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Game Theoretical Analysis of DAG-Ledgers
Backbone

Simone Galimberti1 and Maria Potop-Butucaru1

LIP6, UMR 7606 Sorbonne University - CNRS, 4 place Jussieu 75252 Paris Cedex 05,
France

Abstract. We study the rational behaviors of participants in DAG-
Based Distributed Ledgers. We analyze generic algorithms that encapsu-
late the main actions of participants in a DAG-based distributed ledger:
voting for a block, and checking its validity. Knowing that those actions
have costs, and validating a block gives rewards to users who participated
in the validation procedure, we study using game theory how strategic
participants behave while trying to maximize their gains. We consider
scenarios with different type of participants and investigate if there exist
equilibria where the properties of the protocols are guaranteed. The anal-
ysis is focused on the study of equilibria with trembling participants (i.e.
rational participants that can do unintended actions with a low proba-
bility). We found that in presence of trembling participants, there exist
equilibria where protocols properties may be violated.

Keywords: Blockchains, · Game Theory, · Directed Acyclic Graph.

1 Introduction

Blockchain and distributed ledger technologies, [2], have emerged as one of the
most revolutionary developments in recent years, with the goal of eliminating
centralised intermediaries and installing distributed trusted services. They facili-
tate trustworthy trades and exchanges over the Internet, power cryptocurrencies,
ensure transparency for documents, and much more. Traditionally, blockchain
systems maintain a continuously-growing list of ordered blocks that include one
or more transactions that have been verified by the members of the system,
called miners. Blocks are linked using cryptography and the order of blocks
in the blockchain is the result of a form of agreement among the system par-
ticipants. After the releasing of the most popular blockchains (e.g., Bitcoin or
Ethereum) with a specific focus on economical transactions their huge poten-
tial for various other applications became evident. However, quickly after their
release blockchains reached their limits in terms of throughput, blocksize and
unforeseen behaviors. Therefore, non academic research further concentrate in
proposing alternatives by improving some performance aspects but with non
zero costs either on security or throughput. One of these solutions extends the
blockchain to a DAG overlay and provide an ordering over all blocks and trans-
actions, and outputs a consistent set of accepted transactions. In the research
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along this line transactions are still organized on blocks. All these DAG-based
systems structure blocks in a Directed Acyclic Graph. Each block can include
several references to predecessors. The objective of this paper is to analyse from
the game theoretical point of view a generic backbone of that captures the char-
acteristics of existing DAG-based blockchains (e.g. Spectre [5], GhostDAG [6],
Phantom [7], IOTA [4] etc) into a unified framework.

It should be noted that the analysis of strategic behaviors in blockchains (see
[1] for an extended state of the art). To the best of our knowledge, no work has
been dedicated to analyze or discuss the rational behaviors among participants
in DAG-based blockchains. The only work proposed in the context of the IOTA
DAG ([3]) studies the attachment preferences.

In this paper we extract the backbone of a DAG-based blockchain we analyze
the behavior of rational participants. We show the different equilibria that exist
given different scenarios where other type of participants are present. We analyze
if the equilibria do satisfy the DAG-backbone invariants. Additionally, we used
the notion of “trembling hand”. The trembling hand can be viewed as a failure
of rational participants. With low probability, the player can tremble and do an
unintended action.

2 Model and Problem Definition

We consider a system composed of a finite and ordered set Π of n players, of
synchronous sequential players denoted by their index, namely Π= {1, . . . , n}.

Each participant has an internal state and proceeds in rounds, it is impor-
tant to note that users are not synchronized. Every user has an internal clock
that is different from the others so in every phase the transmission of blocks or
informations may have delay compared to the sending time of other participants
in the network. At the end of each round, the participant goes to the next round
and so on. A round is composed of three phases:

– A send phase: It is during the send phase that a participant can send a block
to the other participants. The block to send should be prepared during the
previous rounds. After the send phase, the participant goes to the delivery
phase.

– A delivery phase: during this phase, a participant collects from the network
blocks previously sent. We consider that participants have an unbounded
memory, i.e., they can store all blocks they collect. When a participant ef-
fectively collects a whole block and can process it, we say that it has delivered
the block, otherwise, even if part of the block is collected, it has not delivered
the block. The delivery phase has a finite and positive duration. The dura-
tion represents the time the participant plans to wait for collecting messages
sent. After its delivery phase, the participant goes to the compute phase.

– A compute phase: In compute phase, a participant uses all blocks it delivered
to update its local DAG and to prepare the block for the next round if it will
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issue one. After the compute phase, the participant goes to the send phase
of the next round.

Participants communicate by sending and receiving messages through a syn-
chronous network. We assume that each participant proceeds in rounds. A round
consists of three sequential phases, in order: the send, the delivery, and the com-
pute phases. The delivery phase has a fixed duration that allows collecting all
the messages sent by the participants. At the end of a round, a participant exits
from the current round and starts the next one. We assume the existence of a
reliable broadcast primitive (see Appendix for the formal definition).

When a participant i delivers a message, it knows the participant j that cre-
ated the message.
When a participant sends a message, other participants do not deliver the block
instantaneously, there is a message (transmission) delay or a transmission la-
tency. Let ∆ ≥ 0 be the maximum message delay between any two participants,
i.e., ∀i, j ∈ Π, if i sends a message to j at date (time) t, then at date t + ∆, j
has delivered the message.

– Synchronous Communication: In synchronous communication systems,
∆ is finite and known by the participants. If a participant broadcasts a block
at a time t, then at time t+∆, all participants have delivered the block.

Since the maximum delay ∆ is known, participants can use that information
in their execution; typically, they can match the duration of their delivery phase
with ∆ to ensure the reception of all blocks sent at the beginning of the round.

In a blockchain system, all participants do not necessarily have the same
behaviour. The first two types of participants are the classical types we can find
in the distributed systems’ literature: the correct and the Byzantine participants.
Both correct and Byzantine participants do not care about the costs of their
actions, nor the global execution of the system. For the sake of clarity and
consistency, we use the terminology obedient instead of correct.

