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The two-dimensional one-component plasma is hyperuniform

We prove that at all positive temperatures in the bulk of a classical two-dimensional onecomponent plasma (also called Coulomb or log-gas, or jellium) the variance of the number of particles in large disks grows (strictly) more slowly than the area. In other words the system is hyperuniform.

Introduction

Let N ≥ 1 be an integer, let Σ N be the disk of center 0 and radius N π , let X N := (x 1 , . . . , x N ) denote a N -tuple of points in Σ N and let X N := N i=1 δ xi be the associated atomic measure. We let f N be the signed "fluctuation" measure on Σ N defined by f N := X Nm 0 , where m 0 is the Lebesgue measure on Σ N . We think of X N as a collection of point particles in Σ N and of m 0 as the background measure. We define the logarithmic interaction energy F N (X N ) as:

F N (X N ) := 1 2 (x,y)∈ΣN ×ΣN ,x =y
log |x -y|df N (x)df N (y).

(1.1)

Let β be a positive real number that will be fixed throughout the paper. We define a probability density P β N on the space of N -tuples of points in Σ N by setting:

dP β N (X N ) := 1 K β N exp (-βF N (X N )) dX N , (1.2)
with a normalizing constant K β N := ΣN ו••×ΣN exp (-βF N (X N )) dX N called the partition function. Here and below, dX N denotes the Lebesgue measure on the Cartesian product Σ N × • • • × Σ N ⊂ (R 2 ) N . The probability measure P β N is the canonical Gibbs measure of the two-dimensional one-component plasma (2DOCP) at inverse temperature β. We denote the expectation under P β N by E β N . Let Ω some (Borel measurable) subset of Σ N . We denote by Pts(X N , Ω) the number of points of X N in Ω and by Dis(X N , Ω) the discrepancy (of X N ) in Ω, defined by: Dis(X N , Ω) := Pts(X N , Ω)m 0 (Ω).

By construction we have Dis(X N , Σ N ) = 0, which corresponds to the fact that the system is globally neutral. However it cannot be perfectly locally neutral, and Dis(X N , Ω) is meant to measure charge fluctuations in Ω. The number variance in Ω is defined as the variance under P β N of Pts(X N , Ω), or equivalently of Dis(X N , Ω).

For all x in R 2 and R > 0, we let D(x, R) be the disk of center x and radius R.

Main result

Hyperuniformity of a system is defined by the fact that:

[Tor18, Section 1] (...) the number variance of particles within a spherical observation window of radius R grows more slowly than the window volume in the large-R limit.

Our main conclusion is the following:

Theorem (The 2DOCP is hyperuniform). For each N ≥ 1, let x = x(N ) be a point in the bulk of Σ N and let R = R(N ) be such that R(N ) → ∞. Then the number variance in D(x, R) is o(R 2 ) as N → ∞.

We give a more precise statement in Section 1.5, explaining what we mean by "the bulk of Σ N " and specifying a quantitative upper bound on the number variance of the form O R 2 log c (R) for some c > 0. Hyperuniformity of the 2DOCP at all positive temperatures is a forty year old prediction1 from statistical physics, see [MY80; Leb83; Mar88; JLM93; LWL00] (which use a different terminology), or [START_REF] Torquato | Hyperuniform states of matter[END_REF] again: "OCP fluid phases at [all] temperatures must always be hyperuniform". In fact, the full physical prediction says not only that the number variance is negligible with respect to the area of the disk, but that it should even be comparable to the perimeter (O(R) and not only o(R 2 )). We give here the first mathematical proof of hyperuniformity at all temperatures, however our upper bound on the number variance remains far from the conjectured sharp estimate.

The 2DOCP

The two-dimensional one-component plasma is a well-studied model of statistical physics. Besides the papers cited above, let us refer to [START_REF] Forrester | Log-gases and random matrices (LMS-34)[END_REF]Chapter 15] for a presentation of exact and approximate results. When defining the energy F N in (1.1) and the canonical Gibbs measure P β N in (1.2), we think of (x 1 , . . . , x N ) as the positions of point particles in Σ N which all carry the same electric charge +1, and which are immersed in a uniform neutralizing background of constant density on Σ N . The logarithmic potential is then the electrostatic interaction potential in dimension 2. Instead of directly placing a background measure, one sometimes imposes an harmonic confining potential. This would not change our analysis, see Appendix A for a discussion.

Mathematical aspects of Coulomb gases

As mathematical objects, Coulomb gases (under various forms: one-, two-or three-dimensional, with one or two components...) have attracted much interest. Concerning the 2DOCP itself, topics that have been investigated in the last years alone are very diverse and include: lower bounds on the minimal distance between points [START_REF] Ameur | Repulsion in Low Temperature β-Ensembles[END_REF], concentration inequalities for the empirical measure of the particles [START_REF] Chafai | Concentration for Coulomb gases and Coulomb transport inequalities[END_REF][START_REF] García-Zelada | Concentration for Coulomb gases on compact manifolds[END_REF], upper bounds for the local density of points [START_REF] Lieb | Local incompressibility estimates for the Laughlin phase[END_REF], generalizations to Riemannian manifolds [START_REF] Berman | Sharp deviation inequalities for the 2D Coulomb gas and Quantum hall states, I[END_REF], Wegner's and clustering estimates [START_REF] Thoma | Overcrowding and Separation Estimates for the Coulomb Gas[END_REF]... to quote only a few among many others. We refer to [START_REF] Serfaty | Systems of points with Coulomb interactions[END_REF] for an overview of motivations, ranging from constructive approximation to the study of the Quantum Hall Effect, via random matrix theory. The long-range and singular nature of the pairwise potential raises considerable analytic challenges.

In [LS18; BBNY19; Ser20] it was shown that the 2DOCP exhibits strong forms of rigidity at all scales and for all values of the temperature as far as fluctuations of smooth linear statistics are concerned. Regarding fluctuations of charges, i.e. the statistics of an indicator function, [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF] (see also [START_REF] Leblé | Local microscopic behavior for 2D Coulomb gases[END_REF][START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF] for weaker controls) imply that the discrepancy within a disk of radius R is O(R) with high probability. Our goal here is improve such bounds to o(R) and to thus prove hyperuniformity.

The Ginibre ensemble

When the inverse temperature parameter β is equal to 2, the probability measure P β N admits an interpretation as the joint law of the complex eigenvalues of a N × N non-Hermitian random matrix, known as the (finite) Ginibre ensemble, after [START_REF] Ginibre | Statistical ensembles of complex, quaternion, and real matrices[END_REF]. The model belongs to the class of determinantal processes (see e.g. [HKPV06, Section 4.3.7]) and is amenable to exact computations. In that specific case, the standard deviation of the number of points in a disk of radius R is known: it scales like R 12 (in accordance with predictions from physics), see [START_REF] Shirai | Large deviations for the fermion point process associated with the exponential kernel[END_REF] and [START_REF] Osada | Variance of the linear statistics of the Ginibre random point field[END_REF]. Thus for β = 2 our result is not new, and our bound is far from the optimal one.

The hierarchical model

In [START_REF] Chatterjee | Rigidity of the three-dimensional hierarchical Coulomb gas[END_REF], S. Chatterjee studied Coulomb gases in dimensions {1, 2, 3} (see [START_REF] Ganguly | Ground states and hyperuniformity of the hierarchical Coulomb gas in all dimensions[END_REF] for an extension to higher dimensions), giving sharp estimates on the number variance up to logarithmic corrections. His model is a hierarchical Coulomb gas, where the physical space is decomposed into a tree-like structure following an old recipe of Dyson. The hierarchical model has two built-in properties: conditional independence of subsystems and a self-similar nature. A large part of the present analysis is devoted to finding approximate analogues of those features for the "true" (non-hierarchical) model.

Hyperuniformity

The term "hyperuniform(ity)" has been coined in the theoretical chemistry literature by S. Torquato (see [START_REF] Torquato | Local density fluctuations, hyperuniformity, and order metrics[END_REF][START_REF] Torquato | Hyperuniform states of matter[END_REF] for surveys), an alternative terminology due to J. Lebowitz is "superhomogeneous/ity". As we already mentioned, a system is hyperuniform when the number variance in a large ball is asymptotically negligible with respect to the volume of said ball. Of course the definition of hyperuniformity needs an adaptation for finite systems, as one should take both the size of the system and of the "spherical window" to infinity. We refer to [START_REF] Coste | Order, fluctuations, rigidities[END_REF] for a mathematical presentation of hyperuniformity and a survey of related results.

Examples of hyperuniform systems

For non-interacting random particles (forming a Bernoulli point process or a Poisson point process with constant intensity) the number variance grows exactly like the volume, hence hyperuniformity can be thought of as the property of systems that are "much more rigid" than independent particles regarding discrepancy at large scales. Examples of two-dimensional objects that are proven to be hyperuniform include: the Ginibre ensemble (as mentioned above) and its generalizations (see [START_REF] Charles | Entanglement entropy and Berezin-Toeplitz operators[END_REF] for a recent result in connection with the Quantum Hall Effect), averaged and perturbed lattices (see [START_REF] Gacs | On a Problem of Cox Concerning Point Processes in R k of "Controlled Variability[END_REF]), the zeroes of random polynomials with i.i.d Gaussian coefficients (see [START_REF] Forrester | Exact statistical properties of the zeros of complex random polynomials[END_REF][START_REF] Shiffman | Number variance of random zeros on complex manifolds[END_REF])... In some cases (see [Tor18, Section 5.3.2]) the number variance grows as the perimeter (in fact that was initially chosen as the definition of hyperuniformity in [START_REF] Torquato | Local density fluctuations, hyperuniformity, and order metrics[END_REF] but is now called "class I hyperuniformity"), which is the slowest possible growth (see [START_REF] Beck | Irregularities of distribution. I[END_REF]). The 2DOCP is predicted to be class I hyperuniform at all temperatures, with good tails on the probability of large charge fluctuations, as we explain next.

The Jancovici-Lebowitz-Manificat law

In [START_REF] Jancovici | Large charge fluctuations in classical Coulomb systems[END_REF], Jancovici, Lebowitz and Manificat made precise predictions concerning the probability of observing large charge fluctuations within the 2DOCP (and its three-dimensional version). Their statement is significantly more precise 2 than hyperuniformity, as they argue that for all α > 1 2 :

P [Discrepancy of size R α in a disk of radius R] ∼ exp(-R ϕ(α) ) ("JLM law")

(1.3)
where the rate ϕ(α) > 0 is an explicit piecewise affine function of α. This was later checked for β = 2 through explicit computations, see [START_REF] Shirai | Large deviations for the fermion point process associated with the exponential kernel[END_REF][START_REF] Fenzl | Precise Deviations for Disk Counting Statistics of Invariant Determinantal Processes[END_REF], while the general case is open. Remarkably, although the original prediction of [START_REF] Jancovici | Large charge fluctuations in classical Coulomb systems[END_REF] deals with Coulomb gases, it was first verified in [START_REF] Nazarov | The Jancovici-Lebowitz-Manificat law for large fluctuations of random complex zeroes[END_REF] for a different model, namely the zeros of the Gaussian Entire Function (see [START_REF] Ghosh | Point processes, hole events, and large deviations: random complex zeros and Coulomb gases[END_REF] for a survey of related results).

Fekete points and the low temperature regime

A situation of interest that we do not consider here is the case of energy minimizers, which formally corresponds to taking β = +∞ i.e. a zero temperature. A long-standing conjecture posits that minimizers of F N form a lattice as N → ∞ and in that regard Fekete points should exhibit excellent rigidity properties at finite N . For studies of such questions we refer to [AOC12; Ame17] and, in a different line of work, to [START_REF] Nodari | Renormalized energy equidistribution and local charge balance in 2D Coulomb systems[END_REF]Thm. 3]. See also [START_REF] Ameur | The planar low temperature Coulomb gas: separation and equidistribution[END_REF][START_REF] Marceca | Improved discrepancy for the planar Coulomb gas at low temperatures[END_REF] or the β-dependent statements of [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF] for a more general "low-temperature" regime where β is large but not necessarily infinite.

Open questions

Besides the obvious natural goal of obtaining the sharp number variance estimate as well as proving the aforementioned "JLM laws", let us mention three other open directions of research.

The 3DOCP. The claims of [START_REF] Jancovici | Large charge fluctuations in classical Coulomb systems[END_REF] are made in dimension 2 and 3, moreover sharp hyperuniformity estimates were obtained for the hierarchical model in dimension 3 in [START_REF] Chatterjee | Rigidity of the three-dimensional hierarchical Coulomb gas[END_REF], it is thus natural to ask whether one can prove hyperuniformity for the 3DOCP. Unfortunately, in dimension 3 there is no (known) value of β for which the model would be integrable and predictions could be tested. Some understanding of fluctuations of smooth linear statistics was recently obtained in [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] but with considerable new difficulties compared to the two-dimensional case.

Riesz interactions. The 2DOCP can be seen as a member of one-parameter family of two-dimensional systems called Riesz gases for which the interaction potential is taken as a certain power |x -y| -s of the distance (the case s = 0 corresponds by convention to the logarithmic interaction). Rigidity properties of those systems depend on the value of s as it governs both the level of repulsiveness at 0 and, most importantly, the long-or short-range nature of the interaction. Rough bounds on the discrepancies were given in [LS17, Lemma 3.2] in the infinite-volume limit, which say that the number variance in a disk of radius R grows at most as R 2+s . We believe the sharp estimate to be R 1+s and thus that two-dimensional Riesz gases should remain hyperuniform for s < 1. For one-dimensional systems, such questions were recently answered in [START_REF] Boursier | Optimal local laws and CLT for 1D long-range Riesz gases[END_REF].

High temperature regime. There has been recent interest in studying the "high-temperature" regime where β → 0 as N → ∞ for Coulomb gases (and other related systems), see e.g. [START_REF] Akemann | The high temperature crossover for general 2D Coulomb gases[END_REF][START_REF] Lambert | Poisson statistics for Gibbs measures at high temperature[END_REF] in the two-dimensional setting. Those results have put forward that the inverse temperature regime where β ∼ c N is the threshold that distinguishes between "Ginibre-like" (c → +∞) and "Poisson-like" (c → 0) properties. It is thus tempting to ask whether the 2DOCP stays hyperuniform as long as βN → ∞, and whether one can observe an interesting transition along β = c N , as c moves down from +∞ to 0.

Precise statement of the result, proof strategy and tools

Theorem 1. Let δ > 0 be fixed. For all N and R large enough (both depending on β and δ), for all x in Σ N such that x is "in the bulk" in the following sense:

dist(D(x, R), ∂Σ N ) ≥ δ √ N , (1.4)
we have:

P β N |Dis(X N , D(x, R))| ≥ R(log R) -0.3 ≤ exp -log 1.5 R .
(1.5)

Since good exponential tails for Dis at values higher than R are already known (see e.g. [AS21, Thm 1]), this new sub-algebraic tail valid for values of the discrepancy between R log -0.3 R and R imply that:

Var[Dis(X N , D(x, R))] ≤ E β N Dis 2 (X N , D(x, R)) = O R 2 log 0.6 R = o(R 2 ),
and the 2DOCP is thus indeed hyperuniform. The proof will be given in Section 7.

General strategy

Our main source of inspiration is [NSV08, Section 4], in which Nazarov-Sodin-Volberg prove JLM-like estimates on the probability of having large "charge" fluctuations in the disk D(0, R) for zeros of the Gaussian Entire Function. Their argument can be roughly summarized as follows: fix α ∈ ( 1 2 , 1) and assume there is a discrepancy of size R α in the disk D(0, R).

1. Show that the discrepancy can be captured along the boundary ∂D(0, R).

2. Split that boundary into ≈ R pieces of size ≈ 1. Take M large and apply a basic pigeonhole argument: there exists a family of ≈ R M pieces that capture a discrepancy of size at least R α M and which are "well-separated" (distances between pieces are multiples of M ).

3. Then comes the main probabilistic work: a) Show that these well-separated pieces are approximately independent. b) Show that the discrepancy on each piece (of size ≈ 1) is typically O(1). c) Show that the discrepancy on each piece is centered.

4. Apply Bernstein's concentration inequality: if {D i } i is a family of ≈ R M independent centered random variables of size O(1) then:

P i D i ≥ R α exp - R 2α-1 M .
This gives them sharp bounds on the number variance and the correct tail probabilities. Whilst not aiming so high, we follow here a similar strategy, with much effort to translate it to the context of the 2DOCP (besides point (2) and (4), which are easy).

Electric approach, sub-systems

The technical core is the the "electric approach" to Coulomb gases as developed by S. Serfaty and coauthors. In that regard, our main imports are:

• The general spirit of controlling fluctuations through the electric energy (see Section 2.3).

• Local laws (up to microscopic scale) as in [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF] (see Proposition 2.4 and Proposition 5.8).

• Optimal bounds for fluctuations of smooth linear statistics as in [LS18; Ser20; BBNY19]. Point (1), for example follows fairly easily from such bounds.

• "Smallness of the anisotropy", for which we refer to [LS18; Ser20] (see also [START_REF] Bauerschmidt | The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem[END_REF]).

In addition, we put forward the role of so-called "sub-systems", which arise as restrictions of the full system to some region and which we view as two-dimensional Coulomb systems in their own right, possibly with a small global non-neutrality, and (most importantly) feeling the effect of some harmonic exterior potential. As such, this object is not new -it has been sometimes called a "conditional" or "local" measure in the literature (see e.g. [START_REF] Bauerschmidt | The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF]). We provide here a thorough study of its behavior, through global and local laws, and show that with high probability the sub-systems, although under the influence of an external potential, retain most of the rigidity properties of the full system -as is the case "for free" in the hierarchical model studied in [START_REF] Chatterjee | Rigidity of the three-dimensional hierarchical Coulomb gas[END_REF]. This requires a precise study of the external potential "felt" by a sub-system and of the perturbation of the equilibrium measure that it induces within the sub-system (for which we rely on the analysis of [BBNY17, Section 2.], with some modifications). The proof of local laws given in [AS21; Leb17] extends to sub-systems. This allows one for example to treat Point (3) (b), which seem unsurprising, but which requires to consider objects of size ∼ 1, hence to control the system down to the smallest scales. Such local laws are also crucial for the approximate translation-invariance argument which we present now.

Approximate translation-invariance

Step (3) (c) is void in the context of [START_REF] Nazarov | The Jancovici-Lebowitz-Manificat law for large fluctuations of random complex zeroes[END_REF] because the underlying point process is infinite and translation-invariant (which implies that linear statistics are centered). However, it turns out to be a major roadblock when adapting the proof to a Coulomb gas context. Indeed, in sub-systems (or even in the full system if one does not impose artificial boundary conditions) there is absolutely no obvious translation-invariance. We introduce an "approximate translation-invariance" result, valid for both the full system and sub-systems, which is crucial for Step (3) (c). The point being that shifting a function (or more precisely, averaging over shifts) acts as a mollification and enables us to compare the expectation of a discrepancy, or of any non-smooth linear statistic, to that of a smoother one.

There is a series of results in mathematical statistical mechanics à la H.-O. Georgii devoted to prove translation invariance of infinite volume Gibbs measures in contexts where stationarity is not built-in, see e.g. [Geo99; Ric07], following earlier works by [START_REF] Fröhlich | Absence of crystalline ordering in two dimensions[END_REF]. The basic idea is to construct suitable "localized translations" in the form of diffeomorphisms acting as a given translation in a large box while leaving the majority of the system unchanged, and to control the effect on the energy of such changes of variables. Following the wisdom found in a remark of [Sim14, Chap. 3, Sec. III.7], we construct a localized translation that varies very slowly (in terms of its H 1 norm), and a careful revisit of a computation done in [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF], together with Serfaty's "smallness of anisotropy" trick, allows us to conclude that this localized translation can be chosen to have an arbitrarily small effect on the energy.

Approximate independence

Finally, one needs to find some kind of independence between the sub-systems. We introduce a new "approximate independence" argument (which we believe to be of interest on its own) for sub-systems that are well-separated, conditionally on the number of points in each of them. The simple idea is that two domains Λ i , Λ j with n i , n j points contribute an interaction energy given to first order by:

-(n i -|Λ i |) (n j -|Λ j |) log dist(Λ i , Λ j ),
while the precise arrangements of the points inside each domain should matter only to a lower order. Remark 1.1. In the rest of the paper we often use results found in [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF] and [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF]. It is worth noting that although both papers deal (among other things) with the same 2DOCP model, they do not use the same scaling convention. In [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF] the authors work with the so-called "blown-up scaling" (as in the present paper), which is more common in the physics literature and for which lengthscales range from ∼ 1 (the nearest-neighbor scale) to ∼ N 1/2 (the diameter of the system), whereas [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] uses the random matrix theory convention where the local scale is ∼ N -1/2 and the global scale is ∼ 1. In particular, a length scale ℓ in the present paper translates into N 1/2 ℓ in [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF], and the corresponding modifications must be applied when quoting results.

Preliminary results

Some notation.

We denote indicator functions by 1. We denote by |Ω| the Lebesgue measure of a measurable subset Ω. For x ∈ R 2 and r > 0 we let D(x, r) be the (closed) disk of center x and radius r. We let (x, r) be the square of center x and sidelength r (with sides parallel to the axes of R 2 ). We recall the notation Dis for discrepancies: if X is a point configuration and Ω is a measurable subset, we let Dis(X, Ω) := Pts(X, Ω) -|Ω|.

Size of derivatives. If M is a matrix we let M be its Euclidean norm. If ϕ is a bounded map we write |ϕ| 0 for its sup-norm. If ϕ is differentiable, we let Dϕ be its differential and introduce the following notation:

• |ϕ| 1,⋆ (x) is the size of Dϕ at a given point x, |ϕ| 1,⋆ (x) := Dϕ(x) .

• |ϕ| 1,loc (x) is the size of Dϕ around a given point x, |ϕ| 1,loc (x

) := sup |x ′ -x|≤1 |ϕ| 1,⋆ (x ′ ) • |ϕ| 1,Ω is the size of Dϕ in a given domain Ω, |ϕ| 1,Ω := sup x∈Ω |ϕ| 1,⋆ (x).
• Finally, |ϕ| 1 is the sup-norm of Dϕ.

We define similarly |ϕ| k,⋆ , |ϕ| k,loc , |ϕ| k,Ω and |ϕ| k for k ≥ 2.

Point configurations. For all Borel subsets Λ of R 2 , we let Conf(Λ) be the space of locally finite3 point configurations on Λ, endowed with the vague topology of Radon measures and the associated Borel σ-algebra. When Λ is not specified, we use the notation Conf for point configurations on R 2 . We will denote by X → X ∩ Λ the natural projection Conf ։ Conf(Λ). We may write "x ∈ X" to express the fact that X has an atom at a given point x ∈ R 2 . We say that a measurable function G on Conf is Λ-local when for all X in Conf we have G(X) = G(X ∩ Λ). We say that a measurable subset (an "event")

E of Conf is Λ-local when its indicator function 1 E is Λ-local.
Constants. Unless specified otherwise, C denotes a universal constant (which may change from line to line) and C β a constant that depends only on β. We will use C for constants that may depend on β and the parameter δ (as in (1.4)). We write

A B or A = O(B) if |A| ≤ C|B|.
Fluctuations. If ϕ is a piece-wise continuous function on R 2 we define the fluctuation of (the linear statistics associated to) ϕ as the following random variable:

Fluct[ϕ] := ΣN ϕ(x)df N (x).

Electric fields

We recall thatlog satisfies -∆(log) = 2πδ 0 on R 2 in the sense of distributions. In particular for all smooth enough test functions f , the following identity holds:

f (x) = -1 2π R 2 -log |x -y|∆f (y). (2.1)
Let Λ ⊂ R 2 and let X be a point configuration in Λ.

Definition 2.1 (True electric potential and electric field). We let h X (resp. ∇h X ) be the true electric potential (resp. true electric field) generated by X (in Λ), namely the map (resp. vector field) defined on R 2 by:

h X (x) := Λ -log |x -y|d (X -m 0 ) (y), resp. ∇h X (x) = Λ -∇ log |x -y|d (X -m 0 ) (y). It is easy to check that ∇h X is in ∩ p∈[1,2) L p loc (R 2 , R 2
) but fails to be in L 2 around each point charge, and that the following identity is satisfied on Λ in the sense of distributions:

-∆h X = -div ∇h X = 2π (X -m 0 ) . Definition 2.2 (Compatible electric fields). Let E be a vector field in ∩ p∈[1,2) L p loc (R 2 , R 2
). We say that E is an electric field compatible with X on Λ whenever we have:div E = 2π (Xm 0 ) on Λ in the sense of distributions.

Obviously the true electric field is a compatible electric field, however it is not the only one as can be seen by adding any divergence-free smooth vector field on Λ to ∇h X .

In order to "take care" of the singularities, one often proceeds to a truncation of the fields near each point charge.

Definition 2.3 (Truncation and spreading out Dirac masses). For η > 0 we let f η be the function:

f η (x) := max -log |x| η , 0 = -log |x| + log |η| if x ≤ η 0 if x ≥ η .
For each point x of X, let η(x) be a non-negative real number. The data of η = {η(x), x ∈ X} is called a truncation vector. If h X is the true electric potential, we let h X η (resp. ∇h X η ) be the (true) truncated electric potential (resp. field) given by:

h X η := h X - x∈X f η(x) (• -x), resp. ∇h X η = ∇h X - x∈X ∇f η(x) (• -x).
We are thus effectively replacinglog |x -•| bylog η near each point charge. Another way to think about f η is that we are truncating the singularities by smearing out the point charge δ x à la Onsager. Indeed when computing the divergence of ∇h X η one finds that the atom at each point x ∈ X has been replaced by a uniform measure of mass 1 on the circle of center x and radius η(x). We refer to [AS21, Section 2.2 & Appendix B.1] or to [Ser20, Sec 3.1] for more details. The truncation procedure can be extended to define E η , where E is any electric field compatible with X, by setting:

E η := E - x∈X ∇f η(x) (• -x).
For every point x of X we define the "nearest-neighbor" distance r(x) as:

r(x) := 1 4 min min y∈X,y =x |x -y|, 1 . (2.2)
In particular r(x) is always smaller than 1/4. We let r = (r(x), x ∈ X) be the associated truncation vector.

We will sometimes use instead the vector s r with s < 1.

Logarithmic energy and electric fields

The logarithmic interaction energy F N defined in (1.1) can be expressed in terms of the true electric field generated by X N (Definition 2.1) as follows.

• Taking a uniform truncation vector η(x) = η > 0 for all x in X N , we have the following equality in the limit as η → 0:

F N (X N ) = 1 2 lim η→0 1 2π R 2 |∇h XN η | 2 + N log η .
(This quantity is "almost" non-decreasing as η → 0, see e.g. [AS21, Lemma B.1.].)

• On the other hand, taking for each x a truncation η(x) ≤ r(x), we get a non-asymptotic identity:

F N (X N ) = 1 2 1 2π R 2 |∇h XN η | 2 + x∈XN log η(x) - x∈XN D(x,η(x)) f η(x) (t -x)dt. (2.
3)

The first formulation can be found in [SS12; RS16] and the second one in [START_REF] Leblé | Fluctuations of two dimensional Coulomb gases[END_REF] or [AS21, Lemma 2.2.]. Of course, expressing electrostatic interactions in terms of the electric field and "smearing out" point charges are both old ideas. One sees that in the small truncation limit there is a compensation between the explosion of R 2 |∇h XN η | 2 and the very negative terms x∈XN log η(x), hence the name "renormalized energy" given in [START_REF] Sandier | 2D Coulomb gases and the renormalized energy[END_REF] (this renormalization procedure appeared in [START_REF] Bethuel | Ginzburg-landau vortices[END_REF] and the idea of using nearestneighbor distances was borrowed from [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF]). Despite their apparent mutual cancellation, in general the "positive" and "negative" parts can both be compared to F N (X N ) as explained e.g. in [AS21, Lemma B.2].

