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Abstract

This article presents the development and calibration of a numerical model simulating the response of a

novel rockfall protection structure subjected to localised dynamic loading. This structure is made of piled-

up concrete blocks interconnected via metallic components whose dynamics response under projectile

impact is examined via real-scale experiments. The corresponding numerical model is developed in

a python based open source software Siconos which implements the Non-Smooth Contact Dynamics

(NSCD) method. The geometrical features and mechanical properties are incorporated in the model via

specific developments pertinent to the modelling requirements in Siconos. Some parameters peculiar to

the numerical model are calibrated against the spatial-temporal measurements from two full-scale impact

experiments. The Bayesian interface statistical learning method aided by the polynomial chaos expansion

based meta-model of the NSCD model is deployed for the calibration. The additional understanding of

the model dynamics through the byproducts of the meta-model is highlighted. In the end, the NSCD

model is successfully calibrated against the spatial-temporal response of the experimental structure with

more than 90% accuracy for impact energies up to 1 MJ.

Keywords: rockfall, impact, meta-model, statistical learning, NSCD modelling, calibration, Bayesian

interface

1. Introduction1

The Non-Smooth Contact Dynamics (NSCD) method developed by M. Jean and J.J. Moreau [1, 2]2

is a modelling and numerical framework for the dynamics of multi-body systems in interaction through3

frictional contact interfaces. The present work extends the use of NSCD modelling [3, 4] to study the4

response to impacts of a complex structure made of individual concrete blocks interconnected via metallic5
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components, thus forming an articulated structure. The structure is proposed by the company Géolithe6

and is intended to serve as passive protection against gravity-driven natural hazards. It is in particular7

designed to intercept rockfall, similarly to other massive structure types including embankments [5],8

concrete walls [6], concrete blocks cushioned with gabions [7], gabion structures [8] and sea containers [9].9

This innovative technology offers the possibility to build massive vertical walls, with reduced footprint,10

high deformability, and versatility.11

The development of this technology is based on small-scale experiments, to address the structure re-12

sponse considering different design options, and real-scale impact experiments to demonstrate the struc-13

ture capacity in arresting rock blocks with kinetic energy exceeding 1 MJ [10]. These experiments revealed14

the intricacy of the impact response of structures made from interconnected concrete blocks. The impact15

induces sliding at the base and tilting of the structure, where the amplitude depends on the impact energy16

and distance to the impact point. In addition, the interconnection between concrete blocks improves the17

structure stability preventing excessive concrete block displacements in the impact vicinity.18

The impact response of small- and real-scale structures has been previously investigated in the nu-19

merical modelling framework of the finite volume formulation code FLAC3D [10]. These models provided20

detailed insights into the energy dissipation capacities of the protection walls. However, the computation21

time for the real-scale structures ranging from 10 to 20 hours hinders the exhaustive investigations of22

the structure’s mechanical and dynamic response. In particular, improving the design of such structures23

requires better quantifying their efficiency when exposed to rockfall. In line with some previous research24

on flexible barriers (e.g., [11, 12, 13]), this implies taking into account the variety of loading cases ob-25

served during real rockfalls and therefore performing a very large number of numerical simulations of the26

structure’s response to the impact.27

Given the above, we developed an NSCD-based model of the structure, using the Siconos soft-28

ware [14]. Siconos is an open-source scientific software primarily targeted at modelling and simulating29

non-smooth dynamical systems in C++ and in Python, including mechanical systems, switched electri-30

cal circuits, sliding mode control systems, and biology. The NSCD method guarantees that Signorini’s31

condition at the velocity level is satisfied without introducing contact stiffnesses and that the coulomb32

friction, especially in the sticking mode is satisfied without resorting to viscous friction. This peculiarity33

of NSCD is enforced with the use of a specific implicit scheme (Moreau–Jean scheme) and yields a robust34
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numerical method, which consistently models the threshold phenomena (friction, contact) and the dis-35

sipation properties of the model in discrete time, in particular impact dissipation and energy properties36

[15].37

Considering its intended use, the developed model is kept as simple as possible while allowing satisfac-38

tory mimicking of the whole structure’s response to impact, as observed during the real-scale experiments.39

Such simplifications drastically reduce the computational time as each component of the structure is mod-40

elled as a rigid body instead of a deformable mesh resulting in a huge reduction in the degrees of freedom41

of the model. The energy dissipation due to plastic strains and breakages of the blocks during impact is42

modelled in a simple manner as energy dissipation at the contact points. Escallón et al. [16] reported a43

conceptually similar approach for the FEM model of flexible rockfall protection barriers and observed a44

significant reduction in the model computational time.45

Further, the calibration of model parameters becomes necessary to validate the model performance.46

For this, an existing experimental database [10] is used as a reference and some identified model param-47

eters are calibrated using the Bayesian interface statistical learning method.48

A common requirement of any stochastic method is a large number of model computations which49

are impractical to implement due to a large computation cost. This gap is bridged by the use of a50

meta-model, representative of the actual model having a negligible computational cost and possessing51

high accuracy and reliability. Such meta-models have been used by many researchers, e.g., for dam52

engineering problems [17, 18] and for nuclear containment structures [19].53

In the present work, the NSCD-based model is first described in detail, including specific developments54

to cope with the particular features of this structure type. A polynomial chaos expansion (PCE) based55

meta-model of the NSCD model is created for the stochastic analysis. The additional byproduct of PCE-56

based meta-models towards the relative influence of model parameters is discussed. The model parameters57

are calibrated based on the Bayesian interface approach considering the measurements obtained from58

two impact experiments. A discussion on model features in line with the perspectives for future research59

concludes the work.60

2. Experimental structure and its impact response61

Referring to [10] for further information, the experimental details use for the calibration of the NSCD62
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model are summarised hereinafter. The considered articulated structures consist of piled-up blocks, made63

from concrete, and are reinforced with steel rebars, presented in Figure 1. The block extremities in the64

horizontal plane are rounded and their upper and lower faces present empty spaces. The wall is made65

up of 38 blocks and four half-blocks stacked in four rows. The blocks are arranged following a zig-zag66

pattern (at 45◦ angle) to improve the structure stability against titling. The wall is 3.2 m in height and67

about 14 m in length.68

p. 7Titre de la présentation
Date / information / nom de l’auteur

~14 m

3.2 m

1.9 m

(iv) Block connection 
concept

(ii) Top view

(iii) Side view
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Figure 1: Experimental full-scale structure, recreated after [10]

Each block is traversed by two cylindrical holes of diameter 154mm along the vertical axis to receive69

tubes and slings (see Figure 1(iv)). These latter metallic components, hereafter referred to as connectors,70

link blocks together. More precisely, a hollow steel tube of diameter 139.7mm connects each couple71

of adjacent layer blocks, preventing their relative lateral displacement. In addition, a cable runs from72

the structure base to its top, in the succession of tubes, and mainly prevents relative displacements73

along the vertical direction. From a conceptual point of view, these connectors provide the structure74

with mechanical continuity with the aim of increasing the number of blocks involved in the structure’s75

response proportional to the impact loading. Another key feature in the design is the presence of various76

free spaces (hereby referred to as ‘mechanical plays’ or simply ‘plays’): a 40 mm side-to-side distance77

between the same layer concrete blocks, about 14 mm difference between the external diameter of the78

metallic tubes and the inner diameter of the cylindrical holes and, a precisely non-quantifiable slack in79

the vertical cables. These plays give the structure a certain deformation capacity. All geometrical and80

mechanical characteristics of this structure are presented in Table 1 along with the ones of the impacting81

projectile.82
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Table 1: Geometrical and mechanical characteristics of the articulated concrete blocks structure

ine Component Parameter Value Unit

ine Length 1.56 m

Width 0.76 m

Concrete Block Height 0.80 m

Mass (mblock) 1800 kg

Hole diameter 154 mm

ine Diameter (ext.) 139.7 mm

Cylindrical bars Diameter (int.) 123.7 mm

Length
0.8 (3 pcs.) m

0.4 (2 pcs.) m

ine Length (edge-to-edge) ≈14 m

Structure Height 3.2 m

Pattern angle 45 (from y-axis) ◦

ine

Projectile

Side length (lproj) 1.1 m

Mass (mproj) 2600 kg

Impact angle 0 ◦

Impact point location y ≈ 7.0, z = 1.7 m

ine

Two identical real-scale walls were built and subjected to one impact each at different energy levels.83

The impact experiments were performed with the pendulum testing facility of the Université Gustave84

Eiffel test site (Montagnole, France). It involved a 2600 kg reinforced concrete projectile whose shape85

is in accordance with the requirements for flexible barriers testing [20]. Its size is about one-third the86

structure’s height (1.1 m). The velocity at impact is 20m/s and 28m/s during the first and second87

impacts, corresponding to kinetic energies of 520 kJ and 1020 kJ respectively. The angle of incidence88

and rotation velocity at impact were zero. The projectile impacted the structure at its mid-length and at89

about 1.7m from the ground. These impacts in particular induced wall sliding at its base, tilting, change90
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in conformation as well as concrete block damage.91