A participant is obedient with respect to a protocol A if always follows pro-
tocol A.

A participant is Byzantine with respect to a protocol A if she can arbitrarily
deviate from protocol A.

A participant is rational if she is self-interested. It does an action instead of
another action if and only if doing so increases her expected gain.

A rational participant has preferences and takes actions to have her most pre-
ferred execution of the system, taking into account what the other participants
do. She does not necessarily want to hurt the system; she wants to benefit from
it. We now introduce two refinements of the rational participants: the strategic,
and the malicious participants. Having a property on the system’s executions,
one can know whether a given execution satisfies that property. In particular, a
property defines a partition on the executions of the system; in one hand, the
executions that satisfy the property and on the other hand, the executions that
do not satisfy the property.
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A participant is strategic with respect to a property P ifshe is rational, and
she prefers executions that satisfy P, i.e., she assigns a positive value to exe-
cutions where P is satisfied, and a negative value to executions where P is not
satisfied.

A strategic participant prefers the executions where the system achieves its
properties, but think about her own interest in the first place.

A participant is malicious with respect to a property Pif she is rational, and
it prefers executions that do not satisfy P, i.e., she assigns a positive value to
executions where P is not satisfied.

A malicious participant’s objective is to hurt the system. A malicious partici-
pant takes all actions she can to increase the chance of having a global execution
that does not satisfy the properties of the system.
Problem definition. We study the behaviour of strategic participants in a
DAG-based ledger. Each node in the network maintains locally a data-structure
Directed Acyclic Graph which is an extension of the traditional linear sequence
of blockchains. Each node of the DAG data-structure is a block containing one
or more transactions (in the case of IOTA for example each node in the DAG is
a single transaction). A block B ∈ contains the (i) identifier of the user which
built B, (ii) a transaction tr, (iii) a couple of hashes of parents blocks in the
DAG structure.

A DAG-based ledger verifies the following properties:

– DAG-Growth. For every user i given two different instants of time t2 > t1 it
follows that DAGt1i ⊆ DAG

t2
i , which means DAGt1i is a prefix of DAGt2i ;

– DAG-Uniformity. For every two users i, j, in the absence of new blocks ap-
pending, eventually DAGi = DAGj ;

– DAG-Liveness. If a correct user, i, appends a correct block B to DAGi, all
correct users, j, eventually append B to their own DAGj ;

– DAG-Validity. For any correct user, j, each block in DAGj is valid; it satisfies
a predefined validity predicate;

3 DAG-Based Ledger Backbone Protocol with Obedient
Users

We propose the backbone of a DAG-Based Ledger with only obedient partici-
pants and one correct issuer.

Algorithm 1: Issuer i Block B
1 Tips := select tips.(DAGi)
2 B := generate (Tips, tr)
3 DAGi:= update(DAGi,B)
4 Broadcast(< B >)
5 Wait ∆
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A selection tip algorithm is run by the function select tips(DAGi) (line 1 )
to select the tips to approve in the local DAGi, i.e., the protocol IOTA per-
form a random walker algorithm to select the best two tips, this procedure is
computational expensive compared to a randomized choice but the former has
many advantages: (i) Discourages lazy behaviour and encourages approving fresh
tips, (ii) continuously merges small branches into a single large branch, thus in-
creasing confirmation rate.(iii) In case of conflicts, kills off all but one of the
conflicting branches. Issuer i embedded (line 2 ) the block B with her own id,
the transaction tr and the hashes referring to the parents.

Finally the user updates her own DAGi (line 3 ) and broadcast (line 4 ) the
block to other users and wait a time ∆ to be sure that anyone receives the block.

Algorithm 2: Receiver i Block B
1 Upon receiving B :
2 DAGi:= update(DAGi,B)

We note that in this simply version of the protocol the user receive a block,
without checking the validity since it is guaranteed, then she updates her own
local DAGi. The following lemma proves that Algorithms 1 and 2 verify the
properties of a DAG-based ledger.

Lemma 1. Algorithms 1 and 2 verify DAG-Liveness, DAG-Uniformity, DAG-
Validity and DAG-Growth.

Proof. – DAG-Liveness: DAG-Liveness property is straightforward. Indeed,
every the user who receives a block, she will be append it since it is valid.

– DAG-Validity : Since there is no trembling issuer neither malicious partici-
pant each block is valid by construction.

– DAG-Uniformity : Assume by contradiction that DAGi 6= DAGj this means
that one the two user has a block in her own DAG that is not included in
the other tree. This is not possible, since we have a unique issuer who issues
the same blocks and broadcast to all users, so every users receive a valid
block and adds it to the DAG.

– DAG-Growth: Given two different instants of time t2 > t1 we have two cases:
no block is issued between t2 and t1, or some blocks are issued. In the first
case DAGt2i = DAGt1i , while if blocks are issued these are added to the
DAG since they are valid blocks and so DAGt1i ⊆ DAG

t2
i .

Remark 1. Note that in this simplified version we can not talk about Nash Equi-
librium since there are no strategic players, there is no game but only users who
follows prescribed instructions.

Remark 2. The case where the issuer produces only valid blocks is not interesting
from a game theoretical point of view because in that scenario there would not
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be the risk of updating the structure with invalid blocks. The most challenging
scenario is when an invalid block may be produced by every user even if obedient
or rational.

Due to space limitations we propose the backbone of a DAG-Based Ledger
with obedient participants and a trembling hand issuer in the Appendix.

4 DAG-Based Distributed Ledger Backbone with
Strategic Players

In this section we study the backbone of DAG-Based Distributed Ledgers con-
sidering strategic players. In this framework users will try to maximize their
own utility, so they may decide not to follow the protocol, i.e., we talk about
behaviours of users that may decide to make an action or not. For this reason
it is necessary now to introduce a system of reward and penalty to incentivate
players to behave correctly.

