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Abstract

In this paper, we analyze an eigenvalue problem for a quasi-linear elliptic opera-
tors involving Dirichlet boundary condition in an open smooth bounded set of RN . We
investigate a bifurcation results (from trivial solution and from infinity) of an eigen-
value problem involving the (p, 2)-Laplace operator, from the Fučik spectrum of the
Laplacian.
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1 Introduction

Assume Ω ⊂ RN (N ≥ 2) is an open bounded domain with smooth boundary ∂Ω. A
classical result in the theory of eigenvalue problems guarantees that the problem{

−∆u = λu in Ω,
u = 0 on ∂Ω

(1.1)

possesses a nondecreasing sequence of eigenvalues 0 < λ1 < λ2 ≤ . . . and a sequence of
corresponding eigenfunctions which define a Hilbert basis in L2(Ω), (see [3]). Moreover,
it is known that the first eigenvalue of problem (1.1) is characterized in the variational
point of view by,

λ1 := inf
u∈W1,2

0 (Ω)\{0}

{∫
Ω |∇u|2 dx∫

Ω u2 dx

}
.

In [7], the authors investigated the asymptotic behavior of the spectrum and the existence
of multiple solutions of the following nonlinear eigenvalue problem−∆pu − ∆u = λu on Ω,

u = 0 on ∂Ω,
(1.2)

where −∆pu = −div(|∇u|p−2∇u) denotes the p-Laplace operator. In [7] it was shown
that for p > 2 there exist eigenvalue branches emanating from (λk, 0), and for 1 < p < 2
emanating from (λk, ∞). A nonlinear generalization of the spectrum of problem (1.1) is
the Fučik spectrum, given by the values (λ+, λ−) ∈ R+ × R+ for which the problem
−∆u = λ+u+ − λ−u− with Dirichlet boundary condition has nontrivial solution. The
values λ+ and λ− which are such that −∆u = λ+u+ − λ−u− has nontrivial solution
u ∈ W1,2

0 (Ω) will be called half-eigenvalues, while the corresponding solutions u will be
called half-eigenfunctions. The Fučik spectrum was introduced by S. Fučik [13] and N.
Dancer [10] in the 70’s, mainly motivated by the works of A. Ambrosetti and G. Prodi [2]
in connection with what is known in the literature as “asymmetric problems".

In this paper we consider the following nonlinear eigenvalue problem−∆pu − ∆u = λ+u+ − λ−u− on Ω,

u = 0 on ∂Ω.
(1.3)

The operator −∆p − ∆ appears in quantum field theory (see, [4]), where it arises in the
mathematical description of propagation phenomena of solitary waves. The main pur-
pose of this paper is to study the asymptotic behavior of the spectrum of problem (1.3) for
all p > 2 and 1 < p < 2. We intend to study problem (1.3) as a bifurcation in the Fučik
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eigenvalues from trivial solution if p > 2 and a bifurcation from infinity if 1 < p < 2.
In [6], the author has proved that the equation

Au − γu− = λu + N(λ, u) (1.4)

has global bifurcation branches emanating from the points (λ1
k, 0) and (λ2

k, 0) in R× L2(Ω)

for any k ≥ 1. In equation (1.4), the operator A : D(A) ⊂ L2(Ω) → L2(Ω) is an un-
bounded self-adjoint operator with compact resolvent and with eigenvalues λ1 ≤ λ2 ≤
. . . , repeated according to their multiplicity, and γ ∈ R+ satisfies 0 < γ < min{λk −
λk−1, λk+1 − λk} (k ≥ 2) and N(λ, u) = o(∥u∥) for u near zero uniformly on bounded λ

intervals. The points λ1
k and λ2

k are called split eigenvalues of the operator A − γ(·)− and
their existence was proved by B. Ruf in [5]. Our work is inspired by the work of [6]. In the
present article, the point (λ1

k, 0) will be a bifurcation point for positive solutions and the
point (λ2

k, 0) will be a bifurcation point for negative solutions of problem (1.3).
A similar structure as (1.4) was proved in [8] concerning bifurcation problems for

Pucci’s operators. More precisely in [8], the authors studied the following problem as
a bifurcation problem from the trivial solution−M+

λ,Λ(D2)u = µu + f (u) on Ω,

u = 0 on ∂Ω,
(1.5)

(respectively M−
λ,Λ) where Ω is a bounded regular domain, and M±

λ,Λ are the extremal
Pucci’s operators with parameters 0 < λ ≤ Λ. It is shown that bifurcation occurs form the
“half-eigenvalues" µ+

k and µ−
k .

