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The genus Ectocarpus (Ectocarpales, Phaeophyceae) contains filamentous algae widely distributed in marine and estuarine habitats of temperate regions in both hemispheres.

While E. siliculosus has become a model organism for genomics and genetics of the brown macroalgae, accurate species delineation, distribution patterns and diversity for the genus Ectocarpus remain problematic. In this study, we used three independent species delimitation approaches to generate a robust species hypothesis for 729 Ectocarpus specimens collected mainly along the European and Chilean coasts. These approaches comprised phylogenetic reconstructions and two bioinformatics tools developed to objectively define species boundaries (GMYC; General Mixed Yule Coalescence Method and ABGD; Automatic Barcode Gap Discovery). Our analyses were based on DNA sequences of two loci: the mitochondrial cytochrome oxidase subunit 1 (COI-5P) and the nuclear internal transcribed spacer 1 of the ribosomal DNA (ITS1). Our analyses showed the presence of at least 15 cryptic species and suggest the existence of incomplete lineage sorting or introgression between five of them. These results suggested the possible existence of different levels of reproductive barriers within this species complex. We also detected differences among species in their phylogeographic patterns, range and depth distributions which may suggest different biogeographic histories (e.g., endemic species or recent introductions).

Introduction

Delineating species boundaries is a longstanding methodological and conceptual challenge, especially in algal systems. Some of the problems arise from the fact that species are dynamic entities that change with time (Sites andMarshall 2003, 2004) and a plethora of species concepts has been proposed [START_REF] Mayden | A hierarchy of species concepts: the denouement in the saga of the species problem[END_REF][START_REF] Mayden | Consilience and a hierarchy of species concepts: advances toward closure on the species puzzle[END_REF][START_REF] Coyne | Speciation[END_REF]. Recently, a new line of thinking was put forth among biologists whereby species are considered as scientific hypotheses (species hypotheses) and species delineation is a process of refutation based on the acquisition of new evidence [START_REF] Pante | Species are hypotheses: avoid connectivity assessments based on pillars of sand[END_REF].

DNA-based methods, such as single gene barcoding, have been proven especially useful to uncover cryptic species where classical taxonomy has been problematic in organisms characterized by simple morphology and / or by high phenotypic plasticity (e.g., in animals: Yamashita and Roads 2013; in plants: Carstens and Satler 2013; in seaweeds: [START_REF] Tronholm | Species delimitation, taxonomy, and biogeography of Dictyota in Europe (Dictyotales, Phaeophyceae)[END_REF]. However, problems are linked with this single gene approach.

Indeed, single-locus data represent the history of a single gene that might not be representative of organismal history. Differences in the overall amount of differentiation between loci or in how these loci reconstruct the relationships among groups generate discordance in species boundaries delineation among markers and the importance of using multiple independent loci to generate robust species hypotheses has been repeatedly emphasized [START_REF] Dupuis | Multi-locus species delimitation in closely related animals and fungi: one marker is not enough[END_REF].

Distance-based approaches have classically defined species using arbitrary thresholds (universal or defined visually using a barcode gap in a particular group of species, Hebert et al. 2003). Species have also been defined based on the existence of wellsupported monophyletic groups [START_REF] Wiens | Delimiting species limits in spiny lizards (Sceloporus)[END_REF]. However, monophyly, while a discrete criterion, is arbitrary with respect to taxonomic level [START_REF] Goldstein | Integrating DNA barcode data and taxonomic practice: determination, discovery, and description[END_REF]. Methods characterized by an increased statistical rigor and better objectivity in delimiting species, such as the General Mixed Yule Coalescent (GMYC) (Pons et al. 99 2006, Monaghan et al. 2009) and the Automatic Barcode Gap Detection (ABGD) (Puillandre et al. 2012a), were recently developed to detect discontinuities in DNA sequence variation associated with species boundaries. GMYC uses a pre-existing phylogenetic tree to determine the transition signal from speciation to coalescent branching patterns. While, ABGD detects the breaks in the distribution of genetic pairwise distances, referred to as the 'barcode gap', relying exclusively on genetic distance between DNA sequences. GMYC and ABGD analyses combined with searches for well-supported monophyletic groups in phylogenetic reconstructions have been used to detect the existence of cryptic species in many taxa (e.g. snails: [START_REF] Prevot | Exploring species level taxonomy and species delimitation methods in the facultatively self-fertilizing land snail genus Rumina (Gastropoda: Pulmonata)[END_REF]fish: Alò et al. 2013;copepods: Cornils and Held 2014;red algae: Payo et al. 2012 and[START_REF] Pardo | A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR maritime area[END_REF] or brown algae: [START_REF] Vieira | Toward an inordinate fondness for stars, beetles and Lobophora? Species diversity of the genus Lobophora (Dictyotales, Phaeophyceae) in New Caledonia[END_REF].

The genus Ectocarpus Lyngbye (Ectocarpales, Phaeophyceae) is widely distributed in marine and estuarine habitats of temperate regions in both hemispheres [START_REF] Stache | Sexual compatability and species concept in Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) from Italy, North Carolina, Chile, and New Zealand[END_REF].

Ectocarpus spp. is found as a short-lived annual and often colonizes abiotic substrata or grows as an epiphyte on macrophytes; the habitat of Ectocarpus spp. includes the subtidal up to high intertidal pools (Russell 1967a(Russell , 1967b(Russell , 1983a(Russell , 1983b)). Members of Ectocarpus spp. complex have been described as important contributors to biofouling and are frequently encountered as epiphytes in mariculture settings [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF]). The genus Ectocarpus has a long research history, starting in the XIX century with the first taxonomic descriptions of this genus [START_REF] Dillwyn | British Confervae; or colored figures and descriptions of the British plants referred by botanists to the genus Conferva[END_REF][START_REF] Lyngbye | Tentamen hydrophytologiae danicae; continens omnia hydrophyta cryptogama Daniae, Holsatiae, Faeroae, Islandiae, Groenlandiae hucusqve cognita, systematice disposita, descripta et iconibus illustrata, adjectis simul speciebus norvegicis. Opus, praemio ab Universitate regia hafniensi ornatum, et sumtu regio editum. Hafniae, typis Schultzianis[END_REF].

Despite being a model organism [START_REF] Peters | Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics[END_REF], Cock et al. 2010), basic knowledge concerning species delineation, distribution patterns, diversity and differentiation remains elusive (Peters et al. 2010a).
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Initial morphology-based descriptions of species diversity have a long and controversial history. For example, Hamel (1931Hamel ( -1939) ) recognized five species along the European Atlantic coast, which he classified into two major groups based on branching pattern and sporangium shape: the section "siliculosi" and the section "fasciculati". Later, [START_REF] Cardinal | Étude sur les Ectocarpacées de la Manche[END_REF], using field material from the French Channel, proposed another classification and distinguished four species with seven varieties in the Ectocarpus subgroup siliculosi and three varieties in the Ectocarpus subgroup fasciculati.

Conversely, [START_REF] Russell | The genus Ectocarpus in Britain. I. The attached forms[END_REF]Russell ( , 1967a) ) using isolates from around the British Isles, demonstrated that sporangium morphology was not an informative species character.