In the following we assume that when an invalid block is inserted, all partic-
ipants are punished by incurring in a cost κ. While a reward R, is given to the
participants when a block is produced.
We already presented before, the cost ccheck of checking validity, moreover an-
other action will be possible for users which will be able to communicate by
paying csend of sending a message in order to coordinate.
Additionally, we assume that the reward obtained when a block is produced is
smaller than the cost κ of producing an invalid block and the cost of checking is
greater than sending. That is,

κ > R > ccheck > csend > 0.

Note that when a block is produced, in protocols which allow communication
only the participants which sent a message are rewarded (and receive R).

4.1 Correct Issuer and No Communication between Users

In this section we consider the situation where the issuer is correct and strategic
users do not communicate with each other.

Algorithm 3: Issuer i Block B
1 Tips := select tips.(DAGi)
2 B := generate (Tips, tr)
3 Broadcast(< B >)
4 DAGi:= update(DAGi,B)
5 Wait ∆
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Algorithm 4: Strategic Receiver i Block B
1 Initialisation:

2 actioncheck :=∅
3 validValue:= false // validValue ∈{true,false}
4 Upon receiving B :

5 actioncheck← σcheck
i () // σcheck

i () ∈ {true,false} sets the action of

// checking or not the validity of the block

6 if actioncheck == false then
7 DAGi:= update(DAGi,B)

8 if actioncheck == true then
9 validValue ← isValid(B) // The execution of isValid (B) has a cost

// ccheck
10 if validValue == true

11 DAGi:= update(DAGi,B)

Strategic participants choice is represented in Algorithm 4 by dedicated vari-
able, namely, actioncheck. The action, initialized at a default value ∅ (line 2 ), can
take value from the set {false,true}. For participant i, the value of actioncheck

is set by calling respectively the functions σchecki (), returning its strategy (line
5 ). The strategy σchecki () determines if i, the receiving participant chooses to
check the validity of the proposal or not, which is a costly action.
When the issuer is correct no user will choose to check the validity (line 5 ) pay-
ing a cost ccheck.
It is not in her interest paying when they know for sure that the block is valid.

4.2 Trembling Issuer and No Communication between Users

In this section we consider the situation where the issuer is trembling and strate-
gic users do not communicate with each other.

Algorithm 5: Trembling Issuer i Block B
1 Tips := select tips.(DAGi)
2 B := generateTrembling (Tips, tr)
3 Broadcast(< B >)
4 DAGi:= update(DAGi,B)
5 Wait ∆

Algorithm 9 (see Appendix) is the same of Algorithm 4, but in this case the
issuer is trembling, so participants will actually choose to check the validity (line
8 ) or not. The choice will depend strictly on the relation between the reward
and the penalty, users decide if it is worth paying the cost of checking or not,
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while when the issuer was correct no one pay for double check the correctness of
the proposal.

Proposition 1. Participants will not check the validity if and only if κ <
ccheck/p+R.

Proof. First we prove that if the inequality holds players will not check the
validity:
If a strategic player does not check the validity of a block her average gain is
R − pκ, since she will always include the block in her own DAG and receives
the penalty of an invalid block with probability p. On the other hand if the user
checks, her average gain is (1 − p)R − ccheck, she will always pay the cost of
checking but getting the reward only when the block is valid and so added to
the DAG. Not checking is the best strategy if R−pκ > (1−p)R−ccheck, solving
this inequality we get κ < ccheck/p+R.
Now we prove that if users are not checking the inequality holds:
If a strategic player decides not to check this means that the utility is grater
compared to the action of checking: R − pκ > (1 − p)R − ccheck which solved
gives κ < ccheck/p+R.

Lemma 2. Algorithms 5 and 9 verify DAG-Uniformity, DAG-Growth and DAG-
Liveness. DAG-Validity holds if κ ≥ ccheck/p+R.

Proof. – DAG-Validity : When a trembling user is present each block may be
checked or not, if κ ≥ ccheck/p + R holds by Proposition 1 only valid block
will be appended while invalid block discarded. Otherwise also invalid blocks
will be added.

– DAG-Liveness: When a block is issued there are two possible scenarios. The
users do not check the validity of the block, if κ < ccheck/p + R holds,
otherwise the block is checked. In both cases valid blocks will be appended.

– DAG-Uniformity : Note that by hypothesis at time t0 the local DAGp of each
user p is initialized with the same genesis block.
• Base case: Let B be the first block issued by q after t0. When the in-

equality of Proposition 1 does not hold if the block is checked and is
valid, then B is appended to the genesis block. Otherwise if the block is
checked and it is invalid no user will append it to her own DAG. If the
inequality of Proposition 1 holds the block will be appended in any case.
Let DAGp the tree of p at time t0 + ∆. By ∆ time any users delivered
B by the broadcast primitive, hence the DAG of any process is identical
to DAGp. It follows that δ time after the first proposal, any two correct
processes i and j verify the property: DAGi = DAGj .

• Inductive case: Suppose the lemma is true after a sequence of h blocks
and prove it holds for the h + 1 block. Let t be the time when the h
block is proposed. By inductive hypothesis, we have that by time t+∆,
all users have the same DAG. Let t′(t′ ≥ t + ∆) be the time when the
h+1 block is invoked by q. Let DAGq be the local tree of q. By inductive
hypothesis, by time t′, all the other users have the same local DAG. Two
cases have to be considered:
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∗ The block proposed at time t′ is valid : at time t′ the user checks (or
does not check) the validity of the block. Since by assumption of the
inductive case they have the same tree as q, then by time t′ +∆, B
is appended to the DAG. It follows that any two honest users i and
j verify the property: DAGi = DAGj .

∗ The block proposed at time t′ is invalid: in this case if users check
the validity, the block B is not appended, otherwise they update the
local DAG.

– DAG-Growth: Given two different instants of time t2 > t1 we have two cases:
no block is issued between t2 and t1, or some blocks are issued. In the first
case DAGt2i = DAGt1i , while when blocks are issued if they are checked (or
not checked and added) and are valid these are added to the DAG and so
DAGt1i ⊆ DAG

t2
i .

