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Integration of Distance Measurements between
Agents with Unknown Correlation

Colin Cros, Pierre-Olivier Amblard, Christophe Prieur and Jean-Frangois Da Rocha

Abstract— Cooperative localization is a promising solu-
tion to improve the accuracy and overcome the shortcom-
ings of GNSS. Cooperation is often achieved by measuring
the distance between users. To optimally integrate a dis-
tance measurement between two users into a navigation
filter, the correlation between their position estimates must
be known. Unfortunately, in large scale networks the agents
cannot compute their correlations with other agents and
must use consistent filters. A consistent filter provides an
upper bound on the covariance of the estimator taking
into account all the possible correlations. In this paper,
a consistent linear filter for integrating a distance mea-
surement is derived using Split Covariance Intersection.
Its analysis shows that a distance measurement between
two agents can only benefit one of them, i.e., only one of
the two can use it to improve its estimator. Furthermore, in
some cases, none can. A necessary condition for an agent
to benefit from the measurement is given for a general
class of objective functions. When the objective function
is the trace or the determinant, necessary and sufficient
conditions are given.

Index Terms— Filtering, sensor network, cooperative
control.

[. INTRODUCTION

Accurate positioning is a key challenge for numerous strate-
gic applications. Global Navigation Satellite Systems (GNSSs)
provide a low-cost and effective solution for achieving satisfac-
tory accuracy in open-sky environments. However, in GNSS-
denied environments such as urban canyons, indoors or under-
water, other methods must be used. Cooperative localization
is a promising alternative because it can slow down the loss
of accuracy in the absence of GNSS signal [20]. A simple
form of cooperation is the measurement of distances between
the users, hereafter called agents. Inter-agent distances can be
inexpensively determined by measuring the Received Signal
Strength or the Time-of-Flight of a signal. For example,
cooperative localization has been used for terrestrial vehicles
[10] and UAVs [5], [7]. Recent research has demonstrated
the effectiveness of cooperation in significantly improving
positioning accuracy while using simple algorithms [15].

C. Cros, PO. Amblard and C. Prieur are with the
CNRS, Univ. Grenoble Alpes, GIPSA-lab, F-38000
Grenoble, France. colin.cros@gipsa-lab.fr,

christophe.prieur@gipsa-lab.fr,
pierre-olivier.amblard@cnrs. fr.

C. Cros and J.F Da Rocha are
Telespazio FRANCE, F-31100 Toulouse,
jeanfrancois.darocha@telespazio.com.

with
France.

One of the challenges in cooperative systems when in-
tegrating inter-agent distance measurements is dealing with
the correlations between agents’ estimators. The use of inter-
agent measurements tends to correlate their estimators. If these
cross-covariances are not taken into account, they lead to an
underestimation of the errors and a potential divergence of the
filter [3]. These problems can be avoided by calculating and
storing the cross-covariances between each pair of estimators.
In centralized systems, the estimators of all agents are stacked
into a global estimator whose covariance includes all the
cross-covariances. This global estimator is then updated in
a centralized manner (at a computing station), or in a dis-
tributed manner [19]. However, such solutions are difficult to
implement for networks with a large number of agents due to
the computational and transmission costs. Another solution to
avoid correlation problems involves ensuring that no redundant
information is used. In [4], the authors propose to keep a
table of all past interactions to ensure that only independent
information is used in the filter.