His proposal to reduce the number of European species to two (E. fasciculatus and E. siliculosus) was later supported by crossing and chemical studies [START_REF] Müller | Crossing experiments, lipid composition, and the species concept in Ectocarpus siliculosus and E. fasciculatus (Phaeophyceae, Ectocarpales)[END_REF] and was the most widely accepted classification system until recently (but see Peters et al. 2010a). Nonetheless, within E. siliculosus, reproductive barriers have been reported between isolates from different geographical areas (reviewed in Stache-Crain et al. 1967). Prezygotic barriers have been described for populations from NE America [START_REF] Müller | Sexual isolation between Europe and an American population of Ectocarpus siliculosus (Phaeophyta)[END_REF]; likewise, reduced development or normal sporophyte development with inhibition of meiosis (post-zygotic barriers) has been observed for strains isolated from different hemispheres [START_REF] Müller | Sexual reproduction in British Ectocarpus siliculosus (Phaeophyta)[END_REF][START_REF] Müller | Genetic affinity of Ectocarpus siliculosus (Dillw.) Lyngb. from the Mediterranean, North Atlantic and Australia[END_REF][START_REF] Müller | Studies on sexual compatibility between Ectocarpus siliculosus (Phaeophyceae) from Chile and the Mediterranean Sea[END_REF][START_REF] Stache | Sexual compatability and species concept in Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) from Italy, North Carolina, Chile, and New Zealand[END_REF]). Despite these observations, [START_REF] Müller | Sexual reproduction of Ectocarpus siliculosus (Ectocarpales, Phaebphyceae) in Japan[END_REF] proposed to collapse E. siliculosus isolates into a single species arguing that full or slightly reduced interbreeding patterns could be explained by the geographical isolation between populations in this world-wide distributed species. However, this explanation has been questioned by different studies where sequence-based analyses have identified cryptic diversity within the Ectocarpus genus. First, phylogenetic analyses using ITS1 (nrDNA) and the Rubisco spacer of choloroplast DNA (cpDNA) of 43 Ectocarpus strains isolated 7 from all continents except Antarctica, showed several lineages within the Ectocarpus subgroup siliculosi [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF]). Second, using three additional markers (cox3 and rps14-atp8 (both from mtDNA) and ITS2 (nrDNA)) and including samples isolated from NW France, Peters et al. (2010a) suggested the existence of at least four different lineages within the Ectocarpus subgroup siliculosi; for one of the four lineages, they proposed to reinstate the name E. crouaniorum Thuret coined by Thuret in Le Jolis. Third, the presence of most lineages described by [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF] was later confirmed for strains sampled along the South-East Pacific coast (Peters et al. 2010b). Finally, using a single-locus approach (COI-5P) on samples from NW France, Mediterranean Sea and Asia, [START_REF] Peters | Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)[END_REF] reported again several lineages previously described in [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF] as well as 14 additional lineages possibly representing different species. However, this last study also warned against problems linked to a single-gene approach, such as incomplete lineage sorting or introgression.

The molecular findings discussed above support the probable occurrence of highly divergent genetic lineages, including cryptic species, within the Ectocarpus section "siliculosi". However, none of the previous studies has employed an integrative approach to clarify the species diversity within Ectocarpus and evaluate introgression levels within and among natural populations. The present study uses two unlinked loci (i.e. COI-5P and ITS1 DNA-markers) and a set of methods developed to delimit species to clarify the number of cryptic species within this group using 729 specimens collected mainly along the European and Chilean coasts. The extent to which natural hybridization and introgression occur in the field was investigated by searching for incongruence between the independent nuclear and mitochondrial markers. Finally, 8 phylogeographic patterns, range and depth distributions of the most common Ectocarpus species were studied.

Materials and Methods

Field collections and isolation of Ectocarpus strains

Seven hundred and twenty-one Ectocarpus samples were collected from 37 sites located along the North-East Atlantic (NEA), Mediterranean and South-East Pacific (SEP) coasts. They were complemented with 8 strains isolated from USA, South Korea, Australia and New Zealand (Table 1). Samples collected in the field were isolated and maintained as clonal cultures, as described in [START_REF] Couceiro | Evolution and maintenance of haploid-diploid life cycles in natural populations: the case of the marine brown alga Ectocarpus[END_REF]. Position on the shore of the collected individuals was recorded using a coarse classification (high intertidal, H; mid intertidal, M; low intertidal, L; upper subtidal, US; subtidal, S; or drifting, Drift), in order to examine whether putative cryptic species occupy different tidal zones.

DNA extraction, sequencing and alignments

Total DNA was extracted from lyophilized samples using the NucleoSpinR 96 Plant Kit (Macherey-Nagel, Duren, Germany). Partial COI (COI-5P, mitochondrial) was amplified using the primers GAZF2 and GAZR2 [START_REF] Lane | A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding[END_REF]) as described in [START_REF] Peters | Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)[END_REF]. A nuclear fragment containing the ITS1 region and 224 bp of the flanking genes 18S and 5.8S was amplified using the primers and PCR conditions described by Peters et al. (2010a). PCR amplicons for both markers were sequenced at Genoscope facilities (Evry, France) or at Eurofinis Genomics (Ebersberg, Germany).

Individuals showing phylogenetic incongruences between markers were sequenced twice in order to discard contamination errors in the preparation of the samples before the sequencing. Sequences were aligned manually using MEGA v6.06 [START_REF] Tamura | MEGA6: Molecular Evolutionary Genetics Analysis version 6.0[END_REF]) and checked by eye; only traces with high quality values and no ambiguities were retained for further analyses.

Species-delimitation procedure

First, 729 Ectocarpus COI-5P sequences were used to define putative species within the Ectocarpus section "siliculosi" group. Among them, 710 sequences were generated in this study and deposited in GENBANK (Table 1, S1) while 19 were published by [START_REF] Peters | Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)[END_REF] and downloaded from the same public database (Table S1). To establish putative species, two species delineation methods (ABGD and GMYC) were combined with two phylogenetic inference methods (Maximum Likelihood, ML and Bayesian inference, BI). Thereafter, putative species delineated with the COI-5P were consolidated using 630 sequences of the nrDNA marker ITS1. Five hundred and eighty sequences were generated in this study (Table 1, S2) and 50 were downloaded from GENBANK (Table S2). A single alignment including all ITS1 sequences could not be generated due to the partly high sequence variability including the presence of indels [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF]; the ITS1 dataset was therefore divided into four subgroups (see results on species consolidation below for more information about the composition of these four subgroups). Sequence alignment, tree reconstructions and ABGD tests were carried out independently for each subgroup. Sample groups were considered as species when all (or nearly all) the methods employed to test their boundaries and the results obtained for two independent genes were concordant. 10 Phylogenetic analyses were conducted separately for the COI-5P and ITS1 regions using both ML and BI methods. ML analyses were performed using RAxML v8 [START_REF] Stamatakis | RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies[END_REF]. We selected the best-fit substitution model using the Akaike Information Criterion (AIC) implemented in jModelTest v2.1.8 [START_REF] Darriba | jModelTest 2: more models, new heuristics and parallel computing[END_REF]).

The selected model was GTR I+G for COI-5P, GTR +G for the first, second and fourth ITS1-sub-groups and GTR I+G for the third ITS1-sub-group. Statistical support was estimated using 1,000 replicates and a rapid bootstrap heuristic [START_REF] Stamatakis | A fast bootstrapping algorithm for the RAxML web-servers[END_REF]. BI analyses were conducted using MrBayes v3.2.3 [START_REF] Huelsenbeck | MRBAYES: Bayesian inference of phylogeny[END_REF].

Two independent analyses were run using four chains each and 20 million generations.