The structure impact response with time is described based on measurements of displacement and92

acceleration along two vertical lines, as presented in Figure 2. They are termed ‘impact’ and ‘distant’93

axis which are representative of the impact point and 3.5m to its left respectively. The experimental data94

used in this study concerned the displacement of concrete blocks at the Top and Base in the impact axis95

and points C and D in the distant distant axis. Besides, the data from two points A and B in the impact96

axis is also available which is used for the cross-reference purpose only.97

Z

Y

X

Impact axisDistant axis

Base

Top

D

C

B

A

Figure 2: Data acquisition locations in the experimented full-scale structure, recreated after [10]

The displacement governs the structure sliding and tilting, both leading to structure failure if in98

excess. In this study, the database of displacement evolution with time at the impact vicinity and at99

distance is considered. The displacement data used in this study is plotted in Figure 3 for both impact100

and distant axes. A secondary y-axis is added for the distant axis albeit to the relatively low displacement101

amplitude compared to the impact axis.102

Measures along the impact axis are derived from video records while measures from cable extensome-103

ters are considered along the distant axis. Due to the absence of this later data for the 520 kJ impact104

test at point C, the evolution obtained from simulations presented in [10] are considered. This exception105

is thought to have a minor influence due to the very small amplitude in displacement observed in this106

specific case. The dynamic response of the structure is clearly visible through the relative initiation time107

lag between observations corresponding to impact and distant axes. Besides, for the 520kJ test, nearly108

equal displacement magnitudes are observed at the end of the test for the points in the same axis, indi-109

rectly presenting nearly no-permanent post-impact tilt in the structure and small relative displacement110

between adjacent layer blocks. However, for the 1020kJ test, a significant difference is observed for both111

axes, inferring a combination of permanent tilt and relative displacement between the same axis blocks.112

6



0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.32

0.64

0.96

1.28

1.60

D
is

p
la

ce
m

en
t-

x
fo

r
im

p
ac

t
ax

is
(m

)

0.00

0.08

0.16

0.24

0.32

0.40

D
is

p
la

ce
m

en
t-

x
fo

r
d

is
ta

nt
ax

is
(m

)

Impact test 520kJ

Topexp Baseexp Cexp∗ Dexp

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.32

0.64

0.96

1.28

1.60

D
is

p
la

ce
m

en
t-

x
fo

r
im

p
ac

t
ax

is
(m

)

0.00

0.08

0.16

0.24

0.32

0.40

D
is

p
la

ce
m

en
t-

x
fo

r
d

is
ta

nt
ax

is
(m

)

Impact test 1020kJ

Topexp Baseexp Cexp Dexp

(b)

Figure 3: Post-processed experimental database for the time evolution of displacement for (a) 520 kJ and (b) 1020kJ impact

test

The observed response at the point Top for the 1020kJ test is an exception due to the severe damage in113

concrete blocks in the impacted vicinity, up to fracture. This resulted in the loss of mechanical continuity114

within the structure, which was thought to cause a relatively larger block displacement at the wall top115

than only due to the combination of a permanent tilt and relative block movements in the structure.116

3. Numerical model117

The rockfall protection structure is modelled in a python-based software package named Siconos,118

which implements the NSCD method with complex geometries [14]. In this section, the NSCD framework119

is first introduced, followed by the numerical model development and finally the model response evaluation120

aiming to reproduce the whole structural displacement response upon impact by a projectile.121

3.1. NSCD main principles and relevance122

The NSCD method was developed to solve multi-body multi-contact problems with rigid and/or123

deformable bodies [1, 2, 3] with rigid contact laws such as the Signorini’s model of unilateral contact and124

the Coulomb’s dry friction without any kind of regularization (viscous friction) or compliance. It finds125

many modelling applications in the field of civil engineering and geomechanics such as; masonry and126

stone structures exposed to static, cyclic, and dynamic loading [21]; cohesive and non-cohesive granular127

materials [22]; standard Finite Element Method (FEM) from the early stage of its development [23];128

rockfall propagation on slopes [24] in particular and mechanisms and linkages [25].129
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In this study, the system is modelled as a collection of rigid blocks connected by unilateral constraints130

with Coulomb friction. The finite-freedom dynamics of rigid bodies with unilateral constraints is known131

to be non-smooth, in the sense that the velocities of the system possess jumps when a contact is closing132

with a positive relative velocity. These velocity jumps are described through the introduction of an impact133

law. Thereby, the NSCD method is able to perform the numerical time integration of the multi-body134

system under impacts (of a projectile, in our case) in a dynamic condition. Some details and notation on135

the NSCD method are given in Appendix A to support the following discussion.136

Thus, with the NSCD method, robust and efficient simulations of the dynamics and the quasi-statics137

of multi-body systems with contact, impact, and Coulomb friction are possible. For each body, the138

Newton-Euler equations are discretized in time using an implicit scheme:139

M(vk+1 − vk)− hFk+θ = G⊤(qk+1)Pk+1 (1)

here, M is the inertia matrix, v is the body twist (translational and rotational velocity) vector, q is140

representative of body position and orientation and G is the Jacobian of the gap function (see Appendix141

A.2 for details), h is the timestep. Fk+θ refers to the external forces applied to the bodies (limited to142

gravity forces, in this context) except contact interactions. Pk+1 refers to all contact interactions that143

are modelled as percussions.144

The percussions Pk+1 allow modelling impact involving Coulomb friction in the context of the study.145

The percussion calculations are governed by the user-defined friction (µ) and restitution (e) coefficients.146

The tangential component of percussion calculations reflects the energy dissipation due to friction and147

the normal component accounts for energy dissipation due to inelastic collision which, in other words,148

represents the damage in the model body.149

Notably, in this work, the restitution coefficient of magnitude less than one (i.e., inelastic collision)150

globally accounts for the energy dissipation due to plasticity and fracture in the structure. Nonetheless, a151

complex representation of plasticity, damage, and fracture processes is possible in the NSCD framework.152

For example, modelling blocks as deformable bodies using Finite Element based approaches involving153

block plasticity models (e.g., [26]) and cohesive zone models in-between the finite elements (e.g., [27])154

where fracture could occur. However, such a complex block model shall substantially increase the com-155

putational duration and hence it is not adapted in the present work.156
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The non-impulse terms of the dynamics are approximated with a θ−method. For θ = 1, the scheme157

is fully implicit and maximizes the numerical dissipation. It is therefore well adapted to quasi-static158

evolutions, or for efficiently reaching a static equilibrium with large time-steps. For θ = 1/2, the me-159

chanical energy (the sum of the kinetic and potential energy) is conserved. Furthermore, the dissipation160

is always positive and is given by a second order approximation of the actual dissipation. These energy161

and dissipation properties detailed in [15] render the scheme robust and stable with quite large time–162

steps, and are of particular interest for the analysis of the dissipative processes in protection structures.163

These are the main advantages with respect to classical smooth DEM approaches [28, 29] where the use164

of explicit scheme renders difficult the energy analysis and the contact compliance generates spurious165

oscillations that prevent to obtain quickly static equilibrium without artificial damping. With a non-166

smooth dynamics, direct higher order approximations are possible, but some care has to be taken. The167

use of standard higher scheme — Newmark, HHT, generalised-α, implicit Runge-Kutta to name a few168

— is not possible and we need to rely on specific schemes such as non-smooth Newmark or generalised-α169

schemes [30, 31, 32], or time discontinuous Galerkin methods [33, 34].170

3.2. NSCD structure model development in Siconos171

By contrast with common applications of NSCD, new challenges arise when modelling such articulated-172

concrete-blocks structures. These relate to the shape of the concrete blocks, the presence of structural173

components passing through these blocks, the interaction between these later components, and the mod-174

elling of the connectors.175

In Siconos, each object (i.e., block and connector) of the wall is modelled as an assembly of many rigid176

body components with simple geometrical shapes (referred to as ‘primitive shapes’) for contact detection.177

These shapes present computational time efficiency and accuracy in contact detection in comparison to178

a typical numerical mesh. The interaction between different objects is user-controlled through so-called179

‘contactors’, inferring that in its absence, two physical objects placed adjacently, would be invisible to180

each other. The model configuration and its components are shown in Figure 4. The modelling strategy181

that is developed to cope with these specific features is presented hereafter.182

3.2.1. Blocks modelling183

The concrete blocks geometry feature from the experimental structure is presented in Figure 5, in-184

clusive of the effective contact area between two adjacent layer blocks in the wall. The block’s surface185
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Z
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X

Block model

Connector model

Projectile model

Ground

Figure 4: The NSCD model of the articulated concrete block structure and its components

comprising of the upper, lower and lateral side faces, is modelled as a combination of ‘primitive’ shapes.186
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Figure 5: Experimental concrete block design and effective contact surfaces between adjacent layer blocks

Different combinations of primitive shapes are considered for geometry and contact area relevance187

with the experimental block, and for numerical efficiency and computational accuracy in the NSCD188

framework. This resulted in the best block model option, presented in Figure 6.189