4.3 Trembling Issuer and Communication between Users

Now we add the broadcast of the opinion of users about the validity of the block
B. After the checking phase each user will receive the decisions of the others
and according to a simple majority rule she will add or not the block to the
DAGi. To ensure that the reward covers the costs of checking and sending in
this setting we assume that (1− p)(R − csend)− ccheck > 0, that is, the reward
covers the costs. We also note that it is better for the participants to send (resp.
not to send) without checking than checking and sending (resp. not sending)
irrespective to the block validity; that would mean incurring a cost −ccheck for
nothing. It is also not in their best interest to check the validity of the proposal
and vote if the proposal is invalid, that would mean increasing the chances of
producing an invalid block and incurring a cost −κ.

Strategic participants may decide to check the validity of the block B paying
a cost ccheck (line 8 ), in the same way they can also decide if sending or not the
validity of the block paying an additional cost csend (line 11 ). In this version of
the protocol users can communicate and for this purpose two more variables are
needed. timerVote (line 2 ) is a timer which allows a user to receive every vote
expressed by the others, this is strictly required since every participants has his
own time clock and maybe some delay is present between votes’ arrival. From
line 14 to line 17 the receiver must wait ∆ and stores the votes in the vector
votes which were initialised as empty.

In the Compute phase each user receives the opinions of the others and insert
the block B according to the majority.

Due to space limitation the correctness of Algorithm 6 is proposed in the
Appendix.
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Algorithm 6: Receiver i Block B (Strategic Participant)

1 Initialisation:
2 timerVote := 0 // Timer for receiving votes

3 votes[] := {∅,...,∅} // Vector storing the votes about

// the validity of a block

4 actioncheck :=∅
5 actionsend :=∅
6 validValue:= false // validValue ∈{true,false}
7 Upon receiving B :

8 actioncheck← σcheck
i () // σcheck

i () ∈ {true,false} sets the action of

// checking or not the validity of the block

9 if actioncheck == true then
10 validValue ← isValid(B) // The execution of isValid (B) has a

cost

// ccheck
11 actionsend← σsend

i (validV alue) // σsend
i () ∈ {true,false} sets the

// action of sending or not the validity of the block

12 if actionsend == true then
13 broadcast (< validV alue >) // The execution of the broadcast

has

// a cost csend

14 set timerVote to ∆
15 while TimerVote not expires do
16 upon receiving < validV aluej > :
17 votesj ← validV aluej // The participants collect all

// the opinions on the validity of the block

18 Compute phase:
19 if |< votes >== true |>|< votes >| /2
20 DAGi:= update(DAGi,B)

5 Game Theoretical Analysis for Trembling Issuer and
Rational and Byzantine Users

In this section we describe the game, i.e., the possible actions of players,the
game tree and finally the utility.
Action space. After receiving the proposal block, each participant decides
whether to check the block’s validity or not (at cost ccheck), and second de-
cides whether to send a message (at cost csend) or not.

Information sets. At the beginning of each round t > 1, the information
set of the participant, ηti , includes the observation of the round number t, the
participant’s own type θi, as well as the observation of what happened in previous
rounds, namely (i) whether the participant decided to check validity, and in that
case, she knows the validity of the block, (ii) whether the participant decided to
send the validity. Then, in each round t > 1, the participant decides whether to
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check the validity of the current block. At this point, denoting by Bt the block
proposed at round t, when the participant does not decide to check validity, the
isValid(Bt) function is set to false, while if the participant decides to check,
isValid(Bt) is equal to true if the block is valid and false otherwise. Therefore,
at this stage, the participant information set becomes Ht

i = ηti ∪ isV alid(Bt),
which is ηti augmented with the validity information participant i has about Bt,
the proposed block.
Strategies. At each round t ≥ 1, the strategy of participant i is a mapping from
her information set into her actions. At the point at which the participant can
decide to check block validity, her strategy is given by σchecki (ηti). Finally, after
making that decision, the participant must decide whether to send a message or
not, and that decision is given by σsendi (Ht

i ). The decision tree of a participant
is depicted in Figure 1. We note that when the participant does not check the
validity of the proposal, she does not know if the block is valid or not. We denote
by σ = (σ1, ..., σn), the strategy profile where ∀i ∈ {1, ..., n}, participant i uses
strategy σi , where σi(H

t
i ) is the pair (σchecki (ηti) ,σsendi (Ht

i )).

Objective of Strategic Participants. The expected gain of strategic partic-
ipant i is:

Ui = E
[
R× 1(σsend

i (Ht
i )=true) × 1(valid block produced) − κ×

1(invalid block produced) − ccheck × 1(σcheck
i (ηti)=true) − csend × 1(σsend

i (Ht
i )=true) | ηti

]
where 1(.) denotes the indicator function, taking the value 1 if its argument is
true, and 0 if it is false.

5.1 Equilibria with only Strategic Participants

In this section we analyse the different Nash Equilibria which may be possible
in the framework of a trembling issuer with strategic players who communicate
described in Algorithm 6.

Proposition 2. With only strategic participants and if there is a probability p
that the proposer proposes an invalid block, there may be two type of Nash equi-
libria. In equilibrium either (i) if κ < min

{
R/p− csend/p,R− csend + ccheck/p

}
, all participants do not check the validity of the proposal and vote it as valid,
(ii) if κ > R+ccheck/p−csend, bn/2c+1 participants check the validity and send
the vote, since all the players are simmetric we have

(
n

bn/2c+1

)
equilibria.

Proof. We prove that the strategy profiles described in the proposition are Nash
equilibria.

First, we prove that the strategy profile where all participants do not check
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the proposal validity and vote is a Nash equilibrium.