In the sequel we use the expression "electric energy" when referring to quantities of the type Ω |E η | 2 where E is an electric field, η a truncation vector and Ω is some subset of R 2 , and we write:

Ener(X N , Ω) := Ω |∇h XN r | 2 , Ener s (X N , Ω) := Ω |∇h XN s r | 2 (for s ∈ (0, 1)).
(2.4)

From the identity (2.3) we deduce that for s < 1:

Ener s (X N , Ω) = Ener(X N , Ω) -Pts(X N , Ω) log s, (2.5)
For convenience, we will sometimes write EnerPts for the sum of Ener and Pts in a given domain.

Global and local laws

The following properties of F N are well-known (see [AS21, Lemma 3.7]):

• It is bounded below: there exists a universal constant C such that for all N ≥ 2 and for all X N , we have

F N (X N ) ≥ -CN .
• It is typically of order N in the sense that for some constant C β depending only on β:

E β N exp β 2 F N (X N ) ≤ exp (C β N ) . (2.6)
We refer to (2.6) as a "global law", controlling the system at macroscopic scale. The next proposition expresses the fact that the system is also well-behaved down to some large microscopic scale. Let us first introduce two important distances that will play a role in Proposition 2.4 and in the rest of the paper.

The smallest microscopic scale ρ β . We refer to a certain minimal lengthscale introduced in [AS21] and denoted by ρ β . It is a positive constant that depends only on β, and corresponds to the length-scale above which good rigidity properties are proven.

Distance to the boundary. For technical (and possibly physical) reasons, properties of the full-system are easier to understand when one looks "away from the edge", namely at some non-trivial distance of the boundary ∂Σ N . For x a point in Σ N and ℓ > 0, we will say that "(x, ℓ) satisfies (2.7)" when:

dist( (x, ℓ), ∂Σ N ) ≥ C β N 1/4 , (2.7)
where C β is some large enough constant introduced in [AS21, (1.16)].

Let us note that in the statement of Theorem 1 we assume that dist(D(x, R), ∂Σ N ) ≥ δ √ N which is clearly a stronger assumption, at least for N large enough depending only on δ, β.

Proposition 2.4 (Local laws).

There exists some universal constant C, and a "local laws" constant C LL depending only on β such that the following holds. Let x be a point in Σ N and ℓ a lengthscale such that:

1. ℓ ≥ ρ β (the length-scale ℓ is larger than the "minimal" one) 2. (x, ℓ) satisfy (2.7) (we are sufficiently "far from the edge").

Then we control the electric energy in (x, ℓ) in exponential moments:

log E β N exp β 2 Ener (X N , (x, ℓ)) ≤ C LL βℓ 2 .
Moreover, we have the following control on the number of points:

log E β N exp β C Pts (X N , (x, ℓ)) ≤ C LL βℓ 2 , (2.8)
together with a discrepancy bound:

log E β N exp β C Dis 2 (X N , (x, ℓ)) ℓ 2 ≤ C LL β.
(2.9)

Proof of Proposition 2.4. This is a subset of the statements in [AS21, Theorem 1], see Section B.1 for a technical discussion.

As can be seen from Proposition 2.4, Ener(X N , (x, ℓ)), Pts(X N , (x, ℓ)) and EnerPts(X N , (x, ℓ)) are all expected to be of the same order as the area ℓ 2 . Remark 2.5. For our purposes, we will repeatedly use the local laws under the following form: for C β large enough, the probability of having more than C β ℓ 2 points (or an energy higher than

C β ℓ 2 ) in a given square (x, ℓ) is smaller than exp -ℓ 2 /C β .
One can replace squares by disks (or by any "reasonable" shape) in the previous statement, however it is worth observing that local laws do not directly yield interesting controls the energy (or number of points) on very thin strips, rectangles with diverging aspect ratio, boundaries of squares, thin annuli etc. In those situations, one must resort to splitting the region into squares, applying the local laws to each square and then using a union bound.

The electric energy controls fluctuations

The next lemma expresses how the electric energy controls linear statistics of Lipschitz functions.

Lemma 2.6 (Bounds on fluctuations -Lipschitz case). Let X be a point configuration in R 2 , and let ϕ be a function in C 1 (R 2 ) with compact support. Let E be any electric field compatible with X on supp ϕ in the sense of Definition 2.2. Let Ω be a domain containing a 1-neighborhood of supp ∇ϕ. We have:

ϕ(x)d (X -m 0 ) (x) ≤ R 2 |∇ϕ| 2 1 2 Ω |E r | 2 1 2 + |ϕ| 1,Ω Pts(X, Ω)
(2.10)

Localized case Assume that Ω1 , . . . , Ωm cover supp ∇ϕ, and that for each i the domain Ω i contains a 1-neighborhood of Ωi , then we can replace the right-hand side of (2.10) by: We give the proof of Lemma 2.6 in Section B.2. Compared to existing results, here we simply emphasize the role played by the support of the gradient (instead of the whole support of the test function), which yields more accurate estimates when ϕ is a sharp cut-off function. We will repeatedly use its "localized version" (2.11), whose proof is a straightforward of (2.10).

m k=1 |ϕ| 1,Ωi × Ωi |E r | 2 1 2 × |Ω i | 1 2 + Pts(X, Ω i ) (2.

Finer bound on fluctuations for smooth test functions

For test functions with higher regularity the bound of Lemma 2.6 on fluctuations of linear statistics can be improved (see [START_REF] Leblé | Fluctuations of two dimensional Coulomb gases[END_REF][START_REF] Bauerschmidt | The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] as well as [RV07; AHM11] for the β = 2 case). In particular if ϕ ℓ (x) := φ(x/ℓ) for a fixed reference smooth test function φ, then ϕ ℓ lives at scale ℓ ≫ 1 yet its fluctuations remain bounded as ℓ → ∞ (with high probability). One can refer e.g. to [Ser20, Thm. 1] and [Ser20, Cor. 2.1] for such results.

In this paper we will occasionally need a more specific statement valid in the radially symmetric case.

Proposition 2.8 (Finer bound, the C 2 radially symmetric case). There exists a constant C β depending only on β such that the following holds. Let x be a point in Σ N and let ϕ be a test function which is radially symmetric around x, with compact support. Assume that ϕ is in C 2 (R 2 ) and let A be an annulus containing (a 1-neighborhood of) the support of ∆ϕ. Let s be a real number satisfying:

|s| ≤ πβ 4|ϕ| 2 .
(2.12)

Then the exponential moments of the fluctuations of ϕ satisfy:

log E β N [exp (sFluct[ϕ])] = s 2 4πβ R 2 |∇ϕ| 2 + log E β N [exp (s|ϕ| 2 C β (EnerPts(X N , A)))] .
Although it does not appear as such in the literature, Proposition 2.8 can be easily deduced from the tools of [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF], we give a proof in Section B.3.

Wegner's estimates

The recent paper [START_REF] Thoma | Overcrowding and Separation Estimates for the Coulomb Gas[END_REF] provides upper bounds on the k-point correlation functions of Coulomb gases (in dimension 2 and higher). Among many other things, it states so-called "Wegner's estimates" i.e. uniform controls of the form ρ 1 ≤ C β , where ρ 1 is the one-point correlation function. We will use [Tho22, Theorem 1.6], which is valid even for r ≪ 1 (sub-microscopic scale): Lemma 2.9. There exists C β such that for all x in Σ N and for all r > 0, if (x, r) satisfies (2.7) we have:

P β N ({Pts(D(x, r)) ≥ 1}) ≤ C β r 2 .
(2.13)

Locating discrepancies near the boundary

Let 0 ≤ ε R ≤ 1 (to be chosen later). The goal of this section to show that any "large" discrepancy ε R R within a disk of radius R can be found (with high probability) near the boundary of the disk.

Cornering the discrepancy in an annulus close to the boundary

Let L ≥ 100 be a lengthscale to be chosen later. Let z be a point and R ≥ ρ β such that D(z, R) satisfies (2.7). In this section we sometimes simply write D r (for r > 0) instead of D(z, r). Assume that the disk D(z, R) contains ε R • R too many4 points. Compare two idealized situations: in the first one, the excess of charges is spread uniformly over D R , in the sense that Dis(X N , D r ) behaves like

r 2 R 2 × ε R • R for r ≤ R.
In the second situation, the excess is concentrated in a thin strip near ∂D R and immediately compensated by a default on the other side of the boundary. According to [START_REF] Jancovici | Large charge fluctuations in classical Coulomb systems[END_REF], the physically realistic picture is the second one: "Macroscopic electrostatics of conductors implies that, for a given value of [the discrepancy] Q, the dominant configurations are such that Q is concentrated in a layer on the inner side of the boundary of the disk, while a charge -Q accumulates in a layer on the outer side.". In order to give a corresponding mathematical statement, observe that the event

R-2L≤r≤R-L Dis(X N , D(z, r)) ≥ 1 2 ε R • R
expresses that some excess of charges is found in the disks D r for a fairly wide region r ∈ [R -2L, R -L] and that the discrepancy is thus not "concentrated in a layer on the inner side of the boundary of the disk".

Proposition 3.1. There exists a constant C 3.1 (β) depending only on β such that the following holds. Let s be a real parameter. Assume that R, L, ε R , s satisfy:

   C 3.1 1 εR ≤ L ≤ R 10 0 ≤ s ≤ 1 C 3.1 min L 3 R , Lε R .
(3.1)

Then we have:

P β N   R-2L≤r≤R-L Dis(X N , D(z, r)) ≥ 1 2 ε R • R   ≤ exp - sε R • R 4 . (3.2)
We postpone the proof of Proposition 3.1 to Section B.4. It relies on Proposition 2.8. Next, we argue that if the complementary event occurs, then one can find an annulus of width ≈ L near the boundary of D R that carries a large discrepancy. Lemma 3.2 (Finding discrepancy in an annulus). If Dis(X N , D R ) ≥ ε R • R and if, in contrast to the event considered in (3.2), there exists a radius r with R -2L ≤ r ≤ R -L such that:

Dis(X N , D r ) < 1 2 ε R • R (3.3)
then there exists an integer k with 0 ≤ k ≤ R 2 such that the discrepancy in the annulus

D R \ D R-2L+ kL R 2 is larger than 1 4 ε R • R. Proof.
Let r be such that (3.3) holds and let 0 ≤ k ≤ R 2 be the integer such that:

r k := R -2L + kL R 2 ≤ r < R -2L + (k + 1)L R 2 .
It is easy to see that Dis(X N , D r k ) ≤ 3 4 ε R • R (a rough bound), indeed we have:

Dis(X N , D r k ) ≤ Dis(X N , D r ) + |D r \ D r k |,
with equality if and only if there is no point in the annulus

D r \ D r k , whose area is of order RL R 2 ≤ 1. Since the total discrepancy in D R is at least ε R • R and the one inside D r k is at most 3 4 ε R • R then the annulus D R \ D r k must carry a discrepancy of size at least 1 4 ε R • R. Remark 3.3.
If there is a negative discrepancy i.e. a default of points instead of an excess, one proceeds the same way, except that in Proposition 3.1 we bound the probability of Dis(X

N , D r ) ≤ -εR•R 2 for all R -2L ≤ r ≤ R -L instead. The complementary event is that for some r with R -2L ≤ r ≤ R -L, we have Dis(X N , D r ) > --εR•R

2

. Then in Lemma 3.2 instead of taking r k a bit smaller than r we take it a bit larger and observe that the discrepancy cannot go down too much between D r and D r k . Hence

Dis(X N , D r k ) ≥ -3εR•R 4 , so the annulus D R \ D r k carries a default of points at least εR•R 4 (in absolute value).

A well-separated family of boxes carrying the discrepancy

Let r be in [R -2L, R -L].

Decomposition in boxes

We split the annulus D R \ D r into smaller parts that we call boxes. Definition 3.4 (Decomposition in boxes). For i ∈ {0, . . . , R L -1}, we let the i-th "box" B i be the intersection of the annulus D R \ D r with a certain angular sector of center z:

B i := (D R \ D r ) ∩ z ′ ∈ R 2 ≃ C, i ≤ arg(z ′ -z) 2π × R L ≤ i + 1 .
The boundary of each such box is made of two line segments of equal length in (L, 2L) and two concentric circular arcs which subtend the same angle at the center and whose arclengths are different but both in L 2 , L . The shape is symmetric with respect to the straight line joining the midpoints of both arcs. We sometimes call "a box of size L" any domain B that fits the previous description.

We let ω i be the center of mass of B i , which only serves as a convenient reference point.

Introducing the parameters M and T Let T be a lengthscale, and M be an integer, both to be chosen at the end, such that:

T ≥ 10L, 100 ≤ M ≤ R L , T ≤ M L 100 , T 2 log T ≤ M L.
(3.4) (The fourth condition (which could be weakened), implies the third one but for clarity we write them all down.) Lemma 3.5 (Some well-separated boxes carry the discrepancy). Assume that the discrepancy in D R \ D r is larger than1 4 ε R • R. Then there exists l ∈ {0, . . . , M -1} such that:

Dis(X N , B i ) ≥ ε R • R 4M . (3.5)
Proof of Lemma 3.5. It follows from a straightforward pigeonhole argument.

From now on, we assume to have chosen such a l ∈ {0, . . . , M -1} and we write the corresponding boxes as B 1 , . . . , B N , where N = O R ML is the number of box in each "well-separated" family. Moreover, we see each box B i as being contained in a large disk Λ i := D(ω i , T ), where T is as above.

Let d ij be the distance between Λ i and Λ j . Claim 3.6. We have for each fixed i:

j,j =i 1 d ij = O log R M L , j,j =i 1 d 2 ij = O 1 M 2 L 2 (3.6)
Proof. Let us observe that between two "consecutive" boxes in the family {i ≡ l mod M } considered in (3.5), there is a distance of order M L (since M L ≥ 100T by assumption, this is also comparable to the distance between two consecutive disks). We can compare the sum to an harmonic sum (in the first case) or a converging Riemann series (in the second case).

Plan for the next two sections

We now want to treat each box B i as living in its own smaller version of a 2DOCP contained in Λ i , which leads us to the next two sections. Think of a "sub-system" as the random collection of particles contained in a given sub-domain Λ ⊂ Σ N with a reasonable shape (e.g. a square or a disk). These particles feel the influence of each other, but also of the full system in Σ N because the logarithmic interaction is long-range. Hence sub-systems are typically not isolated and not independent from each other.

Approximate conditional independence for sub-systems

In this section, we consider a family {Λ i , 1 ≤ i ≤ N } of N ≥ 2 disjoint disks in Σ N (forming our "subsystems"). We will eventually apply the results below to the Λ i 's chosen in Section 3.2, but the statements in the present section are general.

Let Ext be the complement Ext := Σ N \ ∪ N i=1 Λ i . Let V ext be the logarithmic potential generated by the system in Ext, namely:

V ext (x) := Ext -log |x -y|df N (y). (4.1)
The potential Ext is harmonic on all the Λ i 's and depends only on the configuration in Ext.

Decomposition of the interaction, conditional independence error

We let Int[Λ 1 , . . . , Λ N ] be the true logarithmic interaction between the sub-systems, namely:

Int[Λ 1 , . . . , Λ N ] := 1 2 1≤i =j≤N Λi×Λj -log |x -y|df N (x)df N (y).
By expanding the double integral defining F N , we may write:

F N (X N ) = F Ext (X N ∩ Ext) + Int[Λ 1 , . . . , Λ N ] + N i=1 F Λi (X N ∩ Λ i ) + Λi V ext (x)df N (x) (4.2)
with F Ext , F Λi defined the obvious way (see (4.7)). On the other hand, for each 1 ≤ i ≤ N , let D i be the discrepancy of X N in Λ i , and let Int[D 1 , . . . , D N ] be the approximation of Int[Λ 1 , . . . , Λ N ] given by:

Int[D 1 , . . . , D N ] := 1 2 1≤i =j≤N -D i D j log |ω i -ω j |,
where ω i denotes the center of Λ i . We define the quantity ErrorCI as follows:

ErrorCI [X N | (Λ 1 , . . . , Λ N )] := Int[Λ 1 , . . . , Λ N ] -Int[D 1 , . . . , D N ] , (4.3) 
and we use it below in order to measure a "conditional independence error".

Bounds on the conditional independence error

For 1 ≤ i = j ≤ N , define the distance d ij as d ij := dist(Λ i , Λ j ). Assume that for all 1 ≤ i ≤ N the disk Λ i has radius T and that: max

1≤i≤N n i ≤ 10T 2 , min 1≤i =j≤N d ij ≥ 10T. (4.4)
Lemma 4.1 (The size of ErrorCI). We have, if (4.4) holds:

|ErrorCI [X N | (Λ 1 , . . . , Λ N )]| = O(T 5 ) 1≤i =j≤N 1 d ij . (4.5)
Proof of Lemma 4.1. For x ∈ Λ i , y ∈ Λ j (with i = j) since the diameter of the squares is O(T ) and the mutual distances satisfy (4.4), a Taylor's expansion yields:

log |x -y| = log |ω i -ω j | + O T |ω i -ω j | , (4.6)
with a universal implicit constant. Integrating (4.6) against the fluctuation measures in Λ i and Λ j yields:

Λi×Λj log |x -y|df N (x)df N (y) -D i D j log |ω i -ω j | ≤ (|Λ i | + n i ) • (|Λ j | + n j ) • O T d ij .
Using the bound on n i , n j given by (4.4) and summing over i = j, we get (4.5).

Remark 4.2. It is possible to reduce the order of magnitude of ErrorCI by expanding the interaction in a more precise way.

2DOCP's with harmonic external field

In the following we consider two-dimensional one-component plasmas whose energy takes into account the effect of an external field V ext on each particle.

• Let V ext (the external field on Λ) be a lower semi-continuous function on R 2 that is harmonic on (the interior of) Λ. Let us emphasize that V ext is harmonic hence very regular in the interior of Λ but we do not a priori control V ext or its derivatives near ∂Λ. The situation is thus different from the choice of an external weight/potential as frequently found in the literature on log-gases.

• Let X n denote a n-tuple of points X n = (x 1 , . . . , x n ) in Λ, let X n := n i=1 δ xi be the associated atomic measure, and let f Λ := X nm 0 1 Λ be the signed fluctuation measure on Λ. Let F Λ (X n ) be the logarithmic interaction energy:

F Λ (X n ) := 1 2 (x,y)∈Λ×Λ,x =y -log |x -y|df Λ (x)df Λ (y). (4.7)
We define a probability density P β n,Λ,V ext on the space of n-tuples of points in Λ by setting:

dP β n,Λ,V ext (X n ) := exp -β F Λ (X n ) + Λ V ext (x)df Λ (x) K β n,Λ,V ext dX n , (4.8)
where K β n,Λ,V ext is the partition function, namely the normalizing constant:

K β n,Λ,V ext := Λ n exp -β F Λ (X n ) + Λ V ext (x)df Λ (x) dX n , (4.9)
and dX n is the Lebesgue measure on Λ n . We may now state the main result of this section.

Approximate conditional independence

Proposition 4.3 (Approximate conditional independence).

• For 1 ≤ i ≤ N , let G i be a measurable function on Conf with non-negative real values and let E i be a measurable subset of Conf. Assume that G i , E i are Λ i -local in the sense of Section 2.1.

• Let E ext be a measurable subset of Conf, assume that E ext is Ext-local.

• Denote by E N the following event:

E N := E ext ∩ N i=1 E i .
• Finally, we say that a family {n i } 1≤i≤N of integers is "admissible" (we write "{n i } adm." below) when there exists

X N ∈ E N such that Pts(X N , Λ i ) = n i for all 1 ≤ i ≤ N .
We have:

E β N N i=1 G i (X N )1 EN ≤ exp 2β sup XN ∈EN ErrorCI(X N ) × sup X ext ∈Eext,{ni} adm. N i=1 E β ni,Λi,V ext G i (X) E i . (4.10)
Moreover, with the same assumptions, the following lower bound holds:

E β N N i=1 G i (X N )1 EN ≥ exp -2β sup XN ∈EN ErrorCI(X N ) × P β N (E N ) × inf X ext ∈Eext,{ni} adm. N i=1 E β ni,Λi,V ext G i (X) E i . (4.11)
Notice that one sup is now an inf, the error term sup ErrorCI now appears in the exponent with a minus sign, and there is an extra factor P β N (E N ).

Proof of Proposition 4.3. Let us start by using the definition (1.2) of P β N and the decomposition (4.2) of the logarithmic interaction F N (X N ). We obtain:

E β N N i=1 G i (X N )1 EN = 1 K β N (ΣN ) N exp (-βF Ext (X N ∩ Ext)) exp (-βInt[Λ 1 , . . . , Λ N ]) × N i=1 exp -β F Λi (X N ∩ Λ i ) + Λi V ext (x)df N (x) × G i (X N ) 1 EN (X N )dX N .
Next:

• We use a complete system of events by fixing the number n i of points in each Λ i (and thus also the number n ext of points in Ext). The knowledge of n i is equivalent to fixing the discrepancy D i in Λ i .

Since we are working under the event E N , the {n i } must be admissible as defined in the statement of Proposition 4.3.

• Up to a combinatorial factor, we may then decompose the N -tuple X N into a n ext -tuple X ext of points in Ext, and X i (1 ≤ i ≤ N ), where each X i is a n i -tuple of points in Λ i .

• We decompose the Lebesgue measure dX N accordingly.

• We write X ext and X i (1 ≤ i ≤ N ) for the associated atomic measures. We have the identities

X ext = X N ∩ Ext and X i = X N ∩ Λ i (1 ≤ i ≤ N ).
• By our locality assumptions:

1 EN (X N ) = 1 Eext (X ext ) × N i=1 1 Ei (X i ). • We use our locality assumption on G i to write G i (X N ) = G i (X i ). • We introduce the measures f Ext := X ext -m 0 1 Ext and f Λi := X i -m 0 1 Λi .
• Finally, using the definition (4. We obtain the following upper bound:

E β N N i=1 G i (X N )1 EN ≤ 1 K β N {ni} adm. N n 1 . . . n N exp -β Int[D 1 , . . . , D N ] × exp β sup XN ∈EN ErrorCI(X N ) × (Ext) n ext exp -βF Ext (X ext ) 1 Eext (X ext ) × N i=1 (Λi) n i exp -β F Λi (X i ) + Λi V ext (x)df Λi (x) × G i (X i )1 Ei (X i )dX i dX ext . (4.12)
We may conveniently condense (4.12) using our notation. For 1 ≤ i ≤ N , in view of the definitions (4.8), (4.9), we write:

(Λi) n i exp -β F Λi (X i ) + Λi V ext (x)df Λi (x) G i (X i )1 Ei (X i )dX i = E β ni,Λi,V ext G i (X) E i × P β ni,Λi,V ext [E i ] × K β ni,Λi,V ext ,
and we may thus re-write (4.12) as:

E β N N i=1 G i (X N )1 EN ≤ 1 K β N {ni} adm. N n 1 . . . n N exp -β Int[D 1 , . . . , D N ] × exp β sup XN ∈EN ErrorCI(X N ) × (Ext) n ext exp -βF Ext (X ext ) 1 Eext (X ext ) × N i=1 E β ni,Λi,V ext G i (X) E i × P β ni,Λi,V ext [E i ] × K β ni,Λi,V ext dX ext . (4.13)
In (4.12), (4.13), the converse inequalities hold up to adding a minus sign in front of ErrorCI in the exponent (recall that the G i 's have non-negative values by assumption). Now, for all X ext ∈ E ext and all admissible {n i }, we have:

N i=1 E β ni,Λi,V ext G i (X) E i ≤ sup X ext ∈Eext{ni} adm. N i=1 E β ni,Λi,V ext G i (X) E i ,
and the converse inequality holds up to trading the sup for an inf. We get:

E β N N i=1 G i (X N )1 EN ≤ sup X ext ∈Eext,{ni}adm. N i=1 E β ni,Λi,V ext G i (X) E i × exp β sup XN ∈EN ErrorCI(X N ) × 1 K β N {ni} adm. N n 1 . . . n N exp -β Int[D 1 , . . . , D N ] (Ext) n ext exp -βF Ext (X ext ) 1 Eext (X ext ) × N i=1 (Λi) n i P β ni,Λi,V ext [E i ] × K β ni,Λi,V ext dX ext , (4.14)
and the converse inequality holds up to trading the first sup for an inf and writingsup ErrorCI instead of sup ErrorCI in the exponent. We now establish a bound on the partition function K β N in a similar fashion. By definition, we have:

     1 K β N ≤ (ΣN ) N 1 EN exp (-βF N (X N )) dX N -1 1 K β N = (ΣN ) N 1 EN exp (-βF N (X N )) dX N -1 × P β N (E N ).
(4.15)

Arguing as above (taking all the G i 's equal to the constant 1), we get:

(ΣN ) N 1 EN exp (-βF N (X N )) dX N ≤ exp β sup XN ∈EN ErrorCI(X N ) × {ni} adm. N n 1 . . . n N exp -β Int[D 1 , . . . , D N ] × Ext n ext exp -βF Ext (X ext ) 1 Eext (X ext ) N i=1 (Λi) n i P β ni,Λi,V ext [E i ] × K β ni,Λi,V ext dX ext , (4.16)
and the converse inequality holds withsup ErrorCI instead of sup ErrorCI. Combining (4.14), (4.15) and (4.16) we obtain (4.10) (note that many terms cancel out in the ratio). We have also proven the converse inequality (4.11), with an extra factor P β N (E N ) coming from (4.15).

Generalized 2DOCP's arising as sub-systems

Let Λ be a disk of center ω ∈ R 2 and radius T , and let n ≥ 1 be an integer, corresponding to the number of points in Λ. In general we may have n = |Λ|.

Good external potentials, good sub-systems

Let V ext be an external field as in Section 4.3 (we will eventually use this for the particular choice (4.1)). We introduce two definitions to pinpoint "good situations" for the generalized 2DOCP measure P β n,Λ,V ext introduced in (4.8).

Definition 5.1 (Good potential). We say that V ext is a "good external potential on Λ with constant C" when the following holds:

1. Control up to the edge. There exists a function Ṽext on Λ satisfying:

Ṽext (x) = V ext (x) if dist(x, ∂Λ) ≥ 1, Ṽext (x) ≤ V ext (x) + 100 for all x ∈ Λ, such that: Ṽext (x) -Ṽext (ω) ≤ C × T × log 3 T.

A technical decomposition.

V ext can be decomposed as the sum

V ext = h ν + R, (5.1)
where h ν is the logarithmic potential generated by a positive measure supported on an annulus of width T := log T right outside Λ, and R is harmonic in Λ, such that we control the derivative of R up to the edge by:

|R| 1,Λ ≤ C × log 2 T,
and moreover we control the mass of ν locally at scale T = log T :

sup x∈∂Λ ν(D(x, log T )) ≤ C log 2 T.
Definition 5.2 (Good sub-system). We consider the event "Λ is a good-system" defined as the sub-set of all point configurations X ∈ Conf such that:

1. The discrepancy Dis(X, Λ) satisfies: |Dis(X, Λ)| ≤ T log 2 T .

2. X belongs to the event E Λ defined by: a) There is absolutely no point in Λ at distance ≤ e -log 2 T from ∂Λ.

b) There is no more than T log T points in Λ at distance ≤ 1 from ∂Λ.

This event is of course Λ-local and even {x ∈ Λ, dist(x, ∂Λ) ≤ 1}-local.

The effective external potential is often good.

Let Λ i := D(ω i , T ) (1 ≤ i ≤ N
) be the disks introduced at the end of Section 3.2. We define a common external potential for all Λ i 's by setting (cf. (4.1)):

V ext (x) := ΣN \∪ N i=1 Λi -log |x -y|df N (y).
(5.2)

Proposition 5.3 (The effective external potential is often good). There exists a constant C depending only on β (and on the choice of δ as in Assumption 1.4) such that the following holds. With P β N -probability greater than 1-N exp -log 2 T C , for all i = 1, . . . , N the external potential V ext is a good external potential on Λ i with constant C (in the sense of Definition 5.1).

