∞} by setting:

uV(z) := sup

{
v(z), v is subharmonic, v ≤ V

2
on R

2, lim sup
|z|→∞

(v(z) − log |z|) < ∞
}
, (D.3)

and let the “coincidence set” S∗
V be S∗

V :=
{
z ∈ R2, uV(z) = 1

2 V(z)
}

. Then SV ⊂ S∗
V (in words: the support

of the equilibrium measure is contained in the coincidence set of the obstacle problem) and we have:

uV(z) = cV − hµV(z) on R
2.

In particular the density of µV is given equivalently by 1
2π∆uV or 1

4π∆V on SV.

Proof of Proposition D.1. The first part is a classical result by Frostman [Fro35]. The connection with
the obstacle problem has been investigated in [HM13] and an exposition can be found in [Ser15, Sec.2].
See also [BBNY17, Sec. 2.1, 2.2] and the references therein.

D.1.2. Harmonic perturbations

We now study how the equilibrium measure reacts to certain perturbations of the external potential. Here
we closely follow the exposition of [BBNY17, Sec. 3.3] while making several changes.

The reference measure. Let ρ ≥ 1 be some fixed radius, we work on the disk ρD := D(0, ρ) (for
convenience we adopt here the notation of [BBNY17]). Let us assume that the reference potential Vref is
given by:

Vref(z) =

{
|z|2

ρ2 for |z| ≤ ρ,

+∞ for |z| > ρ.
(D.4)

It satisfies the assumptions of Section D.1.1, and it is easy to check that the associated equilibrium measure
µVref is the uniform measure on the disk ρD - in other words, we have µV = 1

|ρD|m0 on ρD. Its density is
1
πρ2 , in particular the assumption that “ 1

4π∆Vref ≥ α in ρD” made in [BBNY17, Sec. 3.3] is satisfied here

but with α proportional to ρ−2.

Class of perturbations. We work with the same class of potentials W as in [BBNY17], namely we take
W as:

W := τVref + ρ−2 (hν +R) , where: (D.5)

• Vref is the reference potential of (D.4) and τ is a real parameter. For us τ will always be close to 1,
and for convenience we can assume that |τ − 1| ≤ 1

10 .

• hν is the logarithmic potential generated by a positive, finite distribution ν of charges located outside
of the disk ρD. For convenience (and since that is enough for us), we will assume that ν is supported
on an annulus D(0, ρ + ρ′) \ D(0, ρ) for some ρ′ ≤ ρ

100 . In [BBNY17, Prop. 3.3, 3.4] the controls are
given in terms of the total mass ‖ν‖ of ν. We want more precise estimates and introduce to that aim
the following quantity:

|ν|loc(ρ′) := sup
x∈∂ρD

ν(D(x, ρ′)), (D.6)

which controls the mass of ν in a local fashion, at scale ρ′ along ∂ρD.
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• R is some harmonic function on ρD which is continuous up to the boundary. An important role is
played by the normal derivative of R on ∂ρD. We introduce the notation:

∂−
n R(z) := lim

ε→0

R(z) −R(z − ε~n)

ε
, ‖∂−

n R‖∞,∂ρD := sup
z∈∂ρD

|∂−
n R(z)|, (D.7)

where for z ∈ ∂ρD we denote by ~n the outer unit normal vector (to the circle) at z.

Our scaling ρ−2 in front of the perturbation terms in (D.5) is not present in [BBNY17, (3.7)], but it is
of course equivalent to taking the mass of ν and the potential R to be of order ρ−2 in their statements.
This scaling will compensate the fact that for us the quantity α of [BBNY17] is of order ρ−2 (see above).

Effect of the perturbation. Passing from Vref to W as in (D.5) has three effects on the equilibrium
measure:

1. The support loses some parts located near the circle ∂ρD.

2. A singular measure appears on the circle ∂ρD.

3. The continuous density in the new support changes from ∆Vref to τ∆Vref .

In other words, the measure µW can be written as:

µW := τµVref + (η − τµVref 1B) ,

with B a subset of ρD located near ∂ρD and η a measure that is absolutely continuous with respect to
the arclength measure ds on ∂ρD.

Of course the combination of all effects must have total mass 0 so that the resulting equilibrium measure
µW still be a probability measure. The point of the following propositions is to give quantitative controls
on the location of B (first item) and the density of η (second item). The techniques are heavily borrowed
from [BBNY17, Prop. 3.3 & 3.4], with some simplications due to our specific context, and precisions
thanks to our use of |ν|loc as in (D.6).

Proposition D.2 (The support of µW contains a large sub-disk). The support of µW contains the set of
points z ∈ ρD at distance at least κ from ∂ρD, with κ such that:

κ ≥ C max

(
20ρ′,

|ν|loc(ρ′)
ρ′ , |1 − τ |ρ+ ‖∂−

n R‖∞,∂ρD

)
. (D.8)

Proposition D.3 (The singular component has a controlled density). The Radon-Nikodym derivative of
η with respect to the arclength measure on ∂ρD is bounded by:

‖dη

ds
‖∞ ≤ C

(
1

ρ
‖η‖ + ρ−2 |ν|loc(ρ′)

ρ′ + ρ−2‖∂−
n R‖∞,∂ρD + |1 − τ |ρ−1

)
. (D.9)

The next two subsections are devoted to the proofs of Propositions D.2 and D.3. We follow the proofs
of the corresponding results in [BBNY17] while emphasizing the required modifications.

D.1.3. Proof of Proposition D.2

Importing an explicit construction. The key ingredient for the proof of [BBNY17, Prop 3.3] is an explicit
construction. To quote from [BBNY17, Proof of Prop 3.3]: “let D := {z ∈ ρD, dist(z, ∂ρD) ≥ κ}, we show
that D [is included in the support of µW] by exhibiting for every z0 ∈ D a function v = vz0

that satisfies
v(z0) = 1

2 W(z0) and: 



v is sub-harmonic on R2,

v ≤ 1
2 W on R2,

lim|z|→∞ (v(z) − log |z|) < ∞.

(D.10)
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Thus we have uW = 1
2 W in D (cf. (D.3)) and since the perturbation W − Vref is harmonic on ρD ⊃ D

we have13 (as densities) µW = µVref > 0 on D and thus D is contained in the support of µW.” It remains
to construct such a function v, for which a crucial tool is the following lemma from [BBNY17]. For any
r > 0, let lr be the logarithmic potential generated by the uniform probability measure spread on D(0, r).

Lemma D.4 (An explicit construction). Let z0, w be two points in R2 and let r such that r ≤ 1
2 |z0 −w|.

Then there exists z̃ ∈ R2 and k ∈ R (both depending on z0 and w) such that:

1

2
(lr(z0 − z̃) + k) = −1

2
log |z0 − w|, 1

2
(lr(z − z̃) + k) ≤ −1

2
log |z − w| for z ∈ R

2. (D.11)

Moreover the point z̃ can be found on the line segment between z0 and w with:

|z̃ − z0| =
r2

|z0 − w| . (D.12)

Proof of Lemma D.4. This is [BBNY17, Lemma 3.6] with three minor differences. First of all, in their
statement they assume that r ≤ 1

2 |z0 − w| and that r ∈ (0, 1) (which is always the case in their setting),
whereas we take r arbitrary (still with the condition r ≤ 1

2 |z0 − w|). There is in fact no additional
generality in our statement: the case r ∈ (0, 1) extends to the general case by scaling. Secondly, they
allow for any σ ≥ 1

2 but we will only need σ = 1
2 (so “σ” does not appear here). Finally, the estimate

(D.12) is not written down in [BBNY17], however it is a straightforward consequence of the fact that
|z̃ − z0| ≤ r ≤ 1

2 |z0 − w| (which is given by their statement and assumption) and the first equality in
[BBNY17, (3.14)] (with σ = 1

2 ).

Next, we follow [BBNY17, Proof of Prop 3.3] with a slight adaptation to prove our Proposition D.2.

Proof of Proposition D.2. Contrarily to [BBNY17] we will not scale everything back to the unit circle.
We fix z0 in D := {z ∈ ρD, dist(z, ∂ρD) ≥ κ}, with κ satisfying the three conditions of (D.8) and seek
to construct v satisfying (D.10). Let uVref be the solution to the obstacle problem for the reference
potential Vref as in (D.3), let R̃ be the harmonic extension of R outside ρD as in [BBNY17, (3.17)], let
G(z) = max(0, log |ρ−1z|). Let γ := 2‖∂−

n R‖∞,∂ρD as defined in (D.7). Compared to [BBNY17] we always
take σ = 1

2 (and σ does not appear here).
There remains to define one last term, for which we differ slightly from [BBNY17, (3.18)] as explained

below. For each w in the support of ν, we apply Lemma D.4 to z0, w as above and (which is new compared
to [BBNY17]) we choose the parameter r depending on w as follows:

r = r(w) =
1

10
|z0 − w|,

which is valid choice as it is obviously smaller than 1
2 |z0 − w|. We obtain a point14 z̃ = z̃(w) and a real

number k = k(w) such that (D.11) are satisfied. Let us make the following important observation: we
know by the construction of Lemma D.4 that z̃ lies on the line segment between z and w, at distance

1
100 |z0 − w| from z0. Since by assumption we have on the one hand:

dist(z0, ∂ρD) ≥ κ ≥ 20ρ′,

and on the other hand supp ν ⊂ D(0, ρ+ ρ′) \ D(0, ρ) it is easy to check that:

|z̃ − z0| ≤ 1

100
(dist(z0, ∂ρD) + ρ′) ≤ 1

4
dist(z0, ∂ρD),

and thus the point z̃ remains in ρD, in fact the entire disk D (z̃, r(w)) is contained in ρD.
This being done for all w ∈ supp ν we may define a map L : R2 → R by:

L(z) :=
1

2

∫

supp ν

(
lr(w)(z − z̃(w)) + k(w)

)
ν(dw). (D.13)

Finally, as in [BBNY17, (3.18)] we form the map v = vz0
by setting:

v : z 7→ τuVref (z) + ρ−2
(
L(z) + R̃(z)

)
+ ρ−1γG(z),

and claim that is satisfies (D.10).

13This follows from the last statement in Proposition D.1.
14z̃ depends also on z0 but we will not write down this dependency as we work for any fixed z0.
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Sub-harmonicity The distributional Laplacian is given by:

∆v = τ∆uVref + ρ−2∆L+ ρ−2(2∂−
n R+ γ)ds, (D.14)

the measure ds being the arclength measure on ∂ρD (we used the general formula of [BBNY17, (3.10)]
and the fact that the jump of the normal derivatives of G along ∂ρD is here ρ−2). In the interior of D we
obtain (taking only the first two terms in the right-hand side of (D.14), using the last item of Proposition
D.1 to evaluate ∆uVref , and an explicit computation of ∆lr - we recall that lr is the logarithmic potential
generated by the uniform probability measure on the disk of radius r):

∆v =
τ

2ρ2
− ρ−2

(∫

supp ν

1

r(w)2
1D(z̃(w),r(w)) ν(dw)

)

(the differences with the analysis of [BBNY17] being that here α (their notation) is of order ρ−2, σ (their
notation) is always 1

2 , that L here is scaled by ρ−2 and most importantly that the distance r is here chosen
depending on w as above). In order to check that ∆v ≥ 0 (which is a requirement in (D.10)) we thus need
to guarantee that:

∫

supp ν

1

r(w)2
1D(z̃(w),r(w)) ν(dw) ≤ τ

2
, with

τ

2
≥ 9

20
because |τ − 1| ≤ 1

10
by assumption. (D.15)

Here we stop following the route of [BBNY17] and instead recall that by construction r(w) = 1
10 |z0 − w|,

thus we may write (bounding the indicator function by 1):

∫

supp ν

1

r(w)2
1D(z̃(w),r(w)) ν(dw) ≤ 100

∫

supp ν

1

|w − z0|2 ν(dw).

Cover the annulus D(0, ρ+ρ′)\D(0, ρ), which by assumption contains the support of ν, by O(ρ/ρ′) squares
of sidelength ρ′. The quantity |ν|loc allows us to bound the mass of ν on each such square. Then for z ∈ ρD,
if z is at distance at least 20ρ′ from the boundary then we can compare the integral

∫
1

|z−w|2 ν(dw) to

|ν|loc(ρ′)
ρ′ ×

∫

w∈∂D

1

|z − w|2 dw,

which is O
(

|ν|loc(ρ′) × 1
ρ′ dist(z,∂D)

)
and thus smaller than C

|ν|loc(ρ′)
κρ′ if z is at distance at least κ from the

boundary. In particular, if κ is larger than some constant times |ν|loc(ρ′)
ρ′ we do have (D.15).

For the singular part on the boundary we need to ensure that 2∂−
n R+ γ ≥ 0, which is true by definition

of γ.