(i) The expected gain at equilibrium of any participant is R− csend − pκ. If
one participant deviates and does not send the vote, her gain at deviation is 0; if
she deviates checking, the gain is (1− p)(R− csend)− ccheck. These utilities are
lower than the gain at equilibrium if and only if κ < min

{
R/p − csend/p,R −

csend + ccheck/p
}

, which is our assumption, therefore, the gain at equilibrium is
better than the gain if the participant deviates. The strategy profile where all
participants don’t check the proposal validity is a Nash equilibrium.

We now prove that the strategy profile where bn/2c+1 participants check the
proposal validity but all users vote is a Nash equilibrium.

(ii) The expected gain at equilibrium of participants who check is (1−p)(R−
csend)− ccheck. This gain is positive by assumption and consistency that reward
covers the costs, so no users will deviate not sending. If a participant deviates
not checking her gain at deviation is R − csend − pκ, which is lower than gain
at equilibrium if and only if κ > R + ccheck/p − csend, which is our assump-
tion, therefore, the gain at equilibrium is better than the gain if the participant
deviates. The strategy profile where bn/2c+1 participants check the proposal
validity and vote is a Nash equilibrium.

Remark 3. There are two Nash Equilibria in Proposition 2. In the equilibrium
where all participants do not check, if the proposal is invalid, there is no DAG-
Validity, however, DAG-Liveness, DAG-Uniformity and DAG-Growth are always
ensured. While in the second equilibrium where bn/2c+1 participants check we
are in the case of Lemma 4 so all invariants hold.

Proposition 3. With bn/2c obedient participant, if there is a probability p that
the proposer proposes an invalid block, if κ > R + ccheck/p − csend there are
bn/2c Nash Equilibria where one strategic player checks the validity. (This case
can be extended when there are less than bn/2c obedient participants, i.e., if

there are bn/2c -1 obedient the Nash Equilibria are
(bn/2c+1

2

)
when two strategic

participants check the validity).

Proof. We prove that the strategy profiles described in the Proposition 3 are
Nash Equilibria.
The gain at equilibrium of the strategic participant who checks is (1 − p)(R −
csend) − ccheck. If she deviates and does not check, her gain at deviation is
R−csend−pκ, which is lower than gain at equilibrium if κ > R+ccheck/p−csend,
which is our assumption, therefore, the gain at equilibrium is better than the
gain if the participant deviates. The strategy profile where one participant checks
the proposal validity and vote is a Nash equilibrium.

Remark 4. In these equilibria we are in the case of Lemma 11 so all invariants
hold.
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Equilibria with Faulty Participants We analyse the situation where faulty
participants are present. A Faulty participant is a user that crashes and stops
following the protocol (the proof is similar to Proposition 2, Proof (i)).

Proposition 4. With faulty participants and if there is a probability p that the
proposer proposes an invalid block, there may be a Nash equilibrium. If κ <
min

{
R/p− csend/p,R− csend+ ccheck/p

}
, in the equilibrium all participants do

not check the validity of the proposal and vote it as valid.

Remark 5. In the equilibrium if the proposal is invalid, there is no DAG-Validity,
however, DAG-Liveness, DAG-Uniformity and DAG-Growth are always ensured.

5.2 Equilibria with Rational Malicious Participants

We consider now a new type of users b rational malicious participants whose
objective is harming the network but they incur, differently from malicious ones,
in the costs for checking and sending, their utility is defined as following:

Payoff of Rational Malicious Participants. Let ω be an outcome of the
game. If ω does not satisfy DAG-Validity, then the malicious participants have
a payoff of κ̃V alidity > 0.

κ̃(ω) =

{
κ̃V alidity, if ω does not satisfy DAG-Validity

0, if ω satisfies DAG-Validity
(1)

Objective of Rational Malicious Participants. The expected gain of mali-
cious participant i is:

Ũi = E
[
κ̃V alidity × 1(invalid block is produced)−ccheck × 1(σcheck

i (ηti)=true) − csend ×

1(σsend
i (Ht

i )=true) | ηti
]
.

Proposition 5. When the proposer is trembling rational, there may be a Nash
Equilibrium. We indicate with b the number of rational malicious participants
and with r the number of strategic ones. If:

κ > R− csend/p+
csend −R+ ccheck + P(r > b)[R(1− p)− csend]

p(1− P(r > b))

All strategic participants check the validity and send the vote, while rational
malicious participants do nothing if r > b, they all send the vote without checking
when r < b.
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Proof. We prove that the strategy profile described in the proposition is a Nash
Equilibrium.

The expected gain at equilibrium of strategic participant is (1− p)(R− csend)−
ccheck. This gain is positive by assumption and consistency that reward cov-
ers the costs, so no users will deviate not sending. Since a strategic participant
does not know the exact number of the malicious ones, she can only compute
the expected reward when deviating not checking, i.e., if r > b, the gain is
(1−p)R− csend, while it is Rp− csend−pκ when r < b. These utilities are lower
than the gain at equilibrium if and only if:

κ > R− csend/p+
csend −R+ ccheck + P(r > b)[R(1− p)− csend]

p(1− P(r > b))
,

which is our assumption, therefore, the gain at equilibrium is better than the
gain if the participant deviates. Regarding malicious rational participants, we
can suppose that in the worst case scenario they know how many they are, and
so, they will not check neither send the vote if r > b in order to avoid any
useless cost. While if r < b, all malicious strategic participants will send the
vote without checking with a gain of pκ̃V alidity − pcsend. This is an equilibrium
for the malicious rational participants, if one deviates its reward would be 0.

The strategy profile where all strategic participants check the proposal valid-
ity and vote is a Nash equilibrium.

Remark 6. We are in the case of Lemma 4 so all invariants hold. However DAG−
V alidity property falls if r < b.

5.3 Equilibria with Malicious Participants

Finally we consider m malicious participants, these users do not incur any costs,
no matter their actions, and their objective is damaging the network by validat-
ing invalid blocks. For this reason we can assume that they will always check
the block and vote only if this in invalid. Strategic participants are aware of the
presence of these other participants but they do not know their precise number.