Trees and parameters were sampled every 1,000 generations and the default parameters for temperature and branch swapping were used. The first 20% of sampled trees were discarded as "burn-in" to ensure stabilization. The remaining trees were used to compute a consensus topology and posterior probability values. The split frequency (variance among the four independent runs) was below 0.003, confirming that the posterior probability distribution was accurately sampled.

Automatic Barcode Gap Discovery (ABGD)

ABGD identifies a limit between the frequency distribution of intra-and interspecific pairwise genetic distances, even if they overlap, by using several a priori thresholds of genetic distances chosen by the user (Puillandre et al. 2012a). Then, it is recursively applied to previously obtained groups to get finer partitions until there is no further partitioning. ABGD was remotely run at http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html. We computed Kimura twoparameter (K2P) genetic distances among specimens using default settings.

General Mixed Yule Coalescent (GMYC)

GMYC identifies a threshold value for the shift in branching rate from coalescent lineage branching to interspecific diversification on an ultrametric tree and explicitly delimits "independently evolving" clusters (i.e. putative species) [START_REF] Pons | Sequence-based species delimitation for the DNA taxonomy of undescribed insects[END_REF], Monaghan et al. 2009). Before the analysis, duplicated haplotypes were removed from our data set using DnaSP v5.10.1 [START_REF] Librado | DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[END_REF]. Branch lengths were estimated under a relaxed log-normal clock using the Bayesian analysis implemented in BEAST v1.8.2 [START_REF] Drummond | Bayesian phylogenetics with BEAUti and the BEAST 1.7[END_REF]. A coalescent (constant size) prior was used and Markov Chains Monte Carlo (MCMC) were run for 20 million generations. Trees were sampled each 1,000 generations with a 10% burn-in. A visual inspection of MCMC progression using Tracer v1.6 was performed to corroborate stabilization. An ultrametric tree was constructed using TreeAnnotator v1.8.1 [START_REF] Rambaut | TreeAnnotator version 1.6.1[END_REF]. Both the single-threshold [START_REF] Pons | Sequence-based species delimitation for the DNA taxonomy of undescribed insects[END_REF]) and the multiple-threshold (Monaghan et al. 2009) versions of GMYC were fitted on the ultrametric tree using the SPLITS v1.0-19 package for R (https://r-forge.r-project.org/projects/splits/).

Network reconstructions

Haplotype networks were reconstructed for the eight Ectocarpus species for which more than 15 sequences were available for each marker under study. The haplotype networks were reconstructed using the median-joining algorithm implemented in NETWORK v6.13 [START_REF] Bandelt | Median-joining networks for inferring intraspecific phylogenies[END_REF].

Genetic diversity

Genetic diversity indices were calculated for the three species, E. siliculosus, E. crouaniorum and Ectocarpus 6, that were sampled most frequently (i.e. >45 individuals for which both the COI-5P and ITS1 markers were sequenced). The number of haplotypes (nH); the number of polymorphic sites (S); gene diversity (H) and nucleotide diversity (π, [START_REF] Nei | Mathematical model for studying genetic variation in terms of restriction endonucleases[END_REF]Li 1979) were computed using ARLEQUIN v3.5.1.3 (Excoffier and[START_REF] Excoffier | Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[END_REF].

AMOVA analysis

For the two most widely geographically distributed species (i.e. E. siliculosus and E. crouaniorum), a nested Analysis of Molecular Variance (AMOVA, [START_REF] Excoffier | Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data[END_REF]) was implemented using ARLEQUIN v3.5.1.3 [START_REF] Excoffier | Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[END_REF] to test for the partition of genetic variance within locations, among locations within regions and among regions. Based on the geographic clustering of the sampled localities, four regions were defined: United Kingdom, France, NW Iberian Peninsula and Chile.

Results

Ectocarpus putative species delineation based on COI-5P

The 729 COI-5P sequences (603 bp) from the Ectocarpus specimens included 90 unique haplotypes with 123 variable sites and a high level of haplotypic diversity (0.9093). The phylogenies inferred from these haplotypes using ML and BI (Figure 1a) gave comparable topologies and suggested the presence of 15 putative species within the group E. siliculosi. Eleven of these lineages were highly supported monophyletic groups (bootstrap values > 84 for ML and > 0.98 for BI, Figure 1a) while the remaining four were singletons. Genetic pairwise K2P distances ranged from 0 to 0.089 and the shape of the distribution was clearly bimodal with two conspicuous maxima at 0.0025 and 0.0550. ABGD located the barcode gap within the 0.011-0.037 distance range 13 (Figure S1a) and primary partitions using this threshold suggested the existence of 15 genetic groups (Figure 1a, Figure S1b). The likelihood of the GMYC model, for both the single-and the multiple-threshold models (LGMYCsingle = 720.08 and

LGMYCmultiple = 723.40), was significantly higher than the likelihood of the null model (L0 = 704.01). However, the partitions obtained were not identical for the different threshold limits; 16 groups were delimited with the single-threshold method (confidence limits, 15-18) and 22 groups were delimited with the multiple-threshold method (confidence limits, 18-26). The likelihood values of the single and multiple threshold analyses were not significantly different, suggesting that application of the more complex multiple-threshold analysis did not result in a significant improvement of the results. Thus, we selected the single threshold over the multiple threshold model to delimit putative species in our data set (Figure 1a, Figure S2).

The eleven monophyletic groups recovered by tree reconstructions were supported as putative species by the ABGD results while only ten out of these eleven clades were supported as putative species by the GMYC single threshold results. This discrepancy involved the split of two haplotypes (L211 and L206) from the rest of the E. siliculosus clade in the GMYC (Figure 1a, Figure S2). The four singletons observed in both phylogenetic reconstructions were defined as species by both ABGD and GMYC (Figure 1a, Figure S2). Integration of all species delimitation methods yielded 15 putative species in the siliculosi group. Two of them corresponded to E. siliculosus and E. crouaniorum, the rest were named using numbers 1 to 13 (Figure 1a).

Ectocarpus putative species consolidation using ITS1 sequences

As reported by [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF], the alignment of all the ITS1 sequences from the siliculosi group was not possible because of their high degree of divergence and the presence of numerous indels. Therefore, alignments were made for four sub-groups that were established based on sequence similarity: (1) Ectocarpus 1, 2, 4 and E. siliculosus (alignment length 885bp); (2) Ectocarpus 5, 6 and 7 (alignment length 447bp); (3) Ectocarpus 8, 9, 10 and 11 (alignment length 456bp); (4) Ectocarpus 12, 13 and E. crouaniorum (alignment length 686 bp). The ITS1 sequences of Ectocarpus 3 did not align well with any other putative species and were not included in these analyses. The topology of the unrooted ITS1 trees built for the alignment sub-groups were congruent with the putative species defined using the COI-5P sequences (Figure 1b). The ABGD analyses conducted within these four sub-groups of alignments were also remarkably congruent with the putative species defined using the COI-5P sequences (Figure 1b, Figure S3). The only discrepancy was the merging of Ectocarpus 12 and Ectocarpus 13 in the ABGD results (Figure 1b). Since both Ectocarpus 12 and Ectocarpus 13 were non-ambiguously defined as two separated putative species with the COI-5P and were retrieved as monophyletic groups in both tree reconstructions for ITS1, we decided to retain 15 consolidated species within the siliculosi group (Figure 1).