The user-controlled contactor definition feature enables to place cylinder and box superimposed to190

collectively constitute the block model. Subsequently, the interaction between layered concrete blocks191

in the wall is enabled through cylinder primitives and interaction between the projectile and the wall192

through both cylinder and cuboidal box primitives, detailed later in the section 3.2.4.193

Several contact points are set along the contact surface to model the interaction between adjacent194

layer blocks. The location of the contact point is defined in order to maximize the contact surface between195

the interacting bodies. Notably, as the friction and restitution coefficients control the interaction between196

bodies, the difference in the physical contact area between adjacent layer numerical blocks being different197
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Figure 6: Block design in the NSCD model

from the experimental counterpart becomes irrelevant.198

The block model is assigned with the same mass as of the real block and the inertia of the model199

blocks is obtained through a 2D surface mesh using the Convex Hull [35] feature in Siconos. Notably,200

modelling the block cylindrical holes is ignored and a specific strategy is developed for accounting for the201

interaction between the block and the connectors, detailed in the next section.202

3.2.2. Connectors modelling203

The connector between blocks (see Figure 1.iv), are modelled as a single component accounting for the204

influence on the structure response of both the sling and tubes. This required defining a mechanical model205

governing the connector-block interaction (which is insured by the tubes) and the interaction between206

connectors (which is in particular controlled by the slings). The collective connector model illustrative207

profile is presented in Figure 7 for before and after impact situations.208

It consists of four cylindrical primitive shape components, named as ‘bars’, at locations corresponding209

to the real-structure tube positions and possessing the same length (3 bars with 0.8m and 1 bar with210

0.4m), diameter, inertia and mass as the tube. Notably, a fifth bar is added at the top block having211

similar geometrical characteristics as the short-length bar, however with a negligible mass. This is done212

to complete the configuration and the bounding limits of the sling in the real structure.213

The mechanical plays existing in the structure, in both the horizontal and vertical directions, are214

accounted for in the model. The horizontal play in the real structure results from the difference between215

the external diameter of the tube (139.7mm) and the diameter of the hollow cylinder in the block (154mm).216

The vertical play in the real structure results from the relative looseness in the sling. The detailed217

connector modelling strategy to accommodate horizontal and vertical plays is presented hereafter.218

The user control for assigning the contact detection enables, the connector bars passing through the219
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Figure 7: Schematic representation of the deformation of the structure upon projectile impact showing plays in action

concrete blocks without a direct interaction between them. However, in reality, the steel bars inserted220

in cylindrical block holes, interact with the concrete blocks. Hence, this interaction is assigned through221

additional components named as hollow circular disks added to the block model object, as illustrated in222

Figure 8. These disks are modelled as 2D mesh and have the same internal diameter as that of the hole223

in the real block, hence ensuring the presence of the requisite horizontal play of about 7mm. Each block224

is equipped with four hollow disks meaning that each of the two bars passing through a block interacts225

with this block via two disks. The position of these disks with respect to the lower/upper block faces226

and to the extremities of the bar is characterized by parameter dz, which is kept alike for simplicity. The227

positioning of these disks can not be explicitly defined and hence it is characterized as a model parameter.228

The vertical play is considered equally distributed along the structure’s height as six local vertical229

plays (vp,l = vp/6) whose development is described as follows. Each bar object is equipped with three230

contacting components to represent the influence of the sling, presented in Figure 9.231

These components are comprised of a cuboid box of length equal to 2.5 times the bar diameter (placed232

above the bar), a sphere of diameter equal to the bar diameter (placed below the bar) and another cuboid233

box of length equal to 1.5 times the bar diameter (placed within the bar) named as ‘bar-bar penetration234

stopper’. The vertical position of these components is assigned such that the sphere from the adjacent235
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bar detects contact with the boxes of the current bar. The distance between the box placed above the236

bar and the bar surface, as well as the distance between the sphere and the bar surface, is half the local237

vertical play. This way, the box-sphere combination from two adjacent bars collectively accounts for a238

local vertical play. The adjacent bars are assigned invisible to each other and their interpenetration is239

avoided via contact detection between this bar-bar penetration stopper and the sphere from the adjacent240

bar.241

In the NSCD model, all components of each model object has no relative movement between them242

meaning that the circular disks in the block model object move according to the corresponding block.243

Similarly, all three components of the bar object move according to the bar movement. This feature244

enables to indirectly implement the block-bar interaction and sling functionality representative of the245

real structure. An illustrative representation of the connector model (inclusive of the plays) in action246
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is added in Figure 7 for understanding. Here, the interaction of the vertical play constituents (box and247

sphere) can be clearly seen. The distribution of vertical play (as six local vertical plays) enables mimicking248

the looseness in the sling as an indirect chain made from multiple linkages. Once the complete vertical249

play is consumed, the setup of bars mimics the tension in the sling. Such a state is reached depending250

(mostly) on the assigned looseness in the vertical play and the energy of the impacting projectile. This251

makes the vertical play (vp) a model parameter.252

This intricate setup allows us to model the large displacements in the model structure courtesy to253

the accompanying horizontal play (hp). Its presence controls the maximum relative lateral displacement254

between the box and sphere components of the vertical play. Thereby, a possible contact between the255

vertical play components from adjacent bars is always ensured, which makes the connector model’s256

functionality robust. An additional box and a sphere are added at the bottom and topmost layer of block257

objects respectively. This is to respectively mimic the anchorage of the sling with the structure’s bottom258

and to make sure the bars do not fly out of the structure’s top surface upon impact.259

3.2.3. Projectile modelling260

The experimental equivalent projectile is modelled as a convex 2D mesh of manually assigned vertices.261

The projectile shape and size (1/3rd of the wall height) features are in accordance with the requirements262

for flexible barriers testing [20]). The mass of the projectile is assigned 2600 kg, and the inertia is assigned263

through the convex hull (as used for the block model). The input kinetic energy corresponding to the264

two impact tests (i.e., 520kJ and 1020kJ) is derived to assign the input velocity to the projectile model.265

3.2.4. Interaction laws266

The model objects (i.e., blocks, connectors, projectile, and ground) are defined as a combination of267

different contactors, collectively making the model equivalent to the real structure. These contactors are268

defined with a uniquely assigned collision group to identify them and differentiate one from another. The269

collision groups of the contactors in the model bodies are listed in Table 2.270

The interaction between model bodies is assigned through Newton impact friction non-smooth law [3].271

This law governs the interaction between a pair of contactors (identified through their respective collision272

groups) via a user-defined coefficient of friction (µ) and coefficient of restitution (e). The assigned273

interaction laws in our NSCD model are listed in Table 3. Here, the various interactions in the numerical274

model bodies are chronologically listed, analogous to the construction of the real structure.275
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Table 2: Model bodies constitution for interaction

ine Collision group Contactor Collision group Contactor

ine 0 Block (cuboid portion) 5 Hollow disk

1 Block (curvature portion) 6 Box (vertical play)

2 Bar (odd) 7 Sphere (vertical play)

3 Bar (even) 8 Projectile

4 Bar-Bar penetration stopper 9 Ground

ine

The frictional interaction between the projectile and the blocks and that between blocks are governed276

by the concrete-concrete friction coefficient (µcc). Similarly, the interaction of each block of the wall with277

the ground is governed by the concrete-soil friction coefficient (µcs). The restitution coefficient (e) is kept278

the same for both of these interaction types.279

Besides, all interactions between steel material and blocks and ground are assigned a constant friction280

coefficient of a relatively low magnitude of 0.2 for a minimum energy dissipation through these frictional281

interactions in the overall model system. Also, the restitution coefficient with zero magnitude is assigned282

presuming all such contacts being perfectly inelastic (i.e., no rebound after contact). Moreover, as the283

sling is a continuous element and bars do not interact with each other, the friction coefficient between the284

boxes and sphere of connector elements (vertical play and penetration stopper) is assigned zero. This is285

to indirectly represent consistent stretching in the sling as local vertical plays start to be fully consumed286

and subsequently tension in the sling in the event of complete consumption of the available vertical play.287

Also, e = 0 in the bar-to-disk contact assures no relative rebound once the horizontal play is consumed288

and the bar comes in contact with the disk (analogues to the tube and concrete block hole interaction in289

the real structure.)290

3.2.5. Simulation database291

The structure model is impacted at the wall center height and in the middle of its footprint length.292

The model wall response is computed for a one-second duration with a 0.25 ms time step for which the293

simulation duration of about 20 minutes is reported. A demonstrative post-impact deformed structural294
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Table 3: Assigning the interaction between model bodies contactors

ine Construction Interacting pair (Colliding groups) Friction Restitution

ine
Foundation

Block (1) - Ground (9) µcs e

Odd bar (2) - Ground (9) 0.2 0

Stacking blocks Block (1) - Block (1) µcc e

Inserting tubes
Odd bar (2) - Disk (5) 0.2 0

Even bar (3) - Disk (5) 0.2 0

Inserting sling
Box (6) - Sphere (7) 0 0

Penetration stopper (4) - Sphere (7) 0 0

Impacting the wall Block (0,1) - Projectile (8) µcc e

ine

conformation is presented in Figure 10. Here, the initial (pre-impact) configuration is also presented295