In order to use two-way cooperation when no cross-
covariance information is available, consistent filters should
be used. The literature also refers to these as “conservative
filters”, see, e.g., [8]. Consistency ensures that the estimator
is not overconfident. However, the covariance of the estimator
is generally not computable due to the lack of information,
and only an upper bound is provided. Several methods have
been developed to fuse different estimators with unknown
covariances. The three main methods are referred to in the
literature as Covariance Intersection (CI) [12], Inverse Covari-
ance Intersection [16] and Ellipsoid Intersection [21]. A recent
paper [8] unifies these concepts in a general framework called
the Conservative Linear Unbiased Estimator (CLUE). Among
these methods, CI and its derivation the Split Covariance In-
tersection (SCI) [11] are particularly efficient: several papers,
see, e.g., [6], have described the efficiency of CI, and more
recently CI has been shown to be the best method to fuse
two estimators under unknown correlation [18]. Even if SCI
has not been showed to be optimal, its simplicity makes it a
widely used method for decentralized cooperative positioning
[13], [14], [17]. However, to the best of our knowledge, no
specific study on the integration of a distance measurement
between two agents with an unknown correlation using SCI
has been performed in the literature.

In this paper, we consider cooperative networks where
agents estimate their positions and store their own estimators.
Here, cooperation occurs through distance measurements be-
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tween agents. We address the problem of integrating, through
linear filtering, a distance measurement between two agents
who have consistent estimators of their states but the cross-
covariance between these estimators is unknown. Throughout
the paper, we only consider the integration of a distance
measurement. In particular, the dynamics of the system are
beyond the scope of this paper and is the subject of further
work. Our first contribution is the derivation of the optimal
SCI filter for this problem, optimal w.r.t. a given increasing
cost function. In practice, this function is often the trace or
the determinant of the covariance of the estimate. Our second
contribution is the analysis of the SCI filter which shows
whether a distance measurement can be used to improve the
estimation. We provide a necessary condition in the general
case, and necessary and sufficient conditions for the cases
where the cost function is the trace or the determinant.

The paper is organized as follows. Section II introduces
the problem of optimal filtering, then Section III derives a
candidate: the SCI filter. Section IV investigates the usefulness
of such a filter, and Section V discusses the results, in
particular in simulations. Finally, Section VI provides some
perspectives and future directions.

Notation. In the sequel, vectors are underlined e.g., z € R"”,
random variables are denoted in lowercase boldface letters
e.g., z for a scalar or £ for a vector, and matrices are
denoted in uppercase boldface variables e.g., M € R™ ",
The notation E[-] denotes expected value of a random variable
and ||-|| the Euclidean norm of a vector. The trace, the
determinant, the inverse and the transpose of a matrix M and
the identity matrix are denoted as tr M, |[M|, M~*, MT and
I respectively. For two matrices A and B, A < B means
that the difference B — A is positive semi-definite. A positive
definite matrix P is represented on the figures by the ellipsoid
Ep={z|aTP 'z <1}

II. PROBLEM STATEMENT

Let us first recall the definition of a consistent estimator.

Definition 1. An estimator (&, P) of a random variable z is
said to be consistent if E [£] = 0and P < P where Z = x—2
denotes the error and P = E[EET] the mean-squared error
(MSE).

In other words, a consistent estimator is unbiased and does
not underestimate the covariance.

Consider two agents, denoted A and B, characterized by
their states £ 4 and £ in R™. For the sake of simplicity and
without loss of generality, the states are assumed to contain
only the positions of the agents; in practice, they may also
contain their orientations or their velocities, for example. The
two agents have consistent estimators of their states denoted
(£4,Pa) and (&g, Pp). Notice that the true (centralized)
covariances of the errors, defined as,

~ ~ T ~
ool (3) ()]
Tp/) \Z P},

Pfﬂ RGY

Pg

is unknown, i.e., P4, Pg, and P4p are unknown. However,
consistency restrains the set of possible P to:

- {[8, %
P!, Pg
Furthermore, consider z = ||z, — Zz|| + Z a measurement
of the distance between A and B where Z denotes the error.
The error Z is assumed centered, E [Z] = 0, with variance
E [22] = an, and independent of the errors of the estimators
Z 4 and Z . Finally, consider the agents sufficiently far from

each other to assume that the unit-length director vectors
“28 and dip, = 7%” are equal and allow
B

