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Abstract

Background

Among other West African countries experiencing the high endemicity of deadly tuberculo-

sis, the situation in Niger is poorly evidenced by microbiological investigations.

Methodology/Principal findings

The study of 42 isolates of Mycobacterium tuberculosis from Niger by whole genome

sequencing using Illumina iSeq technology yielded four M. tuberculosis lineages: Indo-Oce-

anic L1 (n = 1) (2.3%), East-Asian (n = 1) (2.3%), East-African Indian L3 (n = 2) (4.7%) and

Euro-American L4 (n = 38) (90.4%). The sub-lineage L4.1.3 comprising 18 isolates (47.3%)

was predominant, followed by the L4.6.2.2 sub-lineage (Cameroon genotype, n = 13 iso-

lates) (34.2%). Investigating drug resistance profile for 12 antibiotics found 8/42 (19%) pan-

susceptible isolates and 34/42 (81%) resistant isolates; with 40/42 (95.2%) isolates being

susceptible to clofazimine-bedaquiline.

Conclusions/Significance

These unprecedented data from Niger highlight the dynamics of tuberculosis transmission

and drug resistance in Niger and may assist tuberculosis control in this country which contin-

ues to support a high burden of tuberculosis.

Author summary

Tuberculosis is a major public health problem in Niger, in West Africa. Niger has an

emerging problem with multidrug-resistant tuberculosis (MDR-TB). Whole genome

sequencing was used to understand the epidemiology of tuberculosis and genetics of
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multi-drug resistance among patients from the regions in Niger. In this study, most iso-

lates of M. tuberculosis from this dataset belonged to the L4.6.2.2 sub-lineage and L4.1.3

sub-lineage within the Euro-American lineage. Thirty-four out of 42 (81%) isolates were

detected as resistant isolates. Our study highlights the need for epidemiological surveil-

lance and more concerted efforts to ensure that patients are put through treatment.

Introduction

Niger is a country in West Africa with an estimated 23-million inhabitants. It is experiencing

high endemicity of deadly tuberculosis, with 11,485 new and relapsing cases, including 87% of

pulmonary forms, which were notified to the World Health Organization in 2019. In Niger,

the incidence of multidrug-resistant (MDR)/rifampicin resistance (RR) was estimated at 2.6%

(1.2–4.5) per 100,000 inhabitants [1] and in 2019, patients between 25–34 years old were the

most affected age group, with a male predominance [1]. As in most limited resource countries,

knowledge of the epidemiology of tuberculosis in Niger has been based solely on recording the

number of cases as well as baseline demographic characteristics of patients.

The actual incidence of tuberculosis in the various regions of Niger, therefore, is poorly

known; and the Mycobacterium tuberculosis (M. tuberculosis) complex (MTBC) species and

lineages responsible for laboratory-documented cases, are also poorly known, limiting preven-

tive public health work. The lineage of cases caused by M. tuberculosis demonstrates distinct

geographical associations worldwide [2,3]. The genetic diversity of circulating strains of the M.

tuberculosis complex may have implications for public health, as observed previously in several

studies in West African countries [4,5].

Second generation high throughput sequencing technologies (such as the Illumina iSeq 100

System) mean it is now possible to perform whole genome sequencing (WGS) of M. tuberculo-
sis [6]. Current genomic data showed that MTBC comprises nine human-adapted lineages

(lineages 1–9) [4,7–10]. All MTBC lineages have been reported in Africa, suggesting that the

MTBC emerged from a common ancestor, and expanded further following human migrations

[11–15]. However, to our knowledge, no study has reported any MTBC-WGS of the M. tuber-
culosis complex in Niger.

Here, we investigated a collection of MTBC isolates by WGS to gain knowledge of the M.

tuberculosis species, lineages and sub-lineages circulating in Niger, and tentatively correlated

them to anonymised demographic data.