Cases of incongruences between markers

Even though results were largely concordant between markers and methods in delineating 15 consolidated species within the siliculosi group, incongruences between the nuclear and the mitochondrial markers were observed in several individuals collected in Chile (Table 2). In particular, a total of 20 individuals collected in Pan de Azúcar (site 26) and 9 individuals collected in Quintay (site 28), were identified as E. crouaniorum using the mitochondrial marker COI-5P but as Ectocarpus 12 using the nuclear marker ITS1. Moreover, one individual sampled in Quintay (site 28), which was identified as Ectocarpus 10 using the COI-5P mitochondrial marker, was identified as Ectocarpus 11 based on the nuclear ITS1 marker and one individual collected in Concepción (site 29), which was identified as Ectocarpus 9 using the COI-5P was also identified as Ectocarpus 11 based on the nuclear marker.

Geographic distribution of the 15 Ectocarpus species

We chose to display the delimitation of the geographic distribution of the 15 species using the results of the mitochondrial COI-5P marker alone. However, it should be noted that a few discrepancies existed between the mitochondrial and the nuclear markers used in this study (see previous paragraph). Distribution patterns varied greatly among the species (Figure 2). Concerning the 10 most commonly sampled species, one seemed to be restricted to a single biogeographic region (Ectocarpus 7, n=32, found only in the Peruvian Province); four species showed a distribution limited to one ocean (Ectocarpus 1, n=30, and Ectocarpus 6, n=48, both found in North and South Pacific; Ectocarpus 10, n=39, distributed only in the South Pacific and Ectocarpus 3, n=29, observed only in the North Atlantic); and five species were encountered in more than one ocean. Among these five species, Ectocarpus 12 (n=16) and Ectocarpus 13 (n=34) were distributed in both the South Pacific and the North Atlantic. In the case of Ectocarpus 8 (n=14), the species was present in both oceans but only one sample was found in the Atlantic. E. siliculosus and E. crouaniorum were the most common species in our data set. E. siliculosus (n=206) was distributed in the Mediterranean Sea, the Pacific and the North Atlantic Oceans, and E. crouaniorum (n=258) was distributed in the South Pacific and the North Atlantic Oceans.

Haplotype networks were created for the 8 species for which >15 sequences were available for both markers (Figure 3). A star-like network pattern, which is usually associated with a recent population expansion, was obtained for six of the eight species studied. For example, E. siliculosus and E. crouaniorum had a single, frequent and widespread haplotype together with several less frequent haplotypes generally restricted to oceanic regions (Northern Atlantic, Lusitanian region, Mediterranean Sea or Peruvian province, Figure 3); this topology was consistent for both COI-5P and ITS1. In contrast, a more reticulate and complex haplotype network was observed for both markers with Ectocarpus 6.

Genetic diversity of E. siliculosus, E. crouaniorum and Ectocarpus 6 Genetic diversity estimates (nH, H, π and S) were generally much lower for the mitochondrial marker than for the nuclear marker (Table S3, S4, S5 for E. siliculosus, E. crouaniorum and Ectocarpus 6, respectively). Regardless of the gene considered, no clear pattern of genetic diversity distribution could be detected within each of the three species (Table S3, S4, S5).

COI-5P data for E. siliculosus (Table S3) indicated that the highest number of haplotypes was on the NW Iberian Peninsula (nH=6, even though close values, i.e. nH=5, were also found for the United Kingdom, France and Chile) whereas the highest values of genetic diversity and nucleotide diversity were in Chile (H= 0.748 +/-0.028 and π =0.237 +/-0.164). ITS1 data gave similar results with the highest value of genetic diversity for the NW Iberian Peninsula (H= 0.862 +/-0.045), the highest nucleotide diversity for Chile (π =0.653 +/-0.364) and the highest number of polymorphic sites for France (S= 19) (Table S3). On the other hand, COI-5P data for E. crouaniorum (Table S4) indicated that the highest number of haplotypes as well as the highest values of nucleotide diversity and polymorphic sites were in France (nH=10, π =0.170 +/-0.130, S= 11, Table S4) while the highest values of genetic diversity were in France and in the NW Iberian Peninsula (H= 0.624 +/-0.092 and 0.679 +/-0.080 respectively). ITS1 data for this same species indicated, however, that the highest number of haplotypes was in the United Kingdom (nH=23) and Chile (nH=23) while all values of genetic diversity were close to one, whatever the region (Table S4). Within Ectocarpus 6, because of the distribution pattern of this species (Figure 3), estimations of genetic diversity were carried out only along the Chilean coast (Table S5). The population of Las Cruces (LAC, Table 1), the largest population of Ectocarpus 6 (n=28), showed the highest number of haplotypes, genetic diversity, and polymorphic sites for both markers: nH= 6, H= 0.791+/-0.048 and S= 8 for COI-5P, and nH= 19, H= 0.934 +/-0.0343 and S= 38 for ITS1 (Table S5).

AMOVA analysis of the cosmopolitan species E. siliculosus and E. crouaniorum

Results of the nested Analysis of Molecular Variance (AMOVA) for both markers are given in Tables 3 and4 for E. siliculosus and E. crouaniorum, respectively. These analyses suggested that the total genetic variance was mainly explained by variance within sites: 55, 81% and 65,18% in E. siliculosus, 59,07% and 77,39% in E. crouaniorum, for the COI-5P and the ITS1, respectively. The variances among regions (< 13% in E. siliculosus and < 11% in E. crouaniorum) and among sites within regions (< 32% in E. siliculosus and < 31% in E. crouaniorum), although significant, were lower than the variance within sites (Tables 3 and4).

Tide level distribution of E. siliculosus, E. crouaniorum and Ectocarpus 6

Ectocarpus species occurred from the upper subtidal up to intertidal pools (Figure 4).

Along the North Atlantic coast, different tide-level distributions were observed for the two most abundant Ectocarpus species (see Figure 4). E. crouaniorum occurred from the high intertidal to the high subtidal but was most abundant within higher intertidal pools (Figure 4). E. siliculosus, which also occurred from the high intertidal to the high subtidal, was most abundant in the lower tidal areas (Figure 4). The distribution of E. crouaniorum followed the same pattern in Chile as on the North Atlantic coast. For E. siliculosus, no clear pattern of distribution could be inferred in Chile since most samples were collected as drifting thalli that had been washed ashore. Ectocarpus 6 was found from medium intertidal to subtidal levels and was more abundant in the low intertidal (Figure 4).

Discussion

In this study, we have characterized the species diversity, geographic distribution, and phylogeographic patterns within the group siliculosi of the genus Ectocarpus. The results presented are based on the most extensive sampling of this group available to date. Using a mitochondrial and a nuclear marker, two complementary species delineation techniques and two tree reconstruction methods, we propose the recognition of 15 putative species within the siliculosi group. E. siliculosus and E. crouaniorum, the only two named species within the siliculosi group (Peters et al. 2010a, 2010b, 2015, Couceiro et al. 2015), were recovered as different species belonging to the most highly divergent clades in our study. We confirmed also that the genome-sequenced species (that we referred as Ectocarpus 7) is different from E. siliculosus, as recently suggested by [START_REF] Peters | Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)[END_REF]. Moreover, we found individuals showing incongruences between the nuclear and mitochondrial markers suggesting introgression, hybridization or incomplete lineage sorting between some of the newly delineated closely related species. Finally, our extensive sampling along the NEA and SEP coasts revealed that the 15 Ectocarpus species showed different patterns of distribution varying from rare to common cosmopolitan species. Haplotype network topologies for the commonest species showed different patterns of genetic structure suggesting different evolutionary histories.