Obstacle property We want to check that v(z0) = 1
2 W(z0) and that v(z) ≤ 1

2 W(z) on R2 (in fact it is
enough to check it on the disk as W is infinite outside). This step goes on exactly like in the original proof.
We already know that uVref (z) = 1

2 Vref(z) on ρD (because uVref solves the “reference” obstacle problem),

that R̃(z) = R(z) on ρD (by definition), and that G vanishes on ρD. Thus in view of (D.5) it suffices to
have:

L(z0) = hν(z0), L(z) ≤ hν(z) for z 6= z0,

which was precisely guaranteed by construction of L using Lemma D.4, see (D.11) and (D.13).

Growth at infinity Here we proceed again a bit differently than in [BBNY17]. Recall that we have chosen
our function as:

τuVref (z) + ρ−2
(
L(z) + R̃(z)

)
+ ρ−1γG(z).

As |z| → ∞ we have uVref (z) ∼ log |z|, L(z) ∼ −‖ν‖ log |z|, R̃(z) = O(1) and G(z) ∼ log z. Thus the third
condition of (D.10) is satisfied if we have:

‖ν‖ ≥ ρ2(1 − τ) + ργ.
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We argue that we may always assume that this is the case. Indeed, if not, then we may distribute15

positive charges uniformly with density γ + ρ|1 − τ | all around the circle ∂ρD on an annulus of width 1,
and redefine the perturbation R accordingly in order for the total potential to remain the same. This
operation changes ν: it increases its total mass to a convenient level and increases |ν|loc(1) by γ+ρ|1 − τ |.
In view of the “Sub-harmonicity” paragraph above, this is harmless as long as we assume that κ larger
than some constant times γ + ρ|1 − τ | in (D.8).

On the other hand, this operation does not affect the quantity ‖∂−
n R‖∞,∂ρD as defined in (D.7), because

placing a radially symmetric density of charges outside ρD creates a constant potential within ρD.
Hence without loss of generality we may assume that ‖ν‖ ≥ ρ2(1 − τ) + ργ. This concludes the proof of

Proposition D.2.

D.1.4. Proof of Proposition D.3

Proof of Proposition D.3. This time the changes are minor compared to [BBNY17, Proof of Prop. 3.4].
We follow their computations until the moment where they bound:

∫
z − w

|z − w|2 · ~n ν(dw) ≤ 1

2
‖ν‖,

where z is some fixed point on the circle and ~n is the normal vector to the circle at z. We distinguish
between |w − z| ≤ 10ρ′ and ≥ 10ρ′. For the first contribution, we note16 that z−w

|z−w|2 · ~n is always smaller

than 1
2ρ and thus: ∫

|w−z|≤10ρ′

z − w

|z − w|2 · ~n ν(dw) ≤ C|ν|loc(ρ
′)

2ρ

We bound the rest of the integral by
∫

|w−z|≥10ρ′ max
(

0, z−w
|z−w|2 · ~n

)
ν(dw), which we may compare to:

|ν|loc(ρ′)
ρ′

∫

w∈∂Dρ,|w−z|≥10ρ′

max

(
0,

z − w

|z − w|2 · ~n
)

dw,

which is itself smaller than:

|ν|loc(ρ′)
ρ′

∫

w∈∂Dρ
max

(
0,

z − w

|z − w|2 · ~n
)

dw =
|ν|loc(ρ′)

ρ′ × O(1)

by one-dimensional scale-invariance. This is the dominant contribution.
The rest of the proof does not change, and we obtain their final estimate controlling the Radon-Nikodym

derivative pointwise by:

1 − τ

2
∂−
n V +

∫
z − w

|z − w|2 · ~n ν(dw) − ∂−
n R+

1

2
‖η‖.

There we bound ∂−
n V by ρ−1 (see (D.4)).

D.2. Application to a generalized 2DOCP with good external potential

We now apply the knowledge gained in Section D.1 to pass from a 2DOCP with good external potential
to a 2DOCP with well-controlled non-uniform neutralizing background (see Sections 5.1 and 5.2).

Let Λ be a disk of radius ρ = T and n be the number of points in Λ. Let Vext be a “good external
potential” on Λ. Consider the potential W defined as:

W := τVref
Λ +

2

n
Vext, τ :=

|Λ|
n
, (D.16)

15This is inspired by a different but similar argument in the original proof.
16As in [BBNY17, Proof of Prop. 3.4], except that they scale everything back to ρ = 1.
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where Vref
Λ is as in (D.4) (with ρ = T ) and let µW be the associated equilibrium measure, which we write

(with the notation of Section D.1.2) as:

µW = τµVref

Λ

+
(
η − τ1BµVref

Λ

)
. (D.17)

We will use repeatedly below the fact that (see Definition 5.2):

τ = 1 + O
(

log2 T

T

)
. (D.18)

Some properties of the new equilibrium measure

Claim D.5. For some constant Cµ depending on the “good external potential” C̄ constant of Vext, the
following holds:

The measure µW − τµVref

Λ

has mass 1 − τ = 1 − |Λ|
n

, and is made of:

1. A continuous (negative) part of density − τ
|Λ| supported on a subset B located at distance ≤ κ from

∂ρD, with κ as in (D.8). We can take:

κ = Cµ × log2 T. (D.19)

2. A singular component η living on ∂Λ, with a density dη
ds bounded as in (D.9). We have:

‖dη

ds
‖ ≤ Cµ

log2 T

T 2
. (D.20)

The total mass of the continuous part, of the singular part, and the total variation of µW − τµVref

Λ

is

bounded by Cµ
log2 T
T . Moreover, we have:

n2
x

− log |x− y|d
(
η − τµVref

Λ

1B

)
(x)d

(
η − τµVref

Λ

1B

)
(y) = O

(
C2
µT

2 log5(T )
)
. (D.21)

Proof of Claim D.5. Inserting Definition 5.1 of a “good external potential” into the bounds (D.8) and
(D.9) with ρ′ = T̂ = logT , and using (D.18) we obtain (D.19) and (D.20).

The total mass of the continuous part is of order T ×Cµ log2 T ×T−2 = log2 T
T (it is contained in a region

at distance ≤ Cµ log2 T from the boundary of the disk of radius T , and its density is of order T−2).
The mass of the singular part matches the mass of the continuous part up to an error 1 − τ , but (D.18)

holds. Hence the mass of the singular part is also bounded by Cµ
log2 T
T , and so is the total variation of

µW − τµVref

Λ

.

Scaling everything back to a disk of radius 1, and bounding the self-interaction using (D.19), (D.20),
we get (D.21).

Inserting the equilibrium measure into the energy

Let ζW be given by:

ζW = hµW +
1

2
W − IW(µW) +

1

2

∫
WdµW.

It is a standard fact of logarithmic potential theory that the function ζW vanishes on the support of µW

and is non-negative outside of it, and we refer to ζW as the “effective confining potential” (see [Ser15,
Definition 2.18]).

Lemma D.6. We have, using the notation of (4.8) and (5.3): P
β
n,Λ,Vext(·) = P

β
n,Λ (·, nµW, ζW) thus (5.4)

is justified.

Proof of Lemma D.6. We start with the following claim:
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Claim D.7. Let µn := 1
n

∑
n

i=1 δxi = 1
n
X be the empirical measure associated to a n-tuple in Λ. We have:

FΛ(X)+

∫

Λ

Vext(x)dX(x) =
1

2
n2



x

x 6=y
− log |x− y|dµn(x)dµn(y) +

∫ ( |Λ|
n

Vref
Λ (x) +

2

n
Vext(x)

)
dµn(x)




− 1

2

((
2n|Λ| − |Λ|2

)
Iµ

Vref

Λ

(µVref

Λ

) − |Λ| (n − |Λ|)
∫

Vref
Λ dµVref

Λ

)
.

Proof. The proof is elementary but it does require some care because of the possible non-neutrality and
the various scalings involved. We start with expanding the definition (4.7) of FΛ(X) as:

2FΛ(X) =
x

x 6=y
− log |x− y|dX(x)dX(y) +

x

Λ×Λ

− log |x− y|dxdy − 2
x

Λ×Λ

− log |x− y|dX(x)dy.

Introducing the empirical measure µn and the reference probability measure µVref

Λ

(uniform on Λ) we get:

2FΛ(X) = n2
x

x 6=y
− log |x− y|dµn(x)dµn(y) + |Λ|2

x

Λ×Λ

− log |x− y|dµVref

Λ

(x)dµVref

Λ

(y)

− 2n|Λ|
x

Λ×Λ

− log |x− y|dµn(x)dµVref

Λ

(y).

Let us recall the following standard identity valid on Λ (see (D.2) or e.g. [Ser15, Thm. 2.1]):

∫

Λ

− log |x− y|dµVref

Λ

(y) = −1

2
Vref

Λ (x) +

(
Iµ

Vref

Λ

(µVref

Λ

) − 1

2

∫
Vref

Λ dµVref

Λ

)
, (D.22)

we obtain after some computations:

2FΛ(X) = n2



x

x 6=y
− log |x− y|dµn(x)dµn(y) +

|Λ|
n

∫
Vref

Λ dµn




−
(
2n|Λ| − |Λ|2

)
Iµ

Vref

Λ

(µVref

Λ

) + |Λ| (n − |Λ|)
∫

Vref
Λ dµVref

Λ

.

Dividing by 2 and inserting the contribution of Vext, we obtain the claim.

Claim D.8. We have:

FΛ(X) +

∫

Λ

VextdX = FΛ(X, nµW) +

∫
ζWdX + Const.(n,Λ,Vext)

Proof of Claim D.8. On the one hand, we know by Claim D.7 that:

FΛ(X) +

∫

Λ

Vext(x)dX(x) =
1

2
n2



x

x 6=y
− log |x− y|dµn(x)dµn(y) +

∫
Wdµn


+ Const.(n,Λ).

On the other hand, using the “splitting formula” of Sandier-Serfaty (see [SS15, Lemma 2.1]) we have:

1

2
n2



x

x 6=y
− log |x− y|dµn(x)dµn(y) +

∫
Wdµn


 =

1

2
n2IW(µW) + FΛ(X, nµW) + n

∫
ζW(x)dX(x).

(D.23)
Discarding quantities that do not depend on the configuration X, we obtain the claim.

We may thus equivalently use FΛ(X, nµW) +
∫
ζWdX instead of FΛ(X) +

∫
Λ VextdX in the Boltzmann’s

factor, up to some constant that gets absorbed in the partition function.
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D.3. Proof of Proposition 5.7

Proof of Proposition 5.7. By definition of Pβ
n,Λ we have:

logEβ
n,Λ

[
exp

(
β

2
FΛ(X, nµW)

) ∣∣∣EΛ

]
= log

∫

Λn

1EΛ
(X)e

− β

2

(
FΛ(X,nµW)+2

∫
ζW(x)dX(x)

)
dXn

− log

∫

Λn

1EΛ
(X)e

−β
(

FΛ(X,nµW)+
∫
ζW(x)dX(x)

)
dXn. (D.24)

1. Configuration-wise lower bound on the energy. Since ζW is non-negative, we have:

FΛ(X, nµW) + 2

∫
ζWdX ≥ FΛ(X, nµW).

Because of the possible singularity of µW along the boundary, we cannot directly use results like [AS21,
Lemma B.2.] to bound FΛ from below. Instead, for each i = 1, . . . , n we let η(xi) := 1

4 min (1, dist(xi, ∂Λ))
and use this as a “truncation vector”. By construction, the disks D(xi, η(xi)) do not intersect the support
of the singular part of µW, we may thus use the monotonicity property of [AS21, Lemma B.1] (or Onsager’s
lemma) and write that:

FΛ(X, nµW) ≥ 1

2

(
1

2π

∫

R2

|∇h
X,nµW

~η |2 +

n∑

i=1

log η(xi)

)
− O(n).

The integral is obviously non-negative, and it remains to find a lower bound for the negative contribution
coming from

∑
n

i=1 log η(xi). This is where we use our restriction to the event EΛ. Since X is assumed to
satisfy the conditions of Definition 5.2 we know that:

1. There is no index i such that η(xi) ≤ e− log2 T .

2. There are at most T logT indices i such that η(xi) ≤ 1
4 .

We thus have the rough lower bound:
∑n

i=1 log η(xi) ≥ −n log 4 − T logT × log2 T . Hence for X ∈ EΛ,
we have the configuration-wise lower bound: FΛ(X, nµW) ≥ −O

(
T 2
)
, which we can integrate in order to

obtain (with an implicit constant depending only on β):

log

∫

Λn

1EΛ
(X)e

− β

2

(
FΛ(X,nµW)+2n

∫
ζWdX

)
dXn ≤ log |EΛ| + O

(
T 2
)
,

where |EΛ| denotes the volume of the event EΛ under the Lebesgue measure dXn on Λn.

2. Lower bound on the partition function. To find an upper bound on the second term in the right-hand
side of (D.24), we rely on a “Jensen’s trick” inspired by [GZ19a] and write:

− log

∫

Λn

1EΛ
(X)e

−β
(

FΛ(X,nµW)+n

∫
ζW(x)dX(x)

)
dXn

≤ − log |EΛ| + β

∫

Λn

1EΛ
(X)

(
FΛ(X, nµW) + n

∫
ζW(x)dX(x)

)
dXn

|EΛ| . (D.25)

Let us start by doing computations without the indicator 1EΛ
(X).