(similar to Figure 4) where transparent blocks reveal the underlying connector model characteristics.296

Z

Y

X

Post-impact conformation

Pre-impact conformation

Connector model 
characteristics

Figure 10: Qualitative representation of initial and post-impact model conformations and highlighted connector model

characteristics

The output files of the model impact tests provided detailed information on the displacement, rotation,297

and velocities of each block and thereby enabled direct comparison with the experimentally obtained298

results at the corresponding locations. Besides, a detailed output database recorded for the contact299

forces also enabled the additional post-processing of the model structure behavior extending the limits300
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of the experimentally acquired database to a computationally advanced level.301

3.3. Evaluation of the NSCD model response302

The presented NSCD model comprises of many input parameters, most of which are directly taken303

from the real structure description (Table 1). By contrast, five model parameters couldn’t be given a304

precise value from this description. The first two take into account the imposed constraints for the block-305

connector (dz) and connector-connector (vp) interaction while the other three concern the interaction306

laws between contacting bodies (µcc, µcs and e).307

The relative disk position (dz) could not be precisely derived from the block and tube geometry. The308

vertical play (vp) magnitude is variable from place to place in the structure and it is difficult to measure309

precisely. The coefficients governing friction between blocks (µcc) and that between the blocks and the310

soil (µcs) are difficult to measure precisely as dealing with the dynamic loading of an articulated structure311

where relative movement between bodies include translation and rotation. Last, the restitution coefficient312

(e) is a model parameter whose precise value couldn’t be derived from some mechanical or geometrical313

features of the real structure.314

Table 4: Model parameters with their considered range and mean value

ine Parameter Possible range Mean value Unit

ine Bar-block contactor disk position (dz) 5 - 10 7.5 cm

Vertical play (vp) 1 - 10 5.5 cm

Friction coefficient concrete-concrete (µcc) 0.25 - 0.55 0.4 (-)

Friction coefficient concrete-soil (µcs) 0.3 - 0.6 0.45 (-)

Restitution coefficient (e) 0 - 0.3 0.15 (-)

ine

These parameters are listed in Table 4 with their range of possible values. The range for the vertical315

play is derived from observations of the real structure. The range for the disk position is determined as a316

fraction of the block height. The concrete-concrete friction angle is considered with the applicable range317

information retrieved from the literature [36]. The range for the friction angle between concrete and318

soil is established assuming slightly higher values than between concrete and concrete. The restitution319
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coefficient magnitude is considered ranging from perfectly inelastic collision (i.e., e = 0) upto a magnitude320

towards perfectly elastic collision. This upper limit is selected based on multiple simulations such that321

the rebound effect does not cause excessive inter-blocks displacement.322

0.06 0.08 0.10
0

10

20

d
z

0.06 0.08 0.10

0.025

0.050

0.075

0.100

v p

0.05 0.10
0

5

10

0.06 0.08 0.10

0.3

0.4

0.5

µ
cc

0.05 0.10

0.3

0.4

0.5

0.3 0.4 0.5
0

1

2

3

0.06 0.08 0.10

0.3

0.4

0.5

0.6

µ
cs

0.05 0.10

0.3

0.4

0.5

0.6

0.3 0.4 0.5

0.3

0.4

0.5

0.6

0.4 0.6
0

1

2

3

0.06 0.08 0.10

dz

0.1

0.2

0.3

e

0.05 0.10

vp

0.1

0.2

0.3

0.3 0.4 0.5

µcc

0.1

0.2

0.3

0.4 0.6

µcs

0.1

0.2

0.3

0.1 0.2 0.3

e
0

1

2

3

Figure 11: Input sample of size 300 (based on Sobol’ sampling method) comprising of five parameters following uniform

distribution in their respective ranges of variability

As a first step, the overall response of the NSCD model is assessed through a sample set of different323

combinations of the five input parameters. This sample set is statistically generated using sampling324

methods based on Monte-Carlo (MC) and quasi MC (such as Sobol’, Halton) [37] implemented in the325

UQlab input module [38]. The Sobol’ sampling method is used to define a set of 300 combinations of326

these five input parameters, as presented in Figure 11. This sampling method provides a random selection327

of the input parameters within their predefined ranges such that the input space is well-filled. Besides,328

without any prior bias to the magnitude of the five model parameters, uniform distributions are assigned329

for all.330

The global minimum and maximum range of outcomes from these 300 different simulations are pre-331

sented in Figures 12a and 12b together with the NSCD model outcome from the mean value set of the332

input parameters. Globally, the range of numerical outcomes envelops the experimental observations333

at all measurement points. However, the range of model outcomes for the point Top remains below334

the experimental observations for the 1020 kJ impact. The loss of mechanical continuity (as reported335

in section 2) introduces a difference between the real structure and its numerical counterpart where no336
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Figure 12: Comparison of the experimental observations against the range of numerical computation response for displace-

ment for (a) 520kJ and (b) 1020 kJ impact energy tests. The response obtained from the deterministic set of mean values

(∗) of model parameters is also highlighted.

concrete block fracture is possible.337

In spite of the difference at the point Top for 1020kJ test, the overall model-to-experiment correspon-338

dence is good considering all the data describing the structure response. This suggests that the NSCD339

model has the capacity to model the structure global response, assuming no block fracture. Also, the340

envelope infers that there could exist at least one set of five parameters that allow the NSCD model to341

possibly replicate the experimental response. This demands an extensive model calibration procedure342

presented hereinafter.343

4. Calibration of the NSCD model344

The aim of the calibration is to find the best set of the five model parameters (Table 4) such that345

the simulated spatio-temporal structure impact response mimics that of the real structure considering346
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four observation points ( i.e., points Top, Base, C and D as shown in Figure 2). The time evolution347

of the displacement along the x-axis is accounted for considering three representative time instants: the348

initial stage, the maximum, and the rest, referred to as init, max and rest respectively. The displace-349

ment measured at these three-time instants is considered to present a global narrative of the structure’s350

displacement, and thus performance from the point of view of its practical application. Notably, the init351

time instant, where the displacement evolves rather linearly, is aimed at reflecting the dynamics of the352

structure, is arbitrarily fixed to 0.1 s after the impact beginning in the impact axis (i.e., for points Top353

and Base) and 0.25 s in the distant plane (i.e., for points C and D).354

4.1. Calibration strategy355

The five model parameters are calibrated considering the displacement at the four measuring points,356

at the three different times and for the two impact experiments. The calibration is performed using the357

Bayesian interface statistical learning procedure on the meta-model of the articulated model structure,358

following the conceptual pathway presented in Figure 13.359

NSCD model 

(non-calibrated)

NSCD model 

(calibrated)

Bayesian Interface 

for model calibration 

against experimental 

databaseSurrogate of 

NSCD model 

(non-calibrated)

Surrogate 

NSCD model 

(calibrated)

Computationally expensive (~20 mins per simulation) and thereby impractical route

Negligible computational cost (microseconds) and hence highly practical route

Polynomial Chaos Expansion (PCE) based metamodeling technique

E
q

u
iv

a
le

n
t

Figure 13: Conceptual workflow of the NSCD model calibration using a combination of stochastic methods

This complex pathway is motivated by the fact that reaching this ambitious calibration objective360

demands a very large number of model computations. This is practically impossible with each model361

computation taking about 20 minutes. This limitation is averted using surrogate of NSCD model, rep-362

resentative of the structure response for different points at various time instances, through a collection363

of meta-models. Here, we use polynomial chaos expansion (PCE) based meta-modelling technique for364

surrogate model development, presented hereinafter.365
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4.2. Meta-model creation and accuracy assessment366

A meta-model is a mathematical modelling tool that bridges the gap between the current version of367

the numerical model and the requisite large number of computations for stochastic analysis. Here, the368

small statistically created input sample of the model parameters (presented in Figure 11) is used to define369

the mathematical expression incorporating the model behaviour with the desired accuracy.370

A polynomial chaos expansion (PCE) based meta-modelling technique implemented in the framework371

of UQ[py]Lab (a python library of UQLab [39]) is used in this work (see Appendix B for details). A total372

of 24 meta-models are created from the displacement response at three time instances - for four different373

points - for two different energies (i.e., 3 × 4 × 2 = 24). For each meta-model creation, a mathematical374

relation (as presented in Equation B.2), is established between the 300 distinct sets of input parameters375

and the corresponding displacement output set. The mathematical relation here can be analogically376

referred to as obtaining a regression for a 2D database.377

The accuracy of a meta-model is accessed through the leave-one-out (LOO) error (Equation B.5)378

in the order of 10−2 to 10−1 for all the computational cases. Thereby, as the NSCD model is highly379

nonlinear and non-smooth, we accept the meta-model accuracy and the underlying uncertainty. Such a380

level of accuracy with the added advantage of a single model computation within micro-seconds is deemed381

sufficient for the upcoming Bayesian interface based calibration method.382

Further, the accuracy of the meta-models is assessed by comparing the meta-models predictions with383

the NSCD model computations for the 520 kJ and 1020 kJ impact tests (Figures 14a and 14b). Notably,384

the set of 300 NSCD model simulations that was used to create the meta-model is reused as a validation.385

