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Outline of the talkOutline of the talk

• Introduction Introduction   - Illustrative examples from experiments and simulations- Illustrative examples from experiments and simulations

• The baroclinic torque in high Froude number flows, its organization, scale The baroclinic torque in high Froude number flows, its organization, scale 

and order of magnitudeand order of magnitude

• Stability of the inhomogeneous mixing-layerStability of the inhomogeneous mixing-layer

……Break…Break…

4.4. Transition of the inhomogeneous mixing-layer and the 2D secondary Transition of the inhomogeneous mixing-layer and the 2D secondary 

baroclinic instabilitybaroclinic instability

5.5. The strain field of 2D light jetsThe strain field of 2D light jets

6.6. Transition to three-dimensionality in light jets and the question of side-jetsTransition to three-dimensionality in light jets and the question of side-jets

7.7. Baroclinic instability of heavy vortices and some elements on vortex Baroclinic instability of heavy vortices and some elements on vortex 

interaction in inhomogeneous 2D turbulenceinteraction in inhomogeneous 2D turbulence
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Inhomogeneous flows submitted to external versus internal accelerationInhomogeneous flows submitted to external versus internal acceleration

Buoyancy dominated flows Inhomogeneous medium in a gravity field

Accelerated Inhomogeneous flows Inhomogeneous medium in an external 
acceleration field 

High Froude number flows Mixing inhomogeneous streamsII

I{
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Stratified medium in a gravity field (type I)Stratified medium in a gravity field (type I)

Tilted tank experiments : « A method of 
producing a shear flow in a stratified fluid » 
S.A. Thorpe JFM32 1968
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Sheared stratified medium in a gravity field (type I)Sheared stratified medium in a gravity field (type I)

Two-dimensionnal Stratified Mixing Layer (vertical shear)

Klaassen and Peltier JFM227 (1991)

Re=300

Staquet JFM296 (1995)

Re=2000 – Ri = 0.167
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Sheared stratified medium in a gravity field (type I)Sheared stratified medium in a gravity field (type I)

Three-dimensionnal homogeneous Mixing Layer

Rogers and Moser JFM243 (1992)

Bernal and Roshko JFM170 (1986)
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Ri=0Ri=0.06

Sheared stratified medium in a gravity field (type I)Sheared stratified medium in a gravity field (type I)

Three-dimensionnal stratified Mixing Layer

Klaassen and Peltier JFM227 (1991)Schowalter, Van Atta and Lasheras JFM281 (1994)
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Inhomogeneous medium in an external acceleration field Inhomogeneous medium in an external acceleration field 

Mixing of a pocket of light fluid in a shaker
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Mixing inhomogeneous streams : spreading rateMixing inhomogeneous streams : spreading rate

Brown and Roshko, « On density effects and large structure in turbulent mixing layers »,  
JFM 64, 1974
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Mixing inhomogeneous streams : baroclinic instabilityMixing inhomogeneous streams : baroclinic instability

Two-dimensionnal secondary baroclinic instability : Reinaud, Joly and Chassaing, 
PoF vol 12(10), pp 2489-2505, 2000
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S=0,79

S=0,47

Mixing inhomogeneous streams : absolute instability of light jetsMixing inhomogeneous streams : absolute instability of light jets

Self-excited oscillations and mixing in a hot jet : Monkewitz and Bechert, 
PoF Gallery of fluid motion, 1988
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Mixing inhomogeneous streams : Side ejections in light jetsMixing inhomogeneous streams : Side ejections in light jets

Side ejections in a round laminar helium-jet S=0,14 : Hermouche, 1996 IMFT PhD supervised by P. Chassaing

Re = 750 Re = 1000 Re = 2600
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• Introduction  - Illustrative examples from experiments and simulations  

non-barotropic flows exhibit deviations from their non-barotropic flows exhibit deviations from their 

homogeneous or barotropic equivalenthomogeneous or barotropic equivalent

• The baroclinic torque in high Froude number flows, its nature, order of 
magnitude and organization

• Stability of the inhomogeneous mixing-layer

…Break…

4. Transition of the inhomogeneous mixing-layer and the 2D secondary 
baroclinic instability

5. The strain field of 2D light jets 

6. Transition to three-dimensionality in light jets and the question of side-
jets

7. Baroclinic instability of heavy vortices and some elements on vortex 
interaction in inhomogeneous 2D turbulence

Outline of the talkOutline of the talk
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Vorticity generation/destruction in non-baroctropic flows Vorticity generation/destruction in non-baroctropic flows 