Our main results are: let γ ∈ R+ that satisfies 0 < γ < min{λk − λk−1, λk+1 − λk},
k ≥ 2

• For p > 2, we obtain bifurcation branches emanating from the points (λ1
k, 0) and

(λ2
k, 0) in R× L2(Ω) for the operator −∆p − ∆ − γ(·)−, where λ1

k and λ2
k are the split

eigenvalues of −∆ − γ(·)−,

• For 1 < p < 2, we obtain bifurcation branches emanating from the points (λ1
k, ∞)

and (λ2
k, ∞) in R × L2(Ω) for the operator −∆p − ∆ − γ(·)−.

This article is organized as follows. In section 2, we present the Fučik spectrum of problem
(1.3) and in section 3 we show that are solutions branches of problem (1.3) that bifurcate
from the Fučik eigenvalues of problem (2.2). In section 3.3, we discuss bifurcation from
infinity of problem (1.3). For a further discussion on this topic, we refer the interested
reader to the work of [8] and the references therein.
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We recall that if 1 < p < q, then Lq(Ω) ⊂ Lp(Ω) and as a consequence, one has W1,q
0 (Ω) ⊂

W1,p
0 (Ω). In what follows, we denote by ∥.∥1,p and ∥.∥2 the norms on W1,p

0 (Ω) and L2(Ω)

defined respectively by

∥u∥1,p =

(∫
Ω
|∇u|p dx

) 1
p

and ∥u∥2 =

(∫
Ω
|u|2 dx

) 1
2

.

2 Fučik spectrum and nonlinear spectrum

An eigenvalue λ ∈ R of the quasi-linear elliptic operator −∆p − ∆ on Ω is such that the
following problem −∆pu − ∆u = λu on Ω,

u = 0 on ∂Ω
(2.1)

has a nontrivial solution for p ∈ (1, ∞)\{2}. We denote by Σ the spectrum of problem
(2.1). The Fučik spectrum of −∆ on Ω with Dirichlet boundary conditions is defined as
the set S(λ+,λ−) of pairs (λ+, λ−) ∈ R2 such that the problem−∆u = λ+u+ − λ−u− on Ω,

u = 0 on ∂Ω
(2.2)

has a nontrivial solution. Then, the Fučik spectrum of −∆p −∆ on Ω with Dirichlet bound-
ary conditions is defined as the set Σ(λ+,λ−) of pairs (λ+, λ−) ∈ R2 such that the problem−∆pu − ∆u = λ+u+ − λ−u− on Ω,

u = 0 on ∂Ω
(2.3)

has a nontrivial solution for p ∈ (1, ∞)\{2}. Clearly Σ(λ+,λ−) generalizes the notion of the
spectrum of problem (2.1), since Σ consists of all values λ ∈ R such that problem (2.3) for
λ+ = λ− = λ has a nontrivial solution. Here we write u± = max{±u, 0} in Ω, where
u+ and u− denote respectively the positive and the negative part of u. We also recall that
u = u+ − u−.

2.1 Spectrum of problem (2.3)

Definition 2.1. We say that u ∈ W1,p
0 (Ω) (if p > 2 ) or u ∈ W1,2

0 (Ω) (if 1 < p < 2 ) with
u ̸≡ 0, λ± ∈ R, is a weak solution of (2.3) if and only if∫

Ω
|∇u|p−2∇u · ∇φ dx +

∫
Ω
∇u · ∇φ dx = λ+

∫
Ω

u+φ dx − λ−

∫
Ω

u−φ dx (2.4)
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for all φ ∈ W1,p
0 (Ω) (if p > 2 ), φ ∈ W1,2

0 (Ω) (if 1 < p < 2 ).

The function u is called an half-eigenfunction associated with the pair (λ+, λ−) ∈ R2.

Remark 2.2. For λ+ ≤ λ1 and λ− ≤ λ1, equation (2.3) has only zero solution.

2.2 Invertibility property

Lemma 2.3. Let p > 2. Then operator −∆p − ∆ − γ(·)− is a global homeomorphism between
W1,p

0 (Ω) and its dual space for a fixed γ ≥ 0.

For the proof of this lemma, we need the following lemma (see [12] for a proof).