Materials and methods

Study collection

This retrospective study included all the positive cultures of mycobacteria routinely made for

the diagnosis of pulmonary tuberculosis from respiratory tract specimens collected from

patients suspected of having pulmonary tuberculosis, and from monitoring of multidrug resis-

tance patients in Niger in 2016 and 2017. Respiratory tract specimens routinely addressed to

the Laboratoire National de Référence des IST/VIH et de la Tuberculose, Niamey, Niger from

five regions (Maradi, Niamey, Tahoua, Tillaberi and Zinder) were subjected to smear micro-

scopic examination after auramine-O staining, decontamination using the modified Petroff

method [16], and culture on Löwenstein-Jensen medium, prepared according to the manufac-

turer’s instructions (Merck, Darmstadt, Germany) (Fig 1). Any colonies were verified by

Ziehl-Neelsen staining, stored at -20˚ C and shipped to MEPHI, IHU Méditerranée Infection,
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Marseille, France for further investigation, as described below. Colonies which did not stain by

Ziehl-Neelsen staining were not included in this study. No clinical samples were specifically

collected for the present study, samples have been collected as part of the patients’ routine

medical management. We obtained permission from the head of the laboratory to carry out

any investigation deemed useful on the strains of mycobacteria from our internal library.

Isolate culture and DNA sequencing

All the laboratory investigations involving non-inactivated isolates were performed in the bio-

safety level 3 laboratory, at the IHU Méditerranée Infection, Marseille, France. Isolates were

subcultured on Middlebrook 7H10 medium incorporating the OADC medium enrichment

(oleic acid-albumin-dextrose-catalase) prepared according to the manufacturer’s instructions

(Becton Dickinson, Franklin Lakes, USA). Cultures were incubated in an aerobic atmosphere

for up to 21 days at 37˚ C and visually inspected for colonies weekly. A loopful (equivalent to

ten 2-microliter inoculation loops) of colony biomass was collected in a 1.5-mL tube contain-

ing 200 μL sterile phosphate buffered saline (PBS), and was heat-inactivated at 100˚C for one

hour [17]. Total DNA was extracted by vortexing the suspension with glass powder (Sigma-

Fig 1. Geographical distribution of M. tuberculosis lineages/sub-lineages in Niger. Map created with DIVA-GIS (https://www.diva-gis.org/

gdata) using GADM version 1.0 data (https://gadm.org/data.html).

https://doi.org/10.1371/journal.pntd.0010443.g001
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Aldrich, St. Louis, MO, USA) using a FastPrep apparatus (MP Biomedicals, Santa Ana Califor-

nia, USA) followed by a Qiagen kit with EZ1 DNA Tissue Kit (Qiagen) according to the manu-

facturer’s recommendations (Courtaboeuf, France) and eluted in 50-μL volume [18]. The

Illumina iSeq library was prepared as previously described [19]. Briefly, DNA (1 ng) was frag-

mented in a mix containing 5 μL of Amplicon Tagment Mix in the presence of Tagment DNA

Buffer (Nextera XT Library prep Kit, Illumina) for five minutes at 55˚C, in an ABI 2720 Gen-

eAmp PCR System Thermal Cycler (Applied Biosystems, Foster City, CA, USA) in a 20 μL vol-

ume. Then, 5 μL of Neutralize Tagment Buffer was added before centrifugation for one minute

at 2,800g and five minutes’ incubation at room temperature, then indexed and amplified in a

50 μL volume, followed by 18 cycles of PCR-index reaction, in the presence of Nextera XT

Index Kit V2 (Nextera, San Diego, USA). A first purification was performed using Agencourt

Ampure XP beads (Beckman Coulter, Villepinte, France) in a 0.8 ratio of beads followed by

two washes with 80% alcohol and elution in 52.5 μL of RSB buffer. The library concentration

was measured in Agilent 2100 Bioanalyzer (Thermo Fisher Scientific), then diluted to 100 μL

RSB buffer in the presence of 10 μL-volume of Phix (50 pM). Finally, the diluted libraries (50

pM) were denatured and sequenced on the iSeq 100 sequencer (Illumina) in a single 17.5-h

run providing 2x150-bp long reads.

Study strains are available in the CSUR collection at IHU laboratory with specific CSUR

number of each sample (S1 Table).

Genome typing and cluster identification

After reads were stored for the delay of analysis, kaiju with default parameters [20] was used to

detect for contamination level using NCBI BLAST nr—non-redundant protein database

including bacteria, archaea and viruses (2021-02-24 (52 GB). Overall qualities before and after

trimming sequencing reads were evaluated using FastQC [21] and multiqc [22]. Then, Trim-

momatic tool [23] was used to remove residual Illumina adapters and Illumina-specific

sequences. Species, lineages and sub-lineages were identified directly based on output iSeq

read using the Tb-profiler (TB_v0.1.3) (https://tbdr.lshtm.ac.uk/) and MTBseq [24] with

default settings by specific mapping to reference M. tuberculosis H37Rv (NC_000962.3).