High species diversity within the siliculosi group

Concordance across results obtained with different methods (monophyly in tree reconstruction, ABGD and GMYC) and the use of unlinked molecular markers (COI-5P and ITS1) are now widely acknowledged methods of supporting the delimitation of previously undescribed species (Carstens et al. 2013, Modica et al. 2014). Indeed, one could expect that unlinked selectively neutral genes will attain concordant genealogical histories when taxa have undergone species-level divergence (i.e., no gene flow for a sufficient amount of time), while reticulate genealogical patterns across those unlinked loci will be observed when genetic exchange exists between taxa [START_REF] Sites | Operational criteria for delimiting species[END_REF]. Our results showed an 80% concordance between methods, a result congruent with studies undertaken in hyper-diverse taxa such as insects [START_REF] Kekkonen | DNA barcode-based delineation of putative species: efficient start for taxonomic workflows[END_REF]. Previous studies have shown that GMYC can lead to an overestimation of group partitioning while ABGD is considered as a more conservative method to delimit species (Puillandre et al. 2012a, 2012b[START_REF] Kekkonen | DNA barcode-based delineation of putative species: efficient start for taxonomic workflows[END_REF], a result concordant with what was observed in the siliculosi group. Despite few discordances detected between our ABGD and GMYC analyses, all putative genetic groups formed highly divergent singletons or monophyletic groups for both markers. For the COI-5P marker, the barcode gap ranged from 0.011-0.037 K2P pairwise genetic distance, which 20 included the cut-off value (0.018) proposed empirically (by eye) by [START_REF] Peters | Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)[END_REF] for Ectocarpus and other genera of Ectocarpales.

The phylogenetic relationships among the 15 species revealed the occurrence of a monophyletic group composed of E. crouaniorum, Ectocarpus 12, Ectocarpus 13 and a paraphyletic assemblage composed of the remaining 12 other species within the siliculosi group. This branching pattern was retrieved in all previous phylogenetic studies despite a disagreement between the tree topologies depending on the marker used (ITS1 and rubisco spacer: [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF] Incomplete and/or uneven taxon sampling could produce different tree topologies.

Previous studies have reported that the inclusion of additional taxa in a phylogenetic analysis can increase (on average) the accuracy of the inferred topology [START_REF] Lecointre | Species sampling has a major impact on phylogenetic inference[END_REF][START_REF] Hillis | Is sparse taxon sampling a problem for phylogenetic inference?[END_REF][START_REF] Hedtke | Resolution of phylogenetic conflict in large data sets by increased taxon sampling[END_REF].

A problem generated by the various attempts at resolving the Ectocarpus phylogeny is the use of various species codes [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF], Peters et al. 2010a, 2010b).

In our work some clades previously described in the literature were retained as different species (clades 1a, 1c, 2a, 2b, 2c and 3;[START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF], Peters et al. 2010a, 2010b), while other clades were split into different species (1b and 4) [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF], Peters et al. 2010a, 2010b) (see Table S6 for the correspondence between previously distinguished "lineages" and the species code proposed in this study).

Our study detected high levels of cryptic species diversity in the siliculosi group, as suggested in previous studies [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF], Peters et al. 2010a, 2010b). However, it is highly probable that more species exist within this species complex. Indeed, within our data set, two species comprised more than 62% of the samples sequenced (E. siliculosus and E. crouaniorum) while 3 species (Ectocarpus 2, Ectocarpus 4 and Ectocarpus 5) were rare and were represented by less than 5 individuals. It will be necessary to carry out additional population sampling including a better representation of different biogeographic regions in order to better estimate species diversity and distribution of Ectocarpus in a worldwide context. The temperate waters of the southern Australia and the NW Pacific require particular scrutiny since the few sequenced samples from this region (N=12, 1.5% of the samples sequenced) included two species not encountered in other regions (Ectocarpus 2 and Ectocarpus 5).

The high number of cryptic species present in sympatry within the same locality, especially in Chile, raises the question of what evolutionary mechanisms could reduce interspecific competition and promote such patterns. Peters et al. (2010a), Couceiro et al. (2015) and [START_REF] Geoffroy | Molecular evidence for the coexistence of two sibling species in Pylaiella littoralis (Ectocarpales, Phaeophyceae) along the Brittany coast[END_REF] showed that tide level, substratum and season are important factors that have to be taken into account when studying filamentous Ectocarpales. They reported that different species could occupy different spatiotemporal ecological niches related to different tide levels and/or host specificity. For example, Peters et al. (2010a) and [START_REF] Couceiro | Evolution and maintenance of haploid-diploid life cycles in natural populations: the case of the marine brown alga Ectocarpus[END_REF] showed that E. crouaniorum was located higher on the shore than E. siliculosus in NW France. In our study, this difference in tide level distribution between E. crouaniorum and E. siliculosus was corroborated for additional sites in the North Atlantic. Moreover, among the Chilean coast, Ectocarpus 6 seemed more restricted to mid-intertidal pools. These first results provide a good opportunity to study the importance of ecological differentiation between the cryptic species of Ectocarpus.

Incongruence between markers

The huge variability in the level of genetic divergence between species revealed in this study will allow the correlation between reproductive incompatibility and degree of species divergence to be investigated in this genus. Cross-compatibility experiments have been carried out between laboratory strains of E. siliculosus and E. crouaniorum (Peters et al. 2010a), between E. siliculosus and Ectocarpus 7, between Ectocarpus 7 and Ectocarpus 1 [START_REF] Peters | Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics[END_REF], and between E. siliculosus and Ectocarpus 1 [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF]. Hybrid sporophytes from the four crosses were viable but incapable of meiosis. [START_REF] Müller | Sexual reproduction of Ectocarpus siliculosus (Ectocarpales, Phaebphyceae) in Japan[END_REF], in contrast, crossed an Ectocarpus from Japan, which is closely related to the genome-sequenced strain based on its ITS sequence but for which COI-5P sequences are so far unavailable, with E. siliculosus, and obtained meiosis-competent hybrid sporophytes. This cross definitively needs confirmation.

The situation in the field is less well studied. Peters et al. (2010aPeters et al. ( , 2010b) ) revealed the presence of field hybrids between E. siliculosus and E. crouaniorum in Chile and France but nothing is known about the proportion of hybrids in natural populations.

Inspection of tree topologies obtained for several loci from different compartments have been successfully applied to identify potential cases of introgression and ancient hybridization events in natural populations [START_REF] Peters | Nuclear loci and coalescent methods support ancient hybridization as cause of mitochondrial paraphyly between gadwall and falcated duck (Anas spp.)[END_REF]). In our data set, a low percentage of incongruence (6%) was observed between results obtained with the mitochondrial and the nuclear marker. The species involved were phylogenetically more closely related than the crosses mentioned in the last paragraph (Figure 1a,1b).