Payoff of Rational Malicious Participants. Let ω be an outcome of the
game. If ω does not satisfy DAG-Validity, then the malicious participants have a
payoff of κ̃V alidity > 0, we also assume that malicious participants do not incur
any costs, no matter their actions.

κ̃(ω) =

{
κ̃V alidity, if ω does not satisfy DAG-Validity

0, if ω satisfies DAG-Validity
(2)
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Objective of Malicious Participants. The expected gain of malicious par-
ticipant i is:

Ũi = E
[
κ̃V alidity × 1(invalid block is produced)| ηti

]
.

Proposition 6. When the proposer is trembling rational, there may be one Nash
equilibrium. We indicate with m the number of malicious participants and with
r the number of rational ones. If:

κ > R− csend/p+
csend −R+ ccheck + P(r > m)[R(1− p)− csend]

p(1− P(r > m))

All strategic participants check the validity and send the vote.

Proof. For the proof see Proposition 5, Proof. In this scenario malicious partici-
pants will always check and send the vote since they have no costs.

Remark 7. We are in the case of Lemma 4 so all invariants hold. However DAG-
Validity property falls if r < b.

Considering csend > ccheck it may happen that sending without checking is
no more the best choice for strategic participants, since they would pay more and
also incur in the risk of add an invalid block that can be avoided at a less price
by checking. As in the previous case to ensure that the reward covers the costs of
checking and sending in this setting we assume that (1−p)(R−csend)−ccheck > 0,
that is, the reward covers the costs.

By observing the equilibria presented above it is possible to see that they do
not depend on the relation between csend and ccheck. For this reason even if we
consider a cost of sending greater the cost of checking the equilibria will remain
the same. However csend > ccheck may lead in a modification of the values of
the thresholds for these equilibria, i.e., in the ones where all users check the
validity the corresponding threshold that is in the assumption, will be much
easily satisfied. On the other hand the condition for the equilibria where no one
checks will be more stricter than the case where csend < ccheck.

6 Conclusion

We analyze the behavior of rational players in DAG based protocols. This paper
studies the case where there is one proposer at the time. The case of multi
proposers is left open. We found that in presence of trembling participants, there
exist equilibria where the backbone properties may be violated. The results of
our work can be used in improving the design of DAG-based ledgers. Our findings
are summarized in Table 5.3.
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Participants DAG-Growth DAG-Uniformity DAG-Liveness Validity

Only Strategic
- No one check the validity Yes Yes Yes No

-bn/2c+ 1 users check Yes Yes Yes Yes

Strategic & Faulty
- No one check the validity Yes Yes Yes No

Proposition 4

Strategic & Rational Malicious
- All users check Yes Yes Yes Yes

Proposition 5

Strategic & Malicious
- All users check Yes Yes Yes Yes

Proposition 6

Table 1. Summary of the Equilibria.
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Appendix

Specification of the Reliable broadcast

– Byzantine Reliable Broadcast. It ensures that a message sent by a cor-
rect process is received by all correct processes, and that all correct processes
eventually receive the same set of messages. The service provides two oper-
ations, BRB-broadcast and BRB-delivery; the first broadcasts a message to
all processes, and the second delivers a message that was previously broad-
cast. The service is used by the servers, and from their point of view, the
BRB service guarantees the following properties:

• Validity : if a correct process pi BRB-delivers a message m from a correct
process pj , then pj BRB-broadcast m.

• Integrity : a message is BRB-delivered at most once by a correct server.
• Termination 1 (local): if a correct process BRB-broadcasts a message, it

BRB-delivers it.
• Termination 2 (global): if a correct process BRB-delivers a message, all

correct processes BRB-deliver it.

Validity relates outputs to inputs. Validity and integrity concern safety. Ter-
mination is on the fact that messages must be BRB-delivered; it concerns live-
ness. It follows that all correct processes BRB-deliver the same set of messages,
which includes all the messages they BRB-broadcast.

Notions of Game Theory

One can defined Game theory as a mathematical formalisation of conflicts and
cooperation between rational decision-makers in a given environment. Game
theory has various domains of application as of computer science, economics,
evolutionary biology, mathematics, political science, etc. It is mainly used to
model and study rational behaviours between different participants. Using game
theory appears to be useful according to our goal of studying rational behaviours
in blockchain systems.
Formally, a game is a tuple G = (N, (Ai)i∈N, (Θi)i∈N, (gi)i∈N), where:

– N is a non-empty set of participants;
– Ai is the set of actions of participant i;
– Θi is the type of participant i;
– gi is the gain function of participant i;

Static Games. At a beginning of a static game, all participants choose simul-
taneously the actions they will play, without knowing which actions the others
will choose. The gain of participant i is of the form gi : A1 × · · · × An → R.
Static games are also called simultaneous game. The most popular simultaneous
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game is perhaps rock-paper-scissors.

Dynamic or Repeated Games. A repeated game is a sequence of static games
where participants may have some information thanks to the previous static
games played. We say that the first static game is the game at stage 1, the sec-
ond is the game at stage 2, and so on. To accommodate the information each
participant has, we denote by hti the information set of participant i at time t.
At each time of the game, each participant has an information set that contains
information of what happened previously. Let Hti be the set of information sets
participant i can have at time t. A pure strategy or simply a strategy of a par-
ticipant i at time t is a function σti : Ht → Ai. A strategy of the participant is a
family (σti)t≥. However, in the rest of the manuscript, we will write σi to repre-
sent the strategy of participant i, and we will denote by Si the set of strategies
of participant i. A vector of strategies for each participant σ = (σ1, ...., σn) is
called a strategy profile. In repeated games, the gain of participant i is of the
form gi : S1 × · · · × Sn → R.

Complete Information Games. In complete information games, all partici-
pants know the other participants’ information, their types, their gain function,
their actions set, etc. At each time in the game, all participants know what ac-
tions the other participants did previously.

