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Abstract 

Absorbing boundary conditions are generally associ- 
ated to long-range memory behaviors. In the case o€ 
the Euler-Bernoulli beam, they are naturally based on 
Abel-Volterra operators of order 1/2. Diffusive real- 
izations of them are introduced and used for the con- 
struction of an original and efficient boundary dynamic 
feedback control. 

1 Introduction 

In the context of force and torque boundary control of 
the Euler-Bernoulli beam, we consider wave absorbing 
feedbacks based upon the reduction of reflected waves. 

Due to the specific propagative properties of the beam, 
such feedbacks involve fractional integrator and deriva- 
tor of order 1/2 which make the closed-loop system non 
standard with long range memory convolution opera- 
tors. The analysis and the numerical approximation of 
the system under consideration are considerably simpli- 
fied by using diffusive input-output realizations of Abel 
fractional integral operators which allows the represen- 
tation of the closed-loop system under the traditional 
form 

(1) - _  - A X ,  d X  
dt 

with A the infinitesimal generator of a semigroup on a 
convenient Hilbert space. 

The well-posedness and the asymptotic stability of the 
system are then based upon classical semigroup theory. 
The numerical approximation of (1) leads to a simple 
finite-dimensional version of this system and significant 
simulations are presented as illustrative examples. 

2 Wave-absorbing feedback controls 

We consider the problem of stabilization of the 
Euler-Bernoulli beam, under boundary conditions and 
boundary control, writt'en as : 

with inputs U and U ,  respectively torque and force, and 
outputs y and z ,  respectively the deflection and slope 
velocities at the end of the beam : 

2.1 Feedback controsls under consideration 
We consider feedback controls : ( u , u ) ~  = Z ( ~ , Z ) ~ ,  
corresponding to (boundary) conditions of frequency- 
independent absorption of waves at c = 1. Such con- 
trols were introduced and investigated in [7]. The cor- 
respondence 2 involves Abel integrators and derivators 
of order 1/2. The present study is devoted to the con- 
struction of diffusive realizations of such operators and 
then to the analysis and numerical simulation of the 
resulting systems. 

Boundary conditions at x = 1 under consideration are 
written : 

0-7803-3970-8197 $10.00 Q 1997 IEEE 4973 

mailto:montseny@laas.laas.fr


where A ,  B ,  C,  D are convenient causal convolutive op- 
erators to be specified. On the other hand, the scatter- 
ing matrix at point 2 = 1 : 

( 5 )  

is constituted by the (complex) reflection coefficients 
which relate the incoming and the reflected waves at  
z = 1, according to  the two types of wave-modes so- 
lutions [7], respectively travelling waves and near-field 
waves : . 0 = , i w t f i f i X  . 0 = e i W t f f i X  

, 

The objective is to  determine A , B , C , D ,  such that 
a ,  p, y, S be small and independent of the pulsation w 
of the wave-mode. We have the following result [4] : 

Theorem 2.1 The scatterang matrax R 2s andependent 
of the pulsataon w af and only af the feedback matrax as 
of the form : 

with a ,  6 ,  c ,  d E C ; furthermore, R = 0 zf and only if: 

( a = - - l  
b = - J Z  

d =  1. 
e = & )  

Remark : in the case R = 0, the feedback control is 
non-reflecting : it realizes the virtual continuation of 
the beam to the semi-infinite domain (I,+..) (also 
called "impedance matching" condition), so that the 
mechanical energy will be efficiently absorbed from the 
propagation properties. 

The considered feedback controls will essentially be of 
the form (6), with the necessary additional hypothesis 
of asymptotic stability of the corresponding closed-loop 
system. Applying the inverse Laplace-transform to (6), 
we obtain the general expression in the time-domain : 

with the fractional integrodifferential operators I l l 2 ,  
aif2 defined by the classical Riemann-Liouville formu- 
las [5] : 

It is additionally assumed that a ,  b , c , d  E R, which 
leads to real and causal feedback controls. 

The fractional operators I l l 2 ,  generate several dif- 
ficulties, both for analysis and numerical approxima- 
tion. We propose diffusive realizations of such feedback 
controls, elaborated from the input-output behavior of 
convenient diffusion equations. 

2.2 Diffusive representation of the feedback 
We consider the monodimensional diffusion equation 
with input f ( t )  and output g ( t )  ( a  denoting a partial 
derivative) : 

&@ - a,@ = J Z S  @ f ,  @(z, 0) = 0, z E R 

which is equivalent from Fourier-transform with respect 
to z (p = F@ = Je-2iAtx@dz), to : 

\ J - C O  

Lemma 2.2 [3] The input-output retation for (10) is: 
g = W f .  