Incongruent individuals were found exclusively among Chilean samples collected at sites where the respective species were in contact. Taken together, our results suggest the existence of different levels of reproductive barriers within the E. siliculosi complex, leading to mtDNA introgression only between some species pairs. Incomplete reproductive isolation may have an important bearing on the evolutionary trajectories of species by decreasing divergence between species but also by allowing new favorable mutations and allelic combinations to transgress species boundaries [START_REF] Allendorf | The problems with hybrids: setting conservation guidelines[END_REF][START_REF] Mallet | Hybridization as an invasion of the genome[END_REF]. However, both incomplete lineage sorting and hybridization lead to similar gene tree incongruence signatures and distinguishing between those two processes has proven difficult [START_REF] Knowles | The burgeoning field of statistical phylogeography[END_REF]). Hybridization may be high between closely related species, unfortunately, incomplete lineage sorting is also likely to be at least partly responsible of the gene tree incongruences in species complexes of recent origin. New statistical frameworks, which allow testing for hybridization despite incomplete lineage sorting, have been developed recently (see Yu et al. 2011 and references therein). More extensive sampling, adapted genetic tools and analyses are needed to estimate the extent and importance of hybridization between the species of the siliculosi group in the field.

Species distribution

During our study we extensively sampled two coasts where strong biogeographic boundaries are recognized. Along the Chilean coast, two biogeographic boundaries have been described [START_REF] Camus | Biogeografía marina de Chile continental[END_REF]). The first is located at 30-33°S and separates the Peruvian Province from the Intermediate Area; the second is located at 42°S and separates the Intermediate area from the Magellanic Province. Along the European coast, the Celtic-Sea/Brittany area has been described as a biogeographical transition zone between the Northern European Sea and the Lusitanian Province while the front Almería-Oran separates the Mediterranean coasts from the Atlantic ones [START_REF] Spalding | Marine ecoregions of the world: a bioregionalization of coastal and shelf areas[END_REF]. Several phylogeographic studies have reported a concordance between genetic discontinuities and biogeographic boundaries, attributing this pattern to the existence of historical barriers caused by oceanographic or climatic features (for Chile see the reviews [START_REF] Haye | Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential[END_REF][START_REF] Guillemin | Phylogeography of seaweeds in the South East Pacific: complex evolutionary processes along a latitudinal gradient[END_REF]; for Europe see see the reviews [START_REF] Maggs | Evaluating signatures of glacial refugia for North Alantic benthic marine taxa[END_REF][START_REF] Neiva | Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae[END_REF]. Interestingly, the species for which the genome has been sequenced, Ectocarpus 7 (n=32), is apparently restricted to the Peruvian Province; Peters et al. (2010b) previously found similar results using a smaller sampling scheme. The Peruvian Province is characterized by continuous upwelling of cool water (16-20°C at the sea surface) and is also affected by recurrent El Niño events, causing several weeks of higher sea surface temperatures (more than 10°C of amplitude) as a result of the southward incursion of warm waters [START_REF] Peters | Temperature tolerance and latitudinal range of brown algae from temperate Pacific South America[END_REF]. The distribution range of Ectocarpus 7 may reflect an adaptation of individuals to this specific oceanographic environment. Apart for Ectocarpus 7, our results did not support the existence of extensive biogeographic or phylogeographic breaks for other Ectocarpus species. This lack of phylogeographic structure has been reported for species that have high dispersal capacities and/or for invasive species [START_REF] Cárdenas | A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas[END_REF][START_REF] Haye | Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential[END_REF][START_REF] Guillemin | Tracing the trans-Pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data[END_REF]). Short dispersal distances of spores, gametes or zygotes coupled with rare events of long distance colonization seem to be the rule for the Phaeophyceae [START_REF] Reed | The effects of variable settlement and early competition on patterns of kelp recruitment[END_REF][START_REF] Raimondi | Effects of selffertilization in the giant kelp, Macrocystis pyrifera[END_REF][START_REF] Neiva | Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L[END_REF][START_REF] Robuchon | Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany[END_REF]. However, Ectocarpus is described as an important contributor to biofouling and long-distance dispersal might be associated with human transport [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF]. Indeed, we detected two truly cosmopolitan species (E.

siliculosus and E. crouaniorum) showing a star-like haplotype network and shared haplotypes between continents, a pattern characteristic of a recent expansion that may be facilitated by human activities. Ectocarpus 1 and Ectocarpus 6 occur in both the northern and the southern Pacific Ocean. Despite the large distances separating the sampled populations of these two species, no genetic structure was detected in their haplotype networks, a pattern suggestive of recent dispersal events between the North and South Pacific coasts. Similarly, no phylogeographic structure was observed for three South Pacific species (Ectocarpus 9, Ectocarpus 10 and Ectocarpus 11) nor for one North Atlantic species (Ectocarpus 3). It has been suggested that recent colonization events can eliminate genetic structure linked to historical barriers [START_REF] Smith | The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis[END_REF][START_REF] Dibattista | Phylogeography of two closely related Indo-Pacific butterflyfishes reveals divergent evolutionary histories and discordant results from mtDNA and microsatellites[END_REF], thus the introductions of Ectocarpus species through shipping activities could explain the lack of phylogeographic structure in our study. [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF] have indeed reported that strains belonging to E. siliculosus sensu stricto (referred as lineage 1a) sampled from different continents show a maximum of 5 substitutions for the ITS marker; these authors suggest that recent dispersal events could have shaped the genetic diversity in this species. Both natural dispersal after the Pleistocene and transport via shipping have been proposed for this species [START_REF] Stache-Crain | Molecular systematics of Ectocarpus and Kuckuckia (Ectocarpales, Phaeophyceae) inferred from phylogenetic analyses of nuclear and plastid-encoded DNA sequences[END_REF]). In our study, the distribution of Ectocarpus 8 seems related to dispersal associated with human transport. This species was present in the South Pacific and a single sample was found in the North Atlantic. This sample corresponds to an individual collected in the Kingsbridge Estuary (Devon, England). This could suggest a recent arrival of this species in the English Channel in ballast water or attached to a ship hull. Even if the dispersal capacity of Ectocarpus might be favored by shipping, when the number of samples was sufficient to perform within-species genetic differentiation analyses, we always found a slight but significant hierarchical pattern of genetic differentiation (i.e. see Table 3 and4; results of the nested AMOVA).

Consequently, the pattern of genetic differentiation may be more complex than what we found in this study and sampling effort needs to be improved for all species in order to get a comprehensive idea of species distribution, species phylogeography and population connectivity.

Conclusion

Using DNA sequence data and species delimitation methods we have observed the presence of at least fifteen species within the Ectocarpus siliculosi group. Species showed different patterns of distribution and suggested different evolutionary histories.

Further scrutiny of individuals cultivated in controlled laboratory conditions may reveal consistent morphological differences between species. However, future research on speciation in these filamentous brown algae will have to take into account that in the field, it is impossible to distinguish between species within the E. siliculosi group. This contrasts clearly with the significant morphological differences observed between recently diverging species in other Phaeophyceae, such as Fucus [START_REF] Coyer | Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic[END_REF][START_REF] Cánovas | Driving south: a multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation[END_REF]). In any case, the complex pattern of phylogenetic relationships among the 15 species revealed in this study, opens a very interesting field of research deciphering the process of evolution and diversification in this group using the tools available from the model organism for genomics and genetics of the brown macroalgae. Table 1. Sites and samples sequenced in the present study. The number of site, the continent, country, name of site, code, year of sampling and 993 the number of sequences for both markers (COI-5P and ITS1) are indicated. 994 according to the mitochondrial marker COI-5P. Sites are numbered as in Table 1. 

N°

  ; ITS1, ITS2, Rubisco spacer region, cox3 and rps14-atp8: Peters et al. 2010a; ITS1, ITS2, Rubisco spacer and cox3: Peters et al. 2010b, COI-5P: Peters et al. 2015; COI-5P and ITS1: this study).
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Table 2 .