Focus : Incompressible mixing at infinite Froude numbers
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Inviscid incompressible inhomogeneous flows

A unified view on baroclinic vorticity generationA unified view on baroclinic vorticity generation
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Normalization of variable density effectsNormalization of variable density effects

A set of scales
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Density contrast versus density ratioDensity contrast versus density ratio

Condition :
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The vorticity dynamics : baroclinic torque versus vortex stretchingThe vorticity dynamics : baroclinic torque versus vortex stretching
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Baroclinic torque versus vortex stretching in stratified flowsBaroclinic torque versus vortex stretching in stratified flows
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A prediction of some flow sensitivity to density variationsA prediction of some flow sensitivity to density variations

• Fully developped 3D turbulence

• Two-dimensional flows : no vortex stretching

• Transition flows

No vortex stretching, baroclinic torque only source/sink of vorticity

High Reynolds number turbulence insensitive to density variations

The baroclinic torque may bias the transition
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t=0t=2

Spatial structure of the variable density temporal mixing layerSpatial structure of the variable density temporal mixing layer

Kelvin-Helmholtz instability s=3, Re = Uδ /ν = 1500

Vorticity Baroclinic torque

t=4t=6t=8t=10t=12
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Spatial structure of the variable density mixing layer : length scalesSpatial structure of the variable density mixing layer : length scales

Mixing layer s = 1 or 3 , Re = 3000, t=12
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Net contribution of the baroclinic torque and the Reynolds numberNet contribution of the baroclinic torque and the Reynolds number

Temporal mixing layer s=3, Re = Uδ /ν = 500,1500,3000

Increasing Reynolds

Diffusive damping
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Outline of the talkOutline of the talk

• Introduction

• The baroclinic torque

• Scales with the bounded density contrastScales with the bounded density contrast

• Inertial nature : accelerated inhomogeneous mediumInertial nature : accelerated inhomogeneous medium

• Competes with vortex stretching in transition flows and 3D flowsCompetes with vortex stretching in transition flows and 3D flows

• Recasts the enstrophy spectrum toward higher wavenumbersRecasts the enstrophy spectrum toward higher wavenumbers

• Intense local source/sink of vorticity but a weak net effectIntense local source/sink of vorticity but a weak net effect

• Significantly damped by diffusion, enhanced by isopycnal stretchingSignificantly damped by diffusion, enhanced by isopycnal stretching

4. Stability of the inhomogeneous shear-flows

…Break…

5. Transition of the inhomogeneous mixing-layer and the 2D secondary baroclinic 
instability
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The temporal approximationThe temporal approximation

The temporal approximation : 

• The frame of reference is moving with the convection velocity of the large structures

• The flow is considered parallel

• The choosen subharmonic of the primary mode is periodized in the streamwise direction

The real flow : the 
spatially developing 
mixing-layer

The temporally 
developing mixing-
layer
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cogradientcountergradient

Cogradient versus countergradientCogradient versus countergradient

Due to the temporal approximation, the difference between 
cogradient and countergradient situations is lost
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Inviscid Linear stability of the variable density mixing layerInviscid Linear stability of the variable density mixing layer

• Decomposition of flow variables

• Perturbations are given the 2D wavelike form

• Linearization of the Euler equations : perturbation equations

• The Rayleigh equation for the crosswise perturbation velocity

Streamwise wavenumber

Growth rate

Phase velocity
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The linearized baroclinic torque is responsible for the differences between the The linearized baroclinic torque is responsible for the differences between the 
stability of the variable-density and the homogeneous shear flows.stability of the variable-density and the homogeneous shear flows.

Vorticity perturbationsVorticity perturbations

• Decomposition of the vorticity field

• Linearized equation for the normal vorticity perturbation (2D)
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Effect of the density contrast – same thickness zero offset

Density effect on the stability of the mixing layerDensity effect on the stability of the mixing layer

comments
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Influence of the thickness ratio

Density effect on the stability of the mixing layerDensity effect on the stability of the mixing layer

comments
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Influence of the crosswise offset

Density effect on the stability of the mixing layerDensity effect on the stability of the mixing layer

comments
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Combined effects of the thickness ratio and the crosswise offset

Density effect on the stability of the mixing layerDensity effect on the stability of the mixing layer

comments
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Absolute versus convective instabilityAbsolute versus convective instability

From the impulse response of a system to a perturbation located somewhere

Oscillator behavior, intrinseque 
behavior with a well defined response

Amplificator behavior, broad band 
sensitivity to external perturbations

ABSOLUTE INSTABILITY CONVECTIVE INSTABILITY

Wake of a bluff body, homogeneous jet with a 
negative coflow, light jet

Boundary layer flow, homogeneous jet
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Density effect on the 2D stability of the inhomogeneous jetDensity effect on the 2D stability of the inhomogeneous jet

The linearized baroclinic torque is responsible for the differences between the The linearized baroclinic torque is responsible for the differences between the 
stability of the variable-density and the homogeneous shear flows.stability of the variable-density and the homogeneous shear flows.