Claim D.9. We have:
∫

Λn

(
FΛ(X, nµW) + n

∫
ζW(x)dX(x)

)
dXn

|Λn| ≤ O(T 2 log5 T ). (D.26)
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Proof of Claim D.9. Let us recall that the integrand can be written (see (D.23)) as:

FΛ(X, nµW) + n

∫
ζW(x)dX(x) =

1

2
n2



x

x 6=y
− log |x− y|dµn(x)dµn(y) +

∫
Wdµn


− 1

2
n2IW(µW).

By elementary computations, we obtain:

1

2
n2

∫

Λn



x

x 6=y
− log |x− y|dµn(x)dµn(y)


 dXn

|Λ|n =
1

2
n(n − 1)

x
− log |x− y|dµVref

Λ

(x)dµVref

Λ

(y)

and similarly:
1

2
n2

∫

Λn

(∫
Wdµn

)
dXn

|Λ|n =
1

2
n2

∫
W(x)dµVref

Λ

(x),

and thus after some simplifications we get:

∫

Λn

(
FΛ(X, nµW) + n

∫
ζW(x)dX(x)

)
dXn

|Λ|n

=
1

2
n(n − 1)

x
− log |x− y|dµVref

Λ

(x)dµVref

Λ

(y) +
1

2
n2

∫
WdµVref

Λ

− 1

2
n2IW(µW).

We now insert the expressions (D.16), (D.17) for W and µW, the definition (D.1) of IW(µW), expand and
use the identity (D.22). We obtain:

1

2
n(n − 1)

x
− log |x− y|dµVref

Λ

(x)dµVref

Λ

(y) +
1

2
n2

∫
WdµVref

Λ

− 1

2
n2IW(µW) =

n2
x

− log |x− y|d
(
η − τµVref

Λ

1B

)
(x)d

(
η − τµVref

Λ

1B

)
(y) − 1

2
n
x

− log |x− y|dµVref

Λ

(x)dµVref

Λ

(y)

+ n

∫
Vext(x)

(
dµVref

Λ

− dµW

)
(x). (D.27)

Using (D.21) we control the first term in the right-hand side of (D.27) by O(T 2 log5(T )). On the other
hand, by a direct estimate, we have n

s
− log |x−y|dµVref

Λ

(x)dµVref

Λ

(y) = O(T 2 logT ). It remains to bound

n
∫

Vext
(

dµVref

Λ

− dµW

)
from above. Since µW, µVref

Λ

have the same mass, it is equivalent to bound:

n

∫ (
Vext(x) − Vext(ω)

) (
dµVref

Λ

− dµW

)
(x),

where ω is the center of Λ. Let us decompose the integral into two parts:

Away from the boundary. On {dist(z, ∂Λ) ≥ κ} we know that µW coincides with τµVref

Λ

and thus

(since we take κ ≥ 1):

∣∣∣∣∣n
∫

{dist(z,∂Λ)≥κ}

(
Vext(z) − Vext(ω)

) (
dµW − dµVref

Λ

)∣∣∣∣∣ ≤ n × |1 − τ | × sup
{dist(z,∂ρD)≥1}

|Vext(z) − Vext(ω)|.

We know that |1 − τ | = O
(

log2 T
T

)
and by assumption we have |Vext(z) − Vext(ω)| = O(T log3 T ) on

{dist(z, ∂ρD) ≥ 1}. Thus the contribution “away from the boundary” is bounded by O
(
T 2 log5 T

)
.

Near the boundary. On {dist(z, ∂Λ) ≤ κ} we control each contribution separately. On the one hand,
we have, using the mean value formula for Vext (which is harmonic on Λ):

n

∫

{dist(z,∂Λ)≥κ}

(
Vext(z) − Vext(ω)

)
dµVref

Λ

(z) = 0.
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On the other hand, µW being a non-negative measure, we may write:

−n

∫

{dist(z,∂Λ)≥κ}

(
Vext(z) − Vext(ω)

)
dµW(z) ≤ −n

∫

{dist(z,∂Λ)≥κ}

(
Ṽext(z) − Ṽext(ω)

)
dµW(z),

where we used the auxiliary function Ṽext from Definition 5.1. The mass of µW near the boundary is
bounded by O

(
κ
T + T ‖ dη

ds ‖∞
)
. Using the results of Claim D.5 and the definition of a “good external

potential” we bound the contribution “near the boundary” by O
(
T 2 log5 T

)
also.

This concludes the proof of the claim.

It remains to argue that restricting our integrals to EΛ as in (D.25) instead of (D.26) has no consequence
on the estimate, which is not totally obvious. We make a crucial use of the following observation: the
“cluster bound” for independent points is not worse than the one mentioned in (2.13), and we thus have:

|EΛ|
|Λn| ≥ 1 − exp

(
− log2 T

)
. (D.28)

Claim D.10. We have:

1

2
n2

∫

Λn

1EΛ
(X)

(∫
Wdµn

)
dXn

|EΛ|n ≤ 1

2
n2

∫

Λn

(∫
Wdµn

)
dXn

|Λ|n + exp
(
− log2 T

)
. (D.29)

Proof of Lemma D.10. Let C be some large constant, and let

Ŵ := W − Vext(ω) + CT 2. (D.30)

Substracting the same constant to both sides, we may write that:

1

2
n2

∫

Λn

(∫
Wdµn

)
dXn

|Λ|n − 1

2
n2

∫

Λn

1EΛ
(X)

(∫
Wdµn

)
dXn

|EΛ| =

1

2
n2

∫

Λn

(∫
Ŵdµn

)
dXn

|Λ|n − 1

2
n2

∫

Λn

1EΛ
(X)

(∫
Ŵdµn

)
dXn

|EΛ| .

On the other hand, in view of the definition (D.16) of W and the properties of the “good external potential”
Vext as listed in Definition 5.1, we know that by choosing the constant C large enough we can guarantee
that Ŵ ≥ 0, in which case it is clear that:

1

2
n2

∫

Λn

1EΛ
(X)

(∫
Ŵdµn

)
dXn

|EΛ| ≤ 1

2
n2

∫

Λn

(∫
Ŵdµn

)
dXn

|Λ|n ×
( |Λn|

|EΛ|

)
.

We thus see that:

1

2
n2

∫

Λn

(∫
Wdµn

)
dXn

|Λ|n − 1

2
n2

∫

Λn

1EΛ
(X)

(∫
Wdµn

)
dXn

|EΛ| ≤ 1

2
n2

∫

Λn

(∫
Ŵdµn

)
dXn

|Λ|n
( |Λn|

|EΛ| − 1

)
.

On the other hand, the same computation as in the proof of Claim D.9 yields:

1

2
n2

∫

Λn

(∫
Ŵdµn

)
dXn

|Λ|n =
1

2
n2

∫
Ŵ(x)dµVref

Λ

(x),

which we can evaluate explicitely using our choice (D.30) for Ŵ and the expression (D.16) for W. We
obtain some polynomial in T , which gets absorbed by the sub-algebraic tail of (D.28). This concludes the
proof of (D.29).

We could proceed similarly for the other term in the integrand (which is easier because W does not play
any role).

This concludes the proof of (5.5).
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E. Effect of localized translations on the energy: Proof of

Proposition 6.3

In all this section, ε and ℓ are fixed and we assume that |t| ≤ ℓ
10 . To lighten notation, we will drop some

dependencies with respect to ε and ℓ.

E.1. Some additional properties of localized translations

We decompose Φt in two ways, either as:

Φt(x) = x+ ψt(x), (E.1)

which defines a vector field ψt, or alternatively as:

Φt(x) = x+ tW(ε,ℓ)(x) + γt(x), (E.2)

which defines a vector field γt.

Proposition E.1. 1. We have |Φt − Id |0 = |ψt|0 ≤ 2|t| ≤ ℓ
5 .

2. For |x| ≤ ℓ/4, we have |ψt|1,⋆(x) = 0, |ψt|2,⋆(x) = 0.

3. For ℓ/4 ≤ |x| ≤ 2ℓe1/ε, we have:

|ψt|k,⋆(x) ≤ Ctε

|x|k for k = 1, 2. (E.3)

4. For |x| ≤ ℓ/4, we have γt ≡ 0.

5. For ℓ/4 ≤ |x| ≤ 2ℓe1/ε, we have:

|γt|k,⋆(x) ≤ Ct2ε

|x|k+1
, for k = 0, 1, 2, 3. (E.4)

Proof of Proposition E.1. Let us start by some general observations.

Preliminary claims. Since the vector field W(ε,ℓ) is bounded by 2 (see Lemma 6.1) the distance |Φt(x)−x|
is always smaller than 2|t| and thus |ψt|0 ≤ 2|t|. This proves the first item. On the other hand, as stated
in Lemma 6.2, the flow Φt acts as a translation on D(0, ℓ/4), which means that ψt is a constant and
thus the derivatives of ψt vanish identically there. This proves the second item, and also implies that the
second-order correction γt vanishes identically on D(0, ℓ/4). In view of the bounds on W(ε) given in Lemma

6.1 and the definition of W(ε,ℓ) := W(ε)(·/ℓ), after scaling we obtain for k = 1, 2:

|W(ε,ℓ)|k,⋆(x) ≤ Cε

{
1

|x|k for |x| ≥ 2ℓ
1

|ℓ|k for |x| ≤ 2ℓ.

Thus we may always write that |W(ε,ℓ)|k,⋆(x) ≤ Cε 1
|x|k .

Claim E.2. If |x| ≥ ℓ
4 then:

|W(ε,ℓ)|k,⋆(Φt(x)) ≤ Cε
1

|x|k (E.5)

Proof. Since |t| ≤ ℓ
10 and |Φt(x) − x| ≤ 2|t|, we can ensure that if |x| ≥ ℓ

4 , then |Φt(x)| ≥ 1
5 |x|, so in view

of the previous estimates on W(ε,ℓ), we obtain the claim.

Let us end this paragraph with a simple general fact which will be useful to prove the remaining bounds:

d

dt
‖f(t)‖ ≤ ‖ d

dt
f(t)‖.
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Initial controls on DkΦt.

Claim E.3. We have, for |x| ≥ ℓ
4 :

‖DΦt(x)‖ ≤ 1 + C
εt

|x| , ‖DkΦt(x)‖ ≤ C
εt

|x|k for k = 2, 3 (E.6)

Proof of Claim E.3. At t = 0 we have Φt = Id and thus DΦt ≡ Id. Then we can compute:

d

dt
‖DΦt(x)‖ ≤ ‖ d

dt
DΦt(x)‖ = ‖D

(
W(ε,ℓ) ◦ Φt(x)

)
‖ ≤ ‖DW(ε,ℓ) ◦ Φt(x)‖ × ‖DΦt(x)‖.

Using (E.5) and an elementary differential inequality, we see that:

‖DΦt(x)‖ ≤ e
Cεt
|x| = 1 + C′ εt

|x| .

Arguing similarly, we have: D2Φt = 0 at t = 0, and:

d

dt
‖D2Φt(x)‖ ≤ ‖ d

dt
D2Φt(x)‖ = ‖D2

(
W(ε,ℓ) ◦ Φt(x)

)
‖.

Applying Leibniz’s rule, using the previous bound under the rough form ‖DΦt‖ ≤ C and inserting (E.5)
again, we obtain:

d

dt
‖D2Φt(x)‖ ≤ Cε

|x|2 +
Cε

|x| × ‖D2Φt(x)‖.

Solving again the differential inequality with initial condition 0, we obtain:

‖D2Φt(x)‖ ≤ C
εt

|x|2

We proceed the same way for the third derivative.

Application 1: properties of ψt Returning to the definition (E.1) of ψt, we see that Dψt = 0 at t = 0
and we may then compute:

d

dt
‖Dψt(x)‖ ≤ ‖ d

dt
Dψt(x)‖ = ‖D

(
W(ε,ℓ) ◦ Φt(x)

)
‖ ≤ |DW(ε,ℓ) ◦ Φt(x)‖ × ‖DΦt(x)‖.

By the same computations as above, we find d

dt‖Dψt(x)‖ ≤ C ε
|x| which implies the bound (E.3) for k = 1.

To study |ψt|2, observe that D2Φt = D2ψt and use (E.6).

Application 2: properties of γt. If we want to control, say |γt|0, we compute:
∣∣∣∣

d

dt
γt

∣∣∣∣ =
∣∣∣W(ε,ℓ) ◦ Φt(x) − W(ε,ℓ)(x)

∣∣∣ ≤ C
ε|ψt|0

|x| ≤ C
εt

|x| ,

where we used the bound on |ψt|0 stated as the first item of Proposition E.1 together with Claim E.2 in
order to bound the Lipschitz constant of W(ε,ℓ) between x and Φt(x). Integrating on t yields |γt|0 � εt2|x|−1

as claimed.
Higher derivatives are controlled the same way, using Leibniz’s rule together with Claims E.2 and E.3.