The proof of Proposition 5.3 is elementary but cumbersome. We postpone it to Section C. Since the constant C given by Proposition 5.3 depends only on β, δ, let us keep in mind that if we say that some constant depends on the "good external potential constant" C then in fact it itself only depends on β, δ.

The sub-systems are often good Lemma 5.4.

For C β large enough, if T ≥ C β , then with P β N -probability ≥ 1 -N exp -log 2 T C β
, for all i = 1, . . . , N , the conditions of Definition 5.2 (expressing the fact that "Λ i is a good sub-system") are satisfied.

Proof. Using the "discrepancy" part (2.9) of the local laws (Proposition 2.4) we see that if T is large enough (depending on β) then for any fixed i we have:

P β N (|Dis(X N , Λ i )| ≥ T log T ) ≤ exp - log 2 T C β .
Checking the conditions of E Λ requires more care.

Claim 5.5 (The conditions of E Λ are often met). For any fixed i we have:

P β N (E Λi ) ≥ 1 -exp - log 2 T C β .
Proof of Claim 5.5. From the local laws, it is easy to see that the second condition in Definition 5.2 is often satisfied. Indeed we can cover the 1-neighborhood of the boundary ∂Λ i by CT squares of sidelength 1, each of which contains at most log T 100C points with probability ≥ 1exp -log 2 T C β (for T large enough). We conclude with a union bound, which does not hinder the estimate.

The first condition of Definition 5.2 is more subtle and we rely on the "one-particle cluster" bound from [START_REF] Thoma | Overcrowding and Separation Estimates for the Coulomb Gas[END_REF] mentioned in Lemma 2.9. Cover the region Γ i := {z ∈ Λ, dist(z, ∂Λ i ) ≤ e -log 2 T } by O(T e log 2 T ) disks of radius r = 10e -log 2 T . For each disk, we know from (2.13) that the probability of it being occupied by at least one particle is smaller than C β r 2 . Then an union bound shows that the probability of at least one point falling anywhere in Γ i is bounded by C β T e -log 2 T , which concludes the proof of the claim.

We use a union bound over N such events to handle all the Λ i 's at once.

Until the end of Section 5, we consider a "good external potential" V ext " with constant C as in Definition 5.1 and we assume that |n -|Λ|| ≤ T log T .

2DOCP's with non-uniform neutralizing background

Instead of adding V ext , let us consider 2DOCP's in which the "neutralizing background" is no longer the uniform one, but a perturbation thereof.

• Let m be a (non-negative) measure on Λ and let ζ be some non-negative function on R 2 . Assume that m is supported in Λ and that ζ vanishes on the support of m.

• Assume that the measure m can be written as the sum of a measure which has a bounded density with respect to the Lebesgue measure m 0 on Λ and of a singular measure which has a bounded density with respect to the arc-length measure ds on ∂Λ. This assumption will be justified later in Section D.2. In particular, it implies thatlog |x -y|dm(x)dm(y) is finite.

• Let X n be a n-tuple of points in Λ and X n be the associated point configuration, we let F Λ (X n , m) be the logarithmic interaction energy computed with respect to m, namely:

F Λ (X n , m) := 1 2 (x,y)∈ΣN ×ΣN ,x =y -log |x -y|d(X n -m)(x)d(X n -m)(y).
We define a probability density P β n,Λ (•, m, ζ) on the space of n-tuples of points in Λ by setting:

dP β n,Λ (X n , m, ζ) := exp -β F Λ (X n , m) + n n i=1 ζ(x i ) K β n,Λ (m, ζ) dX n , (5.3) where K β n,Λ (m, ζ)
is the partition function, namely the normalizing constant:

K β n,Λ,V ext (m, ζ) := Λ n exp -β F Λ (X n , m) + n n i=1 ζ(x i ) dX n .
It is well-known that there is a way to pass from an external potential V ext (which should be here treated as a perturbation of a reference potential) as in Section 4.3 to the appropriate "equilibrium" measure and vice-versa (we refer e.g. to the lecture notes [Ser15, Sec. 2&3]). However, there is here a specific difficulty due to the behavior of V ext near ∂Λ and we postpone the necessary discussion (inspired by similar concerns in [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF]) to Section D.1.

Electric formalism for F Λ (X n , m)
We extend here some of the formalism from Sections 2.2 and 2.3 in a fairly straightforward way. Define the "true electric potential/field" associated to a point configuration X n and the background measure m as (cf. Definition 2.1):

h Xn,m := -log * (X n -m), ∇h Xn,m = -∇ log * (X n -m),
their truncated versions being defined as in Definition 2.3. Then we have the following identity, which extends (2.3):

Lemma 5.6. Assume that the total mass of m is equal to n. Let {η(x), x ∈ X n } be a truncation vector with η(x) ≤ r(x) (the nearest-neighbor distance introduced in (2.2)) for all x ∈ X n . We have:

F N (X n , m) = 1 2 1 2π R 2 |∇h Xn,m η | 2 + x∈Xn log η(x) - x∈Xn D(x,η(x)) f η(x) (t -x)dm(t), provided the disks D(x, η(x)) do not intersect ∂Λ.
Proof of Lemma 5.6. Since we place ourselves away from the singular part of m, the proof works exactly as when m has a bounded density, see [AS21, Lemma 2.2].

We also extend the notation Ener from (2.4) by setting: Ener(X n , m, Ω) :

= Ω |∇h Xn,m η | 2 .

Good properties of sub-systems with good external potentials

If V ext is a good external potential, there exists a probability measure µ W on Λ and a function ζ W such that:

P β n,Λ,V ext (•) = P β n,Λ (•, nµ W , ζ W ) , ( 5.4) 
we refer to Section D.2 for a definition and precise study of µ W and to Lemma D.6 for a proof of (5.4).

The key features of µ W are that:

1. It might be singular on ∂Λ.

2. It might have "holes" near ∂Λ (and ζ W > 0 on these holes).

3. It has a constant, positive density 1 n as soon as one looks at distance ≥ C′ log T from ∂Λ (with C′ depending on the "good external potential" constant C). On that region we have ζ W ≡ 0.

For good external potentials, it is thus equivalent to consider the "2DOCP with external background" P β n,Λ,V ext (as in (4.8)) or the "2DOCP with background measure" P β n,Λ (•, m, ζ) (with m := nµ W ) and we will simply write P β n,Λ for the corresponding Gibbs measure (and E β n,Λ for expectations under P β n,Λ ). We now compare the properties of this "generalized 2DOCP" to the ones of the original Gibbs measure P β N . The "good properties" are easier to obtain away from the boundary of Λ and for simplicity we will often work in "the bulk" Λ bulk defined as:

Λ bulk := D(ω, T /2) ⊂ D(ω, T ) = Λ.

Global law

Recall that the event E Λ was introduced in Definition 5.2. Proposition 5.7 (Global law for sub-systems with good external potential). There exists a constant C Global depending only on β and the "good potential" constant C such that:

log E β n,Λ exp β 2 F Λ (X, nµ W ) E Λ ≤ C Global T 2 log 5 T.
(5.5)

We prove Proposition 5.7 in Section D. The bound (5.5) should of course be compared with (2.6) which is valid for the full system. When considering sub-systems with good external potentials we are (only) losing some power of log T , which we have not tried to optimize.

Local laws in the bulk

Proposition 5.8 (Local laws for sub-systems with good external potential). There exists a universal constant C and a constant C Local (depending only on β and the "good potential" constant C) such that if T is large enough (depending on β, C) then for all ℓ ≥ ρ β , for all x in Λ, provided that the square (x, ℓ) is included in Λ bulk we have:

log E β n,Λ exp β 2 Ener (X n , (x, ℓ)) E Λ ≤ C Local βℓ 2 ,
where the "electric energy" is computed with respect to the background measure nµ W , and also:

log E β n,Λ exp β C Pts (X n , (x, ℓ)) E Λ ≤ C Local βℓ 2 .
This should be compared to Proposition 2.4 for the full system.

Proof of Proposition 5.8. This follows from [Leb17; AS21], but it requires some explanation. We wish to obtain local laws, namely good controls on the electric energy (controls on the number of points are obtained as a byproduct) that are proportional to the volume down to large enough microscopic scales as in [AS21, Thm. 1]. Only this time we are in presence of an external potential / a non-uniform background measure nµ W , and we were only able to derive a global bound as in Proposition 5.7, with a global energy estimate that is slightly larger than the total volume. Our goal is thus twofold:

1. Extend the bootstrap in scales of [Leb17; AS21] to a situation where the background measure is not constant.

2. Show that the bootstrap in scale not only propagates estimates to smaller scales, but in fact improves (if needed) the estimates at each step, which allows to get rid of the logarithmic correction in (5.5)

The first point is, in fact, very simple. Indeed, although the methods of [START_REF] Leblé | Local microscopic behavior for 2D Coulomb gases[END_REF][START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF] are not suited to situations where the background measure has singularities or holes (in fact this is the reason why local laws are not proven near the edge for the full system), they are local by design and work as soon as we look at distances ≥ C log T from the boundary, because then the background measure nµ W is equal to 1 (see Section 5.3). Since we only care about the bulk of Λ, this is fine.

The second point is more interesting. The basic tool for the proof of local laws is the fact that thanks to the screening construction of Serfaty et al. one can, up to some errors, decouple the system in a given region Ω ⊂ Λ of characteristic length R from the system in Λ \ Ω. The main price to pay is the first energy error term in [AS21, (4.7)] which reads " ℓ l S". In their framework the quantity ℓ must be such that ℓ 3 ≥ S l ([AS21, (4.4)]) and l can be chosen5 of order R, so in fact we are paying a price of order . In [Leb17; AS21] (see also [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF]) one starts from an estimate E(2R) ∼ (2R) 2 (the energy scales like the volume) and gets an error of order O(R 4/3 ) ≪ R 2 which is indeed negligible (this can in fact be improved further down by chosing ℓ, l more cleverly, see the proof of [AS21, Prop. 2.5]).

The key observation6 is that even if we start from a poorer estimate, say with logarithmic corrections like E(2R) ∼ (2R) 2 log 100 (R) (cf. the one implied by our global law (5.5)) then the error O E(2R) R 4/3 remains much smaller than R 2 . In fact, a careful inspection of the proof (which we will not need here) shows that one could start with a "global law" as bad as O(T 5/2 ), or even o(T 3 ) instead of (5.5) and still recover good local laws in the bulk.

Sub-systems with good external potentials: consequences

Discrepancy bounds

Once local laws hold (in the bulk), we retrieve all statements that rely purely on energy considerations.

In particular the analogous of [AS21, (1.18)] is valid, namely:

Lemma 5.9 (Discrepancy bounds in sub-systems). If (x, ℓ) ⊂ Λ bulk then:

log E β n,Λ exp β C Dis 2 (X n , (x, ℓ)) ℓ 2 E Λ ≤ C Local .
(5.6)

In particular, we have an a priori Poisson-like bound on the number variance:

E β n,Λ Dis 2 (X n , (x, ℓ)) E Λ ≤ CC Local ℓ 2 ,
together with a tail estimate: if ℓ is larger than some constant depending on β, C

P β n,Λ |Dis(X n , (x, ℓ))| ≥ ℓ log ℓ E Λ ≤ exp - log 2 ℓ C β .
Proof of Claim 5.9. The proof is as in [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF], using an inequality that relates the presence of discrepancy to a certain energy cost, e.g. [AS21, Lemma B.4].

Remark 5.10. As an inspection of the (short) proof of [AS21, Lemma B.4] quickly reveals, there is nothing specific to a square in the previous claim, and it also applies to a disk of radius ℓ, or to any "reasonable" shape like the boxes introduced in Definition 3.4.

Treating smooth linear statistics

Following exactly the same proof as in [LS18; Ser20] (or alternatively as in [START_REF] Bauerschmidt | The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem[END_REF]), one would obtain a control on linear statistics of smooth enough test functions supported in the bulk Λ bulk . We do not need it here, however it will be crucial for us to retrieve a specific property (the "smallness of the anisotropy"), but since this only serves as a tool for another result (the quantitative translation-invariance estimate presented in Section 6) we postpone the corresponding discussion to an appendix (see Section E.4). The only result that we will quote directly is one about expectations for fluctuations of linear statistics.

Lemma 5.11 (Expectation of linear statistics in the bulk of subsystems). There exists a constant C depending only on β, and on the "local laws" constant C Local (thus on the "good potential" constant) such that the following holds.

Let ϕ be a function of class C 2 , compactly supported on a disk of radius ℓ ≥ ρ β included in Λ bulk . Then:

E β n,Λ Fluct[ϕ] E Λ ≤ C|ϕ| 2 ℓ 2 .
(5.7)

Proof of Lemma 5.11. This follows from the proofs of [LS18; Ser20] but is not explicitly written as such.

Let t be a small parameter, we know from [LS18, Prop. 2.10] that:

E β n,Λ e tFluct[ϕ] E Λ = K n,Λ (m s ) K n,Λ (m) e O(t 2 ) ,
where m s is the measure m s := m -s∆ϕ, where s = t 2πβ . This is valid because ϕ is assumed to be supported in Λ bulk , where m has density 1. By e.g. [LS18, Lemma 3.6] we know that we can replace m s by the approximate measure ms := (Id +s∇ϕ)#m up to quadratic terms, i.e.:

E β n,Λ e tFluct[ϕ] E Λ = K n,Λ ( ms ) K n,Λ (m) e O(t 2 ) .
Next, a consequence of [Ser20, Prop. 4.2] is that the ratio of partition functions can be written as:

K n,Λ ( ms ) K n,Λ (m) = exp sO (|ϕ| 2 EnerPts(X n , supp ∇ϕ)) + O(s 2 ) ,
and thus taking the limit t → 0 (or equivalently s → 0) and using the local laws we get (5.7) after identifying the first order terms.

Quantitative estimate on translation-invariance

In this section, we denote by u be the vector u := (0, 1) in R 2 .

The "spin wave" and its properties

An auxiliary function For ε ∈ (0, 1), let f (ε) : x = (x 1 , x 2 ) ∈ R 2 → R be defined as:

f (ε) (x) :=      x 1 if |x| ≤ 1 x 1 (1 -ε log |x|) if 1 ≤ |x| ≤ e 1/ε 0 if |x| ≥ e 1/ε .
The function f (ε) is continuous, piecewise C 2 and compactly supported on the disk of radius e 1/ε . We have, by direct computations:

• On (the interior of) the unit disk, ∂ 1 f (ε) ≡ 1, ∂ 2 f (ε) ≡ 0 and the second (and third) derivatives of f (ε) vanish.

• For 1 ≤ |x| ≤ e 1/ε , we have :

-∂ 1 f (ε) (x) = 1 -ε log |x| -ε x 2 1 |x| 2 , ∂ 2 f (ε) (x) = -ε x1x2 |x| 2 . -The second derivatives of f (ε) satisfy the pointwise bound |f (ε) | 2,⋆ (x) ε |x| . -The third derivatives of f (ε) satisfy the pointwise bound |f (ε) | 3,⋆ (x) ε |x| 2 .
In particular, observe that the first partial derivatives of f (ε) are bounded by 1 with a jump of size O(ε) along both ∂D(0, 1) and ∂D(0, e 1/ε ), while the second partial derivatives have a jump of size O(ε) along ∂D(0, 1) and of size O(ε/e 1/ε ) along ∂D(0, e 1/ε ).

Thus after applying a mollification to f (ε) at scale 1 2 near ∂D(0, 1) and at scale 1 2 e 1/ε near ∂D(0, e 1/ε ) we may consider a function f (ε) which is smooth, compactly supported in D(0, 2e 1/ε ) and such that (for some universal constant C):

• f (ε) (x) = x 1 for |x| ≤ 1 2 . • The first derivatives of f (ε) are bounded by 2 on R 2 . • | f (ε) | 2,⋆ (x) ≤ Cε for |x| ≤ 2 and | f (ε) | 2,⋆ (x) ≤ C ε |x| for 2 ≤ |x| ≤ 2e 1/ε . • | f (ε) | 3,⋆ (x) ≤ Cε for |x| ≤ 2 and | f (ε) | 3,⋆ (x) ≤ C ε |x| 2 for 2 ≤ |x| ≤ 2e 1/ε .
Definition of the "spin wave" Next, we define our "spin wave"7 W (ε) as the vector field

W (ε) := ∇ ⊥ f (ε) = -∂ 2 f (ε) , ∂ 1 f (ε) .
Lemma 6.1. The following properties of W (ε) are straightforward:

1. W (ε) is smooth, compactly supported on D(0, 2e 1/ε ) (because so is f (ε) ). 2. W (ε) (x) = u = (0, 1) for |x| ≤ 1 2 (because then f (ε) (x 1 , x 2 ) = x 1 ). 3. div W (ε) = 0 on R 2 (by definition of W (ε)
as the perpendicular gradient of a smooth function).

4.

|W (ε) | 0 ≤ 2 (it is bounded by the first derivative of f (ε) ), |W (ε) | 1 ≤
Cε and more precisely:

W (ε) 1,⋆ (x) ≤ C × ε for |x| ≤ 2 ε |x| for 2 ≤ |x| ≤ 2e 1/ε . 5. |W (ε) | 2,⋆ (x) ≤ Cε for |x| ≤ 2 and |W (ε) | 2,⋆ (x) ≤ C ε |x| 2 for 2 ≤ |x| ≤ 2e 1/ε .
We have thus constructed a smooth, divergence-free vector field which is constant near the origin and has an arbitrary small H 1 norm (of order ε). The downside is that the size of the support of W (ε) is exponential with respect to the parameter 1/ε.

Slowly varying localized translations

For ℓ > 0, let the vector field W (ε,ℓ) be defined for x ∈ R 2 as W (ε,ℓ) (x) := W (ε) (x/ℓ). Since W (ε,ℓ) is continuous and compactly supported, it generates a global flow {Φ ε,ℓ t } t with the following properties: Lemma 6.2. For all |t| ≤ ℓ 10 we have:

1. Φ ε,ℓ t is an area-preserving diffeomorphism of R 2 .
2. We have Φ ε,ℓ t (x) = x + t u for |x| ≤ ℓ/4.

We have

Φ ε,ℓ t (x) = x for |x| ≥ 2ℓe 1/ε .
Thus for fixed |t| ≤ ℓ 10 the diffeomorphism Φ ε,ℓ t coincides with the translation by t u on the disk D(0, ℓ/4) and with the identity outside D(0, 2e 1/ε ), we call it a localized translation as in [START_REF] Georgii | Translation invariance and continuous symmetries in two-dimensional continuum systems[END_REF]. The main difference with the construction of [START_REF] Georgii | Translation invariance and continuous symmetries in two-dimensional continuum systems[END_REF] 

is that we have |Φ ε,ℓ t -Id | 2 1,⋆ = O(ε) instead of O(1)
. Interestingly enough, a bounded (but not small) H 1 norm for Φ ε,ℓ t -Id (which induces a bounded, but not small energy cost, as we will show in Section E) is enough to prove translation-invariance in the infinite-volume setting, but fails to give anything valuable in finite-volume. However, according to a remark in [Sim14, Sec. III.7] "it appears that any model in which this weaker property is valid, the [possibility of finding a construction with arbitrarily small energy cost exists]". This remains very intriguing to us.

Proof of Lemma 6.2. The fact that Φ ε,ℓ t is area-preserving follows from Liouville's theorem, since the vector field W (ε) (and thus W (ε,ℓ) ) is divergence-free by construction. Moreover, since we ensured that W (ε) ≡ u on D(0, 1 2 ), the rescaled vector field W (ε,ℓ) coincides with u on the disk D(0, ℓ/2) hence we have Φ ε,ℓ t (x) = x + t u as long as x + t u remains in D(0, ℓ/2). In particular, if |x| ≤ ℓ/4 and since |t| ≤ ℓ 10 by assumption, we have Φ ε,ℓ t (x) = x + t u. On the other hand, W (ε,ℓ) vanishes identically outside D(0, 2ℓe 1/ε ) and thus the flow there coincides with the identity map.

We will study Φ ε,ℓ t a bit more closely in Section E.1 for technical purposes.

Effect of localized translations on the energy

We now apply the "spin wave" / "localized translation" construction to a sub-system with good external potential. Let Λ (a disk of radius T ), n, V ext be as in Section 5, with V ext a good external potential, let m = nµ W be the corresponding non-uniform background and assume that the properties listed in Section 5.3 hold. Let L be as in Section 3 and let us choose ε, ℓ in such a way that:

e √ log ℓ ≤ L ≤ ℓ 10 , 5ℓe 1/ε ≤ T ≤ 10ℓe 1/ε , log ℓ ≤ ε -1 , ε -1 ≤ ℓ 2 ≤ ε -3 . (6.1)
Let ErrAve(t, ε, ℓ, X) denote the following "averaging error":

F Λ (X, m) = 1 2 (F Λ (Φ t X, m) + F Λ (Φ -t X, m)) + ErrAve(t u, ε, ℓ, X), (6.2)
where Φ t X denotes the configuration obtained after applying Φ t to all the points of X.

Proposition 6.3. There exists a constant C depending on β on the "local laws" constant C Local (and thus on the good external potential constant) such that:

P β n,Λ sup |t|≤ ℓ 10 |ErrAve(t u, ε, ℓ, X n )| ≤ Ct 2 ε log ε E Λ ≥ 1 -exp -ℓ 2 .
We prove Proposition 6.3 in Section E and use it next to "mollify" observables before taking expectations.

Effect of localized translations on expectations

Proposition 6.4. Let G be a measurable function on Conf(Λ), let E ⊂ Conf(Λ) be an event. Assume that the function G is D(0, ℓ/10)-local and that E is Λ \ Λ bulk -local. Recall that |t| ≤ ℓ/10. For all τ ∈ (0, 1) and for all σ > 0, we have:

E β n,Λ G(X) E = E β n,Λ 1 2 (G(X + t u) + G(X -t u)) E + ErrorQI(t u, ε, ℓ, τ, σ, G, X), (6.3) 
with an error term ErrorQI bounded as follows:

|ErrorQI(t u, ε, ℓ, τ, σ, G, X)| ≤ 2 E β n,Λ G 2 (X ± t u) E + σ 2 1 2 × e βτ -1 + 2e βτ E β n,Λ G 2 (X ± u) E + σ 2 1 2 × P β n,Λ [|G(X ± t u)| ≥ σ] 1 2 + E β n,Λ G 2 (X) E × P β n,Λ ErrAve(t u, ε, ℓ, X) ≥ τ E 1 2
We postpone the proof of Proposition 6.4 to Section E.5. There is of course nothing special about the vector u, and we may replace it by any unit vector.

Application: expectation of discrepancies in sub-systems

Proposition 6.5. Let B be a box of size L as introduced in Definition 3.4. Assume that it is contained in the disk D(0, ℓ/10). Then we have:

E β n,Λ Dis(X n , B) E Λ ≤ CL (ε log ε log L) 1/3 . (6.4)
The point of (6.4) is that if ε log ε log L is ≪ 1 then the bound on the average discrepancy is ≪ L, and thus much better than the crude estimate via the standard deviation using Claim 5.9. This is crucial for us.

Proof of Proposition 6.5. Let us take G(X) := Dis(X, B), which is clearly D(0, ℓ/10)-local in view of our assumption on B. Moreover E Λ (by its Definition 5.2) is clearly Λ \ Λ bulk -local. Fix the parameter t as:

t := (ε log ε log L) -1/3 . (6.5)
We first check that t has the correct range (using (6.1)):

t ≤ ε -1/3 ≤ ℓ 2/3 ≤ ℓ 10 .
In particular, for all vector v ∈ R 2 with v ≤ t we may apply the result of Proposition 6.4 to a localized translation in the direction v v instead of u. Introduce a smooth cut-off function χ equal to 1 for |x| ≤ t 2 and to 0 for |x| ≥ t, such that |χ| k ≤ C t-k (for k = 1, 2). We impose that χ be an even function. For all |v| ≤ t we have:

E β n,Λ Dis(X, B) E = E β n,Λ 1 2 (B(X + v, B) + Dis(X -v, B)) E + ErrorQI(v, ε, ℓ, τ, σ, Dis(•, B), X).
Integrating this against χ |χ| L 1 (which has mass 1) and using the fact that χ is even we obtain:

E β n,Λ ]Dis(X n , B) E Λ = 1 |χ| L 1 χ(v)E β n,Λ Dis(X + v, B) E Λ + ErrorQI(v)dv. Observe that Dis(X + v, B) = Fluct[1 B (• + v)](X)
, so that we may re-write the integral in the right-hand side as a convolution. Introducing the function ϕ := 1 B * χ |χ| L 1 we get:

E β n,Λ Dis(X n , B) E Λ -E β n,Λ ]Fluct[ϕ] E Λ ≤ sup |v|≤ t ErrorQI (v, ε, ℓ, τ, σ, Dis(•, B), X n ) . (6.6)
By construction, the function ϕ is now a smooth cut-off function, equal to 1 on {x ∈ B, dist(x, ∂B) ≥ t} and to 0 for {x / ∈ B, dist(x, ∂B) ≥ t}. In particular, the support of ∇ϕ has an area O(L t), and moreover we have |ϕ| k ≤ C t-k for k = 1, 2 (by Young's convolution inequality). From Lemma 5.11, we thus know:

E β n,Λ []Fluct[ϕ]] E Λ 1 t2 × L t = O L t , (6.7)
with multiplicative constants depending on β, δ.

On the other hand, we know by Proposition 6.3 that choosing C large enough we can ensure:

sup |v|≤ t P β n,Λ {|ErrAve(v, ε, ℓ, X)}| ≥ Cε log ε t2 E Λ ≤ exp -ℓ 2 / C .
Moreover Dis(X + v, B) = Dis(X, Bv) and we have by Lemma 5.9:

sup |v|≤ t E β n,Λ Dis 2 (X, B -v) E Λ ≤ CL 2 (
because the translated object Bv remains a box within Λ bulk ) and, still by Lemma 5.9, for C large enough we have: sup

|v|≤ t P β n,Λ ({|Dis(X + v, B)| ≥ L log L}) ≤ e -1 C log 2 L .
(Remark that the sup is outside P β n,Λ , E β n,Λ in those bounds -it would be significantly more challenging otherwise.) Thus, choosing τ = Cε log ε t2 , σ = L log L in the statement of Proposition 6.4, the error term ErrorQI reduces to:

ErrorQI(v, ε, ℓ, τ, σ, Dis(X, B), X) CL log L ε log ε t2 + exp -ℓ 2 /C + exp - 1 C log 2 L ,
uniformly for |v| ≤ t and thus (using (6.1) and keeping only the dominant term):

sup |v|≤ t ErrorQI ≤ CL log Lε log ε t2 . (6.8)
Combining (6.6) with (6.7) and (6.8), and using our choice (6.5) for t, we obtain (6.4).

Remark 6.6. One can use the same argument to study expectations of discrepancies in the full system. Then one does not need to use E Λ since local laws are know to hold unconditionally, and one can take ε as small as log -1 N .

Corollary 6.7 (An application). Assume that L, T satisfy the following relation:

T = 100L exp(10L).
Then we have:

E β n,Λ [Dis(X, B)] ≤ CL 0.67 .
Proof. We can take ℓ = 10L and ε = ℓ -1 = 1 10L , and T = 100L exp(10L) = 10ℓe 1/ε . The conditions of (6.1) are clearly satisfied. The right-hand side of (6.4) is then bounded by CL 2/3 log L = O(L 0.67 ) (for L large enough).

Conclusion: proof of Theorem 1

Let δ > 0 be fixed. Let x, R be such that dist(D(x, R), ∂Σ N ) ≥ δ √ N as assumed in (1.4). Let ε R be chosen as:

ε R := log -0.3 (R), (7.1)
For simplicity, we will focus on the case of an excess of points, i.e. a positive discrepancy, the other case being treated similarly. Define the event A R :

A R := {Dis (X N , D(x, R)) ≥ ε R R}
The conclusion that we want to reach (as stated in (1.5)) is that for R, C large enough (depending on β and on the parameter δ, but not on x):

P β N (A R ) ≤ exp -log 1.5 R . (7.2)
We have not tried to optimize ε R or the exponent in (7.2), what matters for us is that ε R → 0 and that 1.5 > 1 so our probabilistic tail is better than algebraic. With the methods of the present paper, there is a hard limit on the smallness of ε R -it has to be at least log -1 R.