S=0,47

S=0,79
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Density effect on the 2D stability of the inhomogeneous jetDensity effect on the 2D stability of the inhomogeneous jet

Critical density ratio for 2D and round light jets

ScSc Plane JetPlane Jet Round JetRound Jet

Heated Heated 
JetJet

  Light Light 
Fluid JetFluid Jet

Measure and Theory Yu & MonkewitzMeasure and Theory Yu & Monkewitz Measure and Theory Monkewitz & SohnMeasure and Theory Monkewitz & Sohn

Measure Favre-Measure Favre-
MarinetMarinet

Stability Favre-Stability Favre-
MarinetMarinet

Measure Kyle Measure Kyle 
& Sreenivasan& Sreenivasan

TheoryTheory

Sc = 0.92Sc = 0.92 Sc = 0.73Sc = 0.73

Sc = 0.8Sc = 0.8 Sc = 0.61Sc = 0.610.940.94 0.720.72
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Density effect on the stability of 2D inhomogeneous flowsDensity effect on the stability of 2D inhomogeneous flows
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• Introduction

• The baroclinic torque

• Stability of the inhomogeneous shear flows

• Linearized baroclinic vorticity generation turns convective instability of Linearized baroclinic vorticity generation turns convective instability of 

jets into absolute instabilityjets into absolute instability

• Stability characteristics very sensitive to thckness ratio and relative Stability characteristics very sensitive to thckness ratio and relative 

offset between velocity and density profilesoffset between velocity and density profiles

…Break…

5. Transition of the inhomogeneous mixing-layer and

the 2D secondary baroclinic instability

Outline of the talkOutline of the talk
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Outline of the talkOutline of the talk

• Introduction

• The baroclinic torque

• Stability of the inhomogeneous mixing-layer 

… Break …

• The 2D mixing-layer in the nonlinear regime and the secondary baroclinic instability

• The strain field of 2D light jets

• Transition to three-dimensionality in light jets and the question of side-jets

• Baroclinic instability of heavy vortices and some elements on vortex interaction in 
inhomogeneous 2D turbulence
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t=0t=4t=8t=12

Spatial structure of the variable density mixing layerSpatial structure of the variable density mixing layer

Kelvin-Helmholtz instability s=3, Re = Uδ /ν = 1500

Vorticity Baroclinic torque
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Spatial structure of the variable density mixing layerSpatial structure of the variable density mixing layer
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Spatial structure of the variable density mixing layerSpatial structure of the variable density mixing layer

Normalized vorticity along the central material line
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The instabilityThe instability  of a stretched vorticity sheetof a stretched vorticity sheet

The stretched vorticity filament, Dritschel et al. JFM 230 (1991)

The strain rate has a twofold stabilizing effect :

2. Compresses disturbances in the transverse direction

3. Cause the disturbance wavelength to increase with time

Dynamics of unstable stratified mixing layers, Corcos et Sherman JFM 73 (1976),

Transient growth before inevitable decay depending on the 
ratio of strain rate to vorticity

A criterion based on γ /ω  : 

• more than 0.25 supresses amplification

• Around 0.065 allows for transient growth rate of three,

(passive behaviour of vorticity filaments in 2D turbulence)

Staquet JFM 296 (1995)
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The model of a stretched vorticity/density-gradient sheetThe model of a stretched vorticity/density-gradient sheet

The stretched density-gradient and vorticity filament,

Reinaud, Joly et Chassaing PoF (2002)
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Twodimensional Baroclinic instabilityTwodimensional Baroclinic instability  of a stretched vorticity sheetof a stretched vorticity sheet

The stretched density-gradient and vorticity filament,

Reinaud, Joly et Chassaing PoF (2002)
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A fascinating breakup into smaller scale vorticesA fascinating breakup into smaller scale vortices
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The secondary instability : scale invarianceThe secondary instability : scale invariance

• A specific transition mécanism of the inhomogeneous shear flow;

• Twodimensional secondary mode;

• The vorticity pattern is repeated in second generation structures, and so on untill 
viscity prevents baroclinic vorticity generation.
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The secondary instability in the spatially developping flowThe secondary instability in the spatially developping flow