}zmﬁmPA,PBﬁPB}. 2)

u =
—BA lza—2p |24~

the linearization of the measurement as:

zZ=ups(Zs—2Zp)+ 2 3)

The objective is to improve the estimator of A using the
estimator of B and the distance measurement to create a better
estimator (£, Pr) of the state of A. Throughout this paper,
the estimators are compared w.r.t. an increasing cost function
J (increasing in the sense of the Loewner ordering i.e., P <
Q = J(P) < J(Q)). For two consistent estimators
(Z,, Py) and (£,, P,) of the same random variable z, (Z,, P;)
is said to be better than (&,, P») if J(P1) < J(P2). The
estimator (£, Pr) is designed as an unbiased! linear filter
defined as follows.

Definition 2. A linear filter for the state of A is an estimator
(&, Pr) of 4 where & is a linear combination of & 4, &
and z. It is defined by two matrices K, Ly and a vector wp
such that:

2p=Kp2,+Lrip+wpz. 4)

To have & unbiased, since E[z] = uj, (E[z,4] —E[z3])
the gains must be dependent and satisfy:

Kp=1I—-wpul,, Lp=wpup,. 5)
An unbiased linear filter is then defined by only wj as:
Ep =T ~wpupy) &y +wpup,Ep +wpz. (6
For a possible P c P, the covariance of the error £ =
T, —Epis:
Pp =Py + (65 + 6% — 27+ 0%) wpwh
- (PA - 15AB) up Wl — wpul, (PA - 1523) (7

where

5,24 MTBAPAHBAa 523 = HTBAPB@BAa (®)
¥ =upsPapupya. )

If the true covariance P were known, the optimal linear
filter would be calculable. It would be derived from the

classical Kalman Filter equations [2]:

Z-up, (@4 —2p) 5 5
Py,—- P 10a
5'1244’5'23*2:}/4’0'72”( A AB)QBA? ( )

(13A - ISAB)@BAETBA(PA - 13;3)

5% + 6% — 27 + 02,

Ak A~
=2, +

Pr=DP,— (10b)

IA bias would increase the MSE Pp in the Loewner ordering sense.
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In th1s case, P;,i is the minimum (in the Loewner ordering) of
the Pp, and thus is optimal w.r.t. any increasing function J.

However, as P is not known, such a consideration is not
possible, and the linear filter must be consistent, i.e., it must
satisfy Pp > Py for every possible covariance. We are now
in a position to state the main problem.

Problem 1. Find a gain wy and a covariance Pr such that
the estimator (&, Pr) defined by (6) is consistent and optimal
w.r.t. J. In other words:

minimize  J(Pr)
e - - (P1)
subject to VP € P, Pr > Pr
where I:’F is given by (7).

The main result of this paper is the design of a candidate
filter solving Problem 1 using SCI and its analysis.

[I. SCI FOR A DISTANCE MEASUREMENT

As a preliminary remark, (6) can be rewritten as:

(1)
12)

Bp=2,+wplz—up, (@4 —2p)
=T ~wpupy) & +wrup, (g + 2upgy) .

These two expressions highlight the equivalence between
linear filtering and fusion. Equation (11) represents the usual
form of the Kalman correction step: wj is a gain and
z —up, (&4 —&p) is the innovation on the measurement.
Equation (12) on the other hand represents a fusion: the term
&5 + zup, is another estimator of the state of A. Let 2’
denote this estimator. Equation (12) corresponds to the fusion
of £, and the observation of ', through ug 4.

Since the estimators &, and £ are correlated to an un-
known degree and z is independent of & ,, the fusion of Z 4
and @:4 respects the assumptions of SCI [11].