Step 1. Choosing L and cornering the discrepancy

Let L be chosen as:

L := log 0.99 R. (7.3)
In particular, for R greater than some constant (depending only on β) we have:

C 3.1 1 ε R = C 3.1 log 0.3 R ≤ log 0.99 R = L ≤ R/10,
(where C 3.1 is the constant depending only on β introduced in Proposition 3.1) so the first condition of (3.1) is satisfied. Moreover let s be chosen as

1 C 3.1 min L 3 R , Lε R , namely (for R large enough): s := 1 C 3.1 L 3
R . By definition, the second condition of (3.1) is then satisfied. Let us compute:

exp - sε R R 4 = exp - ε R L 3 4C 3.1 ≤ exp - log -2.67 R C β .
For each k with 0 ≤ k ≤ R 2 , let B R (k) be the event:

B R (k) := The discrepancy in the annulus D R \ D R-2L+ kL R 2 is larger than 1 4 ε R • R
Combining Proposition 3.1 and Lemma 3.2 we obtain:

P β N (A R ) ≤ R 2 k=1 P β N (B R (k)) + exp - log -2.67 R C β , ( 7.4) 
and we now focus on bounding B R (k) (the index k plays no particular role, and for simplicity we forget about it).

For each k, as explained in Section 3.2, we can decompose the annulus

D R \ D R-2L+ kL R 2 into boxes B i , i ∈ {0, . . . , R
L -1} of size L as in Definition 3.4.

Step 2. Choosing T, M and a well-separated family

Let T be chosen (as in (6.7)) as:

T := 100 × log 0.99 R × exp 10 log 0.99 R = 100L exp (10L) , (7.5) and let M be chosen as:

M := T 6 . (7.6)
Since L = log 0.99 R (according to (7.3)), the conditions of (3.4) are clearly satisfied for R large enough. Now, for l ∈ {0, . . . , M -1}, let C(l) be the event:

C(l) := i=l mod M Dis(X N , B i ) ≥ ε R R 4M . (7.7)
By Lemma 3.5 we know that:

P β N (B R ) ≤ M-1 l=0 P β N (C(l)) , (7.8) 
and we now focus on bounding C(l) (again, the index l plays no role in the sequel). The index l being fixed, we only consider the boxes B i for i ≡ l mod M and forget about the other boxes. We relabel those boxes as B i for i ∈ {1, . . . , N } where N is the cardinality of that family of boxes, with:

N = O R M L . (7.9)
As in Section 3.2 we let Λ i be the disk D(ω i , T ), where ω i is the "center" of the box B i , and we recall that d ij denotes the distance between Λ i and Λ j . Using (3.6) and summing over i = 1, . . . , N = O( R ML ), we get:

max 1≤i≤N j =i 1 d ij = O log R M L , 1≤i =j≤N 1 d ij = O R log R (M L) 2 .
A "good event"

Let V ext be the logarithmic potential generated by the system outside the Λ i 's as in (5.2). For C > 0, let E ext ( C) be the event:

E ext ( C) := V ext is a "good external potential" on each Λ i with constant C. (7.10) (See Definition 5.1). By Proposition 5.3 we know that if C is chosen large enough and if T is large enough (i.e. R is large enough) depending only on β and on the parameter δ from (1.4), then we have:

P β N (E ext ( C)) ≥ 1 -N exp -log 2 T / C .
Since N is always smaller than R = e log R (see (7.9)) and since, by our choice (7.5) of T we have:

exp -log 2 T / C ≤ exp -log 1.98 R/ C ≪ exp(-log R),
we deduce that (for R, C large enough depending on β, δ):

P β N (E ext ( C)) ≥ 1 -exp -log 2 T / C .
On the other hand, for each i = 1, . . . , N , let E i be the event: "Λ i is a good sub-system", as in Definition 5.2. By Lemma 5.4, we know that:

P β N N i=1 E i ≥ 1 -N exp -log 2 T /C β ,
and by the same parameter comparison as above we get:

P β N N i=1 E i ≥ 1 -exp -log 2 T /C β .
We thus have (for R, C large enough):

P β N (C) ≤ P β N C ∩ E ext ( C) N i=1 E i + exp -log 2 T / C . (7.11)

Using approximate conditional independence

Let ω be chosen as: ω := L -1.33 . (7.12)

For 1 ≤ i ≤ N , let G i be the following function on Conf, which is clearly non-negative and Λ i -local: ,Bi) .

G i (X) := e ωDis(X
If X N is in C then by definition (see (7.7)) we have:

N i=1 G i (X N ) = e ω N i=1 Dis(XN ,Bi) ≥ exp ωε R R 4M ,
and thus by Markov's inequality (dropping the C-dependency):

P β N C ∩ E ext N i=1 E i ≤ exp - ωε R R 4M E β N N i=1 G i (X N )1 Eext∩ N i=1 Ei . (7.13)
We are in a position to use Proposition 4.3 with E N := E ext ∩ N i=1 E i . We obtain:

E β N N i=1 G i (X N )1 Eext∩ N i=1 Ei ≤ exp 2β sup XN ∈EN ErrorCI(X N ) × sup X ext ∈Eext,{ni} adm. N i=1 E β ni,Λi,V ext G i (X) E i (7.14)
Let us note that the event N i=1 E i implies that the "admissible" number of points in each Λ i is bounded by 10T 2 (see Definition 5.2) which checks the first condition of (4.4), and that the second condition of (4.4) is implied by the third condition 8 of (3.4). We may thus use Lemma 4.1 which, together with (3.6), implies that the conditional independence error ErrorCI between the Λ i 's is bounded by: sup

XN ∈ N i=1 Ei |ErrorCI[X N |Λ 1 , . . . , Λ N ]| = O T 5 R log R (M L) 2 , (7.15)
which controls the first term in the right-hand side of (7.14), and we now focus on the second one.

8 The distance between two centers ω i , ω j is bounded below by M L and thus dist(

Λ i , Λ j ) ≥ M L -2T ≥ 98T .
Controlling expectations in each "sub-system" Let us fix 1 ≤ i ≤ N and work in Λ i . We can assume that V ext is C-good on Λ i because of (7.10).

Claim 7.1. Let D i := Dis(X n , B i ). We have:

E β ni,Λi e ωDi E Λi = 1 + O L -0.66 ≤ e O(L -0.66 ) (7.16)
Proof. We start by decomposing the expectation as:

E β ni,Λi e ωDi E Λi = E β ni,Λi e ωDi 1 |ωDi|≤ 1 2 E Λi + E β ni,Λi e ωDi 1 |ωDi|> 1 2 E Λi . (7.17)
Using a Taylor's expansion, we may write the first term in the right-hand side of (7.17) as:

E β ni,Λi e ωDi 1 ω|Di|≤ 1 2 E Λi = E β ni,Λi 1 + ωD i + O ω 2 D 2 i 1 ω|Di|≤ 1 2 E Λi ≤ P β ni,Λi 1 ω|Di|≤ 1 2 E Λi + ωE β ni,Λi [D i E Λi ] + O ω 2 E β ni,Λi [D 2 i E Λi ] + E β ni,Λi ω|D i |1 ω|Di|> 1 2 E Λi .
Using Corollary 6.7 to control E β ni,Λi [D i E Λi ] and Lemma 5.9 to control

E β ni,Λi [D 2 i E Λi ]
, and inserting into (7.17) we obtain:

E β ni,Λi e ωDi E Λi ≤ 1 + ωO(L 0.67 ) + ω 2 O(L 2 ) + E β ni,Λi e ωDi 1 |ωDi|> 1 2 E Λi + E β ni,Λi ω|D i |1 ω|Di|> 1 2 -P β ni,Λi 1 ω|Di|> 1 2 E Λi , (7.18)
and it remains to control the second line of (7.18), using Lemma 5.9. We write:

E β ni,Λi e ωDi 1 |ωDi|> 1 2 E Λi ≤ E β ni,Λi e 2ω 2 L 2 D 2 i L 2 1 |ωDi|> 1 2 E Λi ≤ E β ni,Λi e 4ω 2 L 2 D 2 i L 2 E Λi 1 2 E β ni,Λi 1 |ωDi|> 1 2 E Λi 1 2 ≤ e Cω 2 L 2 P β ni,Λi |ωD i | > 1 2 E Λi ,
where we have used Cauchy-Schwarz's ineaquality, then the fact that ω 2 L 2 ≪ 1 (see (7.12)) in order to apply Hölder's inequality, and the exponential moment (5.6). Using (5.6) again we get that:

P β ni,Λi |ωD i | > 1 2 E Λi ≤ exp -L 0.
66 / C , using Markov's inequality the fact that L 2 ω 2 = L 0.66 (see (7.12)). We can thus write:

E β ni,Λi e ωDi 1 |ωDi|> 1 2 E Λi = O e -L 0.66 / C .
The two other terms in the second line of (7.18) are handled the same way. We obtain:

E β ni,Λi e ωDi E Λi ≤ 1 + ωO(L 0.67 ) + ω 2 O(L 2 ) + O e -L 0.66 / C ,
Inserting9 the value ω = L -1.33 we obtain (7.16).

Conclusion.

Inserting (7.15) and (7.16) into (7.14) we obtain:

E β N N i=1 G i (X N )1 Eext∩ N i=1 Ei ≤ exp O T 5 R log R (M L) 2 + O R M L L -0.66 .
Since M = T 6 (by (7.6)) it is easy to check that (for R large enough) the dominant term in the exponent is by far the second one because T ≫ L. Returning to (7.13) we thus obtain:

P β N C ∩ E ext ( C) N i=1 E i ≤ exp - ωε R R 4M exp O R M L L -0.66 ,
and since ω = L -1.33 ((7.12)), L = log 0.99 R ((7.3)) and ε R = log -0.3 R ((7.1)) the first factor dominates the second one:

P β N C ∩ E ext ( C) N i=1 E i ≤ exp - ωε R R 8M ,
and thus after inserting the value of M (7.6) defined in terms of T as in (7.5) we obtain the following Markov-type inequality:

P β N C ∩ E ext ( C) N i=1 E i ≤ exp (-exp (log R + o(log R))) .
In particular, for R large enough this is smaller than exp -R 1/2 . Returning successively to (7.11), (7.8), (7.4) and using the fact that log T ≥ log 0.99 R we obtain:

P β N (C) ≤ exp -log 1.98 R/ C , P β N (B R ) ≤ exp O(log R) -log 1.98 R/ C ≤ exp -log 1.
98 R/ C , and finally:

P β N (A R ) ≤ exp O(log R) -log 1.98 R/ C ≤ exp -log 1.
98 R/ C which proves (7.2) and thus concludes the proof of Theorem 1.

A. Discussion of the model

There are several slightly different ways to define the two-dimensional one-component plasma.

• Some papers work with an "infinitely extended equilibrium" Coulomb system, e.g. [MY80; [START_REF] Lebowitz | Charge fluctuations in Coulomb systems[END_REF][START_REF] Jancovici | Large charge fluctuations in classical Coulomb systems[END_REF]. The mathematical existence of such infinite-volume limits is not yet clear for β = 2, see however [AS21, Corollary 1.1] for existence of infinite-volume limit points in the weak topology.

• In the statistical physics literature, it is common to place N particles in a "uniform neutralizing background of opposite charge" which occupies a certain domain Σ N with constant density ρ N := -N |ΣN | . There is perfect confinement in the sense that the particles are not allowed to live outside Σ N . The domain is not always explicitely chosen, though it often ends up being a disk, mostly by default or for the convenience of symmetry 10 . Some authors state their results for different "reasonable shapes" as e.g. [START_REF] Sari | On the ν-dimensional one-component classical plasma: the thermodynamic limit problem revisited[END_REF]. The influence of the background can be seen as applying some potential to each point charge, while they all interact with each other. Indeed, one may write:

F N (X N ) = 1 2 -log |x -y|dX N (x)dX N (y) + V back (x)dX N (x) + C N , (A.1)
where V back is the logarithmic potential generated by the background, namely:

V back (x) := ΣN -log |x -y|ρ N dy,
10 There is also some interest for studying the 2DOCP on a sphere, which avoids having to deal with a boundary.

and C N is a constant (the self-interaction of the background with itself) that does not depend on X N (only on N ) and can thus be absorbed in K β N . This model is sometimes called a jellium. • In the mathematical physics literature around the planar Coulomb gas (e.g. [ZW06; AHM11; SS15]) the particles/eigenvalues X N are usually not confined a priori in a certain domain of the Euclidean space, but are rather subject to a certain external "confining" potential/field/weight V acting as V back in (A.1) (this model is sometimes called a (two-dimensional) β-ensemble by analogy with well-known onedimensional models coming from random matrix theory). Via a certain mean-field energy functional, the choice of V determines11 :

1. A compact subset Σ N , sometimes called the droplet.

2. An equilibrium measure µ N on Σ N .

3. An effective confining potential ζ N .

After "splitting" (see [SS15, Lemma 3.1]), the energy takes the following form, cf. (1.1) and (A.1):

F N (X N ) = 1 2 -log |x -y|d (X N -µ N ) (x)d (X N -µ N ) (y) + N i=1 ζ N (x i ) + C N . (A.2)
The confining potential ζ N vanishes on Σ N and is positive outside of it -thus penalizing particles that leave Σ N , and indeed the confinement is strong: few particles fall outside Σ N and if they do they stay close by (see [START_REF] Ameur | A localization theorem for the planar Coulomb gas in an external field[END_REF] for a quantitative statement). Hence in typical situations most of the particles are located on Σ N and arrange themselves according to the density µ N . The canonical choice is the quadratic potential V(x) = |x| 2 for which Σ N is a large disk of radius comparable to √ N and µ N is the uniform measure on Σ N .

We choose to work (a) in a disk (b) with a perfect confinement for the sake of convenience and simplicity of exposition, but one can certainly replace Σ N by a square or by any "reasonable shape" without affecting the conclusions of Theorem 1.1 as our argument makes no use of the global geometry of the system. Our results are also valid without a perfect confinement: adding an effective confining potential ζ N to F N as in (A.2) is transparent as our constructions always take place inside Σ N , so Theorem 1.1 holds for the two-dimensional β-ensemble/Coulomb gas with quadratic potential. However, considering a non-uniform density (which might happen if V is not quadratic) would require some care.

B. Auxiliary proofs of preliminary results

B.1. Proof of Proposition 2.4

Proof of Proposition 2.4. The first item corresponds to the first statement in [AS21, Theorem 1], combined with their Lemma B.2. To be precise, the statement of [AS21, Theorem 1] involves the quantity F R (x) which is short for F R (x) (X N , U ) with U = R 2 as defined in [AS21, Eq. (2.24)]. The potential u appearing there is defined in [AS21, Section 2.3] but as used in the main statement of [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF] it coincides with the true potential (because, with their notation, "U = R 2 " in this case). It remains to observe that Theorem 1 in [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF] states a control on F R (x) which can be turned into a control on the electric energy only (as we write in Proposition 2.4), this is precisely the purpose of [AS21, Lemma B.2] and in particular their equation (B.8), which shows that one can indeed control the electric energy in terms of F R (x) . As a last technical comment for the careful reader: note that since here "U = R 2 " (their notation) the various truncations r,r, r all coincide.

The second item of Proposition 2.4 is [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF](1.18)]. This, or [AS21, (1.19)], implies (2.8).

B.2. Proof of Lemma 2.6

Proof of Lemma 2.6. For x in X let us define the truncation η(x) as:

η(x) = 0 if x / ∈ Ω r(x) if x ∈ Ω,
where r is the "nearest-neighbor" distance as in (2.2). Let us recall that, by definition, we always have |r| ≤ 1/4. Let E be an electric field compatible with X on supp ϕ and let E η be the electric field truncated accordingly. We have, in the sense of distributions on supp ∇ϕ:

-

div E η = 2π x∈X δ (η(x)) x -m 0 ,
where we replace the Dirac mass δ x by its "smeared out" version δ

(η(x)) x
, which is the uniform measure of mass 1 on the circle of center x and radius η(x). Let us write

X η := x∈X δ (η(x)) x
. The measures X and X η coincide outside a 1-neighborhood of supp ∇ϕ and the atoms there have been smeared out at a distance at most 1, thus:

R 2 ϕ(x)d (X -X η ) (x) ≤ |ϕ| 1,Ω × Pts(X, Ω),
which can be localized, if Ω1 , . . . , Ωm cover supp ∇ϕ we have:

R 2 ϕ(x)d (X -X η ) (x) ≤ m k=1 sup x∈Ωi |∇ϕ(x)| × Pts(X, Ω i ),
where Ω i contains a 1-neighborhood of Ωi . Now, let us re-write the fluctuations of ϕ as:

R 2 ϕ(x)d (X -m 0 ) (x) ≤ R 2 ϕ(x)d (X η (x) -m 0 ) (x) + |ϕ| 1,Ω × Pts(X, Ω) = 1 2π R 2 ϕ(x) div E η + |ϕ| 1,Ω × Pts(X, Ω).
Integrating by parts and using Cauchy-Schwarz's inequality yields:

R 2 ϕ(x) div E η = supp ∇ϕ ∇ϕ • E η ≤ R 2 |∇ϕ| 2 1 2 supp ∇ϕ |E η | 2 1 2
.

Finally, it remains to observe that with our choice of truncation η as above and the definition of Ω, we have:

supp ∇ϕ |E η | 2 ≤ Ω |E r | 2 ,
where r is the nearest-neighbor truncation, which concludes the proof of (2.10). This last step can also be localized by decomposing supp ∇ϕ into several domains.

B.3. Proof of Proposition 2.8

Proof of Proposition 2.8. We start by rewriting the Laplace transform of the fluctuations as a ratio of partition functions, this is a standard trick that goes back (at least) to [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF]. In the two-dimensional context, it can be found e.g. in [LS18, Proposition 2.10]. Let m s be the signed measure defined by:

m s := m 0 - s 2πβ ∆ϕ,
which coincides with m 0 outside of A (let us recall that A is some annulus containing supp ∆ϕ). Since ∇ϕ is compactly supported, the total mass of ∆ϕ (seen as a measure) is 0 so m s and m 0 have the same total mass on A. Moreover as soon as the parameter s satisfies the condition (2.12) (|s| ≤ πβ 4|ϕ|2 ) then m s has a non-negative density which is bounded between 1 2 and 3 2 on A. We introduce the following notation:

F N (X N , m s ) := 1 2 x =y -log |x -y|d (X N -m s ) (x)d (X N -m s ) (y).

Claim B.1 (Laplace transform as ratio of partition functions).

The following identity holds:

E β N [exp (sFluct[ϕ])] = exp s 2 4πβ R 2 |∇ϕ| 2 Σ N N exp (-βF N (X N , m s )) dX N Σ N N exp (-βF N (X N , m 0 )) dX N (B.1)
Proof of Claim B.1. We have by definition:

E β N [exp (sFluct[ϕ])] = Σ N N exp -β F N (X N , m 0 ) -s β Fluct[ϕ]) dX N Σ N N exp (-βF N (X N , m 0 )) dX N .
Since 1 2π ∆ log = δ 0 (see (2.1)) one may write -s β Fluct[ϕ] as:

- s β Fluct[ϕ] := - s β ΣN ϕ(x)d (X N -m 0 ) (x) = -log |x -y| s 2πβ ∆ϕ(y) dyd(X N -m 0 )(x),
and then "complete the square".

In order to compare the partition functions in (B.1), it is common to introduce some sort of transportation map from m 0 to m s . The fact that the density of m 0 is constant and the one of m s has radial symmetry reduces the computation to a one-dimensional problem which can be solved exactly and explicitely (the general, non-radial case requires an abstract argument or resorting to an approximate transportation, which makes the analysis more involved). Proposition 2.8 is then a consequence of [Ser20, Prop. 4.2].

Claim B.2 (Radial monotone rearrangement).

For convenience let us assume that ϕ is radially symmetric around 0, and let r max be the outer radius of the annulus A. Let F s : [0, r max ] → R + be the cumulative radial distribution function of the density m s , namely:

F s := r → r 0 1 - s 2πβ ∆ϕ(ρ) 2πρdρ = πr 2 - s β r 0 ∆ϕ(ρ)ρdρ,
where we denote by ∆ϕ(ρ) the value of ∆ϕ(x) at any point x with |x| = ρ. Let Φ s be the transport map defined by:

Φ s (r) := F -1 s (πr 2 ) (r ≥ 0). (B.2)
Finally, let Φ s be the map Φ s (x) := Φ s (|x|) x |x| . Then:

1. Φ s is a C 1 -automorphism of the disk D(0, r max ), which transports m 0 onto m s .

2. The map ψ s := x → Φ s (x)x is supported on the annulus A and satisfies:

|ψ s | 1 s|ϕ| 2 .
Proof of Claim B.2. Since s satisfies (2.12), F s is strictly increasing and continuous, thus Φ s = F -1 s is well-defined (it is the so-called "monotone rearrangement"). Since m 0 , m s are radially symmetric the map Φ s transports m 0 onto m s (as two-dimensional measures), and we have Φ s (x) = x for x / ∈ A. A computation in polar coordinates shows that |ψ s | 1 ≤ |Φ ′ s -1| 0 , on the other hand the derivatives of Φ s can be estimated in terms of the perturbation measure ∆ϕ by using the transportation identity (B.2), which reads:

Φ s (r) 2 -r 2 = s πβ Φs(r) 0 ∆ϕ(ρ)ρdρ,
and taking derivatives. In particular one finds (after an integration by parts) that |Φ s (r) -r| s|ϕ| 2 r, and then that:

|Φ ′ s (r) -1| s|ϕ| 2 .
Next let us extend the notation Φ s to Φ s (X N ) := N i=1 δ Φs(xi) . Claim B.3 (Effect of the transportation on the energy). We have:

F N ( Φ s (X N ), m s ) -F N (X N , m 0 ) s|ϕ| 2 EnerPts(X N , A).
Proof of Claim B.3. We apply [Ser20, Prop 4.2] with (in the notation of that paper) U ℓ = A, which contains the support of ψ s and thus of its derivative. Then [Ser20, (4.5)] states that the electric energy in A stays bounded along the transport by Φ s , and [Ser20, (4.6)] that in fact its derivative is bounded by |ψ s | 1 times the initial electric energy plus the number of points in A.

To conclude, we change variables in (B.1) using Φ s and use Claim B.3 to estimate the effect on the energy. The Jacobian term that appears is again of order s|ϕ| 2 times the number of points in the support of ψ s and can be incorporated in the previous error term.

B.4. Cornering the discrepancy: proof of Proposition 3.1

Proof of Proposition 3.1. Let ϕ be a nonnegative, non increasing, compactly supported C 2 test function with radial symmetry around z such that:

1. ϕ ≡ 1 on D R-2L , ϕ ≡ 0 outside D R-L , ϕ takes values in [0, 1]. 2. |ϕ| 1 ≤ 100 L , |ϕ| 2 ≤ 100 L 2 .
Let ϕ : R 2 → R be the function defined by ϕ(x) := ϕ(|x -z|). Assume that:

X N ∈ R-2L≤r≤R-L Dis(X N , D(z, r)) ≥ 1 2 ε R • R (B.3)
Claim B.4 ( ϕ detects the discrepancy). Under (B.3) we have:

Fluct[ ϕ] ≥ ε R • R 2 . (B.4)
Proof of Claim B.4. Without loss of generality we may assume that z = 0. We take advantage of the radial symmetry of ϕ and re-write Fluct[ ϕ] as:

Fluct[ ϕ] = DR-L ϕ(x)df N (x) = R-L 0 ϕ(r) d dr Dis(X N , D r ) dr.
Integrating by parts, we get:

Fluct[ ϕ] = - R-L R-2L ϕ ′ (r)Dis(X N , D r )dr.
By assumption (B.3) we have Dis(X N , D r ) ≥ εR•R 2 for all r in the domain of integration, moreover by construction -ϕ ′ ≥ 0 and its integral is 1. We thus obtain (B.4).

We have constructed a radially symmetric test function ϕ that is of class C 2 and detects a fraction of the discrepancy. Let us compare (B.4) with the control on the size of Fluct[ ϕ] given by Proposition 2.8. . Moreover the support of ∆ ϕ is an annulus. In particular we may apply Proposition 2.8 and control the exponential moment of Fluct[ ϕ] by: log

Claim B.5 (Fluctuations of ϕ). With s as in

(3.1) log E β N e sFluct[ ϕ] ≤ C β (s 2 + s) R L . (B.
E β N [exp (sFluct[ ϕ])] = s 2 4πβ R 2 |∇ ϕ| 2 + log E β N [exp (s| ϕ| 2 O (C β EnerPts (D R-L \ D R-2L )))] . (B.6)
The quantity R 2 |∇ ϕ| 2 is readily bounded (up to some multiplicative constant) by RL (the area of the annulus where ∆ ϕ is supported) times 1 L 2 (the order of magnitude of |ϕ| 2 1 ), and thus:

s 2 4πβ R 2 |∇ ϕ| 2 = O s 2 R L . (B.7)
It remains to estimate the contribution of the following term:

Rem := E β N [exp (s| ϕ| 2 O (C β EnerPts (D R-L \ D R-2L )))]
.

By construction we know that | ϕ| 2 is of order 1 L 2 . Cover the annulus D R-L \ D R-2L by a family { i } i∈I of #I = O R
L squares of sidelength O (L) and write:

exp (s| ϕ| 2 O (C β EnerPts (D R-L \ D R-2L ))) ≤ exp C β sR L 3 1 #I i∈I EnerPts( i ) .
By convexity we get:

Rem ≤ 1 #I i∈I E β N exp C β sR L 3 EnerPts( i ) . (B.8)
Up to chosing C 3.1 large enough we can ensure that the parameter

C β sR
L 3 in the right-hand side of (B.8) is smaller than any fixed constant. Then for each i ∈ I the local laws (Proposition 2.4) yield:

log E β N exp C β sR L 3 (EnerPts( i )) ≤ C β sR L 3 × C LL L 2 = O β sR L .
Taking an average over i ∈ I yields:

log Rem = O β sR L , (B.9)
and combining it with (B.6), (B.7) and (B.9), we obtain (B.5) as claimed.

Next, applying Markov's inequality in exponential form to (B.5), we get:

P β N Fluct[ ϕ] ≥ ε R • R 2 ≤ exp - sε R • R 2 + (s 2 + s)C β R L .
Since we assume L ≥ C 3.1 1 εR and s ≤ 1 C 3.1 Lε R , up to choosing C 3.1 large enough we can ensure that:

- sε R • R 2 + (s 2 + s)C β R L ≤ - sε R • R 4 ,
which concludes the proof.

C. Study of the external potential: proof of Proposition 5.3

Proof of Proposition 5.3. Let us fix an index i ∈ {1, . . . , N } and study the external potential V ext (as defined in (4.1)) on Λ i . Let V i be the potential generated on Λ i by "everything outside Λ i ", namely:

V i (x) := ΣN \Λi -log |x -y|df N (y), x ∈ Λ i . (C.1)
For all x in Λ i we have, by definition:

V ext (x) = V i (x) - j,j =i Λj -log |x -y|df N (y). (C.2)
For convenience, we will first study V i itself and then use a rough bound on the remaining terms in (C.2).

In the rest of this section we choose an auxiliary length scale T as:

T := log T.