Incomplete Information Games. When a game is not with complete infor-
mation, we say that it is an incomplete information game. In incomplete infor-
mation games, at least one participant is not sure about the type of another
participant. We can say that participants have private information that other
participants do not know about. For example, it can be known that there is a
malicious participant in the system, but except the malicious, no one else knows
which participant it is. An initial distribution of the type of participants is set at
the beginning of the game, but participants do not know it exactly. Participants
only have at each time a probability distribution over the other participants’
type; the probability distribution is updated following Bayes’ rule and is kept
in the information set of each participant. That is why incomplete information
games are also called Bayesian games.
Let A and B be two events such that P[B] > 0. Bayes’ theorem also called Bayes’
rule is the following equality:

P[A|B] =
P[B|A] · P[A]

P[B]

Solution Concept. Now that the game is defined, we can try to predict the
behaviour of rational participants. To do so, different concepts exist, the main
one being the concept of Nash equilibrium. Intuitively, a strategy profile is a
Nash equilibrium when each participant has a strategy that maximises its gain
with respect to the other participants’ strategies in the strategy profile. A Nash
equilibrium can also be seen as a strategy profile where no participant can in-
crease its gain by deviating alone from the strategy profile. Let σ = (σ1, . . . , σn)
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be a strategy profile, and let σi
′ ∈ Si be a strategy of participant i. We denote

the strategy profile (σ1, ..., σi−1, σi
′, σi+1, ..., σn) by (σi, σi

′).(σi, σi
′) is the strat-

egy profile where participant i deviates by doing σi
′ instead of σi, and all other

participants continue with the same strategies. We can now formally define a
Nash equilibrium.

Definition 1. (Nash Equilibrium). A strategy profile σ is a Nash equilibrium if
and only if:

∀i ∈ N, gi(σ) ≥ gi((σ−i, σ′i)).

The definition of a Nash equilibrium can be seen as too restrictive in some
games, and the concept of approximate Nash equilibrium is used. An ε-approximate
Nash equilibrium is a strategy profile where if one participant deviates, she can
gain at most ε more than her gain at equilibrium. Formally, a strategy profile σ is
an ε-approximate Nash equilibrium if and only if ∀i ∈ N, gi(σ) ≥ gi((σ−i, σ′i))−ε.
Approximate Nash equilibria are not stable situations, since a participant can
prefer to deviate, even if her gain is just ε, so we do not consider them in this
manuscript. On another hand, and especially in repeated games, the concept of
Nash equilibrium allows too many behaviours, and some are not interesting or
coherent. The concept of subgame perfect equilibrium is defined to specifically
capture equilibria that are coherent throughout the whole game. At any history,
the “remaining game” can be regarded as a game on its own. We call such a
remaining game a subgame of the game. Note that the whole game is also its
own subgame.

Definition 2. (Subgame Perfect Nash Equilibrium). A strategy profile σ is a
subgame perfect Nash equilibrium if in all subgames, σ restricted to the subgame
is a Nash equilibrium.

Bayesian Equilibria. In Bayesian games, the concept of Nash equilibrium is
also not well suited. In Bayesian game, since at least one participant is unsure
of the type of other participants, a strategy profile may give more than one
execution, according to the type distributions. An analogous concept to Nash
equilibrium, the Bayesian equilibrium is defined for Bayesian games. Contrar-
ily to Nash equilibrium, in a Bayesian equilibrium, each participant’s goal is
to maximise her expected gain, given her knowledge about the types’ distribu-
tion; in particular, each participant’s beliefs are consistent with Bayes’ law when
computing probabilities conditional on events that have positive probability on
the equilibrium path. In Bayesian games, the gain function g is a probability
distribution over the gain of all different executions that correspond to the given
strategy profile.

Definition 3. (Bayesian Equilibrium). A strategy profile σ is a Bayesian equi-
librium at time t if and only if:

∀i ∈ N,E
[
gi(σ)|hti

]
≥ E

[
gi(σ−i, σ

′
i)|hti

]
.



20 S. Galimberti et al.

As for Nash equilibria, the concept of subgame perfection exists in Bayesian
games, and such equilibrium is called a perfect Bayesian equilibrium.

Definition 4. (Perfect Bayesian Equilibrium). A strategy profile σ is called a
subgame perfect Bayesian equilibrium if in all subgames, σ restricted to the sub-
game is a Bayesian equilibrium.

A Comparison of Possible Executions from Participants’ Type Let
A be a protocol. We can see from Definition ?? that a rational participant can
be viewed as a special subclass of Byzantine participants, rational participants
can deviate from the protocol, but only if that deviation is beneficial to them.
Let C be a class of rational participants such that their objective is to follow
the protocol A no matter what is the global execution of the system and what
the other participants do. The class C consists of exactly all the obedient par-
ticipants with respect to A, and only them. We can consider that some rational
participants can behave as obedient, if their gain function is defined in that case.
That exhibits that the behaviour of rational participants depends really on their
gains. Therefore, the obedient participants are a subclass of rational participants
where their objective is to follow the protocol. Usually, a protocol is designed
to solve a problem, or equivalently to satisfy a property. It can then happen for
strategic participants to behave as obedient. However, if running the protocol is
(too) costly, strategic participants may deviate to improve their gain. The class
of obedient participants is not a subclass of strategic participants, but both can
intersect. As mentioned earlier, malicious and strategic participants are ratio-
nal participants, but they have opposing objectives, so they do not intersect. A
summary of the comparison of possible execution can be viewed in Fig. 2.

Fig. 1. A Comparison of Participant’s Types
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7 DAG-Based Ledger Backbone Protocol with Obedient
Users: Trembling Issuer Case

Now, we assume that there is some negligible probability p for the issuer to
generate an invalid proposal, and all participants are aware of the trembling
effect. When proposing a value, there is a probability that the hand of the
issuer trembles and proposes an invalid block instead of a valid block; i.e., in
some sense, we take into account the possibility of making a mistake for the
proposal. Algorithm 7 corresponds to Algorithm 1, there is only one difference,
the function that generates the block, the new generateTrembling encapsulates
the probability of producing invalid transactions which were not present before.