SCI fuses two estimators using a linear combination whose
weights depend on their covariances. For any w € [0,1), SCI
provides a consistent estimator (Zgc;(w), Pscr(w)) for the state
of A, hereafter called an SCI filter. It is defined as:

-1

Pso(w) = |(1 —w)Pyt +ws p +w02 , (13a)
Esoi(w) = (1 —w)Psai(w) Py &4
T

+ wPscr(w)—gZAMBA (& 4 zup,), (13b)

UB + w072n

where UQB = QTB 4PBup,. The expression of the SCI filter
can be simplified. The covariance (13a) is calculable using the
Sherman-Morrison formula of the inverse [9, Chap. 0.7], and
the estimator (13b) is re-expressed in the form of a correction
as (11). Thus, (13) becomes:

N A wlz —up, (@4 —£p)]
= P
gSCI((")) Ly + (JJCTA (1 7 ) (0_2B ¥ wa_rgn) AUB A,
(14a)
T
Pycr(w) 1 P, WPAUBAUB,QL}PA
1-—w wod + (1 —w) (6% 4+ wo?,)
(14b)

where 0% = uBAPAuBA The gain of the SCI filter is
Weer(w) = e w)(g =y Pjyup 4. The optimal filter
w.r.t. J within the family of SCI filter is called the optimal
SCI filter. To find the optimal SCI filter, the parameter w is
chosen to minimize the cost function J:

w* = arg min J(Pscr(w)). (15)

0<w<1
We have proved the following result.

Theorem 1. The optimal SCI filter for the state of A is
(&g (w*), Psci(w*)) given by (14) where the parameter w*
is defined by (15). This estimator is denoted (&3¢, Pigy)-

SCI has not been shown to be optimal for the fusion, there-
fore the optimal SCI filter (&g, Pi;) may be suboptimal for
Problem 1. However, since it is very simple to implement, it is
widely used in practice. Furthermore, when the measurement
is very accurate, i.e., when 02 tends to 0, SCI becomes CI
which is optimal (only when o2, = 0) [18]. These two reasons
lead us to consider this filter and analyze its usefulness.

IV. USEFULNESS OF THE FILTERING
A. General increasing cost function

Theorem 1 gives the expression of the optimal SCI filter.
Setting w = 0 in the fusion ensures that the estimator
(&5c1, Picop) is at least as good as the original estimator
(Z 4, Pa). In fact, setting w = 0 corresponds to keeping the
original estimator and ignoring the measurement. However,
there is no reason why there should be a better estimator,
the optimal parameter could be w* = 0. In such a case, SCI
filters cannot improve the estimator of A. We call pertinent a
linear filter for the state of A that provides a better estimator
than (Z 4, P4). This section characterizes the pertinence of
SCI filters.

Definition 3. A pertinent linear filter for the state of A is a
linear filter (Z, Pr) such that J(Prp) < J(Pjy).

By definition of the optimal SCI filter, there is a pertinent
SCI filter if and only if the optimal SCI filter is pertinent.
The underlying question is therefore: Is the optimal SCI filter
(&sc1, Pécy) pertinent?

Let us start with two corollaries of Theorem 1 that provide a
necessary condition for the existence of a pertinent SCI filter.

Corollary 1. If 0% < 0%, there is not any pertinent SCI filter
for the state of A.

Proof. Assume that 0% < 0% and letw € [0, 1). We will show
that Pscr(w) > P4 which is sufficient since J is increasing.
In (13a), PSE} (w) is expressed as a convex combination of
P;l and Q = fﬁ‘_igg Therefore, if Q = P;l, then

Py (w) < PA Let us prove that @ < P!, by proving that
Yo, QT(PA —Q)v > 0. Write v = aug, +w with « € R
and wTup 4 = 0. Then, vTQu = a2 (0% +wo?) ! < a?/0%.
Finally, let us prove that vT P v > a?/0%.