Lemma 2.4. Let p > 2. Then there exist two positive constants c1, c2 such that, for all x1, x2 ∈
Rn, we have :

(a) (x2 − x1) · (|x2|p−2x2 − |x1|p−2x1) ≥ c1|x2 − x1|p

(b)
∣∣|x2|p−2x2 − |x1|p−2x1

∣∣ ≤ c2(|x2|+ |x1|)p−2|x2 − x1|

Proof of Lemma 2.3. Define the quasi-linear operator M : W1,p
0 (Ω) → W−1,p′(Ω) (with

1/p + 1/p′ = 1) by

⟨Mu, v⟩ =
∫

Ω
∇u · ∇v dx +

∫
Ω
|∇u|p−2∇u · ∇v dx − γ

∫
Ω

u−vdx for all u, v ∈ W1,p
0 (Ω).

To show that −∆p − ∆ − γ(·)− is a homeomorphism, it is enough to show that M is a
continuous strongly monotone operator, (see [9, Corollary 2.5.10]).
For p > 2, for all u, v ∈ W1,p

0 (Ω), by (a), we get

⟨Mu −Mv, u − v⟩ =
∫

Ω
|∇(u − v)|2dx +

∫
Ω

(
|∇u|p−2∇u − |∇v|p−2∇v

)
· ∇(u − v) dx

− γ
∫

Ω
(u− − v−)(u − v)dx

≥
∫

Ω
|∇(u − v)|2dx + c1

∫
Ω
|∇(u − v)|pdx − γ

∫
Ω
(u− − v−)(u − v)dx

≥
∫

Ω
|∇(u − v)|2dx + c1

∫
Ω
|∇(u − v)|pdx

≥ c1∥u − v∥p
1,p.

Thus M is a strongly monotone operator. We claim that M is a continuous operator from
W1,p

0 (Ω) to W−1,p′(Ω). Indeed, assume that un → u in W1,p
0 (Ω). We have to show that

∥Mun −Mu∥W−1,p′ (Ω)
→ 0 as n → ∞. Using (b), Hölder’s inequality and the Sobolev
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embedding theorem, one has

|⟨Mun −Mu, v⟩| ≤
∫

Ω

∣∣∣|∇un|p−2∇un − |∇u|p−2∇u
∣∣∣ |∇v|dx +

∫
Ω
|∇(un − u)||∇v|dx

+
∫

Ω
γ|u−

n − u−||v|dx

≤ c2

∫
Ω
(|∇un|+ |∇u|)p−2 |∇(un − u)||∇v|dx +

∫
Ω
|∇(un − u)||∇v|dx

+
∫

Ω
γ|un − u||v|dx

≤ c2

(∫
Ω
(|∇un|+ |∇u|)p dx

)(p−2)/p (∫
Ω
|∇(un − u)|pdx

)1/p (∫
Ω
|∇v|pdx

)1/p

+ c3∥un − u∥1,2∥v∥1,2

≤ c4(∥un∥1,p + ∥u∥1,p)
p−2∥un − u∥1,p∥v∥1,p + c5∥un − u∥1,p∥v∥1,p.

Thus ∥Mun −Mu∥W−1,p′ (Ω)
→ 0, as n → +∞, and hence M is a homeomorphism.

3 Bifurcation results

Here we show bifurcation results from trivial solutions and from infinity of problem (2.1)
for p > 2 and 1 < p < 2 respectively.

3.1 Preliminary results toward the bifurcation results

Let p > 2, then for u ∈ W1,p
0 (Ω), we have

−∆pu − ∆u = λ+u+ − λ−u− ⇔ −∆pu − ∆u − (λ+ − λ−)u− = λ+u.

We fix γ = λ+ − λ− > 0 and we consider λ := λ+ as a parameter of the equation−∆pu − ∆u − γu− = λu on Ω,

u = 0 on ∂Ω.
(3.1)

Using Lemma 2.3, we write equation (3.1) in the following form:

u = λ(−∆)−1u +
{
(−∆p − ∆ − γ(·)−)−1 − (−∆)−1

}
(λu), (3.2)

where we consider

(−∆p − ∆ − γ(·)−)−1 : L2(Ω) ⊂ W−1,p′(Ω) → W1,p
0 (Ω) ⊂⊂ L2(Ω),

and
(−∆)−1 : L2(Ω) ⊂ W−1,2(Ω) → W1,2

0 (Ω) ⊂⊂ L2(Ω).
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So, for p > 2 the mapping