Upper bounds on the derivatives of ψt. Let us introduce two functions Ψ1,Ψ2:

Ψ1 : x 7→ Ctε

(ℓ+ |x|) , Ψ2 : x 7→ Ctε

(ℓ + |x|)2
(E.7)

Choosing the constant C suitably we have, in view of Proposition E.1, the pointwise bounds:

|ψt|1,⋆(x) ≤ Ψ1(x), |ψt|2,⋆(x) ≤ Ψ2(x), for all x ∈ R
2,

thus when looking for upper bounds we may replace occurrences of |ψt|1,⋆, |ψt|2,⋆ by Ψ1,Ψ2. The upside
of working with Ψ1,Ψ2 is that they enjoy the following properties deduced from elementary calculus:
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• (Slow variation at scale ℓ.) For all x we have:

sup
y,|x−y|≤ℓ

|Ψ1(y)|
|Ψ1(x)| ≤ 2, sup

y,|x−y|≤ℓ

|Ψ2(y)|
|Ψ2(x)| ≤ 2. (E.8)

• (Slow variation.) For all x we have:

sup
y,|x−y|≤ 1

2
|x|

|Ψ1(y)|
|Ψ1(x)| ≤ 2, sup

y,|x−y|≤ 1

2
|x|

|Ψ2(y)|
|Ψ2(x)| ≤ 2. (E.9)

Both (E.8) and (E.9) will be convenient to simplify computations later on. We also record the following
simple facts:

Claim E.4. If ε is chosen smaller than some universal constant, then:

• |ψt|1 ≤ 1
5 (globally).

• For all x, x′ we have:
1

2
|x− x′| ≤ |Φt(x) − Φt(x

′)| ≤ 2|x− x′|.

• For all x we have:
|ψt|1,⋆(Φt(x)) ≤ 2Ψ1(x), |ψt|2,⋆(Φt(x)) ≤ 2Ψ2(x). (E.10)

Proof of Claim E.4. The first item follows directly from Proposition E.1 (see in particular (E.3)). It
implies the second item straightforwardly. To prove (E.10) let us recall that |Φt(x) − x| ≤ 2|t| ≤ ℓ

5 (by

the first item of Proposition E.1 and the assumption |t| ≤ ℓ
10 ) and that |ψt|1,⋆(Φt(x)) ≤ Ψ1(Φt(x)) by

construction (similarly for |ψt|2,⋆,Ψ2). We thus have:

|ψt|1,⋆(Φt(x)) ≤ Ψ1(Φt(x)) ≤ sup
|y−x|≤ ℓ

10

Ψ1(y),

which is smaller than 2Ψ1(x) according to (E.8), as desired.

E.2. The “well-spread” event

Definition E.5 (The WellSpread event). Let Ω be some subset of R
2, let ℓ ≥ 1 be a length-scale, let

K ≥ 10. We define the event WellSpread(Ω, ℓ,K) as follows:

WellSpread(Ω, ℓ,K) :=
⋂

x∈(ℓZ)2∩Ω

{
Pts(X,�(x, ℓ)) ≤ Kℓ2

}
∩
{

Ener(X,�(x, ℓ)) ≤ Kℓ2
}
.

Saying that X ∈ WellSpread(Ω, ℓ,K) essentially means that if we cover Ω by squares of side-length ℓ,
then the number of points and the electric energy in each square are of order ℓ2, which is what we expect
in view of the local laws. It has the following consequences:

1. If X ∈ WellSpread(Ω, ℓ,K) then for each x ∈ (ℓZ)2 ∩ Ω the quantity Eners(X,�(x, ℓ)) (as defined in
(2.4)) is bounded by Kℓ2(1 + log s) for s ∈ (0, 1).

2. Let us say that a function f varies slowly at scale ℓ when:

sup
|x′−x|≤2ℓ

|f(x′)| ≤ 10|f(x)|. (E.11)

Then if f satisfies (E.11) and is supported in Ω, assuming that X ∈ WellSpread(Ω, ℓ,K) allows us to
make two computational simplifications:

a) An energy density upper bound, namely (for s ∈ (0, 1)):
∣∣∣∣
∫
f(x)|∇hs~r|2dx

∣∣∣∣ � K‖f‖L1(1 + | log s|). (E.12)
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b) Sum-integral comparisons: ∣∣∣∣∣
∑

x∈X

f(x)dx

∣∣∣∣∣ � K‖f‖L1. (E.13)

(To prove (E.12) and (E.13), cover the support of f by squares of sidelength ℓ and use (E.11)).

Lemma E.6 (The Well-Spread event is frequent). For K larger than some constant (depending on β and
the “good external potential” constant C̄) and if εℓ2 ≥ 1 (which is guaranteed by (6.1)), we have:

P
β
n,Λ

(
WellSpread(Λbulk, ℓ,K)

∣∣EΛ

)
≥ 1 − exp

(
−ℓ2

)
(E.14)

Proof of Lemma E.6. Covering Λbulk by O(T 2ℓ−2) squares of sidelength ℓ and using the local laws in Λbulk

on each one, together with a union bound, we get:

P
β
n,Λ

(
WellSpread(Λbulk, ℓ,K)

∣∣EΛ

)
≥ 1 − C

T 2

ℓ2
exp

(
−Kℓ2

Cβ

)
.

Using the relation between T, ℓ and ε as in (6.1), we obtain:

P
β
n,Λ

(
WellSpread(Λbulk, ℓ,K)

∣∣EΛ

)
≥ 1 − C exp

(
2

ε
− Kℓ2

Cβ

)
,

and thus if we choose K larger than some constant (depending on β and C̄) and impose that εℓ2 ≥ 1 then
(E.14) holds.

E.3. The measure-preserving case

Let |t| ≤ ℓ
10 and let Φ = Φε,ℓt be the localized translation constructed in Section 6.2. Let ψ = ψε,ℓt = Φ− Id

as studied in Proposition E.1. In this section, we carefully inspect the proof of [Ser20, Prop 4.2] in order
to obtain the following:

Proposition E.7 (Energy comparison along a measure-preserving map). Let X be a point configuration
with n points in Λ. Assume that X belongs to WellSpread(Λbulk, ℓ,K) for a certain K > 1. Then:

FΛ(Φ · X) = FΛ(X) + A1 [X, ψ] + O
(
K2t2ε log ε

)
.

The quantity A1 appears in the proof as a black box (see (E.31), we refer to Section E.4 for more details.

Remark E.8 (Comparison with existing statements). Compared to the result of [Ser20] there are two
modifications:

1. We estimate the energy cost of transporting by Φ through the local density of electric energy density
and points instead of using the global one (denoted by Ξ(t) in [Ser20]).

2. The quantity |ψ|L∞ |ψ|C2 present in the control on the second derivative of the energy in [Ser20, Prop.
4.2] does not appear in our computations.

Both items are crucial for us. The localization allows us to bound the error in terms of
∫

Λ |ψ|21,⋆ instead
of |ψ|21 × |Λ| - in the case of our localized translation the former is O(ε) while the latter is gigantic. On
the other hand, even after localizing, the contribution of |ψ|L∞ |ψ|C2 would be of order 1 but not small17

so it was necessary to get rid of it.
Obtaining these two refinements requires significant adaptations. On the other hand, the “measure-

preserving” character of Φ will bring several small simplifications: the background measure is not affected
by the transport so all distinctions between µ and ν := Φ#µ (using the notation of [Ser20]) are void. We
will in particular repeatedly use the fact that (for various functions f):

∫
f(x) (d(Φ · X)(x) − dx) =

∫
f(Φ(x)) (dX(x) − dx) .

17It is in fact impossible to make it small by choosing a different “localized translation”, because in dimension 2 the
(homogeneous) Sobolev space Ẇ 2,1 is embedded in L∞. This is, fortunately, not the case for Ẇ 1,2.
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Since we are working on a disk with a constant background, the logarithmic potential generated by said
background is explicitly computable and given by:

VΛ(x) :=

∫

Λ

− log |x− y|dy =
|x|2
4
. (E.15)

We use the explicit expression (E.15) for simplicity a couple times below, although one could work with a
more general shape and proceed to a more careful analysis instead.

Proof of Proposition E.7. We follow the steps of [Ser20, Appendix A] while making several important
changes. We will only use a couple technical results as “black boxes” and copy or adapt all the main
arguments and computations.

E.3.1. Transporting vector fields

Definition E.9 (Transport of vector fields). If v is a vector field on R2 we define Φ#v, the “transport of
v by Φ”, as:

Φ#v :=
(
DΦ ◦ Φ−1

)T
v ◦ Φ−1. (E.16)

The point is that when div v is a measure we have:

div Φ#v = Φ# (div v) , (E.17)

where on the left-hand side there is a transport of vector fields while the right-hand side is a push-forward
of measures. The identity (E.17) is a special case of [Ser20, Lemma A.3]. On top of it, we make the
following simple observation:

Claim E.10. If v = ∇h is a gradient, then:

Φ#∇h =
(
DΦ ◦ Φ−1

)T ∇
(
h ◦ Φ−1

) (
DΦ ◦ Φ−1

)
.

Thus is v is a gradient and Φ is close to the identity map, then Φ#v is “almost” a gradient. The proof
of Claim E.10 is straightforward using the definition (E.16) and some calculus.

E.3.2. Setting up the energy comparison

We want to compare FΛ(Y) to FΛ(X). We start by recalling known expressions for both quantities. Let
hX
~η , h

Y
~η be the true electric potentials generated by X,Y in Λ in the sense of Definition 2.1. As a truncation

vector, let us choose18

~η := s~r with s = ε2 (E.18)

(in particular s ≤ 1
10 ), the distances ~r being computed with respect to the configuration X. We recall

that, by Claim E.4:
1

2
|xi − xj | ≤ |yj − yi| ≤ 2|xi − xj |, (E.19)

and thus if we compute the nearest-neighbor distances ~r with respect to Y instead of X we still have
~η ≤ 2s~r ≤ 1

5
~r.

From Lemma 5.6 we know that:

FΛ(X) − FΛ(Y) =
1

4π

(∫
|∇hX

~η |2 −
∫

|∇hY
~η |2
)
,

where hX = hX,m, hY := hY,m (the background will be m = nµW everywhere and we omit it) and ~η is as
in (E.18). We introduce two additional vector fields, using the notation of (E.16) for the first one:

E~η := Φ#∇hX
~η , ∇ĥ := ∇(− log) ∗

(
n∑

i=1

Φ#δ(ηi)
xi − m

)
,

18Such a choice of a very small truncation parameter appears in [LS18; Ser20]. It might seem “unphysical” but it is very
convenient to get rid of annoying error terms, while only costing log s in view of (2.5).
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(we recall that δ
(ηi)
xi denotes the uniform measure of mass 1 spread on the circle of center xi and radius ηi).

To summarize we have, besides ∇hX
~η which is the true electric field generated by X,

∇hY
~η = ∇(− log) ⋆

(∑n

i=1 δ
(ηi)
Φ(xi)

− m
)

∇ĥ = ∇(− log) ⋆
(∑

n

i=1 Φ#δ
(ηi)
xi − m

)

E~η = Φ#∇(− log) ⋆
(∑

n

i=1 δ
(ηi)
xi − m

)
.

There are subtle differences between these three vector fields:

• ∇hY
~η is a gradient, it is the true electric field generated by Y, and in its divergence the charges are

spread along a circle with centers yi = Φ(xi) (1 ≤ i ≤ n).

• ∇ĥ is also a gradient, but the charges are spread along deformed circles Φ#δ
(ηi)
xi which are (approxi-

mately) ellipses of center yi.

• E~η is not a gradient in general, but it is obtained by transporting ∇hX
~η (which is a gradient and for

which the charges are spread along circles around the original points xi’s) according to (B.2).

By the identity (E.17), ∇ĥ and E~η have the same divergence, and as in [Ser20, (A.23)] we get the decom-
position: ∫

|E~η|2 =

∫
|∇ĥ|2 +

∫
|E~η − ∇ĥ|2.

Bounding the difference E~η−∇ĥ. We control the second term in the right-hand side immediately. Using
Claim E.10 we see that:

E~η =
(
DΦ ◦ Φ−1

)T ∇
(
hX

~η ◦ Φ−1
) (

DΦ ◦ Φ−1
)
,

and thus since Φ = Id +ψ with |ψ|1 smaller than 1
5 we have the pointwise bound:

|E~η − ∇
(
hX

~η ◦ Φ−1
)

| ≤ C‖Dψ ◦ Φ−1‖ × |∇hX
~η ◦ Φ−1|,

which implies (after integrating the previous inequality and changing variables by Φ):

∫
|E~η − ∇

(
hX

~η ◦ Φ−1
∣∣2 ≤ C

∫
|ψ|21,⋆|∇hX

~η |2.

This provides an upper bound on the L2-distance between E~η and the space of gradients, and thus since

∇ĥ is its projection onto that space we get:

∫
|E~η − ∇ĥ|2 ≤ C

∫

Λ

|ψ|21,⋆(x)|∇hX
~η |2(x)dx.