MTBseq was used to recover the statistical mapping data of output sequencing reads using M.

tuberculosis H37Rv (NC_000962.3) as the reference genome (S1 Table). In addition, a local

SNPs database constituted as previously reported, was used to identify Beijing sub-lineages

[12,25,26]. Genome sequences were assembled using SPAdes version 3.13.1 [27] and anno-

tated using Prokka version 1.12 [28]. The Roary pangenome pipeline [29] was used to generate

the core-genes alignment of 42 clinical strains to create the phylogenetic tree in order to repre-

sented study strains using following parameters: 80% minimum identity for blastp, and a gene

detected in 99% of isolates to be recorded as a core gene. Phylogenetic trees based on core

genome were generated using FastTree 2.1.10_1 software (https://ngphylogeny.fr/tools/tool/

271/form) using GTR model and bootstrap option with 1000 replicates.

Detection of drug resistance

The Tb-profiler was used to recover in silico susceptibility-resistance profiles to isoniazid,

rifampicin, ethambutol, pyrazinamide, ethionamide, fluoroquinolones, streptomycin, capreo-

mycin, amikacin and kanamycin. Each detected mutation was confirmed by mapping the out-

put sequencing reads to the reference M. tuberculosis H37Rv resistance genes. Resistance

mutations of atpC, atpE, rv0678, rv1979c and rv2535c were susceptibility searched [30–36] by

mapping the output sequencing reads against these genes to detect resistance to clofazimine
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and bedaquiline (S2 Table). The impact of mutations on protein function was estimated using

the PROVEAN score (http://provean.jcvi.org/seq_submit.php).

Results

M. tuberculosis genomic analysis

During the two-year study period (13 isolates in 2016 and 29 isolates in 2017 in Niger), a total

of 42 M. tuberculosis isolates were investigated in this study. Of the 42 isolates (41 pulmonary

TB, one pleural fluid), 25 were MDR cases, 15 were new cases and two were relapsing cases

(Figs 1 and 2). Sequencing reads indicated that they belonged to four M. tuberculosis lineages:

Indo-Oceanic L1 (n = 1) (2.3%), East-Asian (n = 1) (2.3%), East-African Indian L3 (n = 2)

Fig 2. Core genome sequence-based phylogenetic tree displaying the sub-lineages of 42 M. tuberculosis isolates found in Niger. The colours of the isolates represent

the resistance drugs of the sub-lineages. Phylogenetic trees based on the core genome were generated using FastTree 2.1.10_1 software (https://ngphylogeny.fr/tools/tool/

271/form) using GTR model and bootstrap option with 1000 replicates. Tree was visualized using the iTOL online website.

https://doi.org/10.1371/journal.pntd.0010443.g002
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(4.7%) and Euro-American L4 (n = 38) (90.4%) (S3 and S4 Tables); and 10 sub-lineages: The

Indo-Oceanic lineage consisted of one sub-lineage L1.1.1 (n = 1) and the East Asian genotype

L2 (Beijing) included one isolate in sub-lineage L2.2.9 (B0/W148) (2.3%). We detected two iso-

lates belonging to the same East African Indian sub-lineage L3; while Euro-American L4

genomes were distributed in seven sub-lineages: the L4.1.3 sub-lineage comprised 18 isolates

(47.3%), followed by the L4.6.2.2 (Cameroon) sub-lineage (n = 13 isolates) (34.2%) and the

L4.1.2.1 sub-lineage (Haarlem) (n = 3 isolates) (7.8%). Finally, we identified one isolate in each

of the following sub-lineages: L4.1 (2.6%), L4.6.4 (2.6%), L4.6.5 (2.6%) and L4.8 (2.6%) (Fig 2

and S3 and S4 Tables).