C.1. Decomposition and regularization

Decomposition of V i

Let us introduce a smooth cut-off function χ i equal to 1 on D(ω i , T + T ) and to 0 outside D(ω i , T + 2 T ), with |χ i | k ≤ C T -k and let:

• R ′ i be the field generated by the background measure in the annulus A := D(ω i , T + 2 T ) \ D(ω i , T ), weighted by χ i , namely:

R ′ i := -log * -χ i 1 ΣN \Λi m 0 .
• h νi be the field generated by the positive measure ν i corresponding to the point charges in A, weighted by χ i , namely:

h νi := -log * χ i 1 ΣN \Λi X N .
• R i be the field generated by the signed measure (1χ i )f N , namely:

R i := -log * ((1 -χ i )f N ) . (C.3)
Of course, we have h νi + R ′ i =log * (χ i f N ) and thus the following decomposition holds (cf. (5.1)):

V i = h νi + R ′ i + R i . (C.4)
Remark C.1. By Newton's theorem, the logarithmic potential R ′ i is constant within the disk Λ i thanks to its radial symmetry. So its derivative and its "interior" normal derivative ∂ - n R ′ i (see (D.7)) are identically 0 there, and it will play no further role in the proof.

Regularization of V i near the edge.

Since there might be charges in ν i located very close to ∂Λ i , we cannot expect in general to have an upper bound on V i in Λ i valid up to the edge. In order to study V i near ∂Λ i , we introduce a smooth cut-off function χ uv : R 2 → [0, 1] such that:

χ uv (z) = 0 if |z| ≤ 1 4 , χ uv (z) = 1 if |z| ≥ 1, |χ uv | 1 ≤ 10,
and we use χ uv to define a regularized version of V i as follows:

V i (x) := ΣN \Λi -log |x -y|χ uv (x -y)df N (y), x ∈ Λ i .
Claim C.2. We have:

• V i (x) ≤ V i (x) + 100 for all x ∈ Λ i . • V i (x) = V i (x) for all x ∈ Λ i with dist(x, ∂Λ i ) ≥ 1.
Proof of Claim C.2. For the first point, observe that adding the short-distance cut-off χ uv diminishes the (non-negative) influence of point particles at distance less than 1, as well as the influence of the background in a small disk (which is negative but uniformly bounded). The second point is obvious.

We introduce the (regularized) "boundary" term B i :

B i : x → B i (x) := ΣN \Λi χ i (y) × log |x -y|χ uv (x -y) df N (y). (C.5)
We can decompose V i as (compare with (C.4)):

V i = B i + R i , (C.6)
with R i as above in (C.3) (observe that for x ∈ Λ i and y in the support of 1χ i we have χ uv (xy) = 1 i.e. the regularization by χ uv is transparent and does not appear in R i ).

C.2. Study of the boundary term

Claim C.3. We have, with B i as in (C.5):

P β N sup x∈Λi |∇B i (x)| ≤ C β log 2 T ≥ 1 -exp - 1 C β log 2 T .
Proof of Claim C.3. For x ∈ Λ i arbitrary and y in the support of χ i we have:

∇ (log |x -y|χ uv (x -y)) 1 1 + |x -y|
(this is possible thanks to the regularization due to χ uv near ∂Λ i ). To control |∇B i (x)| it is thus enough to bound, for x ∈ Λ i :

1 ΣN \Λi (y)χ i (y) 1 1 + |x -y| (dX N (y) + dy) . (C.7) By construction χ i 1 ΣN \Λi is supported in the annulus D(ω i , T + 2 T ) \ D(ω i , T ).
Let us cover this annulus by O( T T ) squares of sidelength T . In each square, by the local laws, we can ensure that there are at most

C β T 2 points with probability 1 -exp -1 C β
T 2 and so after an union bound we can ensure that all of them contain at most C β T 2 points with probability 1exp -1

C β
T 2 ( T 2 has been chosen in order to beat the combinatorial loss due to such union bounds). If so, then we have:

1 ΣN \Λi (y)χ i (y) 1 1 + |x -y| dX N (y) T y∈∂Λi 1 1 + |x -y| dy,
for which a rough bound is O log 2 T . The continuous part of (C.7) is of the same order.

We now focus on studying R i . In the next sections the constants C β will also depend on δ as in Assumption (1.4).

C.3. Estimate on the first derivative at the center

Lemma C.4. We have, with R i as in (C.3):

P β N [|∇R i (ω i )| ≤ C β ] ≥ 1 -exp - log 2 T C β . (C.8)
Proof of Lemma C.4. Let us bound the first partial derivative of R i . By definition of R i we have:

∂ 1 R i (x) = - ΣN (1 -χ i (y))∂ 1 log |x -y|df N (y).
1. The first outer layer. Let σ be a cut-off function with radial symmetry around ω i such that:

σ(z) = 1 if |z -ω i | ≤ 2T, σ(z) = 0 if |z -ω i | ≥ 3T, |σ| k ≤ CT -k for k ∈ {1, 2}.
We start by evaluating the contribution to R i coming from the support of σ.

Claim C.5. Let A := (1χ i (y))σ(y)∂ 1 log |ω i -y|df N (y). We have:

P β N (|A| ≤ C β ) ≥ 1 -exp - 1 C β T 2 . (C.9)
Proof of Claim C.5. We are looking at the fluctuations of ϕ := y → (1χ i (y)) σ(y)∂ 1 log |ω i -y| which is of class C 1 and compactly supported within D(ω i , 3T ) \ D(ω i , T + T ). Let us recall that:

• (1χ i ), σ are bounded and ∂ 1 log |ω i -y| is of order T -1 for y in the support of ϕ.

• |χ i | 1 is of order T -1 , |σ| 1 is of order T -1 and |∂ 1 log |ω i -•|| 1,supp ϕ is of order T -2 .
Moreover let us make the following observations:

• On the annulus A 1 := D(ω i , T + 2 T ) \ D(ω i , T + T ), of area O(T T ), ∇ϕ is of order (T T ) -1 (the dominant contribution comes from differentiating χ i ).

• On the annulus A 2 := D(ω i , 3T ) \ D(ω i , T + 2 T ), of area O(T 2 ), ∇ϕ is of order T -2 (χ i does not play a role anymore).

Using Lemma 2.6 in its localized version (2.11) we are left to bound:

A 1 := T T -1 × Ener(X N , A 1 ) 1 2 × T T 1 2 + Pts (X N , A 1 )
and

A 2 := T -2 × Ener(X N , A 2 ) 1 2 × (T 2 ) 1 2 + Pts (X N , A 2 ) .
To control the first term A 1 , we cover the annulus A 1 by O( T T ) squares of sidelength T and use the local laws. We obtain:

P β N EnerPts(X N , A 1 ) ≥ C β T T ≤ exp - 1 C β T 2 ,
where we used a union bound on exp (O(log T )) events and the fact that log T ≪ T 2 . In particular this ensures that:

P β N (|A 1 | ≤ C β ) ≥ 1 -exp - 1 C β T 2 .
On the other hand, to control the second term A 2 we may apply the local laws to the full disk D(ω i , 3T ) and see that:

P β N EnerPts (X N , D(ω i , 3T )) ≥ C β T 2 ≤ exp - T 2 C β , which ensures that P β N (|A 2 | ≤ C β ) ≥ 1 -exp -T 2 C β .
We deduce (C.9).

Dyadic scales up to the boundary. Let

K := log 2 1 10 dist (Λ i , ∂Σ N ) . By our assumption (1.4) we have K ≥ log 2 δ √ N 10
. For log 2 (2T ) ≤ k ≤ K we let τ k be a smooth cut-off function such that:

• τ k has radial symmetry around ω i and is supported on the annulus

A ′ k := D(ω i , 2 k+1 ) \ D(ω i , 2 k ) of area O(2 2k ). • We have |τ k | 1 ≤ C2 -k and |τ k | 2 ≤ C2 -2k (with C independent of k).
• We have the following "partition of unity"-type of identity:

σ(z) + K k=log 2 (2T ) τ k (z) ≡ 1 for |z -ω i | ≤ 2 K-1 .
For each k we let φ k be the following map:

φ k : y → -τ k (y)∂ 1 log |ω i -y|.
One can check that:

|φ k | 1 ≤ C2 -2k , |φ k | 2 ≤ C2 -3k .
Claim C.6. We have, for k = log 2 (2T ), . . . , K:

P β N |Fluct[φ k ]| ≥ C β 2 -k/2 ≤ exp - 1 C β 2 k/2 .
Proof of Claim C.6. We use the "fine bounds" on fluctuations given by Proposition 2.8. We choose the parameter s = c2 k for some constant c, as allowed by (2.12), and observe that, in view of the bounds mentioned above:

s 2 A ′ k |∇φ k | 2 s 2 2 2k × 2 -2k 2 = O c 2 .
Moreover we may use the local laws to write (note that we deliberately stopped before reaching the boundary thanks to our choice of K):

log E β N e C β s|φ k |2(EnerPts(XN ,A ′ k )) ≤ log E β N e C β c2 -2k (EnerPts(XN ,A ′ k )) ≤ cC β .
In summary, we have: log

E β N e c2 k Fluct[φ k ] = O c 2 + O β (c)
, and Markov's inequality yields the claim.

Summing up the controls on φ k and using a union bound, we obtain:

P β N   K k=log 2 (2T ) Fluct[φ k ] ≥ C β T -1/2   ≤ exp - 1 C β T 1/2 ≪ exp -log 2 T .
3. The rest of the system. It remains to study the contribution to ∇R i coming from the part of the system far from ω i . Let us introduce an artifical cut-off γ supported on 2Σ N . We have

ΣN   1 -   σ(y) + K k=log 2 (2T ) τ k (y)     ∂ 1 log |y -ω i |df N (y), = γ(y)   1 -   σ(y) + K k=log 2 (2T ) τ k (y)     ∂ 1 log |y -ω i |df N (y)
and we may thus apply Lemma 2.6 to the function:

ϕ : y → γ(y)   1 -   σ(y) + K k=log 2 (2T ) τ k (y)     ∂ 1 log |y -ω i |,
whose derivative is of order at most 1 δ 2 N in view of Assumption 1.4 (this is where the dependency in δ comes in). The support of ϕ has area N , the number of points is obviously bounded by N and the energy there is O(N ) with high probability by the global law. We obtain:

|Fluct[ϕ]| ≤ C β 1 δ 2 , with probability 1 -exp - 1 C β N .
Keeping the dominant contributions of these three steps, we obtain (C.8).

C.4. Estimate on the second derivative up to the boundary.

Lemma C.7. We have, with R i as in (C.3):

P β N sup x∈Λi |D 2 R i (x)| × (1 + dist(x, ∂Λ i )) ≤ C β ≥ 1 -exp - 1 C β T 2 .
Proof of Lemma C.7. We bound one of the four second partial derivatives (they can all be treated the same way) and use the same decomposition as in the proof of Lemma C.4. 1. The first outer layer. To control the first outer layer, we proceed like for Claim C.3. For x ∈ Λ i arbitrary and y in the support of (1χ i )σ we have:

D 2 log |x -y| 1 T + |x -y| 2
(the points x, y being at distance at least T from each other). It is thus enough to bound:

σ(y) (1 -χ i (y)) 1 T + |x -y| 2 (dX N (y) + dy) . (C.10)
Assume as above that each square of sidelength T covering the annulus D(ω i , T + 2 T ) \ D(ω i , T ) contains at most C T 2 points (an event that occurs with probability 1exp -1

C

T 2 and does not depend on x).

We may then compare (C.10) to the following one-dimensional integral:

T y∈∂Λi 1 T + |x -y| 2 dy,
for which a rough bound is C 1 1+dist(x,∂Λi) . 2. Dyadic scales up to the boundary. We proceed as in the previous proof, but instead of using the fine bounds of Proposition 2.8 (which are only valid function-wise, so x-wise here) we use the rougher controls of Lemma 2.6 which allow for a uniform control. For each k we let φ k be the following map:

φ k,x : y → -τ k (y)∂ 12 log |x -y|. If x is in Λ i and y ∈ A ′ k for k ≥ log 2 (2T ) we have |φ k,x | 1 ≤ C2 -3k
. Hence using (2.10) we know that we can bound Fluct[φ k,x ] by: 2 -3k × 2 2k + EnerPts(X N , A ′ k ) .

Using the local laws, we may control EnerPts(X N , A ′ k ) by C β 2 2k with probability 1exp -1 C β 2 2k . We deduce that:

P β N sup x∈Λi |Fluct[φ k,x ]| ≥ C β 2 -k ≤ exp - 1 C β 2 2k .
Summing again the contributions through an union bound, we get that the contribution to the second derivative of R i due to the dyadic annuli is bounded by CT -1 with probability 1exp -T 2 C β . 3. The rest of the system. We argue as in the previous proof, but thanks to the additional derivative we gain a factor

1 δ √ N ≪ dist(x, Λ i ) -1 .

C.5. Summary and conclusion

Bounding the contributions of other sub-systems

Returning to (C.1), (C.2), a rough bound on D log |x -y| for x ∈ Λ i and y ∈ Λ j , together with the fact that each sub-system contains by assumption O(T 2 ) points, ensures that (using (3.6)): 

V i -V ext 1,Λi ≤ CT 2 j,j =i 1 d ij = O T 2 log R M L . (C.
∇ V i ≤ C β log 2 T on Λ i ...
...and thus after integrating between ω i and any given x in Λ i we obtain:

V i (x) -V i (ω i ) ≤ C β T log 2 T
2. Properties of the decomposition. We have already bounded |R i | 1,Λ , and we have used the control of ν at scale T : log T several times in the argument above.

In conclusion, with probability 1exp -

T 2 C β
the potential V i satisfies the requirements to be a "good external potential" on Λ i . Thus in view of (C.11), since we enforce (3.4), with probability 1exp -

T 2 C β
the potential V ext is a "good external potential with constant C", where C is some large enough constant depending only on β and δ.

We conclude with a union bound on N such events.

D. Global laws for sub-systems: proof of Proposition 5.7 D.1. Effect of an harmonic perturbation on the equilibrium measure

In this section, we revisit (parts of) the analysis of [BBNY17, Sec.3]. Broadly speaking, our goal is to understand the effect of the external potential V ext on the typical repartition of charges within the subsystem. In particular, we want to use the fact that V ext is harmonic on Λ and is generated by a "nice" external configuration. We start by recalling some elements of logarithmic potential theory.

D.1.1. Some potential theory

Let V : R 2 → R ∪ {+∞} be a lower semi-continuous function satisfying, for some ε > 0, the following growth condition: lim

|z|→∞ (V(z) -(2 + ε) log |z|) = +∞.
If V takes the value +∞, assume that it is not too wild e.g. that V takes finite values on some open disk. Denote by I V the following functional defined on the space P(R 2 ) of probability measures on R 2 :

I V : µ → -log |x -y|dµ(x)dµ(y) + Vdµ. (D.1)
The next proposition12 covers well-known properties of the minimization problem associated to I V .

Proposition D.1 (The equilibrium measure).

There exists a unique minimizer µ V of I V , which we call the "equilibrium measure" associated to V. Its support, denoted by S V , is compact.

The equilibrium measure µ V is characterized by the following fact: there exists a constant c V (depending on V) such that the logarithmic potential generated by µ V , namely h µ V (x) :=log |x -y|dµ V (y) satisfies Euler-Lagrange equations of the form:

h µ V + 1 2 V = c V on S V h µ V + 1 2 V ≥ c V on R 2 \ S V . (D.2)
Moreover, the equilibrium measure is connected to the solution of an obstacle problem in the following sense: if we define u V : R 2 → R ∪ {+∞} by setting:

u V (z) := sup v(z), v is subharmonic, v ≤ V 2 on R 2 , lim sup |z|→∞ (v(z) -log |z|) < ∞ , (D.3)
and let the "coincidence set"

S * V be S * V := z ∈ R 2 , u V (z) = 1 2 V(z) . Then S V ⊂ S *
V (in words: the support of the equilibrium measure is contained in the coincidence set of the obstacle problem) and we have:

u V (z) = c V -h µ V (z) on R 2 .
In particular the density of µ V is given equivalently by 1 2π ∆u V or 1 4π ∆V on S V . Proof of Proposition D.1. The first part is a classical result by Frostman [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF]. The connection with the obstacle problem has been investigated in [START_REF] Hedenmalm | Coulomb gas ensembles and Laplacian growth[END_REF] and an exposition can be found in [Ser15, Sec.2]. See also [BBNY17, Sec. 2.1, 2.2] and the references therein.

D.1.2. Harmonic perturbations

We now study how the equilibrium measure reacts to certain perturbations of the external potential. Here we closely follow the exposition of [BBNY17, Sec. 3.3] while making several changes.

The reference measure. Let ρ ≥ 1 be some fixed radius, we work on the disk ρD := D(0, ρ) (for convenience we adopt here the notation of [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF]). Let us assume that the reference potential V ref is given by:

V ref (z) = |z| 2 ρ 2 for |z| ≤ ρ, +∞ for |z| > ρ.
(D.4)

It satisfies the assumptions of Section D.1.1, and it is easy to check that the associated equilibrium measure µ V ref is the uniform measure on the disk ρD -in other words, we have µ V = 1 |ρD| m 0 on ρD. Its density is 1 πρ 2 , in particular the assumption that " 1 4π ∆V ref ≥ α in ρD" made in [BBNY17, Sec. 3.3] is satisfied here but with α proportional to ρ -2 .

Class of perturbations.

We work with the same class of potentials W as in [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF], namely we take W as:

W := τ V ref + ρ -2 (h ν + R)
, where: (D.5)

• V ref is the reference potential of (D.4) and τ is a real parameter. For us τ will always be close to 1, and for convenience we can assume that |τ -1| ≤ 1 10 . • h ν is the logarithmic potential generated by a positive, finite distribution ν of charges located outside of the disk ρD. For convenience (and since that is enough for us), we will assume that ν is supported on an annulus D(0, ρ + ρ ′ ) \ D(0, ρ) for some ρ ′ ≤ ρ 100 . In [BBNY17, Prop. 3.3, 3.4] the controls are given in terms of the total mass ν of ν. We want more precise estimates and introduce to that aim the following quantity:

|ν| loc (ρ ′ ) := sup x∈∂ρD ν(D(x, ρ ′ )), (D.6)
which controls the mass of ν in a local fashion, at scale ρ ′ along ∂ρD.

• R is some harmonic function on ρD which is continuous up to the boundary. An important role is played by the normal derivative of R on ∂ρD. We introduce the notation:

∂ - n R(z) := lim ε→0 R(z) -R(z -ε n) ε , ∂ - n R ∞,∂ρD := sup z∈∂ρD |∂ - n R(z)|, (D.7)
where for z ∈ ∂ρD we denote by n the outer unit normal vector (to the circle) at z.

Our scaling ρ -2 in front of the perturbation terms in (D.5) is not present in [BBNY17, (3.7)], but it is of course equivalent to taking the mass of ν and the potential R to be of order ρ -2 in their statements. This scaling will compensate the fact that for us the quantity α of [BBNY17] is of order ρ -2 (see above).

Effect of the perturbation. Passing from V ref to W as in (D.5) has three effects on the equilibrium measure:

1. The support loses some parts located near the circle ∂ρD.

2.

A singular measure appears on the circle ∂ρD.

The continuous density in the new support changes from ∆V

ref to τ ∆V ref .
In other words, the measure µ W can be written as:

µ W := τ µ V ref + (η -τ µ V ref 1 B ) ,
with B a subset of ρD located near ∂ρD and η a measure that is absolutely continuous with respect to the arclength measure ds on ∂ρD.

Of course the combination of all effects must have total mass 0 so that the resulting equilibrium measure µ W still be a probability measure. The point of the following propositions is to give quantitative controls on the location of B (first item) and the density of η (second item). The techniques are heavily borrowed from [BBNY17, Prop. 3.3 & 3.4], with some simplications due to our specific context, and precisions thanks to our use of |ν| loc as in (D.6).

Proposition D.2 (The support of µ W contains a large sub-disk). The support of µ W contains the set of points z ∈ ρD at distance at least κ from ∂ρD, with κ such that:

κ ≥ C max 20ρ ′ , |ν| loc (ρ ′ ) ρ ′ , |1 -τ |ρ + ∂ - n R ∞,∂ρD . (D.8)
Proposition D.3 (The singular component has a controlled density). The Radon-Nikodym derivative of η with respect to the arclength measure on ∂ρD is bounded by:

dη ds ∞ ≤ C 1 ρ η + ρ -2 |ν| loc (ρ ′ ) ρ ′ + ρ -2 ∂ - n R ∞,∂ρD + |1 -τ |ρ -1 . (D.9)
The next two subsections are devoted to the proofs of Propositions D.2 and D.3. We follow the proofs of the corresponding results in [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF] while emphasizing the required modifications.

D.1.3. Proof of Proposition D.2

Importing an explicit construction. The key ingredient for the proof of [BBNY17, Prop 3.3] is an explicit construction. To quote from [BBNY17, Proof of Prop 3.3]: "let D := {z ∈ ρD, dist(z, ∂ρD) ≥ κ}, we show that D [is included in the support of µ W ] by exhibiting for every

z 0 ∈ D a function v = v z0 that satisfies v(z 0 ) = 1 2 W(z 0 ) and:      v is sub-harmonic on R 2 , v ≤ 1 2 W on R 2 , lim |z|→∞ (v(z) -log |z|) < ∞. (D.10) Thus we have u W = 1 2 W in D (cf. (D.
3)) and since the perturbation W -V ref is harmonic on ρD ⊃ D we have13 (as densities) µ W = µ V ref > 0 on D and thus D is contained in the support of µ W ." It remains to construct such a function v, for which a crucial tool is the following lemma from [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF]. For any r > 0, let l r be the logarithmic potential generated by the uniform probability measure spread on D(0, r).

Lemma D.4 (An explicit construction).

Let z 0 , w be two points in R 2 and let r such that r ≤ 1 2 |z 0 -w|. Then there exists z ∈ R 2 and k ∈ R (both depending on z 0 and w) such that:

1 2 (l r (z 0 -z) + k) = - 1 2 log |z 0 -w|, 1 2 (l r (z -z) + k) ≤ - 1 2 log |z -w| for z ∈ R 2 . (D.11)
Moreover the point z can be found on the line segment between z 0 and w with:

|z -z 0 | = r 2 |z 0 -w| . (D.12)
Proof of Lemma D.4. This is [BBNY17, Lemma 3.6] with three minor differences. First of all, in their statement they assume that r ≤ 1 2 |z 0 -w| and that r ∈ (0, 1) (which is always the case in their setting), whereas we take r arbitrary (still with the condition r ≤ 1 2 |z 0 -w|). There is in fact no additional generality in our statement: the case r ∈ (0, 1) extends to the general case by scaling. Secondly, they allow for any σ ≥ 1 2 but we will only need σ = 1 2 (so "σ" does not appear here). Finally, the estimate (D.12) is not written down in [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF], however it is a straightforward consequence of the fact that |zz 0 | ≤ r ≤ 1 2 |z 0 -w| (which is given by their statement and assumption) and the first equality in [BBNY17, (3.14)] (with σ = 1 2 ). Next, we follow [BBNY17, Proof of Prop 3.3] with a slight adaptation to prove our Proposition D.2.

Proof of Proposition D.2. Contrarily to [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF] we will not scale everything back to the unit circle. We fix z 0 in D := {z ∈ ρD, dist(z, ∂ρD) ≥ κ}, with κ satisfying the three conditions of (D.8) and seek to construct v satisfying (D.10). Let u V ref be the solution to the obstacle problem for the reference potential V ref as in (D.3), let R be the harmonic extension of R outside ρD as in [BBNY17, (3.17)], let

G(z) = max(0, log |ρ -1 z|). Let γ := 2 ∂ - n R ∞,∂ρD
as defined in (D.7). Compared to [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF] we always take σ = 1 2 (and σ does not appear here). There remains to define one last term, for which we differ slightly from [BBNY17, (3.18)] as explained below. For each w in the support of ν, we apply Lemma D.4 to z 0 , w as above and (which is new compared to [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF]) we choose the parameter r depending on w as follows:

r = r(w) = 1 10 |z 0 -w|,
which is valid choice as it is obviously smaller than 1 2 |z 0 -w|. We obtain a point14 z = z(w) and a real number k = k(w) such that (D.11) are satisfied. Let us make the following important observation: we know by the construction of Lemma D.4 that z lies on the line segment between z and w, at distance 1 100 |z 0 -w| from z 0 . Since by assumption we have on the one hand: dist(z 0 , ∂ρD) ≥ κ ≥ 20ρ ′ , and on the other hand supp ν ⊂ D(0, ρ + ρ ′ ) \ D(0, ρ) it is easy to check that:

|z -z 0 | ≤ 1 100 (dist(z 0 , ∂ρD) + ρ ′ ) ≤ 1 4 dist(z 0 , ∂ρD),
and thus the point z remains in ρD, in fact the entire disk D (z, r(w)) is contained in ρD. This being done for all w ∈ supp ν we may define a map L : R 2 → R by:

L(z) := 1 2 supp ν l r(w) (z -z(w)) + k(w) ν(dw). (D.13)
Finally, as in [BBNY17, (3.18)] we form the map v = v z0 by setting:

v : z → τ u V ref (z) + ρ -2 L(z) + R(z) + ρ -1 γG(z),
and claim that is satisfies (D.10).

We argue that we may always assume that this is the case. Indeed, if not, then we may distribute15 positive charges uniformly with density γ + ρ|1τ | all around the circle ∂ρD on an annulus of width 1, and redefine the perturbation R accordingly in order for the total potential to remain the same. This operation changes ν: it increases its total mass to a convenient level and increases |ν| loc (1) by γ + ρ|1τ |.

In view of the "Sub-harmonicity" paragraph above, this is harmless as long as we assume that κ larger than some constant times γ + ρ|1τ | in (D.8).

On the other hand, this operation does not affect the quantity ∂ - n R ∞,∂ρD as defined in (D.7), because placing a radially symmetric density of charges outside ρD creates a constant potential within ρD.

Hence without loss of generality we may assume that ν ≥ ρ 2 (1τ ) + ργ. This concludes the proof of Proposition D.2.

D.1.4. Proof of Proposition D.3

Proof of Proposition D.3. This time the changes are minor compared to [BBNY17, Proof of Prop. 3.4]. We follow their computations until the moment where they bound:

z -w |z -w| 2 • n ν(dw) ≤ 1 2 ν ,
where z is some fixed point on the circle and n is the normal vector to the circle at z. We distinguish between |w -z| ≤ 10ρ ′ and ≥ 10ρ ′ . For the first contribution, we note16 that z-w |z-w| 2 • n is always smaller than 1 2ρ and thus:

|w-z|≤10ρ ′ z -w |z -w| 2 • n ν(dw) ≤ C|ν| loc (ρ ′ ) 2ρ
We bound the rest of the integral by |w-z|≥10ρ ′ max 0, z-w |z-w| 2 • n ν(dw), which we may compare to:

|ν| loc (ρ ′ ) ρ ′ w∈∂Dρ,|w-z|≥10ρ ′ max 0, z -w |z -w| 2 • n dw,
which is itself smaller than:

|ν| loc (ρ ′ ) ρ ′ w∈∂Dρ max 0, z -w |z -w| 2 • n dw = |ν| loc (ρ ′ ) ρ ′ × O(1)
by one-dimensional scale-invariance. This is the dominant contribution. The rest of the proof does not change, and we obtain their final estimate controlling the Radon-Nikodym derivative pointwise by:

1 -τ 2 ∂ - n V + z -w |z -w| 2 • n ν(dw) -∂ - n R + 1 2 η .
There we bound ∂ - n V by ρ -1 (see (D.4)).