This is the first moment where we will use the notation and simple facts of Section 6.2 combined with our
WellSpread assumption. First, replacing |ψ|1,⋆ by Ψ1 (as in (E.7)) provides an upper bound. Next, since
Ψ1 has slow variations at scale ℓ (see (E.8)) and we are working on WellSpread(Λ, ℓ,K), we may apply the
energy density upper bound (E.12) (we will apply a similar chain of argument repeatedly in the rest of
the proof). Here in conclusion, we have:

∫

Λ

|ψ|21,⋆(x)|∇hX
~η |2(x)dx ≤

∫

Λ

Ψ2
1(x)|∇hX

~η |2(x)dx � K

(∫

Λ

Ψ2
1(x)dx

)
(1 + | log s|), (E.20)

which finally implies, after a direct estimate of the L2 norm of Ψ1 (see (E.7)), that:

∫
|E~η − ∇ĥ|2 ≤ CKt2ε(1 + | log s|) = O

(
Kt2ε log ε

)
, (E.21)
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becaus we have chosen s = ε2 in (E.18). Going back to [Ser20, (A.25)], and inserting (E.21) we write19:

FΛ(Y) − FΛ(X) = Main + Rem + O
(
Kt2ε log ε

)

where Main,Rem are given by:

Main :=
1

4π

(∫
|E~η|2 −

∫
|∇hX

~η |2
)
, Rem :=

1

4π

(∫
|∇hY

~η |2 −
∫

|∇ĥ|2
)
.

E.3.3. The Main term

For the term Main, a direct expansion of E~η = Φ#∇hX
~η using the definition (E.16) gives:

Main =
1

4π

∫ 〈
∇hX

~η , 2Dψ∇hX
~η

〉
+

∫
O(|ψ|21,⋆)|∇hX

~η |2. (E.22)

This is consistent with [Ser20, (A.31)], the improvement being that we have no contribution of the form
|ψ|L∞ |ψ|C2 in the second order term thanks to the fact that Φ is measure-preserving. Let us also note that
although Φ is measure-preserving, we may not have divψ = 0, however it is true that divψ = O

(
|ψ|21,⋆

)

pointwise and thus the − divψ term appearing in [Ser20, (A.32)] can be absorbed in our second order
correction as in (E.22). Arguing as in (E.20) we may re-write the error term in (E.22) and get:

Main =
1

4π

∫ 〈
∇hX

~η , 2Dψ∇hX
~η

〉
+ O

(
Kt2ε log ε

)
.

In this step we see how the H1 norm of ψ appears as a second-order contribution to the energy change,
and since by construction we have

∫
|ψ|2

1,⋆ = O(ε) we may indeed hope (if Main is indeed the “main”
term) to have a small energy cost.

E.3.4. The Rem term

The Rem term is due to the difference between the electric fields ∇hY
~η (for which charges are spread along

circles) and ∇ĥ (for which charges are spread along approximate ellipses). The fact that we can choose
small truncations via the parameter s (we which recall to have chosen as s = ε2 in (E.18), we could even
have used an higher power of ε) will turn out to be crucial in order to control those errors. Let us keep
the notation of [Ser20] and use:

• δ
(ηi)
yi to denote the charge spread uniformly on the circle of center yi = Φ(xi) and radius ηi,

• δ̂yi to denote the push-forward by Φ of the measure δ
(ηi)
xi .

We also write vi for the function

vi := − log ⋆
(
δ̂yi − δ(ηi)

yi

)
. (E.23)

As in [Ser20, (A. 41)] we decompose Rem as Rem1 + Rem2 + Rem3 and analyse each term separately.

The Rem1 term. Rem1 is defined as:

Rem1 = −1

2

n∑

i=1

∫
vi

(
δ̂yi + δ(ηi)

yi

)
.

We write as in [Ser20, (A.42)] (with ~n the unit normal vector to the circle)

Rem1 =
1

2

n∑

i=1

1

ηi
−
∫

∂D(yi,ηi)

(ψ(y) − ψ(yi)) · ~n+ O
(

n∑

i=1

|ψ|21,loc(yi)

)
.

19Let us observe that the additional term Err appearing in [Ser20, (A.23)] is 0 in our case because Φ is measure-preserving
and thus, with the notation of [Ser20], ν = µ.
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Let us use Ψ1 as an upper bound to the derivative of ψ, we have:

n∑

i=1

|ψ|2
1,loc(yi) �

n∑

i=1

(Ψ1)
2

(xi),

Moreover, a Taylor’s expansion yields:

ψ(y) − ψ(yi) = Dψ(yi)(y − yi) + O(|ψ|2,loc(yi)η
2
i ),

but since Φ is measure-preserving we know that divψ(yi) = O(|ψ|2
1,⋆(yi)), thus:

1

2

n∑

i=1

1

ηi
−
∫

∂D(yi,ηi)

(ψ(y) − ψ(yi)) · ~n = O(sΨ2(xi) + Ψ2
1(xi)).

Since Ψ1,Ψ2 have slow variations and since we are working under the WellSpread assumption we may
compare sums to integrals as in (E.13), hence:

n∑

i=1

(Ψ1)2 (xi) + sΨ2(xi) ≤ K

∫
Ψ2

1(x)dx +Kt2s = O(Kt2ε).

We thus obtain:
Rem1 = O(Kt2ε).

The Rem2 term. Rem2 is defined as (see (E.23))

Rem2 :=
1

2

∑

1≤i6=j≤n

∫
vi

(
δ̂yj − δ(ηj)

yj

)
.

We write as in [Ser20, (A.45)]:
∣∣∣∣∣∣

∑

1≤i6=j≤n

∫
vi

(
δ̂yj − δ(ηj)

yj

)
∣∣∣∣∣∣

�
∑

1≤i6=j≤n

η2
i ηj

(
|ψ|2

1,loc(xi)

|yi − yj|3
+

|ψ|1,loc(xi)|ψ|2,loc(xi)

|yi − yj |2

)
,

and then proceed a bit differently.
First, we use Ψ1,Ψ2 as upper bounds to the derivatives of ψ, use (E.19) and (E.9) in order to replace

the yi, yj ’s in the right-hand side by the corresponding xi, xj ’s up to some multiplicative constant. Next,
we decompose (as in [Ser20]) the sum between contributions coming from “close” and “far away” pairs of
points.

Distances smaller than 10ℓ. Since we always have |xi − xj |3 ≥ r2
i rj and since we take the truncation

ηi = sri we may write for each fixed i

∑

1≤j≤n,j 6=i,|xj−xi|≤10ℓ

η2
i ηj

(
Ψ2

1(xi)

|xi − xj |3
+

Ψ1(xi)Ψ2(xi)

|xi − xj |2
)

≤ s3
(
Ψ2

1(xi) + Ψ1(xi)Ψ2(xi)
)

× # {j, |xj − xi| ≤ 10ℓ} .

Since we condition on WellSpread(Λbulk, ℓ,K) we may bound # {j, |xj − xi| ≤ 10ℓ} by CKℓ2, and thus:

s3
(
Ψ2

1(xi) + Ψ1(xi)Ψ2(xi)
)

× # {j, |xj − xi| ≤ 10ℓ} � s3Kℓ2
(
Ψ2

1(xi) + Ψ1(xi)Ψ2(xi)
)
.

Next we compare the sum (over i) of the previous quantity to an integral using (E.13) and get:

∑

1≤j≤n,j 6=i,|xj−xi|≤10ℓ

η2
i ηj

(
Ψ2

1(xi)

|xi − xj |3
+

Ψ1(xi)Ψ2(xi)

|xi − xj |2
)

≤ Cs3K2ℓ2

∫ (
Ψ2

1(x) + Ψ1(x)Ψ2(x)
)

dx,

and the right-hand side can be evaluated using (E.7)

s3K2ℓ2

∫ (
Ψ2

1(x) + Ψ1(x)Ψ2(x)
)

dx = O
(
s3K2ℓ2εt2

)
. (E.24)
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Remark E.11. We do lose some information when replacing all distances by the smallest one over a large
zone of size ℓ, but for technical reasons it seemed hard to do much better, and it works well enough for us.

Distances larger than 10ℓ. The function: z 7→ 1
|z|3 “varies slowly at scale ℓ” (in the sense of (E.11))

on {|z| ≥ 10ℓ} thus using (E.13) for each fixed i we can compare

∑

1≤j≤n,j 6=i,|xj−xi|≥10ℓ

1

|xi − xj |3

to K times the corresponding integral, namely:

∫

{|x−xi|≥10ℓ}

1

|xi − x|3 dx = O(1).

Similarly the sum
∑

1≤j≤n,|xj−xi|≥10ℓ
1

|xi−xj|2 can be compared to:

K ×
∫

Λ∩{|x−xi|≥10ℓ}

1

|xi − x|2 dx = K × O(logT ).

Using the obvious bound η2
i ηj ≤ s3 we thus obtain:

A :=
∑

1≤j≤n,|xj−xi|≥10ℓ

η2
i ηj

(
|ψ|2

1,loc(xi)

|xi − xj |3
+

|ψ|1,loc(xi)|ψ|2,X(xi)

|xi − xj |2

)

� s3K
∑

1≤i≤n

|ψ|2
1,loc(xi) + |ψ|1,loc(xi)|ψ|2,loc(xi) logT.

Using again Ψ1,Ψ2 instead and comparing again the sum to an integral, we obtain:

A � s3K2

(∫
Ψ2

1(x) + logTΨ1(x)Ψ2(x)dx

)
,

which can be evaluated using (E.7) (and (6.1)):

A � s3K2

(∫
Ψ2

1(x) + logTΨ1(x)Ψ2(x)dx

)
� s3K2

(
εt2 + ε2t2 logT

)
= O

(
s3K2ε log εt2

)
(E.25)

Conclusion for Rem2. Combining (E.24) and (E.25) and discarding negligible terms we get:

Rem2 = O
(
s3K2ℓ2ε log εt2

)
= O

(
K2ε log εt2

)
,

where we have used (6.1) to simplify the expression.

The Rem3 term. Rem3 is defined as (m is outside of the sum over j.):

Rem3 := −
∑

1≤i≤n

∫

Λ

vi


 ∑

1≤j≤n,j 6=i
δ̂yj − m


 .

Writing δ̂yj − m = δ̂yj − δ
(ηj)
yj + δ

(ηj)
yj − m and recalling that vi := − log ⋆

(
δ̂yi − δ

(ηi)
yi

)
, one can express

Rem3 (as in [Ser20, Substep (5.3)]) as:

Rem3 =
∑

1≤i≤n

∫
h̃Y
i

(
δ(ηi)
yi − δ̂yi

)
.

We recall that the truncated field h~η coincides with h̃i inside the ith spread out charge.
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The analysis of [Ser20, Step 4.] shows that, for each i we have, as in [Ser20, Substep 5.3]:

∫
h̃Y
i

(
δ(ηi)
yi − δ̂yi

)
= −
∫

|u|=ηi
∇h̃Y

i (yi + u) · (ψ(xi + u) − ψ(xi)) du

+ O
(
|h̃Y
i |C2(B(yi,2ηi))η

2
i |ψ|2

1,loc(xi)
)
. (E.26)

Here and below we temporarily borrow the notation of [Ser20] for local controls on derivatives of h̃Y
i ,

namely:

|h̃Y
i |Ck(B(x,r)) = L∞ norm of the k-th derivative of h̃Y

i over the ball/disk of center x and radius r.

We cannot use (E.26) as such because of the various dependencies in Y, which we need to analyse.

Step 1: Preliminary claims

Claim E.12. [Variation of the first derivatives] For all a ∈ {1, 2}, 1 ≤ i ≤ n and |u| ≤ ηi we have:

∣∣∂ah̃Y
i (yi + u) − ∂ah̃

X
i (xi + u)

∣∣ � K

(
1

ri
Ψ1(xi)ℓ

2 + |ψ|0 logT

)

Proof of Claim E.12. We have by definition:

∂ah̃
Y
i (yi + u) − ∂ah̃

X
i (xi + u) =

∑

1≤j≤n,j 6=i
∂a(− log)(yj − (yi + u)) − ∂a(− log)(xj − (xi + u))

− ∂aVΛ(yi + u) + ∂aVΛ(xi + u),

where VΛ is the logarithmic potential generated by the background measure on Λ, whose expression is
given in (E.15). Since yi = xi + ψ(xi) the difference ∂aVΛ(yi + u) − ∂aVΛ(xi + u) is easily bounded by
|ψ|0. We now focus on the contribution coming from the point particles. We have:

∣∣∂ah̃Y
i (yi + u) − ∂ah̃

X
i (xi + u)

∣∣ ≤
∑

1≤j≤n,j 6=i

|ψ(xi) − ψ(xj)|
|xi − xj |2

.

Let us split the sum into two parts corresponding to “close” and “far away” pairs of points.