Antibiotic susceptibility profile

Antibiotic profiling found 8/42 (19%) in silico susceptible M. tuberculosis isolates and 34/42

(81%) M. tuberculosis isolates exhibiting at least one predicted antibiotic resistance (Fig 2 and

S2 Table). The predicted resistant strains comprised one pre-XDR isolate belonging to sub-

lineage L4.1.3, twenty MDR isolates (20/34; 58.8%) belonging to sub-lineages L4.1.2.1 (n = 1/

3), L4.1.3 (n = 13/18), L4.6.2.2 (n = 5/13) and L2.2.9 (n = 1/1), eight pre-MDR isolates (8/34;

23.5%) belonging to sub-lineages L4.1.3 (n = 3/18), L4.6.2.2 (n = 3/13), L4.6.5 (n = 1/1) and

L1.1.1 (n = 1/1) and five (5/34; 14.7%) unclassified isolates exhibiting resistance to one or three

antibiotics belonging to L3 (n = 1/2), L4.1.3 (n = 1/18), L4.6.2.2 (n = 2/13), L4.6.4 (n = 1/1)

and L4.8 (n = 1/1) (S2 Table).

In detail, the predominant M. tuberculosis sub-lineages L4.1.3 was divided into 13 MDR iso-

lates (13/18; 72.2%), three pre-MDR isolates (3/18; 16.6%), one pre-XDR (1/18; 5.5%) and one

other drug resistant type isolate. Moreover, the M. tuberculosis sub-lineage L4.6.2.2 was

divided into five MDR isolates (n = 5/13; 38.4%), three pre-MDR isolates (n = 3/13; 23%) and

two other drug resistant type isolates.

Regarding bedaquiline-clofazimine susceptibility profile, we detected no mutation in the

atpC, atpE and rv0678 genes. However, two L14R mutations (deleterious using PROVEAN

with a score of -4.483) and D286G (neutral using PROVEAN with a score of -1.389) were

detected in the rv1979c gene for M. tuberculosis Z204 (pre-MDR) belonging to sub-lineage

L1.1.1. Other D283G mutations (deleterious using PROVEAN with a score of -2.935) were

detected in the rv2535c gene for M. tuberculosis Z237 belonging to sub-lineage L4.1.3 (MDR).

A specific amino acid insertion R473_V474insR (neutral using PROVEAN with a score of

-0.092) was detected in the rv1979c gene, in common with M. tuberculosis sub-lineage L4.6.2.2

(S2 Table). These results showed that the M. tuberculosis sub-lineage L2.2.9 was detected as

MDR.

Regarding ethionamide susceptibility profile, resistance mutation in fabG1 gene (c.-8T>C)

was detected in Z58 (MDR), Z467 (pre-MDR), Z437 (pre-MDR) belonging respectively to

sub-lineage 4.1.3 Euro-American, sub-lineage 4.6.5 Euro-American and sub-lineage 4.6.2.2

Cameroon. Other mutation (p.Arg463Ser) and deletion (c.878_878del) were detected in the

ethA gene for M. tuberculosis Z380 (MDR) and Z164 (other) respectively belonging to sub-

lineage 4.1.3 Euro-American and sub-lineage 4.8 mainly T. (S3 Table)

Regarding fluoroquinolone susceptibility profile, gyrB gene resistance mutations were

detected in M. tuberculosis Z259 (pre-XDR, sub-lineage 4.1.3 Euro-American) and Z191

(other, sub-lineage 4.6.2.2 Cameroon) and one gyrA mutation in M. tuberculosis Z229 (other,

sub-lineage 4.6.2.2 Cameroon). Regarding capreomycin, two resistance mutations were

detected in tlyA gene for M. tuberculosis Z467 (pre-MDR, sub-lineage 4.6.5 Euro-American)

and M. tuberculosis Z204 (pre-MDR, sub-lineage 1.1.1 EAI). Finally, no resistance mutations

detected for amikacin and kanamycin antibiotics.
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Discussion and conclusion

This first ever WGS-based analysis of clinical M. tuberculosis isolates in Niger provided an

overview of the population structure and genetic distribution of M. tuberculosis complex iso-

lates from pulmonary and pleural fluid patients and a TB susceptibility profile in Niger.

We identified four human-adapted lineages: Indo-Oceanic L1, East-Asian L2, East-African

Indian L3, and Euro-American L4, which was largely predominant, as previously reported in

Niger [37,38] and the bordering West African countries [39,40] including Benin [10], Burkina

Faso [41], Chad [42], Mali [4,43] and Nigeria [44,45].