(−∆p − ∆ − γ(·)−)−1 − (−∆)−1 : L2(Ω) ⊂ W−1,p′(Ω) → W1,p
0 (Ω) ⊂⊂ L2(Ω)

is a compact mapping thanks to the Rellich-Kondrachov theorem. For simplicity, we write
equation (3.2) as follows

u = λAu + Tλ(u), (3.3)

with Au = (−∆)−1 and Tλ(u) =
{
(−∆p − ∆ − γ(·)−)−1 − (−∆)−1} (λu).

The L2(Ω) space with norm ∥ · ∥2 admits the orthogonal decomposition

L2(Ω) = [ek]⊕ [ek]
⊥, (3.4)

where ek is the normalized k-th eigenfunction associated to a simple eigenvalue λk of the
Dirichlet Laplace operator (see [5]), and [ek] denotes the eigenspace of λk. In view of (3.4),
we set Hk = [ek]

⊥ and Ek = [ek] for simplicity. An element of u ∈ L2(Ω) in (3.4) will be
seen as u = αek + v, with α ∈ R and v ∈ Hk.

The following result was obtained by B. Ruf in [5]. If γ ≥ 0 satisfies

0 < γ < min{λk − λk−1, λk+1 − λk}, (3.5)

then the following nonlinear eigenvalue problem

−∆u − γu− = λu,

has a unique split eigenvalue (λ1
k, λ2

k) ∈ [λk, λk+1]× [λk, λk+1] of −∆−γ(·)− and uniquely
determined eigenfunctions v1

k, v2
k in L2(Ω) such that

−∆vi
k − γ(vi

k)
− = λi

kvi
k, i = 1, 2.

For γ = 0 the k-th split eigenvalue reduces to the eigenvalue λk and v1
k, v2

k to the eigen-
functions ek, −ek respectively.

Consider −∆u − γu− = λu on Ω,

u = 0 on ∂Ω, with γ > 0.
(3.6)

We say that u ∈ W1,2
0 (Ω) with u ̸≡ 0 is a weak solution of (3.6) if and only if∫

Ω
∇u · ∇v dx − γ

∫
Ω

u−v dx = λ
∫

Ω
uv dx, (3.7)

for all v ∈ W1,2
0 (Ω).
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Remark 3.1. Suppose that u is an eigenfunction associated to λ in (3.7). Then αu is also an
eigenfunction associated to λ for α > 0.

From this remark, we aim to show that problem (3.1) has bifurcation branches emanat-
ing from the points (λ1

k, 0) and (λ2
k, 0) in R × L2(Ω) in the direction α > 0 when p > 2.

In what follows, we assume that (3.5) holds. Let η := 1
2 min{|(ek, v1

k(γ))2|, |(ek, v2
k(γ))2|} >

0, and define for ρ ∈ R, ρ > 0,

K+
ρ,ηK+
ρ,ηK+
ρ,η(γ) := {(λ, u) ∈ R × L2(Ω) : |λ − λ1

k(γ)| < ρ, (ek, u)2 > η∥u∥2},

K−
ρ,ηK−
ρ,ηK−
ρ,η(γ) := {(λ, u) ∈ R × L2(Ω) : |λ − λ2

k(γ)| < ρ, (ek, u)2 < −η∥u∥2},

where (·, ·)2 denotes the L2(Ω) inner product. Let

Bρ := {(λ, u) ∈ R × L2(Ω) : (|λ|2 + ∥u∥2
2)

1/2 < ρ}.

We see that both K+
ρ,ηK+
ρ,ηK+
ρ,η(γ) and KKK−

ρ,η(γ) are two disjoints convex cones.
For γ > 0 fixed, let Σγ denote the closure of the set of nontrivial solutions of problem
(3.1). The following lemma localizes the possible solutions of equation (3.1). We refer to
[11, Lemma 1.24] for similar results.

Lemma 3.2. There exists ρ0 > 0 such that for all 0 < ρ < ρ0 :(
Σγ\{(λ1

k, 0)} ∩ Bρ

)
⊂ K+

ρ,ηK+
ρ,ηK+
ρ,η(γ).