Consider an orthonormal basis B = (upgy,Us,---
containing wup, and the orthogonal

 Uy,)
matrix R =
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[upa Uy w,]. In this basis, the covariance of
the estimator of A and the vector v become:

o b U:R(a)
A w/

b C
where b,w’ € R" ! and C € R=Dx(n=1) [et § =
C — bb"/o? be the Schur complement of the first entry. S
is invertible and S—! > 0, see, e.g., [9, Chap. 7]. The inverse
of P4 and QTPA_IQ become:

Pa=r|% G| R

—2 —4p7 Q-1 —2p7Q-1
1 o, +o,70TSTh —o,7bTS T
Pyt R[S S
1 a? o T 1 «@
i (o) 5 (G0).
A A A
Hence, QTPgly > % O

Corollary 2. If there is a pertinent SCI filter for the state of
A, then there is not any pertinent SCI filter for the state of B.

Proof. If there is a pertinent SCI filter for the state of A,
Corollary 1 implies 0% < ¢. Similarly, if there is a pertinent
SCI filter for the state of B, then 0% < 0%. Both inequalities
cannot hold simultaneously. [

Corollary 1 provides only a necessary condition for the
existence of pertinent SCI filters. In the following, we extend
the property to provide a necessary and sufficient condition
for the two most commonly used cost functions: the trace and
the determinant. It is based on the following result.

Theorem 2. Assume that the function [ : w — J(Psci(w)),
with Psci(w) given by (14b), is convex on [0,1). Then, the
optimal SCI filter (&g, Psy) is pertinent if and only if
1(0) <o.

Proof. By definition, (Zgcy, Pd;) is pertinent if and only if
f(w*) < f(0) = J(P4). If f/(0) < 0, then there is a wy >
0 such that f(wg) < f(0) and therefore f(w*) < f(0). If
f'(0) > 0, since f is convex on [0,1), Vw € [0,1), f(w) >
f(0) and therefore, f(w*) = f(0). O

B. Particular case of the trace

In this paragraph, consider J(-) = tr- and let g : w —
tr Pscr(w) be the cost function to be optimized. According to
(14b), the cost function is:

tr Py erai
= - 16
9() 1—w wo? + (1 —w)(c% +wo?,) (16)
where: )
,%2 [ Paug 4l
Tp= A a7

tr Py

The meaning of r4 is discussed in Section V. In order to
apply Theorem 2, let us prove the following.

Lemma 1. The cost function g is convex on [0,1).

Proof. Let us first prove that 0 < r4 < 1. Consider again
the orthonormal basis B = (ug 4, Uy, - - -, U,,) containing wup 4

and the orthogonal matrix R = [up, u, u,,]. In this
basis, the covariance of the estimator of A becomes:
2

(2 P20 A02 PnOACH
P20 A02 O'% * *
RTP.R = _ (18)
PnO ATy * * U%

where only the diagonal coefficients and the correlations with
the first component have been labeled. With these notations,
r4 is developed as:
1 2
7% [ Paup 4|l
tr Py

_ oA+ Yo}
oA+ Xima 0t
Since the correlations satisfy |p;| < 1, the ratio satisfies 0 <
ra <1.
To prove the convexity of g, let us first assume that r4 < 1.
By putting all the terms in the same fraction, the cost function
g is a rational function:

g(w) =

TA= (19)

tr Py (1 —ra)wo? + (1 —w)(0% +wo?)
wod + (1 —w)(c% +wo?,)
tr Py 0% 4+ [(1 —74)0% — 0% + 02w — 02,w?

1—w

2 2 2 2 2 .2
l-w o+ (04—05+02)w—0w

Let P:ws 0%+ (04 — 0% 4+ 02)w — 02,w? and Q : w
05+ [(1=7r4)0% — 0%+ 02 |Jw—02,w? be the polynomials of
degree 2 at the denominator and numerator. Since P(0) = 0%
and P(1) = 0%, P has two roots b and d which satisfy: b <
0 < 1 < d. Similarly, by noting that Q(w) = P(w) — 7403w,
Q) = —rabod >0, Q(1) = (1 —ra)o% > 0 and Q(d) =
—rado? < 0, Q has two roots a and ¢ which satisfy:

a<b<l<l<e<d.