This study offered an unprecedented yet preliminary opportunity to map the geographical

distribution of the 42 M. tuberculosis isolates in Niger (Fig 1). Only M. tuberculosis sub-lineage

L.4.6.2.2 was observed in the regions of Zinder (two isolates) and Tillabéri (one isolate) and

only M. tuberculosis sub-lineage L4.1.3 was observed in the region of Tahoua (five isolates)

whereas we observed a greater distribution of the M. tuberculosis sub-lineage L2.2.9, L3, L4.1.3

and L4.6.2.2 in the regions of Maradi (11 isolates) and the M. tuberculosis sub-lineage L.1.1.1,

L3, L4.1, L4.1.2.1, L4.1.3, L4.6.4, L4.6.5, L4.8 and L4.6.2.2 in the regions of Niamey (23 iso-

lates). Data study showed that the sub-lineages L4.1.3 and L4.6.2.2 were predominant in Niger

and were observed in all the five regions (Niamey, Maradi, Tahoua, Tillabéry and Zinder)

(Figs 1 and 2 and S3 Table). These two predominant M. tuberculosis sub-lineages L4.1.3 and

L4.6.2.2 were present in Niger as dangerous sub-lineages with XDR isolate (5.5%), MDR

(72.2%), pre-MDR (16.6%) of sub-lineages L4.1.3 and with MDR isolates (38.4%), and pre-

MDR (23%) of sub-lineage L4.6.2.2. Using the available database of Tb-profiler (https://tbdr.

lshtm.ac.uk/sra) and the available genomes results in West Africa [46–50], we observed 99/

8,139 (1.2%) isolates belonging to sub-lineage L4.1.3 (25/8,139; 0.3%) and L4.6.2.2 (74/8,139;

0.9%) in sub-Saharan Africa.

Regarding M. tuberculosis L4.1.3, we observed 25 M. tuberculosis sub-lineage L4.1.3 isolates

distributed in Côte d’Ivoire (21/47 isolates; 44.6%), Nigeria (1/56 isolate; 1.8%) and Republic

of the Congo (3/139 isolates; 2.15%). These isolates were divided into 21/25 MDR isolates

(84%), 1/25 Pre-XDR isolate (4%), 1/25 pre-MDR isolate (4%) and 2/25 sensitive isolates (8%).

The L4.1.3 had previously been detected in the West African countries. These data suggest that

the MDR-TB sub-lineage L4.1.3 strain is also emerging in Niger (S5 Table). Regarding M.

tuberculosis sub-lineage L4.6.2.2, we observed 74 isolates distributed in Ghana (15/458 isolates;

3.3%), Liberia (3/51; 5.8%), Malawi (3/2324; 0.12%), Democratic Republic of the Congo (5/

329; 1.5%), Nigeria (29/56; 51.7%) and Côte d’Ivoire (16/47; 34%). These isolates were divided

into 16/74 MDR isolates (21.6%), 6/74 other resistance isolates (8,1%), and 49/74 sensitive iso-

lates (66.2%) (S6 Table).

The Indo-Oceanic lineage consisted of one sub-lineage L1.1.1 (n = 1; one other drug-resis-

tant type isolate), and East-African Indian L3 (n = 2; 2 sensitive isolates) in this study, and it

has been reported in Niger the low prevalence of these lineages [37].

The East Asian genotype L2 (Beijing) includes one isolate of the M. tuberculosis sub-lineage

L2.2.9 (B0/W148) (2.3%). To our knowledge this data has been reported for the first time in

this study and suggests that the Beijing L2.2.9 strains are also commonly described as an

emerging genotype in West African countries such as Niger. Moreover, recent round-trip

migrations to and from China may also have played an important role in emerging and rising

frequency of Beijing lineage strains in Niger.

Regarding second-line drugs, this study showed that there is no resistance to amikacin and

kanamycin, which allows its use in treatment. In addition, 95.2% of isolates were susceptible to

the antibiotics clofazimine and bedaquiline. These data support the repurposing of anti-lep-

rosy antibiotics as antituberculosis treatments [51]. More, the specific amino acid insertion
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detected was previously reported as specific insertion for sub-lineage L4.6.2.2 (Genotype Cam-

eroon) [52]. Despite the small sample size, our study provides insight into the genomic diver-

sity of lineages of M. tuberculosis and the drug-resistant epidemic in Niger. This study

indicates the need to be aware of infection control procedures in healthcare establishments

and within the population, and to carry out genomic epidemiological surveillance in Niger.
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