Similarly, we consider now the input-output diffusion 
equation : 

Lemma 2.3 [A] The input-output relation for (11) is: 
1'2 g = at f- 

The proof is performed by considering in ( lo) ,  the new 
output : g := &at s pdJ and the convenient change 
of function : $ = 27r M I  p. Thus, the systems (10) and 
(11) make possible the computation of I l l 2  f and a,"2 f 
under standard input-output forms : 

dt = A X  + Uf and { % =  A X  + af 
g = B * X ,  g = B*(-x + Df), 

(12) 
{ dX 

respectively. We may conclude : 

Theorem 2.4 The system (2)  with the feedback con- 
trol de f ined  by (8) : 

a p  + a:e = 0, 
a:e(i,t) = a a t e ( i , t )  + b ~ ~ / ~ a ~ a , e ( i , t )  (13) 
a,"6'(l,t) = cd,"2d,6(l,t) + d & O X 8 ( l , t ) ,  
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Remark that,  in opposite to  (13) which has no associ- 
ated semigroup because of the presence of the time-non 
local operators I l l 2  and a,‘”, (14) may be expressed 
under the standard abstract form : = AY, in a 
convenient Hilbert state space. Although the global 
system (14) may seem to be more complex than (13) ,  
its analysis will be greatly simplified by the presence of 
the auxiliary state variables (p, $. 

associated to the classical Hilbert space L2(R), with 
scalar product : (e  I f ) L 2  = J-, +ma e f d z .  

We then define the global state vector, energy func- 
tional and Hilbert state space respectively : 

Y ( t )  := (0, ate, ‘ P I  $15 
(18) Ey := E o  - bEp + c?, 

IH : = %lb X (L2(R)) . 

The fundamental a priori property is obtained [4] 

Proposition 3.1 Under the assumption b 5 0 ,  c 2 0 ,  
the global system (14) is dissipative in  the sense : 

‘dY(t) E I- t ,  solution of (14), 

dEy(t)  
dt 5 0. -- 

The proof is straightforward using technical but ele- 
mentary calculations. From (19) ,  we may deduce by 
use of classical semigroup theory : 

3 Analysis of the system 

For simplicity, we only consider feedbacks defined by 
(6), with the additional hypothesis : U = d = 0.  So, 
the feedback matrix is reduced to  : 

and the analysis of (13) is performed through the equiv- 
alent augmented system (14).  

We first define energy functionals for the state variables 
: 0,  dtO, (p and $. The mechanical energy of the beam 
is classically given by : 

associated to the Hilbert space : 

h ! b  = H ( 0 ,  1 )  x L2(o,  I ) ,  
H ( 0 , l )  = { h  E L2(0,  1) ;  h’, h” E L2(0,  l ) ,  (16) 

h(0) = h’(0) = 01, 

with the scalar product : 

1 

((e, f )  I(s, h))Xb = 1 (e”g” + fh) d z .  

The energies of the diffusive variables (p, $ are respec- 
tively defined by : 

Theorem 3.2 For any Y (0 )  := Yo E ‘If, the 
Cauchy problem (14) admits a unique weak solution in  
Lw(R+;X) ;furthermore, V t  2 0 ,  Ey(t) 5 Ey(0) = 
3 llyoll;. 

Corollary 3.3 If (po := $0 = 0 ,  then the mechanical 
energy of the beam satlisjies the property : 

w 2 0 ,  E a  ( t )  L E a  ( 0 ) .  (20) 

In order to achieve the stability analysis, we consider 
the asymptotic behavior of (13). 

Under the natural hypothesis : b < 0 or c > 0, the 
Lyapunov functional Eiy has the following property [4] : 

Proposition 3.4 If Y is a solution of ( l4) ,  then 

) dEy =O*YrO (T 

It may then be proved that the trajectories 
Ut20 { ( e ,  &e)} are relatively compact in E,$, and so, ap- 
plying the LaSalle’s invariance principle, we conclude : 
IK0, wll;b t*-fOO 0. 

So, under the above itssumptions, the system (13) is 
asymptotically stable. The asymptotic stability of the 
global system (14) is a.lso obtained, under more techni- 
cal computations. 

Finally, it may be added that, due to the passive nature 
of the closed-loop system, such controls are robust with 
respect to uncertainties. 
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4 Numerical approximation and simulation 

In this section, we present numerical simulations of the 
global system (14) to  illustrate both the convenience 
of the diffusive realizations of the operators Ill2 and 
8,"' in the context of numerical approximations, and 
the efficiency of the wave-absorbing feedback controls 
(8). 