Distances smaller than 10ℓ. On the one hand we have:

∑

j,|xj−xi|≤10ℓ,j 6=i

|ψ(xi) − ψ(xj)|
|xi − xj |2

� 1

ri
Ψ1(xi) × # {j, |xj − xi| ≤ 10ℓ} � K

1

ri
Ψ1(xi)ℓ

2.

To be precise, here we have used a mean value argument to argue that:

|ψ(xi) − ψ(xj)|
|xi − xj |

≤ sup
x∈[xi,xj ]

|ψ|1,⋆(x),

then we wrote |ψ|1,⋆(x) ≤ Ψ1(x) and finally we used (E.8). Then we applied the local control on the
number of points implied by WellSpread(Λbulk, ℓ,K).

Distances larger than 10ℓ. On the other hand:

∑

|xj−xi|≥10ℓ

|ψ(xi) − ψ(xj)|
|xi − xj |2

� K|ψ|0
∫

|x−xi|≥10ℓ,x∈Λ

1

|x− xi|2
dx � K|ψ|0 logT.

This time we simply bounded |ψ(xi) − ψ(xj)| by 2|ψ|0 and used the fact that z 7→ 1
|z|2 “varies slowly at

scale ℓ” (in the sense of (E.11)) on {|z| ≥ 10ℓ} in order to compare the sum to an integral as in (E.13).
Combining those estimates proves the claim.

62



Claim E.13 (Variation of the second derivatives). For all a, b ∈ {1, 2}, 1 ≤ i ≤ n and |u| ≤ ηi we have:

∣∣∂abh̃Y
i (yi + u) − ∂abh̃

X
i (xi + u)

∣∣ � K

(
1

r2
i

ℓ2Ψ1(xi) + Ψ1(xi) logT + |ψ|0
1

ℓ+ |xi|

)
.

Proof of Claim E.13. The proof is similar to Claim E.12. We have by definition:

∂abh̃
Y
i (yi + u) − ∂abh̃

Y
i (xi + u) =

∑

1≤j≤n,j 6=i
∂ab(− log)(yj − (yi + u)) − ∂ab(− log)(xj − (xi + u))

− ∂abVΛ(yi + u) + ∂abVΛ(xi + u),

however the second derivatives of VΛ are constant (see (E.15)) so we can discard those terms. Writing
y = Φ(x) = x+ ψ(x), we get:

∣∣∂abh̃Y
i (yi + u) − ∂abh̃

X
i (xi + u)

∣∣ ≤
∑

1≤j≤n,j 6=i

|ψ(xi) − ψ(xj)|
|xi − xj |3

.

We now split the sum into three parts: |xj − xi| ≤ ℓ, |xj − xi| ≤ 1
2 |xi| and |xj − xi| ≥

(
ℓ ∪ 1

2 |xi|
)
.

Distances smaller than 10ℓ. Arguing as in the proof of Claim E.12 we get:

∑

1≤j≤n,j 6=i

|ψ(xi) − ψ(xj)|
|xi − xj |3

� K
1

r2
i

ℓ2Ψ1(xi).

Distances between 10ℓ and 1
2 |xi|. For 10ℓ ≤ |xj − xi| ≤ 1

2 |xi| we write by a mean value argument:

|ψ(xi) − ψ(xj)|
|xi − xj |3

≤ sup
x∈[xi,xj ]

|ψ|1,⋆(x) × 1

|xj − xi|2
,

then we may again replace |ψ|1,⋆(x) by Ψ1(x) and use property (E.9) to bound it by Ψ1(xi) up to some
multiplicative constant. Next, comparing a sum to an integral, we have:

∑

j,|xj−xi|≥10ℓ

1

|xi − xj |2
� K logT.

In conclusion, we get for fixed i:

∑

1≤j≤n,j 6=i,10ℓ≤|xj−xi|≤ 1

2
|xi|

|ψ(xi) − ψ(xj)|
|xi − xj |3

≤ KΨ1(xi) logT.

Large distances. To estimate the remaining contribution, we write:

∑

1≤j≤n,|xj−xi|≥max(10ℓ, 1

2
|xi|)

|ψ(xi) − ψ(xj)|
|xi − xj |3

� K|ψ|0
∫

|x−xi|≥max(10ℓ, 1

2
|xi|)

1

|x− xi|3
dx � K|ψ|0

1

|xi| + ℓ
,

where we compared the sum to an integral using (E.13).
Combining all three estimates proves the claim.

Remark E.14. In Claims E.12 and E.13 we have studied the contributions coming from the point particles
and the background separately. Taking cancellations between those terms into account would yield more
accurate estimates, but we do not need them here.

Step 2: Studying the first-order term. Let us recall that we are still trying to express Rem3 purely
in terms of the original points (x1, . . . , xn).
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Going back to (E.26), let us write the first-order term as:

−
∫

|u|=ηi
∇h̃Y

i (yi + u) · (ψ(xi + u) − ψ(xi)) du = −
∫

|u|=ηi
∇h̃X

i (xi + u) · (ψ(xi + u) − ψ(xi)) du

+ −
∫

|u|=ηi

(
∇h̃Y

i (yi + u) − ∇h̃X
i (xi + u)

)
· (ψ(xi + u) − ψ(xi)) du.

We keep the first term in the right-hand side as such and we focus on the second one, which we decompose
as:

−
∫

|u|=ηi

(
∇h̃Y

i (yi + u) − ∇h̃X
i (xi + u)

)
· (ψ(xi + u) − ψ(xi)) du

= −
∫

|u|=ηi

(
∇h̃Y

i (yi) − ∇h̃X
i (xi)

)
· (ψ(xi + u) − ψ(xi)) du

+ −
∫

|u|=ηi

((
∇h̃Y

i (yi + u) − ∇h̃X
i (xi + u)

)
−
(
∇h̃Y

i (yi) − ∇h̃X
i (xi)

))
· (ψ(xi + u) − ψ(xi)) du. (E.27)

Let us also write that ψ(xi + u) − ψ(xi) = Dψ(xi) × u+ O
(
|ψ|2,loc(xi)η

2
i

)
, and observe that according to

Claim E.13 we have (for |u| = ηi)

∣∣(∇h̃Y
i (yi + u) − ∇h̃X

i (xi + u)
)

−
(
∇h̃Y

i (yi) − ∇h̃X
i (xi)

)∣∣ � ηi×K
(

1

r2
i

ℓ2Ψ1(xi) + Ψ1(xi) log T + |ψ|0
1

ℓ+ |xi|

)
.

We may thus re-write the right-hand side of (E.27) as:

−
∫

|u|=ηi

(
∇h̃Y

i (yi) − ∇h̃X
i (xi)

)
· Dψ(xi)udu+ −

∫

|u|=ηi

(
∇h̃Y

i (yi) − ∇h̃X
i (xi)

)
× O

(
|ψ|2,loc(xi)η

2
i

)
du

+ O
(
ηi ×K

(
1

r2
i

ℓ2Ψ1(xi) + Ψ1(xi) logT + |ψ|0
1

ℓ+ |xi|

))
× |ψ|1,loc(xi) × ηi.

The first term vanishes by symmetry, and we can bound the second term further using Claim E.12. In
conclusion, we obtain (using that ηi ≤ sri ≤ s):

−
∫

|u|=ηi
∇h̃Y

i (yi + u) · (ψ(xi + u) − ψ(xi)) du = −
∫

|u|=ηi
∇h̃X

i (xi + u) · (ψ(xi + u) − ψ(xi)) du

+K

(
s2Ψ1(xi)Ψ2(xi)ℓ

2 + s2|ψ|0Ψ2(xi) logT + s2Ψ2
1(xi)

(
ℓ2 + logT

)
+ s2|ψ|0Ψ1(xi)

1

ℓ+ |xi|

)
. (E.28)

Summing the error term in (E.28) over i yields:

n∑

i=1

K

(
s2Ψ1(xi)Ψ2(xi)ℓ

2 + s2|ψ|0Ψ2(xi) logT + s2Ψ2
1(xi)

(
ℓ2 + logT

)
+ s2|ψ|0Ψ1(xi)

1

ℓ+ |xi|

)

≤ K2

(
s2ℓ2

∫
Ψ1(x)Ψ2(x)dx + s2|ψ|0 logT

∫
Ψ2(x)dx + s2

(
ℓ2 + logT

) ∫
Ψ2

1(x)dx+ s2|ψ|0
∫

Ψ1(x)
1

ℓ + |x|dx
)

≤ K2
(
s2ℓ2ε2t2 + s2t2 logT + s2

(
ℓ2 + logT

)
εt2 + s2t2

)
= O

(
K2εt2

)
,

where we have used (6.1) to simplify the expression involving T, ℓ, ε and s (we recall that s = ε2).

Step 3: Re-writing the error term. The error term in (E.26) involves |h̃Y
i |C2(B(yi,2ηi)), which is

expressed in terms of the transported points and thus remains an issue for us. Using Claim E.13 however,
we see that:

|h̃Y
i |C2(B(yi,2ηi)) ≤ |h̃X

i |C2(B(xi,2ηi)) +KO
(

1

r2
i

ℓ2|ψ|1,loc(xi) + |ψ|1,loc(xi) logT + |ψ|0
1

ℓ+ |xi|

)
. (E.29)
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Now, the analysis of [Ser20, Lemma A.2] gives:

|h̃X
i |C2(B(xi,2ηi)) � 1

r2
i

(
1 +

∫

D(xi,ri)

|∇h̃X
i |2
)
. (E.30)

Remark E.15. The proof of (E.30) uses the fact that h̃X
i is almost harmonic on the disk D(xi, ri), and is

simplified by the fact that the background measure (µ in the notation of [Ser20]) is here constant (beware:
when reading [Ser20, (A.5), (A.6)], our background measure corresponds to Nµ and not µ - compare
[Ser20, (3.1)] with our Definition 2.1. Also, the nearest-neighbor distances in [Ser20] are of order N−1/2

where ours are of order one, this is due to a different choice of scaling, but [Ser20, Lemma A.2] is valid in
any case).

Combining (E.29) and (E.30) the error term appearing in (E.26) can be re-written as:

|h̃Y
i |C2(B(yi,2ηi))η

2
i |ψ|21,loc(xi) � Ψ2

1(xi)
η2
i

r2
i

(
1 +

∫

D(xi,ri)

|∇h̃X
i |2
)

+KΨ2
1(xi)η

2
i

(
1

r2
i

ℓ2Ψ1(xi) + Ψ1(xi) logT + |ψ|0
1

ℓ+ |xi|

)
,

Summing over 1 ≤ i ≤ n, using the WellSpread assumption, comparing to an integral and using again
that ηi ≤ sri we obtain:

∑

1≤i≤n

|h̃Y
i |C2(B(yi,2ηi))η

2
i |ψ|2

1,loc(xi)

� K(1 + | log s|)s2

∫
Ψ2

1(x)dx+K2s2

((
ℓ2 + logT

) ∫

Λ

Ψ3
1(x)dx+ |ψ|0

∫

Λ

Ψ2
1(x)

1

ℓ + |x|dx
)

Estimating everything explicitly and keeping only the dominant term we may thus control the error term
in (E.26) by:

∑

1≤i≤n

|h̃Y
i |C2(B(yi,2ηi))η

2
i |ψ|2

1,loc(xi) = O
(
K2(1 + log |s|)s2ℓ2εt2

)
= O

(
K2ε log εt2

)
,

where we have used that s = ε2 and (6.1) again.

Step 4: Conclusion for Rem3. In conclusion we obtained that:

Rem3 =
∑

1≤i≤n

−
∫

|u|=ηi
∇h̃X

i (xi + u) · (ψ(xi + u) − ψ(xi)) du+ O
(
K2ε log εt2

)
.

E.3.5. Concluding the proof of Proposition E.7

Combining all the previous steps, we find that:

FΛ(Φ · X) = FΛ(X) + A1(X, ψ) + O
(
K2ε log εt2

)
,

where the “anisotropy” term A1 is defined as the sum of the linear (in ψ) terms obtained in Main and
Rem3, namely:

A1(X, ψ) :=
1

4π

∫ 〈
∇hX

~η , 2Dψ∇hX
~η

〉
+
∑

1≤i≤n

−
∫

|u|=ηi
∇h̃X

i (xi + u) · (ψ(xi + u) − ψ(xi)) du. (E.31)

There was a linear term appearing in Rem1 but it was found to be negligible, and comparing (E.31) to
[Ser20, (4.8)], the reader might observe that there is another term missing (the last term in [Ser20, (4.8)]),
in fact for us this term is O

(
Kεt2

)
and can thus be incorporated in the error term. This is due to the

fact that our Φ is measure-preserving.
This concludes the proof of Proposition E.7.
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E.4. Smallness of the anisotropy

Applying the result of Proposition E.7 to Φt and Φ−t we obtain that if X is in WellSpread(Λbulk, ℓ,K) we
have:

1

2
(FΛ(ΦtX,m) + FΛ(Φ−tX,m)) − FΛ(X,m) =

1

2
A1[X, ψt + ψ−t] + O

(
K2ε log εt2

)
. (E.32)

Let us decompose ψt, ψ−t as in (E.1), (E.2). The terms of first order in t cancel each other, and it
remains to bound A1[X, γt + γ−t]. At this point, using the “rough” bounds of [AS21, Prop. 4.2] on the
anisotropy A1, even in a localized way, would yield a bounded, but not small, error term - which would
make the whole approach pointless. We thus need to rely on a finer understanding of anisotropy terms as
put forward in [LS18; Ser20] (see also [BBNY19] for similar concerns about their “angle term”).