D.2. Application to a generalized 2DOCP with good external potential

We now apply the knowledge gained in Section D.1 to pass from a 2DOCP with good external potential to a 2DOCP with well-controlled non-uniform neutralizing background (see Sections 5.1 and 5.2). Let Λ be a disk of radius ρ = T and n be the number of points in Λ. Let V ext be a "good external potential" on Λ. Consider the potential W defined as:

W := τ V ref Λ + 2 n V ext , τ := |Λ| n , (D.16)
where V ref Λ is as in (D.4) (with ρ = T ) and let µ W be the associated equilibrium measure, which we write (with the notation of Section D.1.2) as:

µ W = τ µ V ref Λ + η -τ 1 B µ V ref Λ .
(D.17)

We will use repeatedly below the fact that (see Definition 5.2):

τ = 1 + O log 2 T T . (D.18)
Some properties of the new equilibrium measure Claim D.5. For some constant C µ depending on the "good external potential" C constant of V ext , the following holds:

The measure µ W -τ µ V ref Λ has mass 1 -τ = 1 -|Λ| n ,

and is made of:

1. A continuous (negative) part of density -τ |Λ| supported on a subset B located at distance ≤ κ from ∂ρD, with κ as in (D.8). We can take:

κ = C µ × log 2 T. (D.19) 2.
A singular component η living on ∂Λ, with a density dη ds bounded as in (D.9). We have:

dη ds ≤ C µ log 2 T T 2 . (D.20)
The total mass of the continuous part, of the singular part, and the total variation of µ

W -τ µ V ref Λ is bounded by C µ log 2 T
T . Moreover, we have:

n 2 -log |x -y|d η -τ µ V ref Λ 1 B (x)d η -τ µ V ref Λ 1 B (y) = O C 2 µ T 2 log 5 (T ) . (D.21)
Proof of Claim D.5. Inserting Definition 5.1 of a "good external potential" into the bounds (D.8) and (D.9) with ρ ′ = T = log T , and using (D.18) we obtain (D.19) and (D.20). The total mass of the continuous part is of order

T × C µ log 2 T × T -2 = log 2 T T
(it is contained in a region at distance ≤ C µ log 2 T from the boundary of the disk of radius T , and its density is of order T -2 ).

The mass of the singular part matches the mass of the continuous part up to an error 1τ , but (D.18) holds. Hence the mass of the singular part is also bounded by C µ log 2 T T , and so is the total variation of

µ W -τ µ V ref Λ .
Scaling everything back to a disk of radius 1, and bounding the self-interaction using (D.19), (D.20), we get (D.21).

Inserting the equilibrium measure into the energy

Let ζ W be given by:

ζ W = h µ W + 1 2 W -I W (µ W ) + 1 2 Wdµ W .
It is a standard fact of logarithmic potential theory that the function ζ W vanishes on the support of µ W and is non-negative outside of it, and we refer to ζ W as the "effective confining potential" (see [Ser15, Definition 2.18]).

Lemma D.6. We have, using the notation of (4.8) and (5.3):

P β n,Λ,V ext (•) = P β n,Λ (•, nµ W , ζ W ) thus (5.4) is justified.
Proof of Lemma D.6. We start with the following claim:

Claim D.7. Let µ n := 1 n n i=1 δ xi = 1
n X be the empirical measure associated to a n-tuple in Λ. We have:

F Λ (X)+ Λ V ext (x)dX(x) = 1 2 n 2   x =y -log |x -y|dµ n (x)dµ n (y) + |Λ| n V ref Λ (x) + 2 n V ext (x) dµ n (x)   - 1 2 2n|Λ| -|Λ| 2 I µ V ref Λ (µ V ref Λ ) -|Λ| (n -|Λ|) V ref Λ dµ V ref Λ .
Proof. The proof is elementary but it does require some care because of the possible non-neutrality and the various scalings involved. We start with expanding the definition (4.7) of F Λ (X) as:

2F Λ (X) = x =y -log |x -y|dX(x)dX(y) + Λ×Λ -log |x -y|dxdy -2 Λ×Λ -log |x -y|dX(x)dy.
Introducing the empirical measure µ n and the reference probability measure µ V ref Λ

(uniform on Λ) we get:

2F Λ (X) = n 2 x =y -log |x -y|dµ n (x)dµ n (y) + |Λ| 2 Λ×Λ -log |x -y|dµ V ref Λ (x)dµ V ref Λ (y) -2n|Λ| Λ×Λ -log |x -y|dµ n (x)dµ V ref Λ (y).
Let us recall the following standard identity valid on Λ (see (D.2) or e.g. [Ser15, Thm. 2.1]):

Λ -log |x -y|dµ V ref Λ (y) = - 1 2 V ref Λ (x) + I µ V ref Λ (µ V ref Λ ) - 1 2 V ref Λ dµ V ref Λ , (D.22)
we obtain after some computations:

2F Λ (X) = n 2   x =y -log |x -y|dµ n (x)dµ n (y) + |Λ| n V ref Λ dµ n   -2n|Λ| -|Λ| 2 I µ V ref Λ (µ V ref Λ ) + |Λ| (n -|Λ|) V ref Λ dµ V ref Λ .
Dividing by 2 and inserting the contribution of V ext , we obtain the claim.

Claim D.8. We have:

F Λ (X) + Λ V ext dX = F Λ (X, nµ W ) + ζ W dX + Const.(n, Λ, V ext )
Proof of Claim D.8. On the one hand, we know by Claim D.7 that:

F Λ (X) + Λ V ext (x)dX(x) = 1 2 n 2   x =y -log |x -y|dµ n (x)dµ n (y) + Wdµ n   + Const.(n, Λ).
On the other hand, using the "splitting formula" of Sandier-Serfaty (see [SS15, Lemma 2.1]) we have:

1 2 n 2   x =y -log |x -y|dµ n (x)dµ n (y) + Wdµ n   = 1 2 n 2 I W (µ W ) + F Λ (X, nµ W ) + n ζ W (x)dX(x).
(D.23) Discarding quantities that do not depend on the configuration X, we obtain the claim.

We may thus equivalently use F Λ (X, nµ W ) + ζ W dX instead of F Λ (X) + Λ V ext dX in the Boltzmann's factor, up to some constant that gets absorbed in the partition function.

D.3. Proof of Proposition 5.7

Proof of Proposition 5.7. By definition of P β n,Λ we have:

log E β n,Λ exp β 2 F Λ (X, nµ W ) E Λ = log Λ n 1 E Λ (X)e -β 2 F Λ (X,nµ W )+2 ζ W (x)dX(x) dX n -log Λ n 1 E Λ (X)e -β F Λ (X,nµ W )+ ζ W (x)dX(x) dX n . (D.24)
1. Configuration-wise lower bound on the energy. Since ζ W is non-negative, we have:

F Λ (X, nµ W ) + 2 ζ W dX ≥ F Λ (X, nµ W ).
Because of the possible singularity of µ W along the boundary, we cannot directly use results like [AS21, Lemma B.2.] to bound F Λ from below. Instead, for each i = 1, . . . , n we let η(x i ) := 1 4 min (1, dist(x i , ∂Λ)) and use this as a "truncation vector". By construction, the disks D(x i , η(x i )) do not intersect the support of the singular part of µ W , we may thus use the monotonicity property of [AS21, Lemma B.1] (or Onsager's lemma) and write that:

F Λ (X, nµ W ) ≥ 1 2 1 2π R 2 |∇h X,nµ W η | 2 + n i=1 log η(x i ) -O(n).
The integral is obviously non-negative, and it remains to find a lower bound for the negative contribution coming from n i=1 log η(x i ). This is where we use our restriction to the event E Λ . Since X is assumed to satisfy the conditions of Definition 5.2 we know that:

1. There is no index i such that η(x i ) ≤ e -log 2 T .

2. There are at most T log T indices i such that η(x i ) ≤ 1 4 .

We thus have the rough lower bound:

n i=1 log η(x i ) ≥ -n log 4 -T log T × log 2 T .
Hence for X ∈ E Λ , we have the configuration-wise lower bound: F Λ (X, nµ W ) ≥ -O T 2 , which we can integrate in order to obtain (with an implicit constant depending only on β):

log Λ n 1 E Λ (X)e -β 2 F Λ (X,nµ W )+2n ζ W dX dX n ≤ log |E Λ | + O T 2 ,
where |E Λ | denotes the volume of the event E Λ under the Lebesgue measure dX n on Λ n .

Lower bound on the partition function.

To find an upper bound on the second term in the right-hand side of (D.24), we rely on a "Jensen's trick" inspired by [START_REF] García-Zelada | A large deviation principle for empirical measures on Polish spaces: Application to singular Gibbs measures on manifolds[END_REF] and write:

log

Λ n 1 E Λ (X)e -β F Λ (X,nµ W )+n ζ W (x)dX(x) dX n ≤ -log |E Λ | + β Λ n 1 E Λ (X) F Λ (X, nµ W ) + n ζ W (x)dX(x) dX n |E Λ | . (D.25)
Let us start by doing computations without the indicator 1 E Λ (X).

Claim D.9. We have:

Λ n F Λ (X, nµ W ) + n ζ W (x)dX(x) dX n |Λ n | ≤ O(T 2 log 5 T ). (D.26)
On the other hand, µ W being a non-negative measure, we may write:

-n {dist(z,∂Λ)≥κ}

V ext (z) -V ext (ω) dµ W (z) ≤ -n {dist(z,∂Λ)≥κ} Ṽext (z) -Ṽext (ω) dµ W (z),
where we used the auxiliary function Ṽext from Definition 5.1. The mass of µ W near the boundary is bounded by O κ T + T dη ds ∞ . Using the results of Claim D.5 and the definition of a "good external potential" we bound the contribution "near the boundary" by O T 2 log 5 T also.

This concludes the proof of the claim.

It remains to argue that restricting our integrals to E Λ as in (D.25) instead of (D.26) has no consequence on the estimate, which is not totally obvious. We make a crucial use of the following observation: the "cluster bound" for independent points is not worse than the one mentioned in (2.13), and we thus have:

|E Λ | |Λ n | ≥ 1 -exp -log 2 T . (D.28)
Claim D.10. We have:

1 2 n 2 Λ n 1 E Λ (X) Wdµ n dX n |E Λ | n ≤ 1 2 n 2 Λ n Wdµ n dX n |Λ| n + exp -log 2 T . (D.29)
Proof of Lemma D.10. Let C be some large constant, and let

Ŵ := W -V ext (ω) + CT 2 . (D.30)
Substracting the same constant to both sides, we may write that:

1 2 n 2 Λ n Wdµ n dX n |Λ| n - 1 2 n 2 Λ n 1 E Λ (X) Wdµ n dX n |E Λ | = 1 2 n 2 Λ n Ŵdµ n dX n |Λ| n - 1 2 n 2 Λ n 1 E Λ (X) Ŵdµ n dX n |E Λ | .
On the other hand, in view of the definition (D.16) of W and the properties of the "good external potential" V ext as listed in Definition 5.1, we know that by choosing the constant C large enough we can guarantee that Ŵ ≥ 0, in which case it is clear that:

1 2 n 2 Λ n 1 E Λ (X) Ŵdµ n dX n |E Λ | ≤ 1 2 n 2 Λ n Ŵdµ n dX n |Λ| n × |Λ n | |E Λ | .
We thus see that:

1 2 n 2 Λ n Wdµ n dX n |Λ| n - 1 2 n 2 Λ n 1 E Λ (X) Wdµ n dX n |E Λ | ≤ 1 2 n 2 Λ n Ŵdµ n dX n |Λ| n |Λ n | |E Λ | -1 .
On the other hand, the same computation as in the proof of Claim D.9 yields:

1 2 n 2 Λ n Ŵdµ n dX n |Λ| n = 1 2 n 2 Ŵ(x)dµ V ref Λ (x),
which we can evaluate explicitely using our choice (D.30) for Ŵ and the expression (D.16) for W. We obtain some polynomial in T , which gets absorbed by the sub-algebraic tail of (D.28). This concludes the proof of (D.29).

We could proceed similarly for the other term in the integrand (which is easier because W does not play any role).

This concludes the proof of (5.5).

E. Effect of localized translations on the energy: Proof of Proposition 6.3

In all this section, ε and ℓ are fixed and we assume that |t| ≤ ℓ 10 . To lighten notation, we will drop some dependencies with respect to ε and ℓ.

E.1. Some additional properties of localized translations

We decompose Φ t in two ways, either as:

Φ t (x) = x + ψ t (x), (E.1)
which defines a vector field ψ t , or alternatively as:

Φ t (x) = x + tW (ε,ℓ) (x) + γ t (x), (E.2)
which defines a vector field γ t .

Proposition E.1. 1. We have

|Φ t -Id | 0 = |ψ t | 0 ≤ 2|t| ≤ ℓ 5 . 2. For |x| ≤ ℓ/4, we have |ψ t | 1,⋆ (x) = 0, |ψ t | 2,⋆ (x) = 0.
3. For ℓ/4 ≤ |x| ≤ 2ℓe 1/ε , we have:

|ψ t | k,⋆ (x) ≤ Ctε |x| k for k = 1, 2. (E.3) 4. For |x| ≤ ℓ/4, we have γ t ≡ 0.
5. For ℓ/4 ≤ |x| ≤ 2ℓe 1/ε , we have:

|γ t | k,⋆ (x) ≤ Ct 2 ε |x| k+1 , for k = 0, 1, 2, 3. (E.4)
Proof of Proposition E.1. Let us start by some general observations. Preliminary claims. Since the vector field W (ε,ℓ) is bounded by 2 (see Lemma 6.1) the distance |Φ t (x) -x| is always smaller than 2|t| and thus |ψ t | 0 ≤ 2|t|. This proves the first item. On the other hand, as stated in Lemma 6.2, the flow Φ t acts as a translation on D(0, ℓ/4), which means that ψ t is a constant and thus the derivatives of ψ t vanish identically there. This proves the second item, and also implies that the second-order correction γ t vanishes identically on D(0, ℓ/4). In view of the bounds on W (ε) given in Lemma 6.1 and the definition of W (ε,ℓ) := W (ε) (•/ℓ), after scaling we obtain for k = 1, 2:

|W (ε,ℓ) | k,⋆ (x) ≤ Cε 1 |x| k for |x| ≥ 2ℓ 1 |ℓ| k for |x| ≤ 2ℓ.
Thus we may always write that

|W (ε,ℓ) | k,⋆ (x) ≤ Cε 1 |x| k . Claim E.2. If |x| ≥ ℓ 4 then: |W (ε,ℓ) | k,⋆ (Φ t (x)) ≤ Cε 1 |x| k (E.5) Proof. Since |t| ≤ ℓ 10 and |Φ t (x) -x| ≤ 2|t|, we can ensure that if |x| ≥ ℓ 4 , then |Φ t (x)| ≥ 1 5 |x|
, so in view of the previous estimates on W (ε,ℓ) , we obtain the claim.

Let us end this paragraph with a simple general fact which will be useful to prove the remaining bounds:

d dt f (t) ≤ d dt f (t) . Initial controls on D k Φ t .
Claim E.3. We have, for |x| ≥ ℓ 4 :

DΦ t (x) ≤ 1 + C εt |x| , D k Φ t (x) ≤ C εt |x| k for k = 2, 3 (E.6)
Proof of Claim E.3. At t = 0 we have Φ t = Id and thus DΦ t ≡ Id. Then we can compute:

d dt DΦ t (x) ≤ d dt DΦ t (x) = D W (ε,ℓ) • Φ t (x) ≤ DW (ε,ℓ) • Φ t (x) × DΦ t (x) .
Using (E.5) and an elementary differential inequality, we see that:

DΦ t (x) ≤ e Cεt |x| = 1 + C ′ εt |x| .
Arguing similarly, we have: D 2 Φ t = 0 at t = 0, and:

d dt D 2 Φ t (x) ≤ d dt D 2 Φ t (x) = D 2 W (ε,ℓ) • Φ t (x) .
Applying Leibniz's rule, using the previous bound under the rough form DΦ t ≤ C and inserting (E.5) again, we obtain:

d dt D 2 Φ t (x) ≤ Cε |x| 2 + Cε |x| × D 2 Φ t (x) .
Solving again the differential inequality with initial condition 0, we obtain:

D 2 Φ t (x) ≤ C εt |x| 2
We proceed the same way for the third derivative.

Application 1: properties of ψ t Returning to the definition (E.1) of ψ t , we see that Dψ t = 0 at t = 0 and we may then compute:

d dt Dψ t (x) ≤ d dt Dψ t (x) = D W (ε,ℓ) • Φ t (x) ≤ |DW (ε,ℓ) • Φ t (x) × DΦ t (x) .
By the same computations as above, we find d dt Dψ t (x) ≤ C ε |x| which implies the bound (E.3) for k = 1. To study |ψ t | 2 , observe that D 2 Φ t = D 2 ψ t and use (E.6).

Application 2: properties of γ t . If we want to control, say |γ t | 0 , we compute:

d dt γ t = W (ε,ℓ) • Φ t (x) -W (ε,ℓ) (x) ≤ C ε|ψ t | 0 |x| ≤ C εt |x| ,
where we used the bound on |ψ t | 0 stated as the first item of Proposition E.1 together with Claim E.2 in order to bound the Lipschitz constant of W (ε,ℓ) between x and Φ t (x). Integrating on t yields |γ t | 0 εt 2 |x| -1 as claimed.

Higher derivatives are controlled the same way, using Leibniz's rule together with Claims E.2 and E.3.

Upper bounds on the derivatives of ψ t . Let us introduce two functions Ψ 1 , Ψ 2 :

Ψ 1 : x → Ctε (ℓ + |x|) , Ψ 2 : x → Ctε (ℓ + |x|) 2 (E.7)
Choosing the constant C suitably we have, in view of Proposition E.1, the pointwise bounds: Both (E.8) and (E.9) will be convenient to simplify computations later on. We also record the following simple facts:

|ψ t | 1,⋆ (x) ≤ Ψ 1 (x), |ψ t | 2,⋆ (x) ≤ Ψ 2 (x),
Claim E.4. If ε is chosen smaller than some universal constant, then:

• |ψ t | 1 ≤ 1 5 (globally). • For all x, x ′ we have: 1 2 |x -x ′ | ≤ |Φ t (x) -Φ t (x ′ )| ≤ 2|x -x ′ |.
• For all x we have: 

|ψ t | 1,⋆ (Φ t (x)) ≤ 2Ψ 1 (x), |ψ t | 2,⋆ (Φ t (x)) ≤ 2Ψ 2 (x
|ψ t | 1,⋆ (Φ t (x)) ≤ Ψ 1 (Φ t (x)) ≤ sup |y-x|≤ ℓ 10 Ψ 1 (y),
which is smaller than 2Ψ 1 (x) according to (E.8), as desired.

E.2. The "well-spread" event

Definition E.5 (The WellSpread event). Let Ω be some subset of R 2 , let ℓ ≥ 1 be a length-scale, let K ≥ 10. We define the event WellSpread(Ω, ℓ, K) as follows:

WellSpread(Ω, ℓ, K) := x∈(ℓZ) 2 ∩Ω Pts(X, (x, ℓ)) ≤ Kℓ 2 ∩ Ener(X, (x, ℓ)) ≤ Kℓ 2 .
Saying that X ∈ WellSpread(Ω, ℓ, K) essentially means that if we cover Ω by squares of side-length ℓ, then the number of points and the electric energy in each square are of order ℓ 2 , which is what we expect in view of the local laws. It has the following consequences:

1. If X ∈ WellSpread(Ω, ℓ, K) then for each x ∈ (ℓZ) 2 ∩ Ω the quantity Ener s (X, (x, ℓ)) (as defined in (2.4)) is bounded by Kℓ 2 (1 + log s) for s ∈ (0, 1).

2. Let us say that a function f varies slowly at scale ℓ when:

sup |x ′ -x|≤2ℓ |f (x ′ )| ≤ 10|f (x)|. (E.11)
Then if f satisfies (E.11) and is supported in Ω, assuming that X ∈ WellSpread(Ω, ℓ, K) allows us to make two computational simplifications: a) An energy density upper bound, namely (for s ∈ (0, 1)):

f (x)|∇h s r | 2 dx K f L 1 (1 + | log s|). (E.12) b) Sum-integral comparisons: x∈X f (x)dx K f L 1 . (E.13)
(To prove (E.12) and (E.13), cover the support of f by squares of sidelength ℓ and use (E.11)).

Lemma E.6 (The Well-Spread event is frequent). For K larger than some constant (depending on β and the "good external potential" constant C) and if εℓ 2 ≥ 1 (which is guaranteed by (6.1)), we have:

P β n,Λ WellSpread(Λ bulk , ℓ, K) E Λ ≥ 1 -exp -ℓ 2 (E.14)
Proof of Lemma E.6. Covering Λ bulk by O(T 2 ℓ -2 ) squares of sidelength ℓ and using the local laws in Λ bulk on each one, together with a union bound, we get:

P β n,Λ WellSpread(Λ bulk , ℓ, K) E Λ ≥ 1 -C T 2 ℓ 2 exp - Kℓ 2 C β .
Using the relation between T, ℓ and ε as in (6.1), we obtain:

P β n,Λ WellSpread(Λ bulk , ℓ, K) E Λ ≥ 1 -C exp 2 ε - Kℓ 2 C β ,
and thus if we choose K larger than some constant (depending on β and C) and impose that εℓ 2 ≥ 1 then (E.14) holds.

E.3. The measure-preserving case

Let |t| ≤ ℓ 10 and let Φ = Φ ε,ℓ t be the localized translation constructed in Section 6.2. Let ψ = ψ ε,ℓ t = Φ -Id as studied in Proposition E.1. In this section, we carefully inspect the proof of [Ser20, Prop 4.2] in order to obtain the following: Proposition E.7 (Energy comparison along a measure-preserving map). Let X be a point configuration with n points in Λ. Assume that X belongs to WellSpread(Λ bulk , ℓ, K) for a certain K > 1. Then:

F Λ (Φ • X) = F Λ (X) + A 1 [X, ψ] + O K 2 t 2 ε log ε .
The quantity A 1 appears in the proof as a black box (see (E.31), we refer to Section E.4 for more details.

Remark E.8 (Comparison with existing statements). Compared to the result of [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] there are two modifications:

1. We estimate the energy cost of transporting by Φ through the local density of electric energy density and points instead of using the global one (denoted by Ξ(t) in [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF]).

2. The quantity |ψ| L ∞ |ψ| C 2 present in the control on the second derivative of the energy in [Ser20, Prop. 4.2] does not appear in our computations.

Both items are crucial for us. The localization allows us to bound the error in terms of Λ |ψ| 2 1,⋆ instead of |ψ| 2 1 × |Λ| -in the case of our localized translation the former is O(ε) while the latter is gigantic. On the other hand, even after localizing, the contribution of |ψ| L ∞ |ψ| C 2 would be of order 1 but not small17 so it was necessary to get rid of it.

Obtaining these two refinements requires significant adaptations. On the other hand, the "measurepreserving" character of Φ will bring several small simplifications: the background measure is not affected by the transport so all distinctions between µ and ν := Φ#µ (using the notation of [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF]) are void. We will in particular repeatedly use the fact that (for various functions f ):

f (x) (d(Φ • X)(x) -dx) = f (Φ(x)) (dX(x) -dx) .
Since we are working on a disk with a constant background, the logarithmic potential generated by said background is explicitly computable and given by:

V Λ (x) := Λ -log |x -y|dy = |x| 2 4 . (E.15)
We use the explicit expression (E.15) for simplicity a couple times below, although one could work with a more general shape and proceed to a more careful analysis instead.

Proof of Proposition E.7. We follow the steps of [Ser20, Appendix A] while making several important changes. We will only use a couple technical results as "black boxes" and copy or adapt all the main arguments and computations.

E.3.1. Transporting vector fields

Definition E.9 (Transport of vector fields). If v is a vector field on R 2 we define Φ#v, the "transport of v by Φ", as:

Φ#v := DΦ • Φ -1 T v • Φ -1 . (E.16)
The point is that when div v is a measure we have:

div Φ#v = Φ# (div v) , (E.17)
where on the left-hand side there is a transport of vector fields while the right-hand side is a push-forward of measures. The identity (E.17) is a special case of [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF]Lemma A.3]. On top of it, we make the following simple observation:

Claim E.10. If v = ∇h is a gradient, then:

Φ#∇h = DΦ • Φ -1 T ∇ h • Φ -1 DΦ • Φ -1 .
Thus is v is a gradient and Φ is close to the identity map, then Φ#v is "almost" a gradient. The proof of Claim E.10 is straightforward using the definition (E.16) and some calculus.

E.3.2. Setting up the energy comparison

We want to compare F Λ (Y) to F Λ (X). We start by recalling known expressions for both quantities. Let h X η , h Y η be the true electric potentials generated by X, Y in Λ in the sense of Definition 2.1. As a truncation vector, let us choose18 η := s r with s = ε 2 (E.18) (in particular s ≤ 1 10 ), the distances r being computed with respect to the configuration X. We recall that, by Claim E.4:

1 2 |x i -x j | ≤ |y j -y i | ≤ 2|x i -x j |, (E.19)
and thus if we compute the nearest-neighbor distances r with respect to Y instead of X we still have η ≤ 2s r ≤ 1 5 r. From Lemma 5.6 we know that:

F Λ (X) -F Λ (Y) = 1 4π |∇h X η | 2 -|∇h Y η | 2 ,
where h X = h X,m , h Y := h Y,m (the background will be m = nµ W everywhere and we omit it) and η is as in (E.18). We introduce two additional vector fields, using the notation of (E.16) for the first one:

E η := Φ#∇h X η , ∇ ĥ := ∇(-log) * n i=1 Φ#δ (ηi) xi -m , (we recall that δ (ηi)
xi denotes the uniform measure of mass 1 spread on the circle of center x i and radius η i ). To summarize we have, besides ∇h X η which is the true electric field generated by X,

∇h Y η = ∇(-log) ⋆ n i=1 δ (ηi) Φ(xi) -m ∇ ĥ = ∇(-log) ⋆ n i=1 Φ#δ (ηi) xi -m E η = Φ#∇(-log) ⋆ n i=1 δ (ηi) xi -m .
There are subtle differences between these three vector fields:

• ∇h Y η is a gradient, it is the true electric field generated by Y, and in its divergence the charges are spread along a circle with centers

y i = Φ(x i ) (1 ≤ i ≤ n).
• ∇ ĥ is also a gradient, but the charges are spread along deformed circles Φ#δ (ηi) xi which are (approximately) ellipses of center y i .

• E η is not a gradient in general, but it is obtained by transporting ∇h X η (which is a gradient and for which the charges are spread along circles around the original points x i 's) according to (B.2).

By the identity (E.17), ∇ ĥ and E η have the same divergence, and as in [Ser20, (A.23)] we get the decomposition:

|E η | 2 = |∇ ĥ| 2 + |E η -∇ ĥ| 2 .
Bounding the difference E η -∇ ĥ. We control the second term in the right-hand side immediately. Using Claim E.10 we see that:

E η = DΦ • Φ -1 T ∇ h X η • Φ -1 DΦ • Φ -1
, and thus since Φ = Id +ψ with |ψ| 1 smaller than 1 5 we have the pointwise bound:

|E η -∇ h X η • Φ -1 | ≤ C Dψ • Φ -1 × |∇h X η • Φ -1 |,
which implies (after integrating the previous inequality and changing variables by Φ):

|E η -∇ h X η • Φ -1 2 ≤ C |ψ| 2 1,⋆ |∇h X η | 2 .
This provides an upper bound on the L 2 -distance between E η and the space of gradients, and thus since ∇ ĥ is its projection onto that space we get:

|E η -∇ ĥ| 2 ≤ C Λ |ψ| 2 1,⋆ (x)|∇h X η | 2 (x)dx.
This is the first moment where we will use the notation and simple facts of Section 6.2 combined with our WellSpread assumption. First, replacing |ψ| 1,⋆ by Ψ 1 (as in (E.7)) provides an upper bound. Next, since Ψ 1 has slow variations at scale ℓ (see (E.8)) and we are working on WellSpread(Λ, ℓ, K), we may apply the energy density upper bound (E.12) (we will apply a similar chain of argument repeatedly in the rest of the proof). Here in conclusion, we have:

Λ |ψ| 2 1,⋆ (x)|∇h X η | 2 (x)dx ≤ Λ Ψ 2 1 (x)|∇h X η | 2 (x)dx K Λ Ψ 2 1 (x)dx (1 + | log s|), (E.20)
which finally implies, after a direct estimate of the L 2 norm of Ψ 1 (see (E.7)), that:

|E η -∇ ĥ| 2 ≤ CKt 2 ε(1 + | log s|) = O Kt 2 ε log ε , (E.21)
becaus we have chosen s = ε 2 in (E.18). Going back to [Ser20, (A.25)], and inserting (E.21) we write19 :

F Λ (Y) -F Λ (X) = Main + Rem + O Kt 2 ε log ε
where Main, Rem are given by:

Main := 1 4π |E η | 2 -|∇h X η | 2 , Rem := 1 4π |∇h Y η | 2 -|∇ ĥ| 2 .

