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ABSTRACT

Direct Numerical Simulation �DNS� and inviscid linear
analysis �LIA� are used to study the interaction of a nor�
mal Mach ��� shock wave and isotropic turbulence� The
in�uence of the nature of the incoming turbulence on the
interaction is emphasized� The presence of upstream en�
tropy �uctuations enhance the ampli	cation of the turbu�
lent kinetic energy and transverse vorticity variance across
the shock compared to the solenoidal �pure vorticity� case�
More reduction of the transverse Taylor microscale is also
observed in the vorticity�entropy case while no in�uence
can be seen on the longitudinal microscale� When acous�
tic and vortical �uctuations are associated upstream
 less
ampli	cation of the kinetic energy
 less reduction of the
transverse microscale and more ampli	cation of the trans�
verse vorticity variance are observed through the disconti�
nuity� Most of these e�ects have been reported previously
by di�erent authors using di�erent numerical codes� In our
case
 all calculations are conducted with the same numer�
ical tool and similar �ow parameters
 so that the observed
in�uence of upstream turbulence cannot be attributed to
di�erences in the numerics� All the DNS results are in
good qualitative agreement with LIA�

INTRODUCTION

The interaction of turbulent boundary layers or tur�
bulent supersonic jets with a shock wave is certainly
one of the most important topic for transonic and su�
personic aeronautics� However� the complex nature of
these �ows prevents to achieve a detailed understanding
of the basic mechanisms involved in shock�turbulence
interaction since additional phenomena such as �ow
separation or wall proximity e�ects are usually present�
A more basic approach of the problem that allows to

isolate the physics of the process is to consider the inter�
action between isotropic turbulence and a normal shock
wave�
Numerous studies have been conducted in this �eld�

The �rst ones were theoretical works that relied on lin�
ear analysis and Kovasznay�s modal decomposition of
turbulence 	Kovasznay� 
���� They developed the so�
called Linear Interaction Analysis 	LIA� 	Ribner� 
��
� Moore� 
��� which was recently revisited and com�
pleted by Lee et al� 	
��� and Mahesh et al� 	
����

����� Experimental research has also been conducted
using shock tubes and wind tunnels 	see e�g� Barre et
al�� 
��� for a review�� Since the early 
����s� numer�
ical simulations of shock�turbulence interaction began
to emerge 	Rotman� 
��
 � Lee et al�� 
��� 
��� � Han�
nappel and Friedrich� 
��� � Mahesh et al�� 
����� All
the works cited above agree in predicting the evolu�
tions of some characteristics of turbulence across the
shock wave such as the ampli�cation of the turbulent
kinetic energy and vorticity variances� Many aspects of
the problem are now quite well understood even if con�
tradictions still exist concerning other features of the
�ow like for instance the behaviour of turbulent length
scales across the discontinuity� Moreover� most of these
works investigated the interaction between shock waves
and solenoidal turbulence� except in the latest studies�
Mahesh et al� 	
���� 
���� used both DNS and LIA to
show that upstream entropy �uctuations may strongly
modify the behaviour of a turbulent �ow across the
shock� Similarly� Hannappel and Friedrich 	
���� re�
ported that compressible upstream turbulence behaves
di�erently during the interaction than incompressible
turbulence�
The purpose of this work is to address this question

by comparing the evolution across a same shock wave of



three di�erent turbulent �ows generated using Kovasz�
nay�s modal decomposition of turbulence� The simula�
tions were conducted with the same numerical tool and
the same �ow parameters in order to be sure that the
di�erences between the three cases are only due to the
nature of the upstream turbulence� We also reproduced
the latest developments of LIA for the three modes of
turbulence 	Jamme� 
���� in order to compare with our
DNS results� In the following sections� the numerical
procedure is �rst presented before giving the main re�
sults of the simulations�

THE NUMERICAL APPROACH

Description of the method

We developed a numerical tool allowing the resolu�
tion of the D time�dependent Navier�Stokes equations
without any modelling� The non�dimensional equations
of mass� momentum and energy are considered along
with the equation of state for a perfect gas� A constant
volume speci�c heat ratio of � � 
�� is assumed and
Sutherland�s law is used to relate viscosity to temper�
ature� The equations are written in conservative form
and the numerical scheme is a �nite volume version
of the explicit predictor�corrector MacCormack scheme
which is second order accurate in space and time 	Mac�
Cormack� 
�����
All the simulations presented in this paper were con�

ducted on the IBM RISC System����� SP� of the lab�
oratory� We used a parallel version of the code based
on a domain decomposition approach�

Test cases

In order to assess the ability of the code to resolve
our problem� we considered various test cases before
the main con�guration� In a �rst step� we evaluated
the behaviour of our numerical tool regarding the two
components of the interaction considered separately�
First� we tested the ability of the code to resolve lami�
nar weak shock waves� then we concentrated on tempo�
ral and spatial simulations of decaying isotropic turbu�
lence� We won�t give any details on the above test cases
and we only mention that they demonstrated a good be�
haviour of the MacCormack scheme provided the shock
Mach number M� and the turbulent Reynolds number
Re� of the upstream �ow are su�ciently low for a given
dicretization grid�
A more interesting situation is to consider the two�

dimensional interaction between a shock and a plane
vorticity�entropy wave since it allows a direct compari�
son with LIA results� This is what is described below�

We present numerical results of the interaction of a
sinusoidal vorticity�entropy wave with a Mach 
�� shock
wave� The parameters of the computations are identical
to those used in the DNS presented in the next sections
	Rer � 
��� Mr � ��
� Pr � ����� The computational
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Figure �� Ampli	cation of vorticity ���

�

����

�

�� across the
shock as a function of the angle of incidence � M� �

��� Comparison DNS�LIA  � � LIA �Ae � �� Av �
������ ��� DNS �Ae � �� Av � ������ �� � �� LIA
�Ae � Av � ������ ��� DNS �Ae � Av � ������

domain has dimensions of �� in both directions� A non�
uniform grid that clusters points near the discontinuity
is used in the streamwise direction x�� In the present
case� about 
� mesh points are located inside the shock
wave� A uniform mesh of � points is used in the trans�
verse direction x�� The �ow is initialized by a steady
normal shock wave 	obtained with a preliminary cal�
culation� over which the �uctuating vorticity�entropy
wave is superposed at t � � ��������

u�

� � U�Av sin �� cos	kxx� kyy�
v�� � �U�Av cos�� cos	kxx� kyy�
��� � �

�
Ae cos	kxx� kyy�

p�� � �

	
�

where the subscript �
� refers to upstream values and
the overbars denote mean quantities� The wavenumbers
kx and ky are given by �

kx � k cos�� ky � k sin �� 	��

where k is the magnitude of the wavenumber vector and
�� denotes the angle between the wavenumber vector
and x�� The variables Av and Ae correspond to the
intensity of velocity and density upstream of the shock
wave� They were both equal to ������ Periodic bound�
ary conditions are speci�ed in the transverse direction
whereas approximately non�re�ecting boundary condi�
tions 	Thompson� 
���� 
���� are used at the out�ow
boundary in the streamwise direction� At the in�ow
boundary 	x� � ��� we superpose to the mean �ow val�

ues 	u� � U�� u� � �� p �



�M�
r

� � � 
� an unsteady

wave that takes the following form ��������
u�

� � U�Av sin �� cos	kyy � U�kxt�
v�� � �U�Av cos�� cos	kyy � U�kxt�
��� � �

�
Ae cos	kyy� U�kxt�

p�� � �

	�

Several incidence angles 	��� were considered inside
the interval �������� For each case� the wavenumber k



was choosen so that we have one wavelength in the x�
direction �

ky � k sin �� � 
 kx � 
� tan�� 	��

The statistics of the �ow were gathered after one �ow�
through time in order to let the initial transient exit
the domain and covered one period of the incident dis�
turbance�
The behaviour of the code during the interaction is