If (λ, u) ∈
(
Σγ\{(λ1

k, 0)} ∩ Bρ

)
, then u = αek + v, where |α| > η∥u∥2, and |λ − λ1

k| =

o(1), v = o(α) for α near zero. Moreover α > 0. The same result holds for K−
ρ,ηK−
ρ,ηK−
ρ,η(γ).

Proof. Suppose by contradiction that there is no ρ0 as in Lemma 3.2. Then there exist
two sequences ρn and (λn, un) ∈

(
Σγ\{(λ1

k, 0)} ∩ Bρn

)
such that ρn → 0, |λn − λ1

k| ≤ ρn,
un → 0 and |(ek, un)2| ≤ η∥un∥2 as n → ∞. Since un ̸≡ 0, we introduce the following
change of variable ūn = un/∥un∥2 in the following equation

−∆pun − ∆un − γ(un)
− = λnun.

Then it follows that −∥un∥p−1
2 ∆pūn − ∆ūn − γ(ūn)− = λnūn, for p > 2. Let µ ∈ ϱ(−∆)

(the resolvent set of −∆), hence

ūn = (−∆ − µ)−1[(λn − µ)ūn + γ(ūn)
− + ∥un∥p−1

2 ∆pūn].

Using the fact that (−∆ − µ)− is compact, then for a subsequence, ūn → ū in L2(Ω) as
n → ∞, and with the continuity of ∆p we find that

ū = (−∆ − µ)−1[(λ1
k − µ)ū + γ(ū)−],
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since λn → λ1
k and un → 0 as n → ∞. This implies that ū = v1

k (or possibly ū = v2
k if

λ1
k = λ2

k). Thus we get 2η ≤ |(ek, ū)| ≤ η since |(ek, un)2| ≤ η∥un∥2. This is a contradiction.
Hence there exists ρ0 as above and for 0 < ρ < ρ0, if (λ, u) ∈

(
Σγ\{(λ1

k, 0)} ∩ Bρ

)
, then

u = αek + v with |α| > η∥u∥2. We have ∥v∥2 ≤ |α|+ ∥u∥2 ≤ |α|+ |α|/η and |λ − λ1
k| <

ρ → 0. So, for α near zero, we have |λ − λ1
k| = o(1) and v = o(α).

Remark 3.3. The ρ0 in Lemma 3.2 can be chosen indepently of γ ∈ [0, γ̄], where γ̄ satisfies (3.5)
if we set

η :=
1
2

inf
γ∈[0,γ̄]

{|(ek, v1
k(γ))2|, |(ek, v2

k(γ))2|}.

We employ a Lyapunov-Schmidt method, that is, we write equation (3.3) as equivalent
system in R× Hk and R× Ek. We denote by Pk and Qk the orthogonal projections onto Hk

and Ek respectively, that is Pk(αek + v) = v and Qk(αek + v) = αek. We write equation (3.3)
in R × Hk and R × Ek as v = λAv + Pk(Tλ(αek + v)),

αek = λαAek + Qk(Tλ(αek + v)).
(3.8)

This is equivalent to
v = λAv + Pk(Tλ(αek + v)) (3.9)

and
α =

αλ

λk
+ (Qk(Tλ(αek + v)), ek)2. (3.10)

We set now,

Rγ(α, λ, v) =
αλ

λk
+ (Qk(Tλ(αek + v)), ek)2 − α + λ,

Sγ(α, λ, v) = (λ − λ1
k)Av + Pk(T̃λ(αek + v)) (3.11)

We then define
ψγ(α, λ, v) := (λ − Rγ(α, λ, v), v − Sγ(α, λ, v)).

Then the solutions of equation (3.3) are the zeros of ψγ and conversely. The trivial solu-
tions of (3.3) correspond to the solutions (0, λ, 0), λ ∈ R of equations (3.10) and (3.11).
Since ψγ is continuous and compact with respect to (λ, v) for fixed α > 0 , for fixed α it
has the appropriate form for the use of the theory of Leray-Schauder degree.

3.2 Bifurcation from trivial solutions

Here, we prove our bifurcation result.
Let σ(−∆ − γ(·)−) := {λ ∈ R : ∃u ̸= 0 in L2(Ω) : − ∆u − γ(u)− = λu}.
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Theorem 3.4. There exists a solution branch Cλ1
k

in Σγ such that (λ1
k, 0) ∈ Cλ1

k
. Then Cλ1

k
either

(a) meets infinity in R × L2(Ω), or

(b) meets (µ, 0), where µ ∈ σ(−∆ − γ(·)−)\{λ1
k, λ2

k}.