Forced spatially developing mixing-layer (simulations with a variable density vortex method)

contergradient

homogeneous

cogradient
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Can you see any secondary generation structures ?Can you see any secondary generation structures ?

contergradient

homogeneous

cogradient

Brown & Roshko (1974)
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1. The 2D mixing-layer in the nonlinear regime and the secondary baroclinic instability

• The non-linear stage ends in a rather asymmetric vorticity distribution due to The non-linear stage ends in a rather asymmetric vorticity distribution due to 

alternate positive and negative baroclinic contributions;alternate positive and negative baroclinic contributions;

• From the vorticity field the structure is not a standard KH smooth (gentle) roller; From the vorticity field the structure is not a standard KH smooth (gentle) roller; 

• A secondary baroclinic instability developes on the light side of the KH billow;A secondary baroclinic instability developes on the light side of the KH billow;

• Not observed so far at Reynolds numbers up to 3000 nor in experimental Not observed so far at Reynolds numbers up to 3000 nor in experimental 

realizations of high Reynolds number flows;realizations of high Reynolds number flows;

• Provides a 2D bypass route to turbulence under high Reynolds number Provides a 2D bypass route to turbulence under high Reynolds number 

conditionsconditions.

• The strain field of 2D light jets

• Transition to three-dimensionality in light jets and the question of side-jets

• Baroclinic instability of heavy vortices and some elements on vortex interaction in 
inhomogeneous 2D turbulence

Outline of the talkOutline of the talk
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A measure of the strain rate and the shear rateA measure of the strain rate and the shear rate

The strain rate and the shear rate are measured along some relevant line
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The strain field of the mixing layerThe strain field of the mixing layer

Homogeneous Inhomogeneous, s = 3

Gray shading where shear rate above 1/τ  =  U/δω
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Analysis of the strain field around stagnation pointsAnalysis of the strain field around stagnation points

The model of the braid region according to Caulfield and Kerswell (PoF vol 12, 2000)

Hyperbolic region

Elliptic region

Model flow with strain rate     and rotation rate
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Analysis of the strain field around stagnation pointsAnalysis of the strain field around stagnation points

The model of the braid region according to Caulfield and Kerswell (PoF vol 12, 2000)
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The baroclinic torque in infinite Froude number jetsThe baroclinic torque in infinite Froude number jets

We switch from the spatially developping jet to the temporally developping jet
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The structure of the 2D light Jet (withThe structure of the 2D light Jet (with  pairing)pairing)

Temporal jet s=1/3, Re = UD/ν = 2500

Baroclinic Torque

Vorticity

Kyle et Sreenivasan JFM 249 (1993)

Homogeneous Light
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The strain field along material linesThe strain field along material lines

Temporal jet s=1/3, Re = UD/ν = 2500

Red : positive γ   (stretching) – Blue : negative γ  (compression) – Shaded : above same positive level

Passive scalar Light jet
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The strain field according to the Caulfield and Kerswell’s analysisThe strain field according to the Caulfield and Kerswell’s analysis

Temporal jet s=1/3, Re = UD/ν = 2500

Passive scalar Light jett = 4,5
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The strain field according to the Caulfield and Kerswell’s analysisThe strain field according to the Caulfield and Kerswell’s analysis

Temporal jet s=1/3, Re = UD/ν = 2500

Passive scalar Light jett = 12
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Strain rates in the light jetStrain rates in the light jet

Before the pairing - t = 4.5τ During the pairing - t = 12.0τ

Homogeneous Jet

Light Jet

Ellipti
c

Hyperbolic

Ellipti
c

Hyperbolic

0.52          1.33  <0

1.22          0.96  0.75

0.71          1.53  <0

1.00 to 2.47        1.04          0.51 to 0.73

0.57          1.37  <0

0.27          0.11  0.25

0.34          3.83  <0

0.49          0.45  0.18
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Outline of the talkOutline of the talk

1. The 2D mixing-layer in the nonlinear regime and the secondary baroclinic instability

2. The strain field of 2D light jets

• The strain fields of light jets present a folded layered structure,The strain fields of light jets present a folded layered structure,

• Much higher strain rates may be produced in the baroclinically modified roll-up,Much higher strain rates may be produced in the baroclinically modified roll-up,

• High strain rates are to be expected « inside » the light jet and close to favored leg High strain rates are to be expected « inside » the light jet and close to favored leg 

of the vorticity braid.of the vorticity braid.