 2 Association between mitochondria (COI-5P) and nrDNA (ITS1) sequences in the Ectocarpus specimens in which both markers were sequenced. Individuals showing incongruence among markers are indicated in bold. Esil = E. siliculosus, Ecro = E. crouaniorum, Ec 1 -12 = Ec 2 Ec 3 Ec 4 Ec 5 Ec 6 Ec 7 Ec 8 Ec 9 Ec 10 Ec 11 Ec 12 Ec 13

	of site	Continent	Country	Site	CODE	YEAR	COI-5P ITS1
	1	Europe	UK	Wick	WIC	2008	10	10
	2	Europe	UK	Rattray Head	RAT	2008	1	0
	3	Europe	UK	Dunstaffnage	DUN	2008	7	8
	4	Europe	UK	Berwick	BER	2008	12	12
	5	Europe	UK	Mull of Galloway	MUL	2008	14	14
	6	Europe	UK	Pett level	PET	2008	11	13
	7	Europe	UK	Gosport Marina	GOS	2008	1	3
	8	Europe	UK	Plymouth	PLY	2010-2011	38	37
	9	Europe	UK	Restronguet	RES	2010	13	12
	10	Europe	France	Cherbourg	CHE	2006	2	0
	11	Europe	France	Roscoff	ROS	2010-2012	48	31
	12	Europe	France	Saint Malo	STM	2010	23	0
	13	Europe	France	Traezh Hir	THZ	2010	28	24
	14	Europe	France	Concarneau	CON	2010	1	0
	15	Europe	France	Quiberon	QUI	2010-2012	30	27
	16	Europe	Spain	Ribadeo	RIB	2013	27	25
	17	Europe	Spain	Coruña	COR	2013	26	19
	18	Europe	Spain	Ría de Arousa	RIA	2013	8	8
	19	Europe	Portugal	Viana	VIA	2013	11	8
	20	Europe	Italy	Naples	NAP	2012	42	27

Table 3 .

 3 Analysis of molecular variance (AMOVA) of E. siliculosus for each molecular marker (COI-5P and ITS1). Regions, not including the 999 Mediterranean for which only a single site was sampled, as in Supplementary Table3. d.f.: degree of freedom. SS: sum of squares. 1000

	Source of variation	d.f.	SS	Variance components % Variation p-value
	COI-5P					
	Among regions	3	18.982	0.07307	12.54	<0.0001
	Among sites within regions	10	22.304	0.18446	31.65	<0.0001
	Within site	154	50.095	0.32529	55.81	0.0351
		TOTAL 167	91.381	0.58283		
	ITS1					
	Among regions	3	51.486	0.15194	7.14	<0.0001
	Among sites within regions	10	74.673	0.58877	27.68	<0.0001
	Within site	154 213.502	1.38638	65.18	0.1476
		TOTAL 167 339.661	2.12709		

Table 4 .

 4 Analysis of molecular variance (AMOVA) of E. crouaniorum for each molecular marker (COI-5P and ITS1). Regions as in 1001 Supplementary Table4. d.f.: degree of freedom. SS: sum of squares. 1002

	Source of variation	d.f.	SS	Variance components % Variation p-value
	COI-5P					
	Among regions	3	11.404	0.05270	10.74	<0.0001
	Among sites within regions	12	19.118	0.14818	30.19	<0.0001
	Within site	134	38.851	0.28993	59.07	0.0088
		TOTAL 149	69.373	0.49082		
	ITS1					
	Among regions	3	37.469	0.08576	2.67	<0.0001
	Among sites within regions	12	97.254	0.63927	19.93	<0.0001
	Within site	134 332.610	2.48217	77.39	0.37634
		TOTAL 149	69.373	0.49082		

Table S1 .

 S1 COI-5P sequences used in the present study. Details of the date, geographic origin, Genbank accession number and reference 1

		WIC08-04 EcQAB10-02 EcPLY10-23 BLZ11-51 L213 EcNAP12-120 EcNAP12-s3-50 EcPAN-174 EcBIN-294 EcBIN-09 EcCIS-073 EcQUI-509 EcLAC-403 EcLAC-415 EcCOL-559 EcCNA-659 EcEST-795	United Kingdom United Kingdom 2010 United Kingdom 2011 France France Italy 2012 Italy Spain Chile 2013 Chile 2013 Chile 2013 Chile Chile 2013 Chile 2013 Chile Chile 2013 Chile	Wick Plymouth Plymouth Roscoff Saint Malo Naples Naples Pan de Azúcar Bahía Inglesa, Caldera Bahía Inglesa, Caldera Caleta Cisne, Caldera Quintay Las Cruces Las Cruces Cocholgüe, Tomé Curiñanco, Valdivia Estaquilla	KT983134 KT982765 KT983095 KT982831 KT983396 KT982812 KU134153 KT982873 KT982889 KU134021 KT987931 KT982988 KT982973 KT987952 KT987969 KT983023 KT983038	This paper This paper This paper This paper This paper This paper This paper This paper This paper This paper This paper This paper This paper This paper This paper This paper This paper
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Table S3 .

 S3 Mitochondrial (COI-5P) and nuclear (ITS1) DNA sequence variation in E. siliculosus. Molecular diversity indices were 1 calculated for the two molecular markers (COI-5P and ITS1). N= number of sequences; nH= number of haplotypes; H= gene diversity; 2

	3	π= nucleotide diversity; S= number of polymorphic sites. Standard deviations (SD) in parentheses.	
						COI-5P			ITS1
		Region	Site	Code N nH	H (SD)	π (SD) (.10 -2 ) S	N nH	H (SD)	π (SD) (.10 -2 ) S
		United	Dunstaffnage	DUN 4	2	0.500 (0.265) 0.166 (0.164) 2	4	3	0.833 (0.222) 0.343 (0.279) 4
		Kingdom	Pett level	PET 10 3	0.378 (0.181) 0.066 (0.076) 2	10 4	0.778 (0.091) 0.450 (0.288) 7
			Plymouth	PLY 23 2	0.403 (0.091) 0.067 (0.072) 1	23 6	0.739 (0.064) 0.344 (0.217) 8
			Restronguet	RES 12 3	0.591 (0.108) 0.116 (0.106) 2	12 6	0.849 (0.074) 0.333 (0.221) 9
			Total UK	49 5	0.501 (0.060) 0.102 (0.091) 5	49 12 0.850 (0.029) 0.468 (0.273) 13
		France	Roscoff	ROS 16 2	0.125 (0.106) 0.021 (0.038) 1	16 10 0.892 (0.063) 0.445 (0.274) 13
			Traezh Hir	THZ 15 4	0.619 (0.120) 0.221 (0.163) 4	15 4	0.619 (0.120) 0.438 (0.271) 11
			Quiberon	QUI 14 2	0.363 (0.130) 0.060 (0.069) 1	14 4	0.648 (0.116) 0.344 (0.224) 6
			Total France	45 5	0.		