The analogous statement holds for Cλ2
k
.

This bifurcation result is explained by Figure 1 below.

Figure 1: Bifurcation from trivial solutions.
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Proof. Let Uγ = {(λ, v) ∈ R × Hk /|λ − λ1
k(γ)| < ε1, ϱ1 > ∥v∥}, where γ ∈ [0, γ̄]

with γ̄ arbitrary but fixed and satisfying 0 < γ̄ < λk+1 − λk. By Lemma 3.2 all the
nontrivial solutions (α, λ, v) of equations (3.9) and (3.10) near (0, λ1

k, 0) satisfy (λ, v) ∈
Uγ if |α| < α1 provided that α1, ε1, ϱ1 are sufficiently small and γ ∈ [0, γ̄]. Therefore
ψγ(α, λ, v) ̸= 0 on ∂Uγ for 0 < α < α1 and γ ∈ [0, γ̄]. Consequently the Leray-Schauder
degree deg(ψγ(α, λ, v), Uγ, (0, 0)) is well defined for 0 < |α| < α1. Since λ1

k is contin-
uously dependent on γ (see [5, Lemma 2.4],

⋃
[0,γ̄]

{γ} × Uγ is a bounded open sets in

[0, γ̄]× R × Hk. By the homotopy invariance of the Leray-Schauder degree, one has

deg(ψγ(α, λ, v), Uγ, (0, 0)) = c±, for 0 < |α| < α1.

To evaluate c±, we consider the family of operators Θτ defined as

Θτ(α, λ, v) :=
(

λ − (
α

λk
+ 1)λ − τ

λk
(Qk(Tλ(αek + v)), ek)2 + α, v − τSγ(α, λ, v)

)
for τ ∈ [0, 1]. As above, we can assume that Θτ(α, λ, v) ̸= 0 on ∂Uγ for τ ∈ [0, 1] and
α ∈ (−α1, α1). Using again the homotopy invariance of the degree implies that

deg(Θτ(α, λ, v), Uγ, (0, 0)) = c±, for 0 < |α| < α1 and τ ∈ [0, 1]. (3.12)

Therefore to evaluate c±, it suffices to take τ = 0, and

Θ0(α, λ, v) =
(

λ − (
α

λk
+ 1)λ + α, v

)
.

The only zero that Θ0 possesses is v = 0, λ = λk. We note that Θ0(α, λ, v) is an isomor-
phism on R × Hk, and hence

c± = ind(Θ0(α, λ, v), (λk, 0)) = ±1.

We observe that

ind(Θ0(α, λ, v), (λk, 0)) = deg(Θ̂0(α, λ, v), Uγ, (0, 0)) = deg(Θ0(α, λ, v), Uγ, (−α, 0)),
(3.13)

where Θ̂0(α, λ, v) =
(

λ − ( α
λk

+ 1)λ + α, v
)

, which is the homogeneous (in α) linear oper-

ator corresponding to Θ0(α, λ, v). For α ̸= 0, Θ̂0(α, λ, v) is an isomorphism and then

deg(Θ̂0(α, λ, v), Uγ, (−α, 0)) = ind(Θ̂0(α, λ, v), (−α, 0)) = ind(Θ̂0(α, λ, v), (0, 0)). (3.14)

Since
(

λ − γ( α
λk

+ 1)λ + α, v
)

has no characteristic values γ in (0, 1) for α < 0 and one
characteristic value in the interval (0, 1) for α > 0, the theorem on change on index and
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relation (3.12) and (3.14) imply that c± = ±1. On the other hand, by Lemma 3.2 we have
that

(−∆p − ∆)(αek + v)− γ̄(αek + v)− = λ(αek + v), v ∈ Hk

has no solution for −α1 < α < 0 and |λ − λ1
k(γ̄)| < ρ0. Since this equation is equivalent to

equation (3.9), we infer to

deg(ψγ̄(α, λ, v), Uγ̄, (0, 0)) = 0, for − α < α < 0.

With this jump in the degree, we obtain the existence of the solution branch Cλ1
k
. The

branch Cλ2
k

is obtained similarly.