The choice of not using an independent set is made based on the order of magnitude of LOO and the386

relative difference between NSCD and meta-model outputs for the same set of input parameters.387

The cloud of points is rather well aligned with the diagonals in these plots, indicating that the predicted388

response by the meta-models fits with the corresponding NSCD simulations results. The reliability of the389

predictions along the impact axis is relatively better than in the distant one for both impacts. The distant390

axis points move relatively less and present more divergence from the diagonal line which highlights the391

significance of the variability in model dynamics farther from the impact axis as the model interaction392

parameters vary.393
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Figure 14: Comparison of displacements evaluated at four points (Top, Base, C and D) each at three time instances (initial,

maximum and rest) from 300 NSCD model runs, and the corresponding evaluation by the PCE based meta-models with

LOO error of order 10−2 to 10−1 for (a) 520kJ and (b) 1020 kJ impact tests

4.3. Relative influence of the model parameters394

Before proceeding with the calibration process, the influence of each parameter on the spatio-temporal395

displacement response of the structure is investigated through the Sobol sensitivity method also known396

as analysis of variance [40]. This method decomposes the variance of the output parameters as the sum397

of the contributions of the different input parameters including the possible interaction between input398

parameters. Each contribution is characterized by the ratios of the partial variance to the total variance,399

called Sobol sensitivity indices.400

The accurate Sobol indices computation demands a large number of model computations (of order401

106). This is highly impractical in the present study if the NSCD model is to be used directly. Nonetheless,402

the meta-model of the NSCD model can be directly used to compute Sobol indices at zero cost [41, 42].403

The UQlab sensitivity analysis module [43] is used for such computations. The total Sobol indices for404

the three time instances, at all considered points and for both impact tests are presented in Figure 15.405

The Sobol indices are observed to significantly differ from one parameter to the other. The higher406

values are observed for the vertical play (vp) and concrete-to-soil friction coefficient (µcs) e.g., at points407
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(a) (b)

Figure 15: Total Sobol indices of the spatio-temporal displacement response for the sensitivity analysis of the NSCD model

parameters for (a) 520kJ and (b) 1020kJ impact test

D and C respectively. Even though other parameters globally exhibit lower Sobol indices, their overall408

influence cannot be neglected. Besides, we observe that the Sobol index for a given parameter varies over409

time and is different from one impact energy to the other, e.g., ‘vp’ ranges from 0.01 to 0.7, and ‘e’ ranges410

from 0.04 to 0.22.411

Overall, these results aid in understanding the structure response highlighting the mechanisms at work412

with time, complementing the insights to the experimental data discussed in Section 2. The influence of413

the vertical play (vp) on the displacement of the upper blocks during both impact tests decreased with414

time. This highlighted the significant upward displacement (i.e., positive z-axis) of the blocks initiated415

in the early stage after the impact happened. By contrast, the influence of the concrete-to-soil friction416

coefficient (µcs) showed a global increasing trend with time, which is attributed to the progressive base417

sliding of the wall. Furthermore, the Sobol index of the concrete-to-concrete friction coefficient, µcc418

suggested that the relative displacement between blocks is much higher in the upper part of the structure419

(points Top and D).420

Besides, the sum of indices for a given situation exceeds one, expressing the interaction between input421

parameters. In other words, changing the value of a given parameter modifies the structure dymanic422

response which consequently alters the influence of other parameters. Overall, non-zero magnitude of all423

parameters affirms to consider their variability for calibrating the structure response. It also validates424

the identifiability of all parameters [44] for the Bayesian interface based studies presented hereinafter.425
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4.4. Bayesian interface for model calibration426

The Bayesian interface is inspired by the Bayes’ theorem [45] - a representation of the changing427

beliefs - simply demonstrating that probability of a ‘hypothesis’ being correct becomes more reliable with428

supporting ‘evidence’. In our work, the ‘hypothesis’ states that the 300 distinct sets of input parameters429

give a correct range of displacement output. The idea of reliability increase in on our hypothesis, given430

the experimental database as ‘evidence’, means that there exist at least one set of input parameters such431

that the recorded evidence is reproduced, in other words, the model is calibrated. Hence, our goal is to432

find the optimal values of the input parameters that allow one to best fit the model predictions to the433

observations. A brief description of the Bayesian interface is presented in Appendix C.434

4.4.1. Representation435

The available displacement experimental data at the points of interest and at three time instances436

are taken as a benchmark to calibrate the NSCD model parameters to obtain the requisite set of param-437

eters. Here, we use the PCE-based meta-models of NSCD model as the forward model or ‘prior ’ (see438

Equation C.2) to accelerate Bayesian computations, an approach extensively used by many researchers439

[46, 47, 48]. The meta-model based calibrated set of input parameters i.e., ‘posterior ’ (see Equation C.3)440

is the representative of the NSCD model calibration.441

In the UQlab Bayesian interface framework, the uncertainty in the model prediction is assigned via442

added Gaussian discrepancy (see Equation C.5) when correlated with the recorded experimental data. In443

the present work, as the model calibration relies on a single corresponding experimental measurement,444

deemed precise, the discrepancy with a known residual variance of order 10−20 is manually assigned.445

4.4.2. Implementation446

The Bayesian interface module in UQLab [49] is implemented to obtain a set of input parameters447

considering three approaches referred to as ‘point’, ‘energy’, and ‘all’. These three approaches are inspired448

by the scope of the user’s interest to reproduce the experimental outcome which ranges from a particular449

time instance calibration to overall model behavior calibration in both space and time.450

The first approach amounts to giving priority to a given point, meaning that the model is calibrated to451

provide precise predictions over time for this specific point courtesy of the multiple model output feature452

(demonstrated in Equation C.8). The second approach, ‘energy’ is in line with strategies consisting453
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in calibrating a model at a given impact energy before using it for another impact energy. The ‘all’454

approach aims at ensuring that the model provides reliable predictions at any point and whatever the455

impact energy. The second and third approaches are implemented courtesy of the multiple forward model456

feature (demonstrated in Equation C.10).457

Table 5: Calibrated sets of model parameters following three different approaches

ine

P
a
ra
m
et
er

Approaches

U
n
it
sPoint Energy

All520kJ 1020kJ
520kJ 1020kJ

Top Base C D Top Base C D

ine dz 5.7 9.6 5.3 5.4 9.5 6.2 6.8 5.0 7.2 6.8 6.8 cm

vp 5.2 3.8 6.7 6.5 9.0 8.0 7.6 7.0 6.5 7.1 7.1 cm

µcc 0.251 0.419 0.474 0.265 0.378 0.512 0.510 0.342 0.351 0.323 0.316 (-)

µcs 0.311 0.304 0.340 0.346 0.306 0.351 0.301 0.301 0.320 0.308 0.307 (-)

e 0.190 0.194 0.138 0.033 0.152 0.290 0.283 0.200 0.198 0.220 0.222 (-)

ine

The calibrated sets of input parameters are reported in Table 5 obtained as a ‘maximum a posteriori ’458

and ‘mean’ point estimates (see Equation C.15) for ‘point’ approach and for both other approaches459

respectively. Depending on the calibration approach, significant differences in parameter values are460

observed. For example, vp varied from 3.8 to 9 cm depending on the calibration strategy. A ratio of461

about two between the minimum and the maximum values attributed to a parameter is also observed462

for dz and e in particular. Interestingly, the set of values calibrated following the ‘all’ approach is very463

close to that obtained following the ‘energy’ approach while considering the 1020kJ impact. Notably,464

the results obtained from the basic single-time instance approach are not presented in this paper due to465

limited interest.466

4.4.3. Interpretation467

The displacement response comparison between experimental results and NSCD model results ob-468

tained considering the magnitude of these input parameters is presented in Figure 16. The interpretation469

of these observations is presented hereinafter.470
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Figure 16: Bayesian inversion based calibration of (a) 520kJ and (b) 1020kJ impact test. Curves in black show the

experimental data. Curves in red, green and blue show the NSCD simulation results corresponding to approaches ‘point’,

‘energy’ and ‘all’, respectively.