The cost function is therefore:
tr Pa(w —a)(w —c¢
o) = TPa& ) )
(w—1)(w—=0b)(w—d)

Then, using partial fraction decomposition:

g(w):trPA< /_11+w]ib+w€d) (20)
with:
B (I-a)(1—2¢) B (b—a)b—2c)
A=—ana=a <" P one=9 "
B (d—a)(d—rc)
C="ta—na-n <"

Since tr P4 > 0, the three terms in (20) are convex on (b, 1).
Therefore, since b < 0, the cost function g is convex on [0, 1).

Finally, if r4 = 1, then ¢ = 1 which simplifies the
expression of g. By the same logic, g is convex on (b,d),
and thus on [0, 1]. Note that r4 = 1 corresponds to the one-
dimensional case. O

We are now in a position to apply Theorem 2 to the trace.

Corollary 3. The optimal SCI filter for the state of A w.r.t. to
the trace is pertinent if and only if:

of < rTach. (21)
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Proof. Since g is convex on [0,1) as stated in Lemma 1, by
Theorem 2, the optimal SCI filter is pertinent if and only if
¢'(0) < 0. Let us calculate g’(0).

o2
g/(O) = tI‘PA <1 — TA§>

9B
Since tr P4 > 0, ¢/(0) < 0 if and only of 0% < rsc%. O

C. Particular case of the determinant

In this paragraph, consider J(-) = |-| and let h : w —
| Pscr(w)| be the cost function to be optimized. According to
(14b), the cost function is:

| Pa|
(1-w)m

1/2 1/2
_ WPA/ @BAHTBAPA/
wo + (1 - w)(of +wod,)

h(w) =

(22)

where Pj,/ ? denotes the square root of P4 and n is the
dimension of the state. Using that | 4+ uvT| =1 + uTv, (22)
becomes:

| P4l O'QB +wo?,

hw) = Gy wo + (1 —w)o +woz]’

(23)

As for the trace, the convexity of /h is proven in the
following result.

Lemma 2. The cost function h is convex on [0, 1).

Proof. This proof is very similar to the proof of Lemma 1.
First, let P : w — 0% + (04 — 0% + 02w — 02,w?. As

P(0) >0, P(1) > 0 and P(—0?2,/0%) < 0, The cost function
h is a rational function which can be expressed as follows.

|Pa| (w+ 07 /0%)
(1-w) 1 (w-—a)(w-—">)

where the zeros of P a and b satisfy:

h(w) = —

—02Jos <a<0<1<b.

Then, using partial fraction decomposition:

|[Pal A |Pa| B
- 24
P TG s S ARy e Fe S
with:
—(a+03,/0%) —(b+05./0%)
A= m B= m .
a0 Gy <0
Both terms in (24) are convex on [0, 1). O

We are now in a position to apply Theorem 2 to the
determinant.

Corollary 4. The optimal SCI filter for the state of A w.r.t. to
the determinant is pertinent if and only if:

1
0% < Eai. (25)

Proof. Since h is convex on [0,1) as stated in Lemma 2, the
optimal SCI filter is pertinent if and only if 4'(0) < 0. Let us
calculate ¢'(0).

80 = 2a] (- 2)

B
Since |P4| > 0, h/(0) < 0 if and only if no% < o3. O

4 2 0 2 4 20

®) J() = [
Fig. 1: Example of the optimal SCI filters for two different
cost functions J. The solid ellipses represent the covariance of
the estimators P4 and Pg. The dotted ellipse represents the
covariance of the optimal SCI filter Pgc,. The dashed ellipses
represent possible covariances Pr obtained by (7) with wy =
Wecr(w*) and different P € P. The measurement variance is
o, =1.

V. DISCUSSION AND NUMERICAL SIMULATIONS

Ilustrations of the optimal SCI filters for the trace and the
determinant are shown in Fig. 1. In this figure, the consistency
of the filter has been illustrated by generating several possible
P ¢ P and plotting the resulting MSE given by (7). As
observed, the two optimal SCI filters are different. This means
that they depend on the cost function which is a first difference
with the usual case where P is known.