Algorithm 7: Trembling Issuer i Block B
1 Tips := select tips.(DAGi)
2 B := generateTrembling(Tips,tr)
3 Broadcast(< B >)
4 Wait ∆

Since users may create unintentionally invalid blocks and everyone is aware
about, a new action is available to the users, they may pay a cost ccheck in order
to check the validity of the block.
Note that checking the validity of a block may be important, there is a risk of
producing an invalid block, breaking the DAG-Validity property.
The function isValid may be called for this purpose:

– isValid : B →{false,true} is an application-dependent predicate that is sat-
isfied if the given block is valid. If there is a block B such that isV alid(B)
= true, we say that B is valid. We note that for any block, we set isValid
to false, the validity of the block depends on the blockchain and the appli-
cation, and isValid is known by all participants.

Obedient participants choice is represented in Algorithm 8. Upon receiving
a block (line 3 ) they check the validity of the proposal, which is a costly action,
and then update the knowledge about the validity of the proposal. Otherwise,
the participants keep not knowing if the proposal is valid or not ( validV alue
remains false). Note that this value remains false even if the participant is the
proposer. This is because we assumed, without loss of generality, that checking
validity has a cost and that the only way of checking validity is by executing the
isV alid(B) function.

Lemma 3. Algorithms 7 and 8 verify DAG-Uniformity, DAG-Validity, DAG-
Growth and DAG-Liveness.

Proof. – DAG-Liveness: When a trembling user is present if the block pro-
duced is invalid no users will append the block since being obedient they
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Algorithm 8: Receiver i Block B (Obedient Participant)

1 Initialisation:
2 validValue:= false // validValue ∈{true,false}
3 Upon receiving B :
4 validValue ← isValid(B) // The execution of isValid (B) has a cost

// ccheck
5 Compute phase:
6 if valiV alue == true

7 DAGi:= update(DAGi,B)

will check the validity of the proposal and decide not to add the block.
While if a user receive a valid block after checking it will be appended, and
every obedient users will do the same.

– DAG-Validity : When a trembling user is present each block is checked, so
only valid block will be appended while invalid block discarded.

– DAG-Uniformity : Assume by contradiction that DAGi 6= DAGj this means
that one the two user has a block in her own DAG that is not included in
the other tree. This is not possible, since we have a unique issuer who issues
the same blocks and broadcast to all users, so every users receive a block
and if it is valid she adds it to the DAG.

– DAG-Growth: Given two different instants of time t2 > t1 we have two cases:
no block is issued between t2 and t1, or some valid blocks are issued. In the
first case DAGt2i = DAGt1i , while if blocks are issued these are added to the
DAG since they are valid blocks and so DAGt1i ⊆ DAG

t2
i .

Remark 8. Note that in this simplified version we still can not talk about Nash
Equilibrium since there are no strategic players, there is no game but only users
who follows prescribed instructions.

7.1 Correctness of Algorithm 6

In the following we are interested about the correctness of Algorithm 6.

Lemma 4. In the trembling issuer case and communication between users Al-
gorithm 6 all invariants.

Proof. – DAG-Validity : When a trembling user is present each block must be
voted before added to the DAG, for this reason only valid blocks will be
appended while invalid blocks discarded.

– DAG-Liveness: When the issuer is trembling invalid blocks may be produced.
When a user receives a block, after the voting system the block will be
appended or considered as invalid. When a valid block is issued it will be
voted by all the network and each correct user will update her own DAG.

– DAG-Uniformity : Note that by hypothesis at time t0 the local DAGp of each
user p is initialized with the same genesis block.
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Algorithm 9: Strategic Receiver i Block B
1 Initialisation:

2 actioncheck :=∅
3 validValue:= false // validValue ∈{true,false}
4 Upon receiving B :

5 actioncheck← σcheck
i () // σcheck

i () ∈ {true,false} sets the action of

// checking or not the validity of the block

6 if actioncheck == false then
7 DAGi:= update(DAGi,B)

8 if actioncheck == true then
9 validValue ← isValid(B) // The execution of isValid (B) has a cost

// ccheck
10 if validValue == true

11 DAGi:= update(DAGi,B)

• Base case: Let B be the first block issued by q after t0. If the block is
valid, then B is appended to the genesis block. Otherwise if the block
is voted as invalid no user will append it to her own DAG. Let DAGp
the tree of p at time t0 + ∆. By ∆ time any users delivered B by the
broadcast primitive, hence the DAG of any process is identical to DAGp.
It follows that δ time after the first proposal, any two processes i and j
verify the property: DAGi = DAGj .

• Inductive case: Suppose the lemma is true after a sequence of h blocks
and prove it holds for the h + 1 block. Let t be the time when the h
block is proposed. By inductive hypothesis, we have that by time t+∆,
all users have the same DAG. Let t′(t′ ≥ t + ∆) be the time when the
h+1 block is invoked by q. Let DAGq be the local tree of q. By inductive
hypothesis, by time t′, all the other users have the same local DAG. Two
cases have to be considered:

∗ The block proposed at time t′ is valid : at time t′ the networks votes
the block as eligible to be appended, and then by time t′+∆ all users
delivered B. Since by assumption of the inductive case they have the
same tree as q, then by time t′ + ∆ B is appended to the DAG. It
follows that any two honest users i and j verify the property: DAGi
= DAGj .

∗ The block proposed at time t′ is invalid : in this case block B is voted
as invalid and it is not appended to the local DAG.

– DAG-Growth: Given two different instants of time t2 > t1 we have two cases:
no block is issued between t2 and t1, or some blocks are issued. In the first
case DAGt2i = DAGt1i , while when blocks are issued if they are voted as
valid these are added to the DAG and so DAGt1i ⊆ DAG

t2
i , otherwise they

are discarded and DAGt2i = DAGt1i .