4.1 Numerical approximation 
More details may be found in [4]. 

We consider a finite network on the &variable, with 
convenient hypothesis [4] : 

N =  { < 1 1 < 2 , . . . , t K , < K + l ) ,  0 < J k  < & + I ,  (21) 

the finite-dimensional differential systems obtained 
from (IO), (11) on N : 

%= -4a2J~'pk + h e ,  c p k ( 0 )  = 0, k = 1, ..., It-, 
(22) 

(23) 
$ k =  -4r2t,24k +JZ.2n<k f ,  $ k ( O )  = 0, k = 1, ..., I<, 

and the linear interpolations on N u  -Ndefined by : 

where A k  are convenient piecewise affine functions with 
bounded support (see [4] for details). The functions 
'p, $ are classical functional approximations of 'p, 4 re- 
spectively. The outputs of the systems (22), (23) are 
respectively defined by : 

- 

K 

(25) 
k=l 

k = l  

with : Xk = fi Aka<, 

pk = ~'5.277 J 1 € 1  h d 6 ,  (27) 

I 
K 

A = fix X k ,  
k=l 

and we have the following convergence result when the 
network n/ fills up R+ in a natural way [4] : 

Theorem 4.1 For any e ,  f E L2 (0, T ) ,  

g + I l l 2 €  in L2 (0 ,T)  

The proof is based on classical Hilbert methods (see 
[4]). This last result permits to elaborate efficient nu- 
merical simulations of and 8t'2f from reduced 
order differential systems [4]. 

The following coefficients have been chosen for the nu- 
merical simulations : 

It- = 10 

t i 0  = 16 

r = 2.0502. 

= 0.025 

t k + l  = rtk 

In Fig 1, we can see the magnitude and phasis of 
the input-output transfer (in the Bode coordinates) 
of (22),(25). It may be remarked that the approxi- 
mated transfer function is very close to the ideal one 
on the pulsation domain lo3] . A similar conclu- 
sion concerns (23),(26). 

The finite-dimensional approximation of (2) have been 
performed by classical modal approach (20 eigen- 
modes) and the global system (14) corresponding to 
the feedback control defined by (8) is approximated by 
(22), (23), (24), with the additional coupling defined 
by (81, (as), (26). 

4.2 Results and comments 
The following wave-absorbing feedback matrices have 
been considered : 

The simulation time has been limited to  t,,, = 0.2, 
with At = The initial condition for the beam is : 

15 

Bo = h k ,  81 = 0, k 2  
k = l  

with @k the eigen-modes of the operator 8; defined on 
the domain (0, l), with null boundary conditions. 

In the aim of comparisons, the evolution of the beam 
deflection in the autonomous case ( U  = 0, TJ = 0) is 
visible in Fig 2, and reveals complex vibrating behav- 
iors, due to the reflections at the boundaries which are 
completely reflecting (in this case, the system is con- 
servative). 

In Fig 3, 4, we may see the beam deflection in the case 
of matched boundary conditions defined by the feed- 
back 20. Propagations are visible at the beginning of 
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the evolution. They are not reflected at the bound- 
ary x = 1 whose impedance conditions are transparent 
by construction : the beam behaves like it would be 
semi-infinite on the domain [0, +o). The transparence 
property confirms the validity of the diffusive approxi- 
mations of the operators Ill’, 8;”. Note that for such 
a result, it has been necessary to extend the frequency 
band to more than 4 decades, which is very simple from 
the methodology described above. 

In Fig 5, 6, we may see the evolution of the beam 
deflection corresponding respectively to  the feedbacks 
Z1, 2’. Small reflections do exist. 

From the mechanical energy evolution point of vue, we 
may compare in Fig 7, the respective efficiencies of the 
considered feedbacks. In the cases of 21, in spite of 
small reflections, the energy absorption efficiency seems 
approximately equivalent to  the non-reflecting case 2 0 .  

In the case of 2 2 ,  the beam energy absorption is more 
slow, excepted for very short times. 

Finally, we may see for illustration in Fig 8, 9, the evo- 
lution of the auxiliary diffusive state variables p) and 
$k ( k  = 1, ..., lo) ,  in the case of the non-reflecting feed- 
back 20. It may be remarked that at  t M 0.155, there is 
a significant qualitative change in the behavior of these 
variables which seem to be no more oscillating after this 
time. This is possibly due to  the fading of the propa- 
gating modes, only near-field waves remaining present 
for long times. 
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5 Figures 

Figure 1: Magnitude and phasis of approximated 11/’ 
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Figure 2 :  Autonomous beam 
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Figure 3: Beam with feedback Zo 

4977 



2 

_ _  .- - -  .- _ _  _ _  -.. . - . . ~  
50 - 

0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 018 

1.8 

1 6  

1.4 

1.2 

jl 
v 

0.8 

0.6 

0.4 

0.2 

' 0  0 1 0 2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 2  

space 

Figure 4: Beam with feedback 20 
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Figure 5: Beam with feedback 2 1  
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Figure 6: Beam with feedback Zz 

Figure 7: Mechanical energy of the beam : ZO(-), Zi(-.), 
ZZ(..) 
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Figure 8: Evolution of pk, k = 1,10 
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Figure 9: Evolution of $ k ,  k = 1,lO 
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