The main implication of Theorem 1 and Corollary 1 is
that it is not always possible to improve an estimator using
SCI. Improvements require that the helping agent, here Agent
B, has a sufficiently good precision (w.r.t. Agent A) in the
direction of the measure, i.e., that 0% < o% as stated in
Corollary 1. Furthermore, this condition is only necessary,
harder constraints should be satisfied in practice, they depend
on the cost function J. It can happen that neither agent can
improve its estimator, for example when considering the trace,
if ra0% < 0% < 0% as shown in Corollary 3. This is an
important difference from the usual case. If P were known,
it would almost always be possible to improve the estimator:
the optimal linear filter was recalled in (10) (Section II). In
this case, even extremely poor precision on the helping agent
would provide (tiny) improvements.

The expression of the SCI filter (14) involves the whole
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statistic of the estimate of Agent A but only the variance of
the estimate of Agent B in the direction of the measurement.
This asymmetry reduces the communication cost of the filter:
the agents only need to send their estimate and their variance in
the direction of the measurement (but not their full covariance).
The asymmetry is due to the linearization assumption.

Moreover, for the two commonly used cost functions, the
trace and the determinant, the necessary and sufficient con-
ditions given in Corollary 3 and Corollary 4 allow to check
efficiently the pertinence of the SCI filter before doing the
measurement. In practice, this criterion can save energy by
avoiding useless measurements. Furthermore, the precision of
the measurement o2, does not appear in these conditions (21)
or (25). This means that if the property is not satisfied, even
a perfect measurement cannot improve the estimate. However,
the variance a,%l does affect the improvement (if it occurs).
As (14) suggests, the larger o2, the smaller the improvement.
In addition, it seems that the condition for the existence of
a pertinent filter becomes more difficult to satisfy as the
dimension increases. This is clear for the determinant because
of the factor 1/n in (25). For the trace, the factor r4 in
(21) represents the ratio of the information contained in the
direction up 4 to the total amount of information. As expressed
in (19), if r4 = 1, then the components of & 4, are all perfectly
correlated. Therefore, if 74 = 1 the correction would correct
the entire estimate. On the other hand, if r4 < 1, £ 4 is poorly
correlated with its component in the direction u g 4. The impact
of the correction on the other components cannot be inferred
and the correction should be more cautious. As the dimension
increases, r4 decreases requiring smaller o%.

Finally, it is worth mentioning that the optimal parameter
w* can be calculated analytically for the cases of the trace
and the determinant. Since the cost functions g and h are
convex, the minimum is reached either at 0, at 1 (only possible
when r4 = 1), or when ¢(w) = 0 or h'(w) = 0. From
their decompositions (20) and (24), solving ¢'(w) = 0 requires
finding the roots of a polynomial of degree 4, and solving
h'(w) = 0 requires finding the roots of a polynomial of degree
3, both of which can be done analytically.

VI. CONCLUDING REMARKS

The SCI filter is a candidate for the optimal filtering
problem. However, the optimal SCI filter proposed here may
not be the solution to Problem 1: a better linear filter may
exist outside the family of SCI filters. We conjecture, after
numerous simulations, that the optimal SCI filter is indeed the
solution to Problem 1. The conjecture is based on the facts
that SCI is the natural extension of CI when the estimators
have independent components, and that CI is optimal for the
problem it considers [18].

Furthermore, we only studied the integration of one distance
measurement. Future works will focus on the simultaneous
integration of distance measurements with multiple helping
agents. They will consider filters such as:

Tp=K2Z,+ L% +z1w; + -+ L2, + 20w,,.

Most of the concepts introduced in this paper can be adapted,
but as [1] explains, CI is not optimal for more than two
estimators, therefore SCI should also be suboptimal.
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