The first approach (i.e., ’point’ approach) results in a total of four calibrated sets of input parameters471

for each impact test. This approach allows us to represent the influence of model dynamics at different472

points as the best set of input parameters is reported distinct for each point and for both energies. The473

experimental and numerical response, respectively in black and red in Figure 16, are in a very good474

quantitative and qualitative agreement with each other justifying the usage of stochastic methods for475

model calibration. This very good agreement emphasizes the success of choosing only three representative476

time instances over the whole impact duration. The significant difference observed at the point Top for477

the 1020kJ test is attributed to the loss of mechanical continuity as discussed in section 2. The obtained478

eight distinct sets of parameters (Table 5) highlight the significance of local dependency of the model479

constitution to accurately replicate the experimental response.480

The second approach (i.e., ‘energy’) collectively takes into account the model outputs at three time481

instances for all four measurement points for a given impact test. This way, two calibrated sets of input482

parameters are obtained from the Bayesian interface one each for the 520kJ and 1020kJ impact test. This483

approach presents the influence of the impact energy on the global model response. The corresponding484

response obtained from the NSCD model run (in green) is compared against the experimental observation.485
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Similar to the ‘point’ approach, a good qualitative agreement is observed between the experimental and486

numerical responses. Interestingly, the recorded ‘energy’ response using a single set of input parameters487

presented a similar response to the four distinct sets of these parameters in the ‘point’ approach for each488

energy level, highlighting the successful implementation of the multiple forward model feature of UQLab.489

The third approach (i.e., ‘all’) collectively takes into account the model outputs at three time instances490

for all four measurement points for both impact tests. Hence, a single set of calibrated input parameters491

is obtained representing the global response of the NSCD model, with time and space. Here again, the492

comparison between the corresponding response obtained from the NSCD model (in blue) is in good493

qualitative and quantitative agreement with the experimental observation.494

4.4.4. Application495

Finally, the counterpart of the input sample distribution before the calibration (see Figure 11), the496

posterior input sample distribution obtained from the ‘all’ approach is presented in Figure 17. The data497

point corresponding to the calibrated set is also highlighted. Notably, from the histogram of the outputs,498

all input parameters present a locally emphasised magnitudes corresponding to the good fits with the499

desired output. However, the final set of parameters deviates slightly from the most probable magnitude500

of a particular input parameter. This difference is negligible for all parameters except µcc where the501

final selected parameter magnitude is slightly larger than the most probable one. Besides, a very narrow502

range of µcs parameter indirectly highlights its relatively high sensitivity to the model response (as also503

highlighted in Figure 15).504

Further, as the counterpart of the displacement response before the calibration process (see Figure 12),505

the post-calibration response (from the ‘all’ approach) is presented in Figure 18. Overall, a good quali-506

tative agreement between experimental and numerical observations is reported favouring the calibrated507

set of input parameters. From the quantitative comparison of the collective experimental and numerical508

(posterior mean) displacement measurements at three time representatives, a root mean square error509

(RMSE) of 9.9cm and 2.3cm is reported for impact and distant axis respectively which account for about510

8.6% and 5.6% of representative displacements from the respective axis. A relatively better accuracy511

to reproduce the distant axis response favours the model’s practical utility. Continuing with the loss512

of mechanical continuity argument for the point Top during the 1020-kJ test (refer to section 2), the513

reported relatively large quantitative and qualitative difference is accepted and also is not considered in514
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Figure 17: Output sample obtained after Bayesian calibration corresponding to ‘all’ approach. Here, diagonal plots present

histograms of the five model parameters and other plots present their distribution, where colours reflect the density of

points. The red ⋆ and line present the calibrated value of the respective model parameter.

RMSE estimation.515

Moreover, the range of possible model outputs is also presented using all sets of input parameters516

from the posterior distribution. The relatively narrow width of the band in comparison to the prior517

sample validates the computational efficiency of the Bayesian interface. Besides, in co-relation to the518

input sample distribution (see Figure 18), most of the output trends in the band are likely to be closer to519

the posterior-mean response. Nonetheless, such co-relation is not made as the eventual goal is to obtain520

a deterministic set of input parameters for the further utility of the NSCD model.521

Globally, the NSCD model is well-calibrated as a positive consequence of the Bayesian interface522

approach where a large number of model computations are favoured by the usage of the PCE-based523

meta-models. As an extension, for better and more reliable model calibration, the diversity in the524

experimental data both in time and space is favourable.525

5. Discussion526

5.1. Benefits of the calibration approach527

This research proposed a complex approach making use of Bayesian interface accelerated with PCE-528

based meta-models for calibrating the developed NSCD model.529
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Figure 18: Comparison of the experimental displacement response against the NSCD model response obtained from the

best calibrated set of input parameters along with the band of possible posterior sample based outcomes for (a) 520kJ and

(b) 1020kJ impact tests respectively

The model calibration concerned five input parameters whose values could not be precisely measured530

or determined a priori. The proposed stochastic analysis required an investment of 300 NSCD model runs531

to retrieve the essential database. By comparison, a simple calibration method, for example based on532

Monte Carlo simulations, would require a much larger number of simulations for obtaining a reliable set of533

model parameters. The combination of the meta-model and Bayesian interface thus presented a practical534

route to surpass the induced computational time constraint. On that subject, it is worth highlighting535

that the average computational time for the simulation of one structure impact response is of about 20536

minutes with the developed NSCD model. By comparison, a typical duration of 10 hours was necessary537

with the finite difference model proposed by Furet et al. [10]. This highly significant difference further538
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highlights the practical implementation potential of the NSCD model given the output of interest.539

The five model parameters were calibrated considering 24 outputs describing the structure displace-540

ment at four points and three-time instances and for two impact energies. The best set of model param-541

eters was determined minimizing the deviation with the experimental data for this set of 24 outputs. A542

simple calibration method would place an emphasis on a limited number of outputs (thus considering a543

smaller number of points and time instances) or would rely on a qualitative evaluation of the simulated544

response with time, without any quantification of the deviation. For these reasons, a simple calibration545

method would fail in satisfactorily describing the complex spatio-temporal response of the structure.546

The proposed calibration approach thus appears to result in a much more reliable set of model547

parameters. It could advantageously be used for calibrating any model where many parameters cannot548

be precisely determined a priori.549

5.2. On the optimum calibration strategy550

The results presented in section 4.4 revealed that the calibrated value of a particular model parameter551

significantly depends on the chosen calibration strategy. Ratios of about two are observed between552

extreme values of a given model parameter from one strategy to the other. This in particular indicates553

that a calibration based on the recorded structural response at a single point only may result in a set of554

parameters that may not be reliable for estimating the structure response at another location. This is555

demonstrated in Figure 19, where the focus is placed on the model calibrated against the displacement556

of the point Base during the 520kJ energy impact test. It is clearly seen that, despite a very good557

qualitative and quantitative agreement of the predictions by the model with the experimental response558

at this specific point, the model fails to correctly reproduce the responses at nearly all remaining locations559

for the 520kJ-energy test and at all four locations for the 1020 kJ-energy test. This is in line with the560

basic idea that the intended use of the model should be taken into account when defining the model561

parameters calibration strategy.562

By contrast, the ‘all’ calibration approach appeared to result in displacement predictions at a specific563

point as good as the prediction by the model calibrated for this specific point according to the ‘point’564

approach. This demonstrates that calibrating the model considering a large number of data is not at565

the expense of a reduction in prediction capacity as compared to models calibrated for a more specific566

purpose. In the end, the significance of using all spatio-temporal database for calibrating the model is567
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Figure 19: Comparison of experimental displacement response with the NSCD model response obtained from the point

Base calibration set from 520kJ for (a) 520 kJ and (b) 1020kJ impact test

fully justified.568

5.3. Energy dissipation569

Estimating the energy dissipative capacities of the protective structures exposed to a localized dy-570

namic loading is of paramount importance for understanding their mechanical response and improving571

their design. Numerous research related to rockfall protection has considered the energy issue based on572

simulation results, with application to flexible barriers [50, 51, 52], embankments and walls [5, 10] and573

dissipative materials or components [53, 54]. The provided data mainly aimed at explaining how the574

incident block kinetic energy is transferred and dissipated in the impacted structure and its foundation.575

As for articulated concrete block structures, finite difference numerical simulations presented in [10]576

suggested that 50% of the projectile kinetic energy is dissipated by concrete plasticization due to shear577

and tension. The NSCD model proposed in the present study accounts for energy dissipation via e, µcc578

and µcs. The former indirectly accounted for damage to concrete blocks, while the two latter accounted579

for dissipation by friction between structure components.580

Nevertheless, the significant difference in model parameters from one calibration strategy to the other,581

including the parameters governing energy dissipation (e, µcc and µcs), suggests that energy dissipation582

estimated from the corresponding simulations may lead to different conclusions, in particular in terms of583

the respective contribution of each dissipative mechanism.584
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In the end, this highlights that simulation results interpreted in terms of energy dissipation should585

be considered with caution. The contribution by the various dissipative mechanisms (plasticization, fric-586

tion...) strongly depends on the modelling strategy, on the constitutive laws and on the value attributed587

to the model parameters. This comes in addition to the classical energy conservation issue associated with588

some numerical schemes. These general but critical comments undoubtedly hold for any numerical model589

of structures exposed to dynamic loading, such as rockfall protective structures (e.g. [5, 10, 50, 52]). Fur-590

ther investigation is necessary for evaluating the influence of the model parameters on the contribution591

of each mechanism to energy dissipation.592

6. Conclusions and perspectives593

In this work, a numerical model of a structure consisting of concrete blocks connected one to the others594

via metallic components and designed to intercept rockfall is presented and successfully calibrated. The595

model is kept simple and developed in Siconos software package based on NSCD approach mainly for the596

computation time-saving purpose. NSCD revealed efficiency for modelling such a complex structure where597

many components interact one with each other and some are invisible to each other. Each component in598

the real structure is directly and indirectly reproduced in the NSCD model considering the interaction599

mechanisms and the design framework of objects with contactors in Siconos. An average computation600

time of 20 mins is reported for the NSCD model in comparison to highly expensive FEM computations601

lasting for about 10 hours for the same computation.602

Five model parameters required calibration. Three parameters governed the mechanical interaction603

between the various model components and two concerned the structure description. The calibration of604

these five model parameters is conducted based on the displacement with time at four different locations605

in the structure measured during real-scale experiments considering two projectile kinetic energies. The606

calibration is conducted considering the Bayesian interface statistical learning method, accompanied by607

the meta-modelling techniques. This is done in view of accounting for the spatial and temporal displace-608

ment response of the structure upon a projectile impact. The meta-modelling techniques presented a609

surrogate of the NSCD model which represented a similar response albeit negligible computation time610