evaluated by comparing the values obtained for the am�

pli�cation of vorticity �uctuations 	��

�

����

�

�� to the lin�
ear analysis predictions� The results are plotted in �g�
ure 
 for the two cases we considered � the �rst one cor�
responds to a solenoidal incident wave 	Ae � �� Av �
����� and the second one concerns a vorticity�entropy
wave 	Ae � Av � ������ Excellent agreement between
computation and analysis is seen away from the criti�
cal angle �c � �
��o � the di�erence between the two
approaches never exceeds ��� When �� goes to �c�
Mahesh et al� 	
���� showed that LIA may be ques�
tionable � the deviation around the critical angle is thus
a limitation of the linear analysis� not of the computa�
tion�
All the tests we conducted lead us to conclude that

reliable DNS of shock�turbulence interaction was possi�
ble using our numerical tool� even if there are obvious
limitations in terms of resolution and Mach numbers
using this kind of code�

Main computations

Flow con�guration� The shock�turbulence interac�
tion problems presented hereafter are studied in the
cubic domain of 	���� sketched in �gure �� Periodic
boundary conditions are speci�ed in the two transverse
directions of the �ow 	x� and x��� but not in the direc�
tion normal to the shock which is not homogeneous� In
this direction� statistically steady turbulent data are
prescribed as in�ow conditions and all variables are
speci�ed since the �ow is supersonic� These turbu�
lent conditions come from several developed �elds ob�
tained with the preliminary simulations 	see next sec�
tion�� They are added to the mean advection variables

of the �ow 	u� � U�� u� � u� � �� p �



�M�
r

� � � 
�

in the in�ow plane and updated at each time step�
The out�ow is subsonic and the �rst�order characteris�
tic boundary conditions of Thompson 	
���� 
���� are
used� These conditions give the out�ow plane a non�
re�ective character which is not physically correct but
allows to minimize the in�uence of an unknown outside
in the computational approximation�
At the initial time of the calculation� a laminar plane

shock wave at Mach 
�� is created using the Rankine�
Hugoniot relations� It is maintained in the middle of
the computational box so that the mean �ow is steady
	its mean position remains �xed and the computational
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Figure �� Sketch of the computational domain�

domain moves at the shock speed�� In order to save
time in the setting�up of the shock� a pre�calculation is
conducted for the shock alone� until its initial pro�le be�
comes a stable solution of the Navier�Stokes equations�
In order to allow the resolution of the shock without
oscillations� we use a stetched grid in the streamwise
direction with clustered points near the discontinuity�
A regular grid is used in the transverse directions�

In�ow conditions� The turbulent data we super�
pose to the mean �ow at the entrance of the com�
putational domain come from several developed tur�
bulent �elds created independently� These �elds are
obtained with preliminary simulations of temporally
decaying isotropic turbulence� Three types of turbu�
lences were considered� The �rst one is solenoidal� the
second one contains vorticity and entropy �uctuations

	which satisfy Morkovin�s hypothesis �
�rms

�
�

Trms

T
�

	� � 
�M�

�

u�rms

U�

�� and the third one contains vorticity

and pressure �uctuations� The procedure we used to
obtain these data in the two last cases is similar to that
of Mahesh et al� 	
���� or Hannappel and Friedrich
	
�����

RESULTS AND DISCUSSION

Parameters of the simulations

We present in this section some results obtained with
the following non�dimensional parameters � Rer �
��ru