E.3.3. The Main term

For the term Main, a direct expansion of E η = Φ#∇h X η using the definition (E.16) gives:

Main = 1 4π ∇h X η , 2Dψ∇h X η + O(|ψ| 2 1,⋆ )|∇h X η | 2 . (E.22)
This is consistent with [Ser20, (A.31)], the improvement being that we have no contribution of the form |ψ| L ∞ |ψ| C 2 in the second order term thanks to the fact that Φ is measure-preserving. Let us also note that although Φ is measure-preserving, we may not have div ψ = 0, however it is true that div

ψ = O |ψ| 2 1,⋆
pointwise and thus thediv ψ term appearing in [Ser20, (A.32)] can be absorbed in our second order correction as in (E.22). Arguing as in (E.20) we may re-write the error term in (E.22) and get:

Main = 1 4π ∇h X η , 2Dψ∇h X η + O Kt 2 ε log ε .
In this step we see how the H 1 norm of ψ appears as a second-order contribution to the energy change, and since by construction we have |ψ| 2 1,⋆ = O(ε) we may indeed hope (if Main is indeed the "main" term) to have a small energy cost.

E.3.4. The Rem term

The Rem term is due to the difference between the electric fields ∇h Y η (for which charges are spread along circles) and ∇ ĥ (for which charges are spread along approximate ellipses). The fact that we can choose small truncations via the parameter s (we which recall to have chosen as s = ε 2 in (E.18), we could even have used an higher power of ε) will turn out to be crucial in order to control those errors. Let us keep the notation of [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] and use:

• δ (ηi) yi to denote the charge spread uniformly on the circle of center y i = Φ(x i ) and radius η i ,

• δyi to denote the push-forward by Φ of the measure δ (ηi) xi .

We also write v i for the function

v i := -log ⋆ δyi -δ (ηi) yi . (E.23)
As in [Ser20, (A. 41)] we decompose Rem as Rem 1 + Rem 2 + Rem 3 and analyse each term separately.

The Rem 1 term. Rem 1 is defined as:

Rem 1 = - 1 2 n i=1 v i δyi + δ (ηi) yi .
We write as in [Ser20, (A.42)] (with n the unit normal vector to the circle)

Rem 1 = 1 2 n i=1 1 η i - ∂D(yi,ηi) (ψ(y) -ψ(y i )) • n + O n i=1 |ψ| 2 1,loc (y i ) .
Let us use Ψ 1 as an upper bound to the derivative of ψ, we have:

n i=1 |ψ| 2 1,loc (y i ) n i=1 (Ψ 1 ) 2 (x i ),
Moreover, a Taylor's expansion yields:

ψ(y) -ψ(y i ) = Dψ(y i )(y -y i ) + O(|ψ| 2,loc (y i )η 2 i )
, but since Φ is measure-preserving we know that div ψ(y i ) = O(|ψ| 2 1,⋆ (y i )), thus:

1 2 n i=1 1 η i - ∂D(yi,ηi) (ψ(y) -ψ(y i )) • n = O(sΨ 2 (x i ) + Ψ 2 1 (x i )).
Since Ψ 1 , Ψ 2 have slow variations and since we are working under the WellSpread assumption we may compare sums to integrals as in (E.13), hence:

n i=1 (Ψ 1 ) 2 (x i ) + sΨ 2 (x i ) ≤ K Ψ 2 1 (x)dx + Kt 2 s = O(Kt 2 ε).
We thus obtain:

Rem 1 = O(Kt 2 ε).
The Rem 2 term. Rem 2 is defined as (see (E.23))

Rem 2 := 1 2 1≤i =j≤n v i δyj -δ (ηj ) yj .
We write as in [Ser20, (A.45)]:

1≤i =j≤n v i δyj -δ (ηj ) yj 1≤i =j≤n η 2 i η j |ψ| 2 1,loc (x i ) |y i -y j | 3 + |ψ| 1,loc (x i )|ψ| 2,loc (x i ) |y i -y j | 2 ,
and then proceed a bit differently. First, we use Ψ 1 , Ψ 2 as upper bounds to the derivatives of ψ, use (E.19) and (E.9) in order to replace the y i , y j 's in the right-hand side by the corresponding x i , x j 's up to some multiplicative constant. Next, we decompose (as in [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF]) the sum between contributions coming from "close" and "far away" pairs of points.

Distances smaller than 10ℓ. Since we always have |x ix j | 3 ≥ r 2 i r j and since we take the truncation η i = sr i we may write for each fixed i 1≤j≤n,j =i,|xj -xi|≤10ℓ

η 2 i η j Ψ 2 1 (x i ) |x i -x j | 3 + Ψ 1 (x i )Ψ 2 (x i ) |x i -x j | 2 ≤ s 3 Ψ 2 1 (x i ) + Ψ 1 (x i )Ψ 2 (x i ) × # {j, |x j -x i | ≤ 10ℓ} .
Since we condition on WellSpread(Λ bulk , ℓ, K) we may bound # {j, |x jx i | ≤ 10ℓ} by CKℓ 2 , and thus:

s 3 Ψ 2 1 (x i ) + Ψ 1 (x i )Ψ 2 (x i ) × # {j, |x j -x i | ≤ 10ℓ} s 3 Kℓ 2 Ψ 2 1 (x i ) + Ψ 1 (x i )Ψ 2 (x i ) .
Next we compare the sum (over i) of the previous quantity to an integral using (E.13) and get:

1≤j≤n,j =i,|xj -xi|≤10ℓ η 2 i η j Ψ 2 1 (x i ) |x i -x j | 3 + Ψ 1 (x i )Ψ 2 (x i ) |x i -x j | 2 ≤ Cs 3 K 2 ℓ 2 Ψ 2 1 (x) + Ψ 1 (x)Ψ 2 (x) dx,
and the right-hand side can be evaluated using (E.7)

s 3 K 2 ℓ 2 Ψ 2 1 (x) + Ψ 1 (x)Ψ 2 (x) dx = O s 3 K 2 ℓ 2 εt 2 . (E.24)
Remark E.11. We do lose some information when replacing all distances by the smallest one over a large zone of size ℓ, but for technical reasons it seemed hard to do much better, and it works well enough for us.

Distances larger than 10ℓ. The function: z → 1 |z| 3 "varies slowly at scale ℓ" (in the sense of (E.11)) on {|z| ≥ 10ℓ} thus using (E.13) for each fixed i we can compare 1≤j≤n,j =i,|xj -xi|≥10ℓ

1 |x i -x j | 3
to K times the corresponding integral, namely:

{|x-xi|≥10ℓ} 1 |x i -x| 3 dx = O(1).
Similarly the sum 1≤j≤n,|xj-xi|≥10ℓ 1 |xi-xj| 2 can be compared to:

K × Λ∩{|x-xi|≥10ℓ} 1 |x i -x| 2 dx = K × O(log T ).
Using the obvious bound η 2 i η j ≤ s 3 we thus obtain:

A := 1≤j≤n,|xj -xi|≥10ℓ η 2 i η j |ψ| 2 1,loc (x i ) |x i -x j | 3 + |ψ| 1,loc (x i )|ψ| 2,X (x i ) |x i -x j | 2 s 3 K 1≤i≤n |ψ| 2 1,loc (x i ) + |ψ| 1,loc (x i )|ψ| 2,loc (x i ) log T.
Using again Ψ 1 , Ψ 2 instead and comparing again the sum to an integral, we obtain:

A s 3 K 2 Ψ 2 1 (x) + log T Ψ 1 (x)Ψ 2 (x)dx ,
which can be evaluated using (E.7) (and (6.1)):

A s 3 K 2 Ψ 2 1 (x) + log T Ψ 1 (x)Ψ 2 (x)dx s 3 K 2 εt 2 + ε 2 t 2 log T = O s 3 K 2 ε log εt 2 (E.25)
Conclusion for Rem 2 . Combining (E.24) and (E.25) and discarding negligible terms we get:

Rem 2 = O s 3 K 2 ℓ 2 ε log εt 2 = O K 2 ε log εt 2 ,
where we have used (6.1) to simplify the expression.

The Rem 3 term. Rem 3 is defined as (m is outside of the sum over j.):

Rem 3 := - 1≤i≤n Λ v i   1≤j≤n,j =i δyj -m   . Writing δyj -m = δyj -δ (ηj ) yj + δ (ηj ) yj -m and recalling that v i := -log ⋆ δyi -δ (ηi) yi
, one can express Rem 3 (as in [Ser20, Substep (5.3)]) as:

Rem 3 = 1≤i≤n hY i δ (ηi) yi -δyi .
We recall that the truncated field h η coincides with hi inside the i th spread out charge.

The analysis of [Ser20, Step 4.] shows that, for each i we have, as in [Ser20, Substep 5.3]:

hY i δ (ηi) yi -δyi = - |u|=ηi ∇ hY i (y i + u) • (ψ(x i + u) -ψ(x i )) du + O | hY i | C 2 (B(yi,2ηi)) η 2 i |ψ| 2 1,loc (x i ) . (E.26)
Here and below we temporarily borrow the notation of [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] for local controls on derivatives of hY i , namely:

| hY i | C k (B(x,r)) = L ∞ norm
of the k-th derivative of hY i over the ball/disk of center x and radius r.

We cannot use (E.26) as such because of the various dependencies in Y, which we need to analyse.

Step 1: Preliminary claims Claim E.12. [Variation of the first derivatives] For all a ∈ {1, 2}, 1 ≤ i ≤ n and |u| ≤ η i we have:

∂ a hY i (y i + u) -∂ a hX i (x i + u) K 1 r i Ψ 1 (x i )ℓ 2 + |ψ| 0 log T
Proof of Claim E.12. We have by definition:

∂ a hY i (y i + u) -∂ a hX i (x i + u) = 1≤j≤n,j =i ∂ a (-log)(y j -(y i + u)) -∂ a (-log)(x j -(x i + u)) -∂ a V Λ (y i + u) + ∂ a V Λ (x i + u),
where V Λ is the logarithmic potential generated by the background measure on Λ, whose expression is given in (E.15). Since

y i = x i + ψ(x i ) the difference ∂ a V Λ (y i + u) -∂ a V Λ (x i + u)
is easily bounded by |ψ| 0 . We now focus on the contribution coming from the point particles. We have:

∂ a hY i (y i + u) -∂ a hX i (x i + u) ≤ 1≤j≤n,j =i |ψ(x i ) -ψ(x j )| |x i -x j | 2 .
Let us split the sum into two parts corresponding to "close" and "far away" pairs of points.

Distances smaller than 10ℓ. On the one hand we have:

j,|xj -xi|≤10ℓ,j =i |ψ(x i ) -ψ(x j )| |x i -x j | 2 1 r i Ψ 1 (x i ) × # {j, |x j -x i | ≤ 10ℓ} K 1 r i Ψ 1 (x i )ℓ 2 .
To be precise, here we have used a mean value argument to argue that:

|ψ(x i ) -ψ(x j )| |x i -x j | ≤ sup x∈[xi,xj ] |ψ| 1,⋆ (x),
then we wrote |ψ| 1,⋆ (x) ≤ Ψ 1 (x) and finally we used (E.8). Then we applied the local control on the number of points implied by WellSpread(Λ bulk , ℓ, K).

Distances larger than 10ℓ. On the other hand:

|xj-xi|≥10ℓ |ψ(x i ) -ψ(x j )| |x i -x j | 2 K|ψ| 0 |x-xi|≥10ℓ,x∈Λ 1 |x -x i | 2 dx K|ψ| 0 log T.
This time we simply bounded |ψ(x i )ψ(x j )| by 2|ψ| 0 and used the fact that z → 1 |z| 2 "varies slowly at scale ℓ" (in the sense of (E.11)) on {|z| ≥ 10ℓ} in order to compare the sum to an integral as in (E.13).

Combining those estimates proves the claim.

Claim E.13 (Variation of the second derivatives). For all a, b ∈ {1, 2}, 1 ≤ i ≤ n and |u| ≤ η i we have:

∂ ab hY i (y i + u) -∂ ab hX i (x i + u) K 1 r 2 i ℓ 2 Ψ 1 (x i ) + Ψ 1 (x i ) log T + |ψ| 0 1 ℓ + |x i | .
Proof of Claim E.13. The proof is similar to Claim E.12. We have by definition:

∂ ab hY i (y i + u) -∂ ab hY i (x i + u) = 1≤j≤n,j =i ∂ ab (-log)(y j -(y i + u)) -∂ ab (-log)(x j -(x i + u)) -∂ ab V Λ (y i + u) + ∂ ab V Λ (x i + u),
however the second derivatives of V Λ are constant (see (E.15)) so we can discard those terms. Writing y = Φ(x) = x + ψ(x), we get:

∂ ab hY i (y i + u) -∂ ab hX i (x i + u) ≤ 1≤j≤n,j =i |ψ(x i ) -ψ(x j )| |x i -x j | 3 .
We now split the sum into three parts:

|x j -x i | ≤ ℓ, |x j -x i | ≤ 1 2 |x i | and |x j -x i | ≥ ℓ ∪ 1 2 |x i | .
Distances smaller than 10ℓ. Arguing as in the proof of Claim E.12 we get:

1≤j≤n,j =i |ψ(x i ) -ψ(x j )| |x i -x j | 3 K 1 r 2 i ℓ 2 Ψ 1 (x i ).
Distances between 10ℓ and 1 2 |x i |. For 10ℓ ≤ |x jx i | ≤ 1 2 |x i | we write by a mean value argument:

|ψ(x i ) -ψ(x j )| |x i -x j | 3 ≤ sup x∈[xi,xj ] |ψ| 1,⋆ (x) × 1 |x j -x i | 2 ,
then we may again replace |ψ| 1,⋆ (x) by Ψ 1 (x) and use property (E.9) to bound it by Ψ 1 (x i ) up to some multiplicative constant. Next, comparing a sum to an integral, we have:

j,|xj-xi|≥10ℓ 1 |x i -x j | 2 K log T.
In conclusion, we get for fixed i:

1≤j≤n,j =i,10ℓ≤|xj -xi|≤ 1 2 |xi| |ψ(x i ) -ψ(x j )| |x i -x j | 3 ≤ KΨ 1 (x i ) log T.
Large distances. To estimate the remaining contribution, we write:

1≤j≤n,|xj -xi|≥max(10ℓ, 1 2 |xi|) |ψ(x i ) -ψ(x j )| |x i -x j | 3 K|ψ| 0 |x-xi|≥max(10ℓ, 1 2 |xi|) 1 |x -x i | 3 dx K|ψ| 0 1 |x i | + ℓ ,
where we compared the sum to an integral using (E.13). Combining all three estimates proves the claim.

Remark E.14. In Claims E.12 and E.13 we have studied the contributions coming from the point particles and the background separately. Taking cancellations between those terms into account would yield more accurate estimates, but we do not need them here.

Step 2: Studying the first-order term. Let us recall that we are still trying to express Rem 3 purely in terms of the original points (x 1 , . . . , x n ).

Going back to (E.26), let us write the first-order term as:

- |u|=ηi ∇ hY i (y i + u) • (ψ(x i + u) -ψ(x i )) du = - |u|=ηi ∇ hX i (x i + u) • (ψ(x i + u) -ψ(x i )) du + - |u|=ηi ∇ hY i (y i + u) -∇ hX i (x i + u) • (ψ(x i + u) -ψ(x i )) du.
We keep the first term in the right-hand side as such and we focus on the second one, which we decompose as:

- |u|=ηi ∇ hY i (y i + u) -∇ hX i (x i + u) • (ψ(x i + u) -ψ(x i )) du = - |u|=ηi ∇ hY i (y i ) -∇ hX i (x i ) • (ψ(x i + u) -ψ(x i )) du + - |u|=ηi ∇ hY i (y i + u) -∇ hX i (x i + u) -∇ hY i (y i ) -∇ hX i (x i ) • (ψ(x i + u) -ψ(x i )) du. (E.27)
Let us also write that ψ(

x i + u) -ψ(x i ) = Dψ(x i ) × u + O |ψ| 2,loc (x i )η 2 i
, and observe that according to Claim E.13 we have (for |u| = η i )

∇ hY i (y i + u) -∇ hX i (x i + u) -∇ hY i (y i ) -∇ hX i (x i ) η i ×K 1 r 2 i ℓ 2 Ψ 1 (x i ) + Ψ 1 (x i ) log T + |ψ| 0 1 ℓ + |x i | .
We may thus re-write the right-hand side of (E.27) as:

- |u|=ηi ∇ hY i (y i ) -∇ hX i (x i ) • Dψ(x i )udu + - |u|=ηi ∇ hY i (y i ) -∇ hX i (x i ) × O |ψ| 2,loc (x i )η 2 i du + O η i × K 1 r 2 i ℓ 2 Ψ 1 (x i ) + Ψ 1 (x i ) log T + |ψ| 0 1 ℓ + |x i | × |ψ| 1,loc (x i ) × η i .
The first term vanishes by symmetry, and we can bound the second term further using Claim E.12. In conclusion, we obtain (using that η i ≤ sr i ≤ s):

- |u|=ηi ∇ hY i (y i + u) • (ψ(x i + u) -ψ(x i )) du = - |u|=ηi ∇ hX i (x i + u) • (ψ(x i + u) -ψ(x i )) du + K s 2 Ψ 1 (x i )Ψ 2 (x i )ℓ 2 + s 2 |ψ| 0 Ψ 2 (x i ) log T + s 2 Ψ 2 1 (x i ) ℓ 2 + log T + s 2 |ψ| 0 Ψ 1 (x i ) 1 ℓ + |x i | . (E.28)
Summing the error term in (E.28) over i yields:

n i=1 K s 2 Ψ 1 (x i )Ψ 2 (x i )ℓ 2 + s 2 |ψ| 0 Ψ 2 (x i ) log T + s 2 Ψ 2 1 (x i ) ℓ 2 + log T + s 2 |ψ| 0 Ψ 1 (x i ) 1 ℓ + |x i | ≤ K 2 s 2 ℓ 2 Ψ 1 (x)Ψ 2 (x)dx + s 2 |ψ| 0 log T Ψ 2 (x)dx + s 2 ℓ 2 + log T Ψ 2 1 (x)dx + s 2 |ψ| 0 Ψ 1 (x) 1 ℓ + |x| dx ≤ K 2 s 2 ℓ 2 ε 2 t 2 + s 2 t 2 log T + s 2 ℓ 2 + log T εt 2 + s 2 t 2 = O K 2 εt 2 ,
where we have used (6.1) to simplify the expression involving T, ℓ, ε and s (we recall that s = ε 2 ).

Step 3: Re-writing the error term. The error term in (E.26) involves | hY i | C 2 (B(yi,2ηi)) , which is expressed in terms of the transported points and thus remains an issue for us. Using Claim E.13 however, we see that:

| hY i | C 2 (B(yi,2ηi)) ≤ | hX i | C 2 (B(xi,2ηi)) + KO 1 r 2 i ℓ 2 |ψ| 1,loc (x i ) + |ψ| 1,loc (x i ) log T + |ψ| 0 1 ℓ + |x i | . (E.29) 64 
Now, the analysis of [Ser20, Lemma A.2] gives:

| hX i | C 2 (B(xi,2ηi)) 1 r 2 i 1 + D(xi,ri) |∇ hX i | 2 . (E.30)
Remark E.15. The proof of (E.30) uses the fact that hX i is almost harmonic on the disk D(x i , r i ), and is simplified by the fact that the background measure (µ in the notation of [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF]) is here constant (beware: when reading [Ser20, (A.5), (A.6)], our background measure corresponds to N µ and not µ -compare [Ser20, (3.1)] with our Definition 2.1. Also, the nearest-neighbor distances in [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] are of order N -1/2 where ours are of order one, this is due to a different choice of scaling, but [Ser20, Lemma A.2] is valid in any case).

Combining (E.29) and (E.30) the error term appearing in (E.26) can be re-written as:

| hY i | C 2 (B(yi,2ηi)) η 2 i |ψ| 2 1,loc (x i ) Ψ 2 1 (x i ) η 2 i r 2 i 1 + D(xi,ri) |∇ hX i | 2 + KΨ 2 1 (x i )η 2 i 1 r 2 i ℓ 2 Ψ 1 (x i ) + Ψ 1 (x i ) log T + |ψ| 0 1 ℓ + |x i | ,
Summing over 1 ≤ i ≤ n, using the WellSpread assumption, comparing to an integral and using again that η i ≤ sr i we obtain:

1≤i≤n | hY i | C 2 (B(yi,2ηi)) η 2 i |ψ| 2 1,loc (x i ) K(1 + | log s|)s 2 Ψ 2 1 (x)dx + K 2 s 2 ℓ 2 + log T Λ Ψ 3 1 (x)dx + |ψ| 0 Λ Ψ 2 1 (x) 1 ℓ + |x| dx
Estimating everything explicitly and keeping only the dominant term we may thus control the error term in (E.26) by:

1≤i≤n | hY i | C 2 (B(yi,2ηi)) η 2 i |ψ| 2 1,loc (x i ) = O K 2 (1 + log |s|)s 2 ℓ 2 εt 2 = O K 2 ε log εt 2 ,
where we have used that s = ε 2 and (6.1) again.

Step 4: Conclusion for Rem 3 . In conclusion we obtained that:

Rem 3 = 1≤i≤n - |u|=ηi ∇ hX i (x i + u) • (ψ(x i + u) -ψ(x i )) du + O K 2 ε log εt 2 .

E.3.5. Concluding the proof of Proposition E.7

Combining all the previous steps, we find that:

F Λ (Φ • X) = F Λ (X) + A 1 (X, ψ) + O K 2 ε log εt 2 ,
where the "anisotropy" term A 1 is defined as the sum of the linear (in ψ) terms obtained in Main and Rem 3 , namely:

A 1 (X, ψ) := 1 4π ∇h X η , 2Dψ∇h X η + 1≤i≤n - |u|=ηi ∇ hX i (x i + u) • (ψ(x i + u) -ψ(x i )) du. (E.31)
There was a linear term appearing in Rem 1 but it was found to be negligible, and comparing (E.31) to [Ser20, (4.8)], the reader might observe that there is another term missing (the last term in [Ser20, (4.8)]), in fact for us this term is O Kεt 2 and can thus be incorporated in the error term. This is due to the fact that our Φ is measure-preserving. This concludes the proof of Proposition E.7.

E.4. Smallness of the anisotropy

Applying the result of Proposition E.7 to Φ t and Φ -t we obtain that if X is in WellSpread(Λ bulk , ℓ, K) we have:

1 2 (F Λ (Φ t X, m) + F Λ (Φ -t X, m)) -F Λ (X, m) = 1 2 A 1 [X, ψ t + ψ -t ] + O K 2 ε log εt 2 . (E.32)
Let us decompose ψ t , ψ -t as in (E.1), (E.2). The terms of first order in t cancel each other, and it remains to bound A 1 [X, γ t + γ -t ]. At this point, using the "rough" bounds of [AS21, Prop. 4.2] on the anisotropy A 1 , even in a localized way, would yield a bounded, but not small, error term -which would make the whole approach pointless. We thus need to rely on a finer understanding of anisotropy terms as put forward in [LS18; Ser20] (see also [START_REF] Bauerschmidt | The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem[END_REF] for similar concerns about their "angle term").

For simplicity, we will focus on the context of interest for us, namely when the background measure m is given by nµ W as above -in particular it is constant on Λ bulk .

Anisotropy.

Let ψ be a continuous vector field supported on Λ bulk and let U be a neighborhood of supp ψ. We define A 1 (X, m, ψ) as:

A 1 (X, m, ψ) := (x,y)∈Λ×Λ,x =y ψ(x) • ∇ log |x -y|d (X n -m) (x)d (X -m) (y).
(E.33) (It has an alternative expression using the electric field, which is the one that we used above in (E.31), see [Ser20, (4.14)]). The expression (E.33) makes sense because m has a continuous density near supp ψ and is such thatlog |x -y|dm(x)dm(y) is finite. Thanks to a clever integration by parts, one can control A 1 as follows (see [Ser20, (4.10)]):

A 1 (X, m, ψ) ≤ C|ψ| 1 × (EnerPts(X, supp ψ)) . (E.34) If ψ lives on a disk of radius ℓ, if |ψ| 1 = O(ℓ -2
) and if local laws hold then we can expect the anisotropy to typically be O(1). Let us now explain how A 1 shows up in the computations.

Energy comparison.

Assume that ψ is a vector field of class C 3 , supported on a disk of radius ℓ within Λ bulk , and such that:

|ψ| k ≤ C ψ ℓ -k-1 , for k = 1, 2, 3. (E.35)
Let τ be a real parameter such that (for some universal C large enough):

|τ ||ψ| 1 ≤ 1 C , |τ ||ψ| 2 ≤ log ℓ 1 C (E.36)
For all τ such that (E.36) is satisfied, let Φ τ := Id +τ ψ and m τ := Φ τ #m.

Lemma E.16. We have the following expansion for all X

F Λ (Φ τ • X, m τ ) = F Λ (X n , m) + τ A 1 (X, m, ψ) + τ 2 ErrEnerTrans(X, ψ), (E.37)
where ErrEnerTrans(X, ψ) is controlled by:

ErrEnerTrans(X, ψ) ≤ C 2 ψ log ℓ ℓ 4
EnerPts(X, supp ψ), the energy being computed with m as neutralizing background.

Proof of Lemma E.16. This follows from the second-order expansion of the energy as found in [Ser20, Lemma 4.1, Prop 4.2]. There is some care required in order to check that [Ser20, (4.11)] does indeed yield the claimed second-order correction, but this is made simpler by our assumption (E.35) and the fact that m is constant on Λ bulk .

Since supp ψ has volume O(ℓ 2 ), in view of the local laws we expect ErrEnerTrans to be O(ℓ -2 log ℓ) (with a constant depending on C ψ ). The anisotropy is thus the first-order contribution to the energy change induced by a transport which is a small perturbation of the identity map.

A 1 versus Ani. What is called the "anisotropy" in [START_REF] Leblé | Fluctuations of two dimensional Coulomb gases[END_REF] and [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] is not exactly the same term, in fact [START_REF] Leblé | Fluctuations of two dimensional Coulomb gases[END_REF] refers to Ani and [Ser20] to A 1 , where the latter is as defined above and the former corresponds to:

Ani(X, m, ψ) :

= A 1 (X, m, ψ) - 1 4 div ψ(x)dX(x). (E.38)
So in fact "A 1 " contains a possibly non-vanishing contribution 1 4 div ψ(x)dX(x) ≈ 1 4 div ψ(x)dm(x) which we need to substract in order to obtain "Ani" which is the term that will eventually be found to be negligible. The term appearing in the energy expansion (E.37) is A 1 .

Both A 1 and Ani satisfy the same control (E.34). In most relevant cases, ψ happens to be such that |ψ| 1 × | supp ψ| = O(1). Since (by local laws) the electric energy is typically proportional to the volume, we deduce that (for such "usual" ψ's) the anisotropy Ani is (at most) of order 1. Analytically speaking, i.e. as far as deterministic, function-wise bounds are concerned, it is very challenging to do better. However, a key result underlying some of the recent progress in the study of 2DOCP's is that Ani is, so to speak, often smaller than it seems. This is a probabilistic statement found in [LS18, Corollary 4.4], [Ser20, Lemma 7.2.], see also (with a different formalism) [BBNY19, Section 8.5]. Let us sketch the proof of this fact.

Smallness of the anisotropy via "Serfaty's trick".