(microseconds) in comparison to the approximated 20 minutes time for one NSCD model computation.611

Subsequently, a large number of model computations are made possible by meta-models for the efficient612
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usage of the Bayesian interface for model calibration. Besides, the Sobol sensitivity analysis is made pos-613

sible through the surrogate model which presented the relative influence of one parameter to the other614

both in space and time.615

In the calibration process different calibration approaches, ranging from the local point to the global616

structure’s response are presented. It is evidenced that the model parameters value significantly depended617

on the calibration strategy, meaning on the number and variety of data used in this purpose. The final618

set of parameters value is reported to nearly mimic the spatial-temporal response of the real structure for619

both impact tests. An overall quantitative deviation of numerical results with the experimental evolution620

is reported to be 8.6% for the impact axis and 5.6% for the distant axis.621

As a perspective, the developed NSCD model will be used to investigate the response of articulated622

concrete blocks structures when exposed to impacts under different conditions, in view of quantifying623

their real efficiency, in a similar approach as in Mentani et al. [11], Toe et al. [12] and Lambert et al. [13].624
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Appendix A. NSCD method771

The constitutive framework of the NSCD method is described hereinafter.772

Appendix A.1. Newton-Euler equations773

The configuration of each rigid body in three dimensions is described by the position of its center774

of mass xg ∈ IR3 and the orientation of the body-fixed frame with respect to a given inertial frame775

R ∈ SO+(3). The velocity of the body is given by the velocity of the center of mass vg = ẋg ∈ IR3 and776

the angular velocity of the body expressed in the body–fixed frame Ω ∈ IR3. A possible formulation of777

the Newton-Euler equations of motion for each body is778



m v̇g = f(t, xg, vg, R,Ω)

IΩ̇ + Ω× IΩ = M(t, xg, vg, R,Ω)

ẋg = vg

Ṙ = RΩ̃

(A.1)

where m > 0 is the mass, I ∈ IR3×3 is the matrix of moments of inertia around the center of mass779

and the axis of the body–fixed frame, and f(·) ∈ IR3, respectively M(·) ∈ IR3, are the total forces and780

respectively torques with respect to the center of gravity applied to the body. The matrix Ω̃ ∈ IR3×3 is781

given by Ω̃x = Ω × x for all x ∈ IR3. In the implementation of Siconos, the orientation matrix R is782

parameterized by a unit quaternion p such that R = Φ(p). In the equations of motion (Equation A.1),783

the occurrences of R are substituted by their corresponding expressions in terms of p. The differential784

equation of Lie type Ṙ = RΩ̃ is replaced by ṗ = Ψ(p)Ω in the unit quaternion space. The closed formulae785

for Φ and Ψ can be found in any textbook on rigid body dynamics. We denote by q the vector of786

coordinates of the position and the orientation of the body, and by v the body twist. In matrix notation,787

the relation between the body twist v and the time derivative of q is788

q :=

xg

p

 , v :=

vg
Ω

 , q̇ =

 ẋg

Ψ(p)Ω

 =

I 0

0 Ψ(p)

 v := T (q)v (A.2)

with T (q) ∈ IR7×6. A compact matrix form of the Newton-Euler equations is789 
q̇ = T (q)v,

Mv̇ = F (t, q, v),

(A.3)
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where M ∈ IR6×6 is the total inertia matrix and F (t, q, v) ∈ IR6 collects all the forces and torques applied790

to the body given by791

M :=

mI3×3 0

0 I

 , F (t, q, v) :=

 f(t, xg, vg, R,Ω)

IΩ× Ω+M(t, xg, vg, R,Ω)

 . (A.4)

In the sequel, we assume that the vectors q ∈ IR7n and v ∈ IR6n collect the configuration parameters792

and the velocities of the n bodies in the model. The equation of motion (Equation A.3) is rearranged793

accordingly.794

Appendix A.2. Contact modelling as unilateral constraints and Coulomb friction795

For two contacting bodies A and B, we assume that we are able to define one or more contact pair796

composed of two candidate contact points CA and CB and a local frame at contact (CA,N,T1,T2) (see797

Figure A.20 for details). In this local frame, the normal gap function gN is defined as the signed distance798

between the point CA and CB , that is gN = (CB − CA).N. The unilateral contact is given by Signorini’s799

condition as800

0 ⩽ gN ⊥ rN ⩾ 0, (A.5)

where rN is the local contact normal force. The symbol gN ⊥ rN means that gNrN = 0. If the contact801

is open gN > 0, the contact force rN has to be equal to zero. If the contact is closed gN = 0, then the802

contact force is nonnegative rN ⩾ 0. As we said before, the dynamics of finite dimensional system requires803

the definition of an impact law. Let’s consider the relative velocity uN defined by uN = ġN. One of the804

simplest impact is the Newton impact law given by805

u+
N = −eu−

N , if gN = 0 and u−
N ⩽ 0, (A.6)

where e ∈ [0, 1] is the coefficient of restitution, u+
N is the post-impact velocity and u−

N the pre-impact806

velocity.807

For the tangential behaviour of the interface, we consider the Coulomb friction that can be formulated808

with the Signorini’s condition at the velocity level and in terms of the complete reaction forces r = [rN, rT]
⊤

809
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Body A

Body B

CA

N

T1
T2

CB

gN

Figure A.20: A contact pair and a local contact frame

and the relative velocity u = [uN, uT]
⊤ as810 

r = 0 if gN > 0 (no contact)

r = 0, uN ⩾ 0 if gN = 0 (take-off)

r ∈ K,u = 0 if gN = 0 (sticking)

r ∈ ∂K, uN = 0, ∥uT∥rT = ∥rT∥uT if gN = 0 (sliding)

(A.7)

where K = {r ∈ IR3, ||rT|| ⩽ µrN} is the usual Coulomb friction cone. Using the modified local relative811

velocity introduced by De Saxcé and Feng [55, 56], û := u + µ∥uT∥N and the dual cone of K, i.e.,812

K∗ = {z ∈ IR3 | zTx ⩾ 0 for all x ∈ K}, the contact model is equivalent to813

K∗ ∋ û ⊥ r ∈ K. (A.8)

Appendix A.3. Equations of motion with contact and friction814

The gap function gN for a contact is generally a function of the configuration of the bodies q. Let us815

consider that we have a set of m contact pairs given by the unilateral constraints:816

gαN(q) ⩾ 0, α ∈ I ⊂ IN, |I| = m. (A.9)

For a contact α ∈ I, the relative normal velocity is related to v through the relation817

uα
N = ġαN(q) = Jα

gN(q)q̇ = Jα
gN(q)T (q)v := Gα

N(q)v, (A.10)

where Jα
gN(q) is the Jacobian of gαN with respect to q. The same type of relation can be written for the818

tangential relative velocity uT as uN = Gα
T(q)v and we get for uα

819

uα := Gα(q)v. (A.11)
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By duality, the total force generated by the contact α is820

Gα,⊤(q)rα := Gα,⊤
N (q)rαN +Gα,⊤

T (q)rαT . (A.12)

Altogether the equation of motion with contact and Coulomb friction is given by821 

q̇ = T (q)v,

Mv̇ = F (t, q, v) +G⊤(q)r,

rα = 0, if gαN(q) > 0,

Kα,∗ ∋ ûα⊥ rα ∈ Kα, if gαN(q) = 0,

uα,+
N = −eαuα,−

N , if gαN(q) = 0 and uα,−
N ⩽ 0


α ∈ I,

Appendix A.4. Time-discretization822

Let us consider a time discretization t0 < . . . < tk−1 < tk < . . . < T with a constant time step823

h = tk+1 − tk. The Moreau–Jean scheme for the system is824 

qk+1 = qk + hT (qk+θ)vk+θ

M(vk+1 − vk)− hFk+θ = G⊤(qk+1)Pk+1,

Pα
k+1 = 0,

}
α ̸∈ Ik

Kα,∗ ∋ ûα
k+1 + eαuα

N,kN ⊥ Pα
k+1 ∈ Kα

}
α ∈ Ik.