For simplicity, we will focus on the context of interest for us, namely when the background measure m
is given by nµW as above - in particular it is constant on Λbulk.

Anisotropy.

Let ψ be a continuous vector field supported on Λbulk and let U be a neighborhood of suppψ. We define
A1(X,m, ψ) as:

A1(X,m, ψ) :=
x

(x,y)∈Λ×Λ,x 6=y
ψ(x) · ∇ log |x− y|d (Xn − m) (x)d (X − m) (y). (E.33)

(It has an alternative expression using the electric field, which is the one that we used above in (E.31), see
[Ser20, (4.14)]). The expression (E.33) makes sense because m has a continuous density near suppψ and
is such that

s
− log |x− y|dm(x)dm(y) is finite. Thanks to a clever integration by parts, one can control

A1 as follows (see [Ser20, (4.10)]):

A1(X,m, ψ) ≤ C|ψ|1 × (EnerPts(X, suppψ)) . (E.34)

If ψ lives on a disk of radius ℓ, if |ψ|1 = O(ℓ−2) and if local laws hold then we can expect the anisotropy
to typically be O(1). Let us now explain how A1 shows up in the computations.

Energy comparison.

Assume that ψ is a vector field of class C3, supported on a disk of radius ℓ within Λbulk, and such that:

|ψ|k ≤ Cψℓ
−k−1, for k = 1, 2, 3. (E.35)

Let τ be a real parameter such that (for some universal C large enough):

|τ ||ψ|1 ≤ 1

C
, |τ ||ψ|2 ≤ log ℓ

1

C
(E.36)

For all τ such that (E.36) is satisfied, let Φτ := Id +τψ and mτ := Φτ#m.

Lemma E.16. We have the following expansion for all X

FΛ(Φτ · X,mτ ) = FΛ(Xn,m) + τA1(X,m, ψ) + τ2ErrEnerTrans(X, ψ), (E.37)

where ErrEnerTrans(X, ψ) is controlled by:

ErrEnerTrans(X, ψ) ≤ C2
ψ

log ℓ

ℓ4
EnerPts(X, suppψ),

the energy being computed with m as neutralizing background.

Proof of Lemma E.16. This follows from the second-order expansion of the energy as found in [Ser20,
Lemma 4.1, Prop 4.2]. There is some care required in order to check that [Ser20, (4.11)] does indeed yield
the claimed second-order correction, but this is made simpler by our assumption (E.35) and the fact that
m is constant on Λbulk.

Since suppψ has volume O(ℓ2), in view of the local laws we expect ErrEnerTrans to be O(ℓ−2 log ℓ)
(with a constant depending on Cψ). The anisotropy is thus the first-order contribution to the energy
change induced by a transport which is a small perturbation of the identity map.
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A1 versus Ani. What is called the “anisotropy” in [LS18] and [Ser20] is not exactly the same term, in
fact [LS18] refers to Ani and [Ser20] to A1, where the latter is as defined above and the former corresponds
to:

Ani(X,m, ψ) := A1(X,m, ψ) − 1

4

∫
divψ(x)dX(x). (E.38)

So in fact “A1” contains a possibly non-vanishing contribution 1
4

∫
divψ(x)dX(x) ≈ 1

4

∫
divψ(x)dm(x)

which we need to substract in order to obtain “Ani” which is the term that will eventually be found to be
negligible. The term appearing in the energy expansion (E.37) is A1.

Both A1 and Ani satisfy the same control (E.34). In most relevant cases, ψ happens to be such that
|ψ|1 × | suppψ| = O(1). Since (by local laws) the electric energy is typically proportional to the volume,
we deduce that (for such “usual” ψ’s) the anisotropy Ani is (at most) of order 1. Analytically speaking, i.e.
as far as deterministic, function-wise bounds are concerned, it is very challenging to do better. However, a
key result underlying some of the recent progress in the study of 2DOCP’s is that Ani is, so to speak, often
smaller than it seems. This is a probabilistic statement found in [LS18, Corollary 4.4], [Ser20, Lemma
7.2.], see also (with a different formalism) [BBNY19, Section 8.5]. Let us sketch the proof of this fact.

Smallness of the anisotropy via “Serfaty’s trick”.

Let Kβ
n,Λ(mτ ) be the partition function associated to the background mτ (we keep the same “effective

confinement” ζW for all τ) namely:

Kβ
n,Λ(mτ ) :=

∫

Λn

exp

(
−β
(

FΛ(Xn,mτ ) + n

n∑

i=1

ζW(xi)

))
dXn.

The key point is that there are two ways to evaluate the ratio
Kβ

n,Λ
(mτ )

Kβ
n,Λ

(m)
:

1. By the transportation approach of [LS18; Ser20], involving a change of variables (x1, . . . , xN ) =

(Φτ (x′
1), . . . ,Φτ (x′

N )) in the very definition of Kβ
n,Λ(mτ ) and an analysis of its effect on the energy.

As seen in Lemma E.16, the anisotropy of ψ appears there as one of the contributions.

2. By using “free energy expansions”, i.e. explicit expressions of (the logarithm of) the two partition
functions up to some error term that has to be negligible. This was done in [LS18] with a non-
quantitative error term originating in the analysis of [LS17], in [BBNY19] using their own expansion,
and much improved in [Ser20] using the error bounds of [AS21].

This gives two expressions for the same quantity, and since the anisotropy appears only (in exponential
moments) in the first one, then it must be confounded with some error terms of the second one. This is
fruitful for τ large (but not too large), and thus also for smaller values of τ by Hölder’s inequality.

This “trick”, which yields a form of “smallness of the anisotropy”, is used in [LS18; BBNY19; Ser20]
as a tool to prove central limit theorems for fluctuations of smooth linear statistics. Unfortunately, it is
hard to pinpoint a clear general statement in the literature, so we recall the proof in the next paragraphs.
Recall that we take m = nµW as background measure, which has constant density 1 in the bulk.

1. Comparison along a transport. Here for technical reasons we need to work with partition functions
restricted to EΛ, and we write:

Kβ
n,Λ(mτ

∣∣EΛ) :=

∫

Λn

1EΛ
(Xn) exp

(
−β
(

FΛ(Xn,mτ ) + n

n∑

i=1

ζW(xi)

))
dXn.

We have the following “comparison of partition functions”:

Claim E.17.

log
Kβ

n,Λ(mτ

∣∣EΛ)

Kβ
n,Λ(m

∣∣EΛ)
=

(
β

4
− 1

)(∫
log mτdmτ −

∫
log mdm

)

+ logEβ
n,Λ

[
exp

(
τAni[X,m, ψ] +

(
τ |ψ|2 + τ2|ψ|21

)
EnerPts(suppψ) + τ2ErrEnerTrans

) ∣∣EΛ

]
. (E.39)
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Proof of Claim E.17. We follow the same steps as in [LS18, Prop 4.3]. First we write Kβ
n,Λ(mτ

∣∣EΛ) as:

Kβ
n,Λ(mτ

∣∣EΛ) =

∫

Λn

1EΛ
(Yn) exp

(
−β
(

FΛ(Yn,mτ ) + n

∫
ζW(x)dYn(x)

))
dYn

and perform the change of variables Yn = Φτ · Xn. By construction we have Φτ = Id outside Λbulk and in
particular the term n

∫
ζW(x)dYn(x) (which only detects points outside the support of µW) is not affected

by this, nor is the indicator EΛ which only cares about points very close to ∂Λ. We obtain:

Kβ
n,Λ(mτ

∣∣EΛ)

=

∫

EΛ

exp

(
−β
(

FΛ (Φτ · Xn,Φτ#m) + n

∫
ζW(x)dXn(x)

)
+

∫
log det DΦτ (x)dXn(x)

)
dXn, (E.40)

where the last term in the integrand is the Jacobian of the tranformation. Using (E.37) we may compare
the energy before and after the transport.

FΛ (Φτ · Xn,Φτ#m) = FΛ (Xn,m) + τA1[X,m, ψ] + τ2ErrEnerTrans,

which we can re-write (using (E.38)) as:

FΛ (Φτ · Xn,Φτ#m) = FΛ (Xn,m) +
τ

4

∫
divψ(x)dXn(x) + τAni[X,m, ψ] + τ2ErrEnerTrans.

The terms
∫

log det DΦτ (x)dXn(x) and τ
∫

divψ(x)dXn(x) are both equal to a deterministic quantity up
to small error terms. On the one hand, we have:

∫
log det DΦτ (x)dXn(x) =

∫
log det DΦτ (x)dx + Fluct[log det DΦτ ]

and on the other hand: τ
∫

divψ(x)dXn(x) =
∫

log det DΦτ (x)dXn(x) + τ2
∑n

i=1 |ψ(xi)|21 . The quantity∫
log det DΦs(x)dx coincides (see. [LS18, (4.11)–(4.13)]) with:

∫
log det DΦs(x)dx =

∫
log mdm −

∫
log mτdmτ , (E.41)

hence we obtain:

FΛ (Φτ · Xn,Φτ#m) = FΛ (Xn,m) +
1

4

(∫
log mdm −

∫
log mτdmτ

)

+ Fluct[log det DΦτ ] + τ2
n∑

i=1

|ψ(xi)|21 + τ2ErrEnerTrans.

Using Lemma 2.6 we can control: Fluct[log det DΦτ ] � τ |ψ|2EnerPts(suppψ) and on the other hand we
have: τ2

∑
n

i=1 |ψ(xi)|21 ≤ τ2|ψ|2
1
EnerPts(suppψ), thus we can write:

FΛ (Φτ · Xn,Φτ#m) = FΛ (Xn,m) +
1

4

(∫
log mdm −

∫
log mτdmτ

)

+
(
τ |ψ|2 + τ2|ψ|21

)
EnerPts(suppψ) + τ2ErrEnerTrans,

and inserting this in (E.40) yields (E.39).

Remark E.18. Each term in the right-hand side of (E.41) might be infinite when taken separately
(because e.g. m may have a singularity on ∂Λ and hence infinite entropy) but the difference makes sense
as the two measures coincide outside Λbulk.
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Free energy comparisons

As we have seen above, one can compare two partition functions using a “transportation” approach. On
the other hand, we have the following.

Claim E.19 (Free energy comparison, the “direct” approach). Assume that the support of m̃ − m is

contained in a square Ω of sidelength ℓ̂ included in Λbulk.
∣∣∣∣∣log

Kβ
n,Λ(m̃

∣∣EΛ)

Kβ
n,Λ(m

∣∣EΛ)

∣∣∣∣∣ =

(
β

4
− 1

)(∫
log m̃dm̃ −

∫
log mdm

)
+ O

(
ℓ̂ log ℓ̂

)

Proof of Claim E.19. This is essentially the result of [Ser20, Proposition 6.4], except that our reference
measure does not necessarily have a C1 density near the edge of Λ. This is in fact not a problem as long as
we are doing comparisons inside Λbulk (i.e. as long as the other measure coincides with m outside Λbulk),
but it requires an explanation.

The proof of [Ser20, Proposition 6.4] relies on two ingredients:

1. [Ser20, Proposition 6.3] (free energy expansion for general density in a rectangle). This we can import
directly as it has nothing to do with our specific setup.

2. [Ser20, Proposition 3.6] (almost additivity of the free energy). It says that one can decompose Kβ
n,Λ(m)

into two parts: inside/outside Ω, with a small error. This is proven by two inequalities: one is easy
and corresponds to the sub-additivity of Neumann energies whereas the other one uses the screening
procedure and the local laws on (a neighborhood of) Ω in order to control the screening error terms
(see [Ser20, Prop. 3.6]). Since the screening procedure takes place in a neighborhood of Ω, the possible
singularities near ∂Λ are irrelevant. The only adaptation needed is to replace the local laws used in
[Ser20] by ours (which is the reason why we “condition” on the event EΛ).

Conclusion 1: smallness of Ani

We may now apply “Serfaty’s trick”. Comparing the statements of Claim E.17 and Claim E.19 we see that
necessarily:

logEβ
n,Λ

[
exp

(
τAni[ψ,X,m] +

(
τ |ψ|2 + τ2|ψ|2

1

)
EnerPts(suppψ) + τ2ErrEnerTrans

) ∣∣EΛ

]
= O

(
ℓ̂ log ℓ̂

)
.