�

rL
�

r

	�

r

� 
��� Mr �
u�

r

c�r
� ��
 and Pr � ���� where

f�

r refers to a dimensional reference variable� The tur�
bulence characteristics in the in�ow plane of the numer�

ical box are the following � Re� � Rer

u�rms

�
� ����

Mt �
q

c
�

q
u�

iu
�

i

c
� ��
�� u� � 
 and k� � � 	where

u� � u�rms � u�rms � u�rms and k� refers to the



I
��sol I
��ent I
��ac

Re� � Rer
u�rms


�
��� ��� �

Mt �

p
q�

c
��
� ��
� ��
�

q��� 
�� 
�� 
��

S �
�X

���

	u�

�����

	u�

�����
���

����� ���� �����

u�rms�U� ����� ����� �����

prms�p ����
 ����� ��
��

�rms�� ���
� ����� ��
�

Trms�T ����� ����� �����

	� � 
�M�

�u�rms�U� ���� ���� ����

u�

�
T ��u�rmsTrms ����� ����
 �����

Table �� Turbulence features in the in�ow plane�

most energetic wavenumber of the turbulent �ow�� The
shock Mach number is M� � 
��� and the grid entails
�
��
��� points� Three di�erent simulations were con�
ducted with the above parameters� The only di�er�
ence between them lies in the nature of the upstream
turbulent �ow� The following convention is adopted
hereafter � I
��sol refers to the solenoidal case� I
��ent
to the vorticity�entropy case and I
��ac to the vortic�
ity�pressure case� Table 
 summarizes the features of
the three di�erent incident �ows in the in�ow plane�
Statistics of the �ow are gathered when a statistically

steady state is established in the computational domain
	typically after one �ow�through time� so that averag�
ing may be performed in time� The ensemble Reynolds
average is then approximated by taking spatial aver�
ages in the two homogeneous directions and additional
time averages performed over �� �elds saved during the
simulation� The ensemble average of a variable f and
its deviation from the mean will be respectively noted
f and f �� We also introduce the Favre�s mass�weighted

average �f �
�f

�
� with � f � �f � f ���

Details of the comparisons

Turbulent velocity �uctuations� We present in �g�
ures 	a� and 	b� the spatial evolutions of the nor�

mal Reynolds stresses gu��

�

� and gu��

�

� in the three simu�

lations� The non�monotonic behaviour of gu��

�

� immedi�
ately behind the shock is a known feature of isotropic
turbulence�shock wave interaction 	see Lee et al�� 
��
� Hannappel and Friedrich� 
��� � Mahesh et al� 
���
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Figure �� Spatial evolutions of gu��
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� �a� and gu��
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� �b� nor�
malized by their value immediately upstream of the shock
� DNS� � � I���sol
 �� � �� I���ent
 �� � � � �� I���ac�
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Figure �� Spatial evolutions of gu��

�

� �a� and gu��

�

� �b� nor�
malized by their value upstream of the shock � LIA� � �
pure vorticity case
 ����� vorticity�entropy case
 �� � � � ��
pure acoustic case�
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Figure �� Spatial evolutions of ��

�

� �a� and ��

�

� �b� nor�
malized by their value immediately upstream of the shock�
� � I���sol
 �� � �� I���ent
 �� � � � �� I���ac�

� Jamme� 
����� Investigation of the budgets for
these quantities 	not shown here� indicates that the

pressure�work term

�
� u��

i

�p�

�xi

�
is responsible for this

behaviour�
We can notice a clear in�uence of the nature of the

incident �ow on the interaction� The presence of up�
stream entropy �uctuations satisfying Morkovin�s hy�
pothesis increases the level reached by the Reynolds
stresses far behind the shock wave 	mainly for the
streamwise component�� On the other hand� the pres�
ence of non�negligible pressure �uctuations in the in�
coming turbulence seems to slightly reduce the far �eld

level of gu��

�

� and gu��

�

�� These observations are in good
qualitative agreement with LIA 	see �gure ��� but a
quantitative comparison between DNS and LIA is much
more di�cult since the conditions are not exactly the
same in both approaches � when entropy �uctuations
are present� Morkovin�s hypothesis holds exactly in the
analysis whereas it is approximatly satis�ed in DNS� On
the other hand� the I
��ac simulation corresponds to an
incident �ow containing pressure and vorticity �uctu�
ations whereas the corresponding case in the analysis
deals with a pure acoustic turbulent �ow upstream of
the shock� Moreover� LIA refers to an inviscid approach
of the problem� In the simulations� the very low tur�
bulent Reynolds number 	Re� � ���� is responsible for
non�negligible viscous e�ects�
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Figure �� Comparison of the baroclinic torque calculated