3.3 Bifurcation from infinity

Here, we prove a bifurcation from infinity result. As in [7], we introduce the following

change of variable: for u ∈ W1,2
0 (Ω), u ̸= 0, we set v = u/∥u∥2− 1

2 p
1,2 for all 1 < p < 2. We

have ∥v∥1,2 = 1

∥u∥
1− 1

2 p
1,2

and

|∇v|p−2∇v =
1

∥u∥(2−
1
2 p)(p−1)

1,2

|∇u|p−2∇u.

Introducing this change of variable in (2.4), we find that,

∥u∥(2−
1
2 p)(p−2)

1,2

∫
Ω
|∇v|p−2∇v · ∇φ dx +

∫
Ω
∇v · ∇φ dx = λ+

∫
Ω

v+φ dx − λ−

∫
Ω

v−φ dx

(3.15)
for every φ ∈ W1,2

0 (Ω). But, on the other hand, we have

∥v∥p−4
1,2 =

1

∥u∥(1−
1
2 p)(p−4)

1,2

=
1

∥u∥(2−
1
2 p)(p−2)

1,2

.

Consequently it follows that equation (3.15) is equivalent to

∥v∥4−p
1,2

∫
Ω
|∇v|p−2∇v · ∇φ dx +

∫
Ω
∇v · ∇φ dx = λ+

∫
Ω

v+φ dx − λ−

∫
Ω

v−φ dx, (3.16)

for every φ ∈ W1,2
0 (Ω). This leads to the following nonlinear eigenvalue problem (1 <

p < 2) {
−∥v∥4−p

1,2 ∆pv − ∆v = λ+v+ − λ−v− in Ω,
v = 0 on ∂Ω.

(3.17)

Remark 3.5. With this transformation, we have that the pair (λ1
k, ∞) or (λ2

k, ∞) is a bifurcation
point for the problem (1.3) if and only if the pair (λ1

k, 0) or (λ2
k, 0) is a bifurcation point for the

problem (3.17).
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For v ∈ W1,2
0 (Ω), we have

−∥v∥4−p
1,2 ∆pv − ∆v = λ+v+ − λ−v− ⇔ −∥v∥4−p

1,2 ∆pv − ∆v − (λ+ − λ−)v− = λ+v.

We fix γ = λ+ − λ− > 0 and we consider λ := λ+ as a parameter of the equation−∥v∥4−p
1,2 ∆pv − ∆v − γv− = λv on Ω,

v = 0 on ∂Ω.
(3.18)

Let us consider a small ball Br := { w ∈ W1,2
0 (Ω) : ∥w∥1,2 < r }, and consider the

operator
A := −∥ · ∥4−p

1,2 ∆p − ∆ − γ(·)− : W1,2
0 (Ω) → W−1,2(Ω).

Proposition 3.6. Let 1 < p < 2. There exists r > 0 such that the mapping
A : Br ⊂ W1,2

0 (Ω) → W−1,2(Ω) is invertible, with a continuous inverse.

We first remark that for γ > 0, −γ(u− − v−, u − v)2 ≥ 0. Indeed, we have

(u− − v−, u − v)2 =
∫

Ω
(u− − v−)(u − v)dx

=
∫

Ω
(u− − v−)(u+ − v+)dx −

∫
Ω
|u− − v−|2dx

=
1
4

[
(|u| − |v|)2 − ∥u − v∥2

2

]
− ∥u− − v−∥2

2 ≤ 0,

using the definition of u± and v±.

Proof of Proposition 3.6. In order to prove that the operator A is invertible with a contin-
uous inverse, it is enough to prove that A is continuous strongly monotone operator. We
show that there exists δ > 0 such that

⟨A(u)− A(v), u − v⟩ ≥ δ∥u − v∥2
1,2, for u, v ∈ Br(0) ⊂ W1,2

0 (Ω)

with r > 0 sufficiently small.
Indeed, using that −∆p is strongly monotone on W1,p