(A.13)

where the notation xk+θ = (1 − θ)xk + θxk+1 is used for θ ∈ [0, 1] and the set Ik is the set of contact825

activated at the velocity level826

Ik = {α ∈ I | gαN,k + γuα
N,k ⩽ 0} with γ ∈ [0,

1

2
]. (A.14)

In the time-stepping method, the unknown Pk+1 is an approximation of the impulses of the contact827

reaction measure di over the time interval, that is828

∫
(tk,tk+1]

di ≈ Pk+1. (A.15)

The contact reaction measure is related to the contact force when the motion is smooth enough by829

di = r(t)dt. The system (Equation A.13) is a second-order cone complementarity problem that is solved830

by Siconos using a Gauss-Seidel method with projection [56].831
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Appendix B. PCE based meta-model832

Consider the articulated structure model represented by a M(X) as an equivalent mathematical833

model. Here, X ∈ RM is a random vector with independent components described by the joint probability834

density function (PDF) fX. Consider also a finite variance computational model as a map Y = M(X),835

with Y ∈ R such that:836

E
[
Y 2

]
=

∫
DX

M(x)2fX(x)dx < ∞ (B.1)

Then, under the assumption of Equation B.1, the PCE of M(X) is defined as:837

Y = M(X) =
∑

α∈NM

yαΨα(X) (B.2)

where, the Ψα(X) are multivariate polynomials orthonormal with respect to fX, α ∈ NM is a multi-838

index that identifies the components of the multivariate polynomials Ψα and the yα ∈ R are the corre-839

sponding coefficients. In practical applications, the sum in Equation B.2 needs to be truncated to a finite840

sum by introducing the truncated polynomial chaos expansion:841

M(X) ≈ MPC(X) =
∑
α∈A

yαΨα(X) (B.3)

where, A ⊂ NM is the set of selected multi-indices of multivariate polynomials.842

In this work, the least-angle regression (LARS) method is used to create the PCE meta-model trun-843

cated to the maximum polynomial degree (p) ranging from 1 to 20, and using hyperbolic truncation844

scheme (q) ranging from 0.5 to 1.845

AM,p,q = {α ∈ AM,p : ∥α∥q ⩽ p}, where ,∥α∥q =

( M∑
i=1

αq
i

)1/q

(B.4)

The accuracy of the constructed PCE is estimated by computing the leave-one-out (LOO) cross-846

validation error (ϵLOO). It consists in building N meta-models MPC\i, each one created on a reduced847

experimental design X\x(i) = {x(j), j = 1, ..., N, j ̸= i} and comparing its prediction on the excluded848

point x(i) with the real value y(i) = M
(
x(i)

)
[57]. The leave-one-cross-validation error can be written as:849

ϵLOO =

N∑
i=1

(
M

(
x(i) −MPC\i(x(i))

)2

N∑
i=1

(
M

(
x(i) − µ̂Y

)2
(B.5)
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where, µ̂Y is the mean of the experimental design sample.850

Appendix C. Bayesian interface for model calibration851

Consider the computational model M that allows the analyst to predict certain quantities of interest852

gathered in a vector y ∈ RNout as a function of input parameters x:853

M : x ∈ DX ⊂ RM 7→ y = M(x) ∈ RNout (C.1)

The Bayesian interface for model calibration focuses on identifying the input parameters of a computa-854

tional model to recover the observations in the collected output data set. It comprises of a computational855

forward model M, a set of input parameters x ∈ DX that need to be inferred, and a set of experimental856

data Y. Here, Y def
= {y1, ...,yN} is a global data set of N independent measured quantities of interest857

(yi).858

The forward model x 7→ M(x) is a mathematical representation of the system under consideration.859

The lack of knowledge on the input parameters is modelled by considering them as a random vector,860

denoted by X which is assumed to follow a so-called prior distribution (with support DX), as presented861

in Figure 11 in the present work.862

X ∼ π(x) (C.2)

The Bayesian statistics combine this prior knowledge of the parameters with the few observed data863

points to obtain a statistical model called posterior distribution (π(x | y)) of the input parameters, using864

Bayes’ theorem [45], expressed as:865

π(x | y) = π(y | x)π(x)
π(y)

(C.3)

Now, considering the available data set (Y) as independent realizations of Y | x ∼ π(y | x), the866

collected measurements result in the definition of the likelihood function L(x;Y), which is a function of867

input parameters x:868

L : x 7→ L(x;Y)
def
=

N∏
i=1

π(yi | x) (C.4)
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This implicitly assumes independence between individual measurements in Y. Intuitively the like-869

lihood function for a given x returns the relative likelihood of observing the data at hand, under the870

assumption that it follows the prescribed parametric distribution π(y | x).871

As all models are simplifications of the real world, a discrepancy term (ϵ) is introduced to connect872

real-world observations (Y) to the predictions by the model. In practice, the discrepancy term represents873

the effects of the measurement error and model inaccuracy. The discrepancy term introduced here reads:874

y = M(x) + ϵ (C.5)

Here, the ϵ is assumed as an additive Gaussian discrepancy [49] with a zero mean and given covariance875

matrix (Σ):876

ϵ ∼ N (ϵ | 0,Σ) (C.6)

Taking insights from the discrepancy term definition, a particular measurement point (yi ∈ Y, is a877

realization of the Gaussian distribution with mean valueM(x) and covariance matrixΣ. This distribution878

is named as discrepancy model and is expressed as:879

π(y | x) = N (y | M(x),Σ) (C.7)

In application, the discrepancy model defines the connection between the supplied data (Y) and the880

forward model. In the present work, as the model calibration relies on a single experimental measurement,881

the discrepancy model with known residual variance is assigned.882

Afterwards, theN independent available measurements gathered in the data-set (i.e., Y = {y1, ...,yN})883

are used to define the likelihood function as:884

L(x;Y) =

N∏
i=1

N (yi | M(x),Σ)

=

N∏
i=1

1√
(2π)Nout det (Σ)

exp

(
− 1

2

(
yi −M(x)

)⊺
Σ−1

(
yi −M(x)

)) (C.8)

Moreover, in the present work, the experimental data is retrieved through various points and for885

different impact energies. The Bayesian interface allows incorporating all these data points together886

for the model calibration by arranging the elements of Y in disjoint data groups and defining different887

likelihood functions for each data group [49].888
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Denoting the g-th data group by Gg = {yi}i∈u, where u ⊆ {1, ..., N}, the full data-set can be combined889

by890

Y =

Ngr⋃
g=1

G(g) (C.9)

Here, each of the Ngr data groups contains measurements collected at the same measurement point. In891

the context of the present work, these measurements are experimental data recorded at ‘init’, ‘max’ and892

‘rest’ time instances at a particular point. This makes it evident to have a different likelihood function893

L(g) describing the experimental conditions that led to measuring G(g). Assuming the Independence894

between Ngr measurement conditions, the full likelihood function can then be written as895

L(xM,xϵ;Y) =

Ngr∏
g=1

L(g)(xM,x(g)
ϵ ;G(g)) (C.10)

where, x
(g)
ϵ are the parameters of the g-th discrepancy group. The different model output groups are896

assigned through a model output map (MOMap) vector [49].897

Thereby, following Bayes’ theorem, the posterior distribution π(x | Y) of the parameters (x) given898

the observations in Y can be written as:899

π(x | Y) =
L(x;Y)π(x)

Z
(C.11)

Here, Z is a normalizing factor, known as the marginal likelihood or evidence, is added to ensure that900

this distribution integrates to 1:901

Z
def
=

∫
DX

L(x;Y)π(x)dx (C.12)

The closed-form solutions do not exist in practice the posterior distribution is obtained through902

Markov chain Monte Carlo (MCMC) simulations. In the present work, among many proposed algorithms903

in [49], the Adaptive Metropolis (AM) algorithm is used and 100 parallel chains with 1000 steps are904

assigned to the MCMC solver. The start of the covariance adaptation in AM algorithm is assigned at905

the 100th step (see Wagner et al. [49] for more details).906

The output (y) predictive capabilities of the Bayesian interface is assessed through the comparison of907

prior (π(y)) and posterior (π(y | Y)) output distributions as:908
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π(y) =

∫
DX

π(y | x)π(x)dx (C.13)

π(y | Y) =

∫
DX

π(y | x)π(x | Y)dx (C.14)

Lastly, in the present studies, the purpose of the Bayesian interface is to obtain the ‘best set of input909

parameters’. Given the posterior distribution (π(x | Y)), we are interested in finding a suitable set among910

the posterior computed set i.e., X | Y. This is done through a point estimator (x̂) computed from:911

π(y | Y)
def
= π(y | x̂) (C.15)

This point estimator can be a mean or mode (maximum a posteriori ‘MAP’) [49] of the posterior912

distribution as per the user’s choice.913
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