in the budgets of ��

�

�� � � I���sol
 �� � �� I���ent

�� � � � �� I���ac�

Vorticity variances� The same kind of comparisons
for the vorticity variances are made in this section�
No major di�erence between the three cases appears

for the streamwise component ��

�

�� whereas the am�

pli�cation of ��

�

� is seen to increase by 
��� in the
case I
��ent compared to I
��sol 	see �gure ��� This
is once again in good qualitative agreement with LIA

which predicts no ampli�cation of ��

�

� in any case and

an increase of 
��� in the ampli�cation factor of ��

�

�

when upstream entropy �uctuations are present 	the
solenoidal case is still the reference�� Mahesh et al�
	
���� proposed an explanation based on the relative
e�ects of bulk compression and baroclinic torque to
understand the in�uence of entropy �uctuations� This
proposal is con�rmed by our DNS results� As a matter
of fact� in both cases 	I
��sol and I
��ent�� the budgets
of the transverse vorticity show that bulk compression

is responsible for the ampli�cation of ��

�

�� Moreover�
the relative importance of bulk compression is the same
in both cases� However� in the vorticity�entropy case�
the compression by the mean �ow is not the only pos�
itive contribution inside the shock and the baroclinic

torque

�
��jk




��
��

�
��

�xj

�p

�xk

�
also plays an important

role� Figure � compares the importance of this term
in the budgets of the transverse vorticity for the three
simulations� It is clear in the I
��ent case that the
baroclinic torque is not negligible� in contradiction with
what is observed in the other con�gurations�
When pressure �uctuations are present upstream of

the shock 	I
��ac�� the ampli�cation of ��

�

� is also
greater than in the case I
��sol but the di�erence is far
less important than before� This is in agreement with
the DNS results of Hannappel and Friedrich 	
�����
even if the di�erence between the solenoidal and the
 compressible! cases was more important in the simu�
lations they conducted for a Mach � shock wave�
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Figure 	� Spatial evolutions of 
� �a� and 
� �b� nor�
malized by their value immediately upstream of the shock�
� � I���sol
 �� � �� I���ent
 �� � � � �� I���ac�

Taylor microscales� We show in �gures � the spatial
evolutions of the Taylor microscales of the turbulent

�ows � 
� �

�
u�

�
��

�
�u�

�

�x�

�
�

����
�

The behaviour across the shock of these quantities
is still a con�icting point in the literature between nu�
merical and experimental works� We can only state here
that our results are in agreement with all previous DNS
on the topic � the Taylor microscales are reduced dur�
ing the interaction 	this diminution of 
� corresponds
to a gain of energy which is more pronounced in the
highest part of the velocity spectra � see for instance
Lee et al�� 
���� If no noticeable di�erence appears
between the three cases for 
�� 
� is more reduced in
the case I
��ent � the di�erence amounts to � be�
tween I
��sol and I
��ent� and LIA predicts a reduction
�� more important when the upstream turbulence con�
tains entropy �uctuations� On the other hand� 
� is less
reduced in the case I
��ac� which con�rms Hannappel
and Friedrich�s conclusions�

CONCLUSION

This paper shows the sensitiveness of the shock�
turbulence interaction phenomenon to the compress�
ible nature of the upstream turbulent �ow� All the
preceding conclusions agree with previous recent nu�
merical studies concerning the in�uence of Kovasznay�s

modes on the evolution of turbulence across a shock
wave 	Hannappel and Friedrich� 
��� � Mahesh et al��

����� Our DNS results are also in qualitative agree�
ment with linear analysis�
This type of fundamental study will undoubtedly be

helpful to understand more complicated phenomena
like the interaction between a shock and a supersonic
boundary layer� In this con�guration� Morkovin�s hy�
pothesis is satis�ed and the presence of entropy �uc�
tuations should strongly promote the ampli�cation of
turbulence as reported in this work�
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