Using the local laws and our assumptions (E.35) on ψ we may control the exponential moments of the
error terms:

logEβ
n,Λ

[
exp

((
τ |ψ|2 + τ2|ψ|21

)
EnerPts(suppψ) + τ2ErrEnerTrans

) ∣∣EΛ

]

= O
(
τCψ ℓ̂

−1 + τ2C2
ψ ℓ̂

−2 + C2
ψτ

2ℓ̂−2 log ℓ̂
)
.

This is valid for all τ smaller than ℓ̂2

CCψ log ℓ̂
so that (E.36) are satisfied. Taking τ = ℓ̂3/2, we obtain the

following statement:

Lemma E.20 (“The anisotropy is small”). If ψ is a C3 vector field compactly supported on a disk of radius

ℓ̂ within Λbulk, and satisfying (E.35), then we have, for all ℓ̂ large enough (depending on the constant Cψ)

E
β
n,Λ

[
exp

(
ℓ̂3/2Ani(ψ,Xn,m)

) ∣∣EΛ

]
≤ eO(ℓ̂ log ℓ̂)+O(C

2

ψ ℓ̂ log ℓ̂),

with an implicit constant depending on β and the “local laws” constant CLocal. In particular, we have the
following tail estimate on the distribution of Ani(ψ): for ℓ̂ large enough,

P
β
n,Λ

[
|Ani(ψ,Xn,m)| ≥ log2 ℓ̂

ℓ̂
1

2

∣∣EΛ

]
≤ exp

(
−ℓ̂ log2 ℓ̂

)
.

Remark E.21. The same analysis holds for the full system, with no need for a conditioning on EΛ and
as soon as (2.7) is satisfied, so for a broader notion of “bulk”.
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Conclusion 2: proof of Proposition 6.3

We may now conclude the proof of Proposition 6.3.

Proof of Proposition 6.3. Let us return to (E.32) and use the fact that by definition (see (E.2)):

ψt = tW(ε,ℓ)(x) + γt(x), ψ−t = −tW(ε,ℓ)(x) + γ−t(x),

we obtain (for X in WellSpread(Λbulk, ℓ,K) and thus with probability 1− exp(−ℓ2) up to choosing K large
enough as in Lemma E.6):

1

2
(FΛ(ΦtX,m) + FΛ(Φ−tX,m)) − FΛ(X,m) =

1

2
Ani[X, γt + γ−t] + O(K2ε log εt2). (E.42)

Let us introduce dyadic length scales ℓi := 2i for 0 ≤ i ≤ log(T/2) and associated cut-off functions χi. We
decompose γt as: γt =

∑
i χiγt. Using Proposition E.1 and in particular (E.4) we see that the vector field

ψ̃(i) := 1
εt2χiγt satisfies |ψ̃(i)|k � ℓ−k−1

i . Using Lemma E.20, we know that for each i large enough:

P
β
n,Λ

[
|Ani(ψ̃(i))| ≥ log2 ℓi

ℓ
1

2

i

∣∣EΛ

]
≤ exp

(
−ℓi log2 ℓi

)
.

Since this bound is only interesting (probabilistically speaking) for large enough i, we use it for i ≥ log2 ℓ,
in which case we have:

log(T/2)∑

i=log2 ℓ

Ani(ψ̃(i)) ≤
log(T/2)∑

i=log2 ℓ

log2 ℓi

ℓ
1

2

i

= O(εt2)

with probability ≥ 1 −∑log(T/2)

i=log2 ℓ
exp

(
−ℓi log2 ℓi

)
≥ 1 − exp

(
− log2 ℓ

)
. The first contributions (for 0 ≤ i ≤

log2 ℓ) are controlled using the “rougher” control (E.34), we get:

log2 ℓ∑

i=0

Ani(ψ̃(i)) = O
(
log ℓ2

)
.

By (6.1) we know that log ℓ2 is comparable to log ε. In conclusion, we obtain:

P
β
n,Λ

(
|Ani[X, γt + γ−t]| ≤ Cε log εt2

∣∣EΛ

)
≥ 1 − exp

(
−ℓ2

)
,

with a constant C depending on β and the constant CLocal.
Combined with (E.42) which is valid under an event of comparable probability (see Lemma E.6), we

conclude the proof of Proposition 6.3.

E.5. Effect on expectations: proof of Proposition 6.4

Proof of Proposition 6.4. For τ ∈ (0, 1), let us introduce the event Fτ as:

Fτ := {ErrAve ≤ τ} (E.43)

(recall the definition (6.2) of ErrAve). We split the proof into several steps.

The case of non-negative functions

In this paragraph, we make the additional assumption that G is non-negative. We can obviously decompose
E
β
n,Λ[G(X)

∣∣E ] as:

E
β
n,Λ[G(X)

∣∣E ] = E
β
n,Λ

[
G(X)1Fτ

∣∣E
]

+ E
β
n,Λ

[
G(X)1Fτ

∣∣E
]
.

Claim E.22.

E
β
n,Λ[G(X)1Fτ (X)

∣∣∣E ] ≤ E
β
n,Λ

[
1

2
(G(Φt · X) + G(Φ−t · X))

∣∣∣E
]

× eβτ . (E.44)

70



Proof of Claim E.22. According to the definition of E
β
n,Λ in Section 5.2, the expectation E

β
n,Λ[G(X)

∣∣E ]
admits the following expression:

∫
Λn 1E(X)1Fτ (X)G(X)e−β(FΛ(X,m)+n

∑
n

i=1
ζ(xi))dX

∫
Λn 1E(X)e−β(FΛ(X,m)+n

∑
n

i=1
ζ(xi))dX

.

Since the function ζ vanishes identically on Λbulk and since our localized translations act as the identity
outside Λbulk, the term

∑
n

i=1 ζ(xi) will not be affected by the operations below. For simplicity, we omit
it altogether. Let us focus on the integral appearing in the numerator. By definition of ErrAve and of Fτ
as in (6.2), (E.43), we may write:

1Fτ (X)e−βFΛ(X,m) = 1Fτ (X)e−β 1

2
(FΛ(Φt·X,m)+FΛ(Φ−t·X,m))+βErrAve ≤ eβτe−β 1

2
(FΛ(Φt·X,m)+FΛ(Φ−t·X,m)),

where we haved bounded the indicator function by 1 in the right-hand side. Using the convexity of
x 7→ exp(−βx) and the fact that G is assumed to be non-negative, we deduce that:

∫

Λn

1E(X)1Fτ (X)G(X)e−βFΛ(X,m)dX

≤ 1

2

[∫

Λn

1E(X)G(X)e−βFΛ(Φt·X,m)dX +

∫

Λn

1E(X)G(X)e−βFΛ(Φt·X,m)dX

]
× eβτ .

By construction, the change of variable (x1, . . . , xn) 7→ (Φt(x1), . . . ,Φt(xn)), which maps X to ΦtX, has a
Jacobian equal to 1. We thus have, looking at the first integral on the right-hand side:

∫

Λn

1E(X)G(X)e−βFΛ(Φt·X,m)dX =

∫

Λn

1E(Φ−tX)G(Φ−tX)e−βFΛ(X,m)dX.

Moreover, since Φ−t ≡ Id −t~u on the disk D(0, ℓ/4) (see Lemma 6.2), since G is assumed to be D(0, ℓ/10)-
local, and since |t| is taken smaller than ℓ/10, we have Φ−t (D(0, ℓ/10)) ⊂ D(0, ℓ/4) and thus:

G(Φ−t(X)) = G(X − t~u).

On the other hand since by construction Φt coincides with the identity map outside Λbulk and since the
event E is assumed to be Λ \ Λbulk-local, we have:

1E(Φ−t(X)) = 1E(X). (E.45)

Hence we can ensure that:
∫

Λn

1E(Φ−tX)G(Φ−tX)e−βFΛ(X,m)dX =

∫

Λn

1E(X)G(X − t~u)e−βFΛ(X,m)dX,

and similarly for the other term (reversing the roles of −t and t). In conclusion, we obtain:
∫

Λn

1E(X)1Fτ (X)G(X)e−βFΛ(X,m)dX ≤
[∫

Λn

1E(X)
1

2
(G(X + t~u) + G(X − t~u)) e−βFΛ(X,m)dX

]
× eβτ .

Dividing back by the partition function, we obtain (E.44). On the other hand, we have by Cauchy-
Schwarz’s inequality:

E
β
n,Λ[G(X)1Fτ (X)

∣∣∣E ] ≤
(
E
β
n,Λ

[
G2(X)

∣∣∣E
]) 1

2 ×
(
P
β
n,Λ

(
{ErrAve ≥ τ}

∣∣∣E
)) 1

2

.

In summary, we have obtained under the extra assumption that G is non-negative, and for all τ ∈ (0, 1):

E
β
n,Λ[G(X)

∣∣∣E ] ≤ E
β
n,Λ

[
1

2
(G(ΦtX) + G(Φ−tX))

∣∣∣E
]

× eβτ

+
(
E
β
n,Λ

[
G2(X)

∣∣∣E
]) 1

2 ×
(
P
β
n,Λ

(
{ErrAve ≥ τ}

∣∣∣E
)) 1

2

.
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E.5.1. The general case.

We no longer assume that G ≥ 0. For σ > 0, let us introduce the event Gσ := {G + σ ≥ 0}. We can write:

E
β
n,Λ[G(X) + σ

∣∣E ] = E
β
n,Λ[G(X)

∣∣E ] + σ = E
β
n,Λ[(G(X) + σ) 1Gσ (X)

∣∣E ] +E
β
n,Λ[(G(X) + σ) 1Gσ(X)

∣∣E ]. (E.46)

Since X 7→ (G(X) + σ) 1Gσ(X) is non-negative by construction and has the same local character as G, we
may apply the conclusions of the previous paragraph and write:

E
β
n,Λ[(G(X) + σ) 1Gσ(X)

∣∣E ]

≤ E
β
n,Λ

[
1

2
(G(X + t~u) + σ) 1Gσ(X + t~u) +

1

2
(G(X − t~u) + σ) 1Gσ(X − t~u)

∣∣E
]

× eβτ

+ E
β
n,Λ

[
(G(X) + σ)

2
∣∣∣E
]

×
(
P
β
n,Λ

(
{ErrAve ≥ τ}

∣∣∣E
)) 1

2

,

where in the last expectation term we have bounded an indicator function by 1. We would like to get rid
of the two remaining indicator functions in the right-hand side.

Using again Cauchy-Schwarz’s inequality (and the definition of Gσ) we see that:

∣∣∣Eβ
n,Λ[(G(X + t~u) + σ) 1Gσ(X + t~u)

∣∣E ]
∣∣∣ ≤ 2

(
E
β
n,Λ

[
G2(X + t~u)

∣∣∣E
]

+ σ2
) 1

2 ×
(
P
β
n,Λ [|G(X + t~u)| ≥ σ]

) 1

2

,

and similarly after replacing t by −t. Returning to (E.46), we thus obtain:

E
β
n,Λ[G(X)

∣∣E ] + σ ≤
(
E
β
n,Λ

[
1

2
(G(X + t~u) + G(X − t~u))

∣∣E
]

+ σ

)
× eβτ

+ 2eβτ
(
E
β
n,Λ

[
G2(X ± ~u)

∣∣∣E
]

+ σ2
) 1

2 ×
(
P
β
n,Λ [|G(X ± t~u)| ≥ σ]

) 1

2

+ E
β
n,Λ

[
G2(X)

∣∣∣E
]

×
(
P
β
n,Λ

[
ErrAve ≥ τ

∣∣E
]) 1

2

.

We may substract σ on both sides, and observe that we have:

(
E
β
n,Λ

[
1

2
(G(X + t~u) + G(X − t~u))

∣∣E
]

+ σ

)
× eβτ − σ = E

β
n,Λ

[
1

2
(G(X + t~u) + G(X − t~u))

∣∣E
]

+ E
β
n,Λ

[
1

2
(G(X + t~u) + G(X − t~u)) + σ

∣∣E
] (
eβτ − 1

)
.

Using Cauchy-Schwarz’s inequality one more time to bound the second line, we obtain:

E
β
n,Λ[G(X)

∣∣E ] ≤ E
β
n,Λ

[
1

2
(G(X + t~u) + G(X − t~u))

∣∣E
]

+ 2
(
E
β
n,Λ

[
G2(X ± t~u)

∣∣∣E
]

+ σ2
) 1

2 ×
(
eβτ − 1

)

+ 2eβτ
(
E
β
n,Λ

[
G2(X ± ~u)

∣∣∣E
]

+ σ2
) 1

2 ×
(
P
β
n,Λ [|G(X ± t~u)| ≥ σ]

) 1

2

+ E
β
n,Λ

[
G2(X)

∣∣∣E
]

×
(
P
β
n,Λ

[
ErrAve ≥ τ

∣∣E
]) 1

2

.

Replacing G by −G (which is possible as there is no more a sign constraint on G), we obtain the converse
inequality, which yields (6.3).

Remark E.23. The identity (E.45) requires that E be Λ \ Λbulk-local. One could try to “pass down” as
much information as possible but if E is “too rich” then it risks to be perturbed by our localized translation.
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