0 (Ω) on the one hand and the Hölder
inequality on the other hand, we have

⟨A(u)− A(v), u − v⟩ = ∥∇u −∇v∥2
2 +

(
∥u∥4−p

1,2 (−∆pu)− ∥v∥4−p
1,2 (−∆pv), u − v

)
2

− γ(u− − v−, u − v)2

= ∥u − v∥2
1,2 + ∥u∥4−p

1,2

(
(−∆pu)− (−∆pv), u − v

)
2

+
(
∥u∥4−p

1,2 − ∥v∥4−p
1,2

) (
−∆pv, u − v

)
2 − γ(u− − v−, u − v)2

≥ ∥u − v∥2
1,2 −

∣∣∣∥u∥4−p
1,2 − ∥v∥4−p

1,2

∣∣∣ ∥∇v∥p−1
p ∥∇(u − v)∥p

≥ ∥u − v∥2
1,2 −

∣∣∣∥u∥4−p
1,2 − ∥v∥4−p

1,2

∣∣∣C∥v∥p−1
1,2 ∥u − v∥1,2. (3.19)
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Now, we obtain by the Mean Value Theorem that there exists θ ∈ [0, 1] such that∣∣∣∥u∥4−p
1,2 − ∥v∥4−p

1,2

∣∣∣ =

∣∣∣∣ d
dt

(
∥u + t(v − u)∥2

1,2

)2− 1
2 p

|t=θ(v − u)
∣∣∣∣

=

∣∣∣∣(2 − 1
2

p)
(
∥u + θ(v − u)∥2

1,2

)1− 1
2 p

2 (u + θ(v − u), v − u)1,2

∣∣∣∣
≤ (4 − p)∥u + θ(v − u)∥2−p

1,2 ∥u + θ(v − u)∥1,2∥u − v∥1,2

= (4 − p)∥u + θ(v − u)∥3−p
1,2 ∥u − v∥1,2

≤ (4 − p) ((1 − θ)∥u∥1,2 + θ∥v∥1,2)
3−p ∥u − v∥1,2

≤ (4 − p)r3−p∥u − v∥1,2.

Hence, continuing with the estimate of equation (3.19), we get

⟨A(u)− A(v), u − v⟩ ≥ ∥u − v∥2
1,2(1 − (4 − p)r3−pCrp−1) = ∥u − v∥2

1,2(1 − C′r2),

and thus the claim, for r > 0 small enough. Hence, the operator A is strongly monotone
on Br and it is continuous, and hence the claim follows.

Using Proposition 3.6, we write equation (3.18) as the following form:

v = λ(−∆)−1v +
{
(−∥ · ∥4−p

1,2 ∆p − ∆ − γ(·)−)−1 − (−∆)−1
}
(λv), (3.20)

where we consider

(−∥ · ∥4−p
1,2 ∆p − ∆ − γ(·)−)−1 : L2(Ω) → W1,2

0 (Ω) ⊂⊂ L2(Ω),

and
(−∆)−1 : L2(Ω) ⊂ W−1,2(Ω) → W1,2

0 (Ω) ⊂⊂ L2(Ω).

So, for 1 < p < 2 the mapping

(−∥ · ∥4−p
1,2 ∆p − ∆ − γ(·)−)−1 − (−∆)−1 : L2(Ω) ⊂ W−1,2(Ω) → W1,2

0 (Ω) ⊂⊂ L2(Ω)

is a compact mapping thanks to the Rellich-Kondrachov theorem.

For γ > 0 fixed, let Pγ denote the closure of the set of nontrivial solutions of problem
(3.18). The following lemma localizes the possible solutions of equation (3.18).

Lemma 3.7. There exists ρ0 > 0 such that for all 0 < ρ < ρ0 :(
Pγ\{(λ1

k, 0)} ∩ Bρ

)
⊂ K+

ρ,ηK+
ρ,ηK+
ρ,η(γ).

If (λ, u) ∈
(
Pγ\{(λ1

k, 0)} ∩ Bρ

)
, then u = αek + v, where |α| > η∥u∥2, and |λ − λ1

k| =

o(1), v = o(1) for α near zero. Moreover α > 0. The same statement hold for K−
ρ,ηK−
ρ,ηK−
ρ,η(γ).
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The proof of this lemma is similar to the proof of Lemma 3.2 and it is left to the reader.

Theorem 3.8. There exists a solution branch Sλ1
k

in Pγ such that (λ1
k, 0) ∈ Sλ1

k
. Then Sλ1

k
either

(a) meets infinity in R × L2(Ω), or

(b) meets (µ, 0), where µ ∈ σ(−∆ − γ(·)−)\{λ1
k, λ2

k}.

The analogous statement holds for Sλ2
k
.

One can adapt the proof of Theorem 3.4 to this theorem. Theorem 3.8 can be illustrate
as in Figure 1, where the norm ∥u∥1,p in the y-axis has to be replaced by ∥u∥1,2.
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