549 (0.065) 0.123 (0.103) 5 45 16 0.848 (0.040) 0.534 (0.305) 19

  TableS4. Mitochondrial (COI-5P) and nuclear (ITS1) DNA sequence variation in E. crouaniorum. Molecular diversity indices were 1 calculated for the two molecular markers (COI-5P and ITS1). N= number of sequences; nH= number of haplotypes; H= gene diversity; 2 π= nucleotide diversity; S= number of polymorphic sites. Standard deviations (SD) in parentheses. 3

						COI-5P					ITS1
	Region	Site	Code N nH	H (SD)	π (SD) (.10 -2 ) S	N nH		H (SD)	π (SD) (.10 -2 ) S
	United	Wick	WIC	8	1	0	0	0	8	7	0.964 (0.077) 0.846 (0.507) 19
	Kingdom Berwick	BER 11	2	0.436 (0.133) 0.072 (0.079) 1	11 5	0.855 (0.066) 0.234 (0.162)	5
		Mull of Galloway MUL 12	3	0.318 (0.164) 0.055 (0.067) 2	12 9	0.939 (0.058) 0.626 (0.367) 20
		Plymouth	PLY 11	3	0.618 (0.104) 0.302 (0.212) 4	11 7	0.891 (0.074) 0.946 (0.538) 20
		Total UK	42	6	0.474 (0.087) 0.164 (0.126) 6	42 23 0.938 (0.024) 0.728 (0.393) 36
	France	Roscoff	ROS 15	5	0.562 (0.143) 0.190 (0.145) 6	15 12 0.962 (0.040) 0.663 (0.379) 28
		Traezh Hir	THZ	9	3	0.556 (0.165) 0.101 (0.100) 2	9	7	0.917 (0.092) 0.493 (0.308) 16
		Quiberon	QUI 12	6	0.758 (0.122) 0.183 (0.145) 5	12 6	0.849 (0.074) 0.269 (0.176)	8
		Total France	36 10 0					
	NW Iberia	Ribadeo	RIB 13 3	0.615 (0.078) 0.140 (0.119) 3	13 4	0.692 (0.115) 0.314 (0.209) 7
		Coruña	COR 13 3	0.295 (0.156) 0.051 (0.063) 2	13 8	0.808 (0.113) 0.321 (0.213) 12
		Viana	VIA	4	2	0.500 (0.265) 0.166 (0.164) 2	4		4	1.000 (0.177) 0.293 (0.246) 4
		Total Iberia	30 6	0.529 (0.095) 0.121 (0.103) 7	30 13 0.862 (0.045) 0.338 (0.211) 18
	Mediterranean Naples	NAP	9	2	0.389 (0.164) 0.065 (0.075) 1	9		2	0.389 (0.164) 0.057 (0.066) 1
	Chile	Pan de Azúcar	PAN 10 2	0.356 (0.159) 0.118 (0.109) 2	10 2	0.200 (0.154) 0.029 (0.045) 1
		Caldera	CAL 29 5	0.665 (0.067) 0.169 (0.130) 5	29 10 0.796 (0.062) 0.647 (0.366) 16
		Concepción	CON	1	1	0	0	0	1		1	0	0
		Achao	ACH	4	1	0	0	0	4		4	1.00 (0.177)	0.606 (0.453) 7

.624 (0.092) 0.170 (0.130) 11 36 22 0.916 (0.037) 0.523 (0.295) 38

  

	NW	Ribadeo		8	1	0	0	0	8	5	0.893 (0.086) 0.694 (0.423) 14
	Iberia	Coruña	RIB	5	3	0.800 (0.164) 0.166 (0.154) 2	5	5	1.000 (0.127) 0.753 (0.504) 15
		Ría de Arousa	COR	5	2	0.600 (0.175) 0.100 (0.109) 1	5	4	0.900 (0.161) 0.243 (0.191)	4
		Viana	VIA	2	2	1.000 (0.500) 0.332 (0.406) 2	2	2	1.000 (0.500) 1.453 (1.512) 12
		Total Iberia		20	5	0.679 (0.080) 0.148 (0.121) 4	20 14 0.963 (0.026) 0.711 (0.396) 40
	Chile	Las Cruces	LAC	6	3	0.600 (0.215) 0.111 (0.112) 2	6	4	0.800 (0.172) 0.543 (0.359) 11
		Concepción	CON	7	2	0.571 (0.120) 0.095 (0.099) 1	7	5	0.905 (0.103) 0.984 (0.596) 16
		Valdivia	VAL 11	2	0.327 (0.153) 0.054 (0.066) 1	11 6	0.800 (0.114) 0.466 (0.286) 18
		Estaquilla	EST 24	1	0	0	0	24 8	0.808 (0.053) 0.668 (0.371) 14
		Achao	ACH	4	1	0	0	0	4	4	1.000 (0.177) 0.364 (0.285)	5
		Total Chile		52	3	0.429 (0.059) 0.073 (0.073) 2	52 23 0.928 (0.019) 0.836 (0.

444) 31 TOTAL 150 18 0.583 (0.046) 0.154 (0.118) 18 150 68 0.953 (0.010) 0.759 (0.401) 80Table S5 .

 S5 Mitochondrial (COI-5P) and nuclear (ITS1) DNA sequence variation in Ectocarpus 6. Molecular diversity indices were calculated for the two molecular markers (COI-5P and ITS1). N= number of sequences; nH= number of haplotypes; H= gene diversity; π= nucleotide diversity; S= number of polymorphic sites. Standard deviations (SD) in parentheses.

				COI-5P					ITS1		
	Site	Code N nH	H (SD)	π (SD) (.10 -2 )	S	N	nH	H (SD)	π (SD) (.10 -2 )	S
	Pisagua	PIS	1 1	0	0	0	1	1			0
	Caldera	CAL	2 2	1.000 (0.500)	0.829 (0.908)	5	2	2	1.000 (0.500)	0.267 (0.377)	1
	Quintay	QUI	9 4	0.750 (0.112)	0.525 (0.340)	7	9	5	0.806 (0.120)	0.781 (0.511)	11
	Las Cruces	LAC 29 6	0.791 (0.048)	0.440 (0.269)	8	29	19	0.934 (0.034)	1.953 (1.046)	38
	Concepción	CON	2 1	0	0	0	2	2	1.000 (0.500)	0.533 (0.653)	2
	Valdivia	VAL	3 3	1.000 (0.272)	0.663 (0.564)	6	3	2	0.667 (0.314)	2.667 (2.104)	15
	TOTAL		46 8	0.822 (0.022)	0.511 (0.300) 10	46	25	0.897 (0.037)	1.615 (0.868)	45

Table S6 .

 S6 Species nomenclature used in literature for the species of the Ectocarpus siliculosi group. 1

Montecinos et al. Stache-Crain et al. 1997 Peters et al. 2010a Peters et al. 2010b Peters et al. 2015

  

	E. siliculosus	1a	E. siliculosus	GT6-1a	E. siliculosus
	E. crouaniorum	2c	E. crouaniorum	GT8-2c	E. crouaniorum
	Ectocarpus 1	4	E. siliculosus (?)	4	4
	Ectocarpus 2	4	---	---	4
	Ectocarpus 3	3	---	---	3
	Ectocarpus 4	---	---	---	---
	Ectocarpus 5	---	---	---	1d
	Ectocarpus 6	---	---	GT1	1c
	Ectocarpus 7	1c	E. siliculosus	GT4-1c	1c
	Ectocarpus 8	1b	---	---	---
	Ectocarpus 9	1b	---	---	---
	Ectocarpus 10	1b	---	GT2-1b	1b
	Ectocarpus 11	---	---	GT3	1b
	Ectocarpus 12	2b	---	GT8-2b	2b
	Ectocarpus 13	2a	---	---	2a
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