Let K β n,Λ (m τ ) be the partition function associated to the background m τ (we keep the same "effective confinement" ζ W for all τ ) namely:

K β n,Λ (m τ ) := Λ n exp -β F Λ (X n , m τ ) + n n i=1 ζ W (x i ) dX n .
The key point is that there are two ways to evaluate the ratio

K β n,Λ (mτ ) K β
n,Λ (m) : 1. By the transportation approach of [LS18; Ser20], involving a change of variables (x 1 , . . . , x N ) = (Φ τ (x ′ 1 ), . . . , Φ τ (x ′ N )) in the very definition of K β n,Λ (m τ ) and an analysis of its effect on the energy. As seen in Lemma E.16, the anisotropy of ψ appears there as one of the contributions. 2. By using "free energy expansions", i.e. explicit expressions of (the logarithm of) the two partition functions up to some error term that has to be negligible. This was done in [START_REF] Leblé | Fluctuations of two dimensional Coulomb gases[END_REF] with a nonquantitative error term originating in the analysis of [START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF], in [START_REF] Bauerschmidt | The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem[END_REF] using their own expansion, and much improved in [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] using the error bounds of [START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF].

This gives two expressions for the same quantity, and since the anisotropy appears only (in exponential moments) in the first one, then it must be confounded with some error terms of the second one. This is fruitful for τ large (but not too large), and thus also for smaller values of τ by Hölder's inequality. This "trick", which yields a form of "smallness of the anisotropy", is used in [LS18; BBNY19; Ser20] as a tool to prove central limit theorems for fluctuations of smooth linear statistics. Unfortunately, it is hard to pinpoint a clear general statement in the literature, so we recall the proof in the next paragraphs. Recall that we take m = nµ W as background measure, which has constant density 1 in the bulk.

Comparison along a transport.

Here for technical reasons we need to work with partition functions restricted to E Λ , and we write:

K β n,Λ (m τ E Λ ) := Λ n 1 E Λ (X n ) exp -β F Λ (X n , m τ ) + n n i=1 ζ W (x i ) dX n .
We have the following "comparison of partition functions":

Claim E.17. where the last term in the integrand is the Jacobian of the tranformation. Using (E.37) we may compare the energy before and after the transport.

F Λ (Φ τ • X n , Φ τ #m) = F Λ (X n , m) + τ A 1 [X, m, ψ] + τ 2 ErrEnerTrans,
which we can re-write (using (E.38)) as:

F Λ (Φ τ • X n , Φ τ #m) = F Λ (X n , m) + τ 4 div ψ(x)dX n (x) + τ Ani[X, m, ψ] + τ 2 ErrEnerTrans.
The terms log det DΦ τ (x)dX n (x) and τ div ψ(x)dX n (x) are both equal to a deterministic quantity up to small error terms. On the one hand, we have: hence we obtain: Remark E.18. Each term in the right-hand side of (E.41) might be infinite when taken separately (because e.g. m may have a singularity on ∂Λ and hence infinite entropy) but the difference makes sense as the two measures coincide outside Λ bulk .

F Λ (Φ τ • X n , Φ τ #m) = F Λ (

Free energy comparisons

As we have seen above, one can compare two partition functions using a "transportation" approach. On the other hand, we have the following.

Claim E.19 (Free energy comparison, the "direct" approach). Assume that the support of mm is contained in a square Ω of sidelength l included in Λ bulk .

log K β n,Λ ( m E Λ ) K β n,Λ (m E Λ ) = β 4 -1 log md m -log mdm + O l log l
Proof of Claim E.19. This is essentially the result of [Ser20, Proposition 6.4], except that our reference measure does not necessarily have a C 1 density near the edge of Λ. This is in fact not a problem as long as we are doing comparisons inside Λ bulk (i.e. as long as the other measure coincides with m outside Λ bulk ), but it requires an explanation. The proof of [Ser20, Proposition 6.4] relies on two ingredients:

1. [Ser20, Proposition 6.3] (free energy expansion for general density in a rectangle). This we can import directly as it has nothing to do with our specific setup.

2. [Ser20, Proposition 3.6] (almost additivity of the free energy). It says that one can decompose K β n,Λ (m) into two parts: inside/outside Ω, with a small error. This is proven by two inequalities: one is easy and corresponds to the sub-additivity of Neumann energies whereas the other one uses the screening procedure and the local laws on (a neighborhood of) Ω in order to control the screening error terms (see [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF]Prop. 3.6]). Since the screening procedure takes place in a neighborhood of Ω, the possible singularities near ∂Λ are irrelevant. The only adaptation needed is to replace the local laws used in [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF] by ours (which is the reason why we "condition" on the event E Λ ).

Conclusion 1: smallness of Ani

We may now apply "Serfaty's trick". Comparing the statements of Claim E.17 Remark E.21. The same analysis holds for the full system, with no need for a conditioning on E Λ and as soon as (2.7) is satisfied, so for a broader notion of "bulk".

Conclusion 2: proof of Proposition 6.3

We may now conclude the proof of Proposition 6.3.

Proof of Proposition 6.3. Let us return to (E.32) and use the fact that by definition (see (E.2)):

ψ t = tW (ε,ℓ) (x) + γ t (x), ψ -t = -tW (ε,ℓ) (x) + γ -t (x), we obtain (for X in WellSpread(Λ bulk , ℓ, K) and thus with probability 1exp(-ℓ 2 ) up to choosing K large enough as in Lemma E.6):

1 2 (F Λ (Φ t X, m) + F Λ (Φ -t X, m)) -F Λ (X, m) = 1 2 Ani[X, γ t + γ -t ] + O(K 2 ε log εt 2 ). (E.42)

Let us introduce dyadic length scales ℓ i := 2 i for 0 ≤ i ≤ log(T /2) and associated cut-off functions χ i . We decompose γ t as: γ t = i χ i γ t . Using Proposition E.1 and in particular (E.4) we see that the vector field ψ(i) :

= 1 εt 2 χ i γ t satisfies | ψ(i) | k ℓ -k-1 i .
Using Lemma E.20, we know that for each i large enough:

P β n,Λ |Ani( ψ(i) )| ≥ log 2 ℓ i ℓ 1 2 i E Λ ≤ exp -ℓ i log 2 ℓ i .
Since this bound is only interesting (probabilistically speaking) for large enough i, we use it for i ≥ log 2 ℓ, in which case we have:

log(T /2) i=log 2 ℓ Ani( ψ(i) ) ≤ log(T /2) i=log 2 ℓ log 2 ℓ i ℓ 1 2 i = O(εt 2 )
with probability ≥ 1 -log(T /2) i=log 2 ℓ exp -ℓ i log 2 ℓ i ≥ 1explog 2 ℓ . The first contributions (for 0 ≤ i ≤ log 2 ℓ) are controlled using the "rougher" control (E.34), we get:

log 2 ℓ i=0 Ani( ψ(i) ) = O log ℓ 2 .
By (6.1) we know that log ℓ 2 is comparable to log ε. In conclusion, we obtain:

P β n,Λ |Ani[X, γ t + γ -t ]| ≤ Cε log εt 2 E Λ ≥ 1 -exp -ℓ 2 ,
with a constant C depending on β and the constant C Local .

Combined with (E.42) which is valid under an event of comparable probability (see Lemma E.6), we conclude the proof of Proposition 6.3.

E.5. Effect on expectations: proof of Proposition 6.4

Proof of Proposition 6.4. For τ ∈ (0, 1), let us introduce the event F τ as:

F τ := {ErrAve ≤ τ } (E.43)
(recall the definition (6.2) of ErrAve). We split the proof into several steps.

The case of non-negative functions

In this paragraph, we make the additional assumption that G is non-negative. We can obviously decompose E β n,Λ [G(X) E] as: Λ n 1 E (X)1 Fτ (X)G(X)e -β(F Λ (X,m)+n n i=1 ζ(xi)) dX Λ n 1 E (X)e -β(F Λ (X,m)+n n i=1 ζ(xi)) dX .

E β n,Λ [G(X) E] = E β n,Λ G(X)1 Fτ E + E β n,Λ G(X)
Since the function ζ vanishes identically on Λ bulk and since our localized translations act as the identity outside Λ bulk , the term n i=1 ζ(x i ) will not be affected by the operations below. For simplicity, we omit it altogether. Let us focus on the integral appearing in the numerator. By definition of ErrAve and of F τ as in (6.2), (E.43), we may write:

1 Fτ (X)e -βF Λ (X,m) = 1 Fτ (X)e -β 1 2 (F Λ (Φt•X,m)+F Λ (Φ-t•X,m))+βErrAve ≤ e βτ e -β 1 2 (F Λ (Φt•X,m)+F Λ (Φ-t•X,m)) ,

where we haved bounded the indicator function by 1 in the right-hand side. Using the convexity of x → exp(-βx) and the fact that G is assumed to be non-negative, we deduce that:

Λ n 1 E (X)1 Fτ (X)G(X)e -βF Λ (X,m) dX

≤ 1 2 Λ n 1 E (X)G(X)e -βF Λ (Φt•X,m) dX + Λ n
1 E (X)G(X)e -βF Λ (Φt•X,m) dX × e βτ .

By construction, the change of variable (x 1 , . . . , x n ) → (Φ t (x 1 ), . . . , Φ t (x n )), which maps X to Φ t X, has a Jacobian equal to 1. We thus have, looking at the first integral on the right-hand side:

Λ n 1 E (X)G(X)e -βF Λ (Φt•X,m) dX =

Λ n 1 E (Φ -t X)G(Φ -t X)e -βF Λ (X,m) dX.

Moreover, since Φ -t ≡ Id -t u on the disk D(0, ℓ/4) (see Lemma 6.2), since G is assumed to be D(0, ℓ/10)local, and since |t| is taken smaller than ℓ/10, we have Φ -t (D(0, ℓ/10)) ⊂ D(0, ℓ/4) and thus:

G(Φ -t (X)) = G(X -t u).
On the other hand since by construction Φ t coincides with the identity map outside Λ bulk and since the event E is assumed to be Λ \ Λ bulk -local, we have:

1 E (Φ -t (X)) = 1 E (X). (E.45)

Hence we can ensure that:

Λ n 1 E (Φ -t X)G(Φ -t X)e -βF Λ (X,m) dX =

Λ n 1 E (X)G(Xt u)e -βF Λ (X,m) dX, and similarly for the other term (reversing the roles of -t and t). In conclusion, we obtain:

Λ n 1 E (X)1 Fτ (X)G(X)e -βF Λ (X,m) dX ≤

Λ n 1 E (X) 1 2 (G(X + t u) + G(Xt u)) e -βF Λ (X,m) dX × e βτ .

Dividing back by the partition function, we obtain (E.44). On the other hand, we have by Cauchy-Schwarz's inequality:

E β n,Λ [G(X)1 Fτ (X) E] ≤ E β n,Λ G 2 (X) E 1 2 × P β n,Λ {ErrAve ≥ τ } E 1 2 .
In summary, we have obtained under the extra assumption that G is non-negative, and for all τ ∈ (0, 1):

E β n,Λ [G(X) E] ≤ E β n,Λ 1 2 (G(Φ t X) + G(Φ -t X)) E × e βτ + E β n,Λ G 2 (X) E 1 2 × P β n,Λ {ErrAve ≥ τ } E 1 2 .
71 E.5.1. The general case.

We no longer assume that G ≥ 0. For σ > 0, let us introduce the event G σ := {G + σ ≥ 0}. We can write:

E β n,Λ [G(X) + σ E] = E β n,Λ [G(X) E] + σ = E β n,Λ [(G(X) + σ) 1 Gσ (X) E] + E β n,Λ [(G(X) + σ) 1 Gσ (X) E]. (E.46)
Since X → (G(X) + σ) 1 Gσ (X) is non-negative by construction and has the same local character as G, we may apply the conclusions of the previous paragraph and write:

E β n,Λ [(G(X) + σ) 1 Gσ (X) E] ≤ E β n,Λ 1 2 (G(X + t u) + σ) 1 Gσ (X + t u) + 1 2 (G(X -t u) + σ) 1 Gσ (X -t u) E × e βτ + E β n,Λ (G(X) + σ) 2 E × P β n,Λ {ErrAve ≥ τ } E 1 2 ,
where in the last expectation term we have bounded an indicator function by 1. We would like to get rid of the two remaining indicator functions in the right-hand side.

Using again Cauchy-Schwarz's inequality (and the definition of G ) we see that:

E β n,Λ [(G(X + t u) + σ) 1 Gσ (X + t u) E] ≤ 2 E β n,Λ G 2 (X + t u) E + σ 2 1 2 × P β n,Λ [|G(X + t u)| ≥ σ] 1 2 ,
and similarly after replacing t by -t. Returning to (E.46), we thus obtain:

E β n,Λ [G(X) E] + σ ≤ E β n,Λ 1 2 (G(X + t u) + G(X -t u)) E + σ × e βτ + 2e βτ E β n,Λ G 2 (X ± u) E + σ 2 1 2 × P β n,Λ [|G(X ± t u)| ≥ σ] 1 2 + E β n,Λ G 2 (X) E × P β n,Λ ErrAve ≥ τ E 1 2 .
We may substract σ on both sides, and observe that we have: Using Cauchy-Schwarz's inequality one more time to bound the second line, we obtain:

E β n,Λ 1 
E β n,Λ [G(X) E] ≤ E β n,Λ 1 2 (G(X + t u) + G(X -t u)) E + 2 E β n,Λ G 2 (X ± t u) E + σ 2 1 2 × e βτ -1 + 2e βτ E β n,Λ G 2 (X ± u) E + σ 2 1 2 × P β n,Λ [|G(X ± t u)| ≥ σ] 1 2 + E β n,Λ G 2 (X) E × P β n,Λ ErrAve ≥ τ E 1 2 .
Replacing G by -G (which is possible as there is no more a sign constraint on G), we obtain the converse inequality, which yields (6.3).

Remark E.23. The identity (E.45) requires that E be Λ \ Λ bulk -local. One could try to "pass down" as much information as possible but if E is "too rich" then it risks to be perturbed by our localized translation.

  3) we may replace Int[Λ 1 , . . . , Λ N ] by Int[D 1 , . . . , D N ], up to an error quantified by ErrorCI. The quantity exp -β Int[D 1 , . . . , D N ] can be taken outside the integrals because it only depends on the data of {n i } 1≤i≤N .

  log det DΦ τ (x)dX n (x) = log det DΦ τ (x)dx + Fluct[log det DΦ τ ]and on the other hand:τ div ψ(x)dX n (x) = log det DΦ τ (x)dX n (x) + τ 2 n i=1 |ψ(x i )| 2 1 .The quantity log det DΦ s (x)dx coincides (see. [LS18, (4.11)-(4.13)]) with: log det DΦ s (x)dx = log mdmlog m τ dm τ , (E.41)

E

  and Claim E.19 we see that necessarily:log E β n,Λ exp τ Ani[ψ, X, m] + τ |ψ| 2 + τ 2 |ψ| 2 1 EnerPts(supp ψ) + τ 2 ErrEnerTrans E Λ = O l log l .Using the local laws and our assumptions (E.35) on ψ we may control the exponential moments of the error terms:log E β n,Λ exp τ |ψ| 2 + τ 2 |ψ| 2 1 EnerPts(supp ψ) + τ 2 ErrEnerTrans E Λ = O τ C ψ l-1 + τ 2 C 2 ψ l-2 + C 2 ψ τ 2 l-2 log l .This is valid for all τ smaller than l2 CC ψ log l so that (E.36) are satisfied. Taking τ = l3/2 , we obtain the following statement: Lemma E.20 ("The anisotropy is small"). If ψ is a C 3 vector field compactly supported on a disk of radius l within Λ bulk , and satisfying (E.35), then we have, for all l large enough (depending on the constant C ψ )E β n,Λ exp l3/2 Ani(ψ, X n , m) E Λ ≤ e O( l log l)+O(C 2 ψ l log l) ,with an implicit constant depending on β and the "local laws" constant C Local . In particular, we have the following tail estimate on the distribution of Ani(ψ): for l large enough, P β n,Λ |Ani(ψ, X n , m)Λ ≤ exp -l log 2 l .

  2 (G(X + t u) + G(Xt u)) E + σ × e βτσ = E β X + t u) + G(Xt u)) E X + t u) + G(Xt u)) + σ E e βτ -1 .

  The electric energy in a given domain Ω is typically of order |Ω| and so is the number of points in Ω, cf. Proposition 2.4, thus (2.10) bounds the typical fluctuations of ϕ by |ϕ| 1 | supp ∇ϕ| whereas a naive L ∞ bound would rather give |ϕ| 0 × | supp ϕ|. Since our test functions often live on some large lengthscale ℓ with |ϕ| 1 comparable to ℓ -1 |ϕ| 0 , there is indeed an improvement.

11) Remark 2.7. Controls of the type (2.10) have appeared under various forms in previous works see e.g. [SS15, Lemma 5.1], [LS18, Proposition 2.5] or [AS21, Lemma B.5], they are usually phrased as: "the electric energy controls the fluctuations".

  11)(Let us note that it is fairly easy to improve (C.11) by expanding the interaction in a more precise way and controlling some fluctuations, but it would add technicalities while not making a big difference in our final statement.) Combining Lemma C.4 and Lemma C.7 and integrating between ω i and any given x in Λ i we deduce that |∇R i (x)| ≤ C log T for all x in Λ i . Combining this with the decomposition (C.6) and Claim C.3 we deduce that

	Summary
	1. Control up to the edge.

  for all x ∈ R 2 , thus when looking for upper bounds we may replace occurrences of |ψ t | 1,⋆ , |ψ t | 2,⋆ by Ψ 1 , Ψ 2 . The upside of working with Ψ 1 , Ψ 2 is that they enjoy the following properties deduced from elementary calculus:• (Slow variation at scale ℓ.) For all x we have:

	sup y,|x-y|≤ℓ	|Ψ 1 (y)| |Ψ 1 (x)|	≤ 2,	sup y,|x-y|≤ℓ	|Ψ 2 (y)| |Ψ 2 (x)|	≤ 2.	(E.8)
	• (Slow variation.) For all x we have:						
	sup y,|x-y|≤ 1 2 |x|	|Ψ 1 (y)| |Ψ 1 (x)|	≤ 2,	sup y,|x-y|≤ 1 2 |x|	|Ψ 2 (y)| |Ψ 2 (x)|	≤ 2.	(E.9)

  Proof of Claim E.4. The first item follows directly from Proposition E.1 (see in particular (E.3)). It implies the second item straightforwardly. To prove (E.10) let us recall that |Φ t (x) -x| ≤ 2|t| ≤ ℓ 5 (by the first item of Proposition E.1 and the assumption |t| ≤ ℓ 10 ) and that |ψ t | 1,⋆ (Φ t (x)) ≤ Ψ 1 (Φ t (x)) by construction (similarly for |ψ t | 2,⋆ , Ψ 2 ). We thus have:

	).	(E.10)

  Proof of Claim E.17. We follow the same steps as in[START_REF] Leblé | Fluctuations of two dimensional Coulomb gases[END_REF] Prop 4.3]. First we write K β n,Λ (m τ E Λ ) as:K β n,Λ (m τ E Λ ) = Λ n 1 E Λ (Y n ) exp -β F Λ (Y n , m τ ) + n ζ W (x)dY n (x) dY nand perform the change of variables Y n = Φ τ • X n . By construction we have Φ τ = Id outside Λ bulk and in particular the term n ζ W (x)dY n (x) (which only detects points outside the support of µ W ) is not affected by this, nor is the indicator E Λ which only cares about points very close to ∂Λ. We obtain:F Λ (Φ τ • X n , Φ τ #m) + n ζ W (x)dX n (x) + log det DΦ τ (x)dX n (x) dX n , (E.40)

	log n,Λ (m τ E Λ ) K β n,Λ (m τ E Λ ) K β n,Λ (m E Λ ) log m τ dm K β = β 4 -1 = E Λ exp -β

τlog mdm + log E β n,Λ exp τ Ani[X, m, ψ] + τ |ψ| 2 + τ 2 |ψ| 2 1 EnerPts(supp ψ) + τ 2 ErrEnerTrans E Λ . (E.39)

  ErrEnerTrans.Using Lemma 2.6 we can control: Fluct[log det DΦ τ ] τ |ψ| 2 EnerPts(supp ψ) and on the other hand we have:τ 2 n i=1 |ψ(x i )| 2 1 ≤ τ 2 |ψ| 21 EnerPts(supp ψ), thus we can write:F Λ (Φ τ • X n , Φ τ #m) = F Λ (X n , m) + 1 4 log mdmlog m τ dm τ + τ |ψ| 2 + τ 2 |ψ| 2 1 EnerPts(supp ψ) + τ 2 ErrEnerTrans,and inserting this in (E.40) yields (E.39).

X n , m) + 1 4 log mdmlog m τ dm τ + Fluct[log det DΦ τ ] + τ 2 n i=1 |ψ(x i )| 2 1 + τ 2

  1 Fτ E . Proof of Claim E.22. According to the definition of E β n,Λ in Section 5.2, the expectation E β n,Λ [G(X) E] admits the following expression:

	Claim E.22.

E β n,Λ [G(X)1 Fτ (X) E] ≤ E β n,Λ 1 2 (G(Φ t • X) + G(Φ -t • X)) E × e βτ .

(E.44)

Those results are rigorous to the extent that authors make use of so-called "clustering assumptions", i.e. they assume properties of the two-point correlation function at large distances in order to derive certain identities (called "sum rules") which, among other things, imply hyperuniformity. As explained in[START_REF] Martin | Sum rules in charged fluids[END_REF]: "The results obtained in this way are exact (i.e. do not follow from approximations), but not all of them are rigorously proven, in so far as some reasonable properties (e.g. the type of decay of the correlations) are assumed to hold a priori.". Unfortunately, obtaining mathematically rigorous statements about the large-distance properties of the

2DOCP's two-point correlation function (for β = 2) is extremely challenging.

Tail estimates as in (1.3) readily imply the strongest type of hyperuniformity (Type I).

In fact all of the point configurations considered in this paper are finite.

We mean Pts(X N , D R ) ≥ πR 2 + ε R • R. points

i≡l mod M

In Section 4 we observe that if we condition on the values of the discrepancies (or equivalently of the number of particles) in domains that are well-separated, then the corresponding sub-systems acquire a form of independence.

In Section 5 we show that "typical" sub-systems, seen as slight generalizations of the 2DOCP model introduced earlier (in (1.1), (1.2)), retains most of the properties of the full system mentioned in Section 2.

The interested reader can find a list of conditions on ℓ, l at the end of the proof of [AS21, Prop. 4.5]. The choice of l mentioned in [AS21, (4.27)] correspond to the smallest possible choice, but increasing l up to R still gives a valid choice.

Having a poorer estimate is equivalent to having the parameter C in [AS21, (4.25)] depend on R. The conditions written at the end of the proof of [AS21, Proposition 4.5] can still be satisfied as long as C is much smaller than R, which corresponds to an initial energy estimate in o(R 3 ). If C is smaller than R 3/2 then the error term will become smaller than R 2 in one step, otherwise one would need to apply the bootstrap in scales for some time (i.e. go down in scales) before reaching the desired local laws. Our situation corresponds to C = log 5 R, cf. (5.5).

This terminology alludes to similar constructions used in the theory of continuous spin systems to prove so-called "Mermin-Wagner" theorems, see e.g. [FV17, Sec. 9.2] or [Sim14, Chapter 3].

There might be a confusion between the error term O e -L 0.66 / C and the fact that we write 1+O L -0.66 ≤ e O(L -0.66 ) , but e -L 0.66 and e L -0.66 are two different terms.

Alternatively, one can associate to V a "thermal equilibrium measure" as in[START_REF] Armstrong | Local laws and rigidity for Coulomb gases at any temperature[END_REF], which has unbounded support and plays the role of those three objects.

The statements of Proposition D.1 only hold "quasi everywhere" (q.e.), which means "up to a set of capacity zero". This makes no difference for us and, for simplicity, we omit it.

This follows from the last statement in Proposition D.1.

z depends also on z 0 but we will not write down this dependency as we work for any fixed z 0 .

This is inspired by a different but similar argument in the original proof.

As in [BBNY17, Proof of Prop. 3.4], except that they scale everything back to ρ = 1.

It is in fact impossible to make it small by choosing a different "localized translation", because in dimension 2 the (homogeneous) Sobolev space Ẇ 2,1 is embedded in L ∞ . This is, fortunately, not the case for Ẇ 1,2 .

Such a choice of a very small truncation parameter appears in[START_REF] Leblé | Fluctuations of two dimensional Coulomb gases[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF]. It might seem "unphysical" but it is very convenient to get rid of annoying error terms, while only costing log s in view of (2.5).

Let us observe that the additional term Err appearing in [Ser20, (A.23)] is 0 in our case because Φ is measure-preserving and thus, with the notation of[START_REF] Serfaty | Gaussian fluctuations and free energy expansion for Coulomb gases at any temperature[END_REF], ν = µ.
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Sub-harmonicity

The distributional Laplacian is given by: ∆v = τ ∆u V ref + ρ -2 ∆L + ρ -2 (2∂ - n R + γ)ds, (D.14) the measure ds being the arclength measure on ∂ρD (we used the general formula of [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF](3.10)] and the fact that the jump of the normal derivatives of G along ∂ρD is here ρ -2 ). In the interior of D we obtain (taking only the first two terms in the right-hand side of (D.14), using the last item of Proposition D.1 to evaluate ∆u V ref , and an explicit computation of ∆l r -we recall that l r is the logarithmic potential generated by the uniform probability measure on the disk of radius r):

(the differences with the analysis of [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF] being that here α (their notation) is of order ρ -2 , σ (their notation) is always 1 2 , that L here is scaled by ρ -2 and most importantly that the distance r is here chosen depending on w as above). In order to check that ∆v ≥ 0 (which is a requirement in (D.10)) we thus need to guarantee that: Here we stop following the route of [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF] and instead recall that by construction r(w) = 1 10 |z 0 -w|, thus we may write (bounding the indicator function by 1):

Cover the annulus D(0, ρ+ρ ′ )\D(0, ρ), which by assumption contains the support of ν, by O(ρ/ρ ′ ) squares of sidelength ρ ′ . The quantity |ν| loc allows us to bound the mass of ν on each such square. Then for z ∈ ρD, if z is at distance at least 20ρ ′ from the boundary then we can compare the integral

if z is at distance at least κ from the boundary. In particular, if κ is larger than some constant times |ν| loc (ρ ′ ) ρ ′ we do have (D.15). For the singular part on the boundary we need to ensure that 2∂ - n R + γ ≥ 0, which is true by definition of γ.

Obstacle property

We want to check that v(z 0 ) = 1 2 W(z 0 ) and that v(z) ≤ 1 2 W(z) on R 2 (in fact it is enough to check it on the disk as W is infinite outside). This step goes on exactly like in the original proof. We already know that u

on ρD (by definition), and that G vanishes on ρD. Thus in view of (D.5) it suffices to have:

which was precisely guaranteed by construction of L using Lemma D.4, see (D.11) and (D.13).

Growth at infinity

Here we proceed again a bit differently than in [START_REF] Bauerschmidt | Local density for two-dimensional one-component plasma[END_REF]. Recall that we have chosen our function as:

and G(z) ∼ log z. Thus the third condition of (D.10) is satisfied if we have:

Proof of Claim D.9. Let us recall that the integrand can be written (see (D.23)) as:

By elementary computations, we obtain:

and similarly:

and thus after some simplifications we get:

We now insert the expressions (D.16), (D.17) for W and µ W , the definition (D.1) of I W (µ W ), expand and use the identity (D.22). We obtain: 

where ω is the center of Λ. Let us decompose the integral into two parts:

Away from the boundary. On {dist(z, ∂Λ) ≥ κ} we know that µ W coincides with τ µ V ref Λ

and thus (since we take κ ≥ 1):

We Near the boundary. On {dist(z, ∂Λ) ≤ κ} we control each contribution separately. On the one hand, we have, using the mean value formula for V ext (which is harmonic on Λ):