• Transition to three-dimensionality in light jets and the question of side-jets

• Baroclinic instability of heavy vortices and some elements on vortex interaction in 
inhomogeneous 2D turbulence
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More on side jetsMore on side jets

1. Side jets occur when the jet is absolutely unstable,

2. The jet is absolutely unstable under a critical density ratio s<0.7,

3. Side jets aknowledged within some range of Reynolds number,

4. Side Jets induced by counter-rotative streamwise vortices lying in 
the braid region between successive vortex rings (Brancher et al. 
Phys Fluids 1994)

5. A shorter route to the mixing transition and a large increase of the 
mixing rate,

6. Side Jets recovered in a pulsed homogeneous jet by Monkewitz 
and Pfizenmaier (1991) leading these authors to conclude that the 
strength and synchronization of the primary mode in the 
absolutely unstable light jets is the sufficient conditions for 
spontaneous lateral ejections of fluids.

7. Additionnal facts from Hermouche experiments : 

i. Intemmittent ejection,

ii. Unsteady number and azymuthal positon,

iii. Quasi-steady streamwise position,

iv. Life time of several PM periods

9. Remaining questions

Fisrt observation by Monkewitz & Bechert (Album of Fluid Motion - 1988)

Side ejections on Re = 1000 helium jets 
from Hermouche, Imft (1996)
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The mechanism of side ejectionsThe mechanism of side ejections

Brancher, Chomaz & Huerre (1994)

Lambda2 probe of coherent structures in a DNS of a 
homogeneous 3D temporal jet with a 3-lobe 
corrugation of the initial vorticity tube. 

Paradigm of secondary 3D mode yielding counter-rotative vortices lying between adjacent distorted rings

Side jets induced by pairs of counter-rotative streamwise aligned vortices
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No side jets in planes light jetsNo side jets in planes light jets

Two-dimensionnal Heated jets from Yu and Monkewitz JFM 255 (1993)

Cold (homogeneous) jet Hot (light)  jet
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Growth rates of 3D disturbances according to CK2000Growth rates of 3D disturbances according to CK2000

Before the pairing - t = 4.5τ During the pairing - t = 12.0τ

Homogeneous Jet

Light Jet

Ellipti
c

Hyperbolic

Ellipti
c

Hyperbolic

0.52

2.44 1.5

0.71

2. to 5. 1. to 1.46

0.54 0.5

0.98 0.36

0.57

0.34

A first guess : the strain rate in the 2D light jet and predicted growth rates
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Baroclinic streamwise vorticity generationBaroclinic streamwise vorticity generation

Scheme of the vorticity generation on the model flow of unstrained counter-rotating vortices
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Baroclinic streamwise vorticity generation : a first glanceBaroclinic streamwise vorticity generation : a first glance

vorticité couple baroclinevorticité

• Shift of the vortex centers toward the 
light side

• Asymmetric entrainment

• A trend expected to be enhanced by the 
underlynig stretching in full configuration
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t=0t=2

Simulation of the 3D transition of the corrugated light jetSimulation of the 3D transition of the corrugated light jet

Corrugated temporal jet, Re = 1900 et Reθ  =  1 7 0

• primary mode perturbation resulting from 2D stability

• no result in 3D stability : kθ ?

t=4t=6t=8
t=10t=12
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Crosswise cuts through the ring and braid of simulated 3D jetsCrosswise cuts through the ring and braid of simulated 3D jets

Streamwise vorticity in the ring plane

Homogeneous (or ps) Light jet 1/3

Streamwise vorticity in the braid plane

Homogeneous (or ps) Light jet 1/3

Radial velocity in the braid plane
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3D Transition of the light jet3D Transition of the light jet

• Influence of density ratio Reynolds number and R/θ  on the characteristics of the azimuthal mode;

• Higher Reθ  simulations to get the full baroclniic effect on 2D primary mode

Growth of the energy (enstrophy) of three-dimensionnal motion
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Transition of the turbulent helium jetTransition of the turbulent helium jet

Re = 750 Re = 1000 Re = 2600

Influence of the Reynolds number
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Transition of the turbulent helium jetTransition of the turbulent helium jet

Conjecture on the transition sensitivity to the exit Reynolds number
• Viscous regime : no spontaneous side jets;

• Side jets regime;

• Secondary 2D instability regime.

Structure of the laminar helium jet

• PIV vorticity mapping (Hermouche’s test bank and Jérôme Fontane PhD);

• Primary structure of the light jet;

• 3D perturbation on the azimuthal wave number given by the 3D stability analysis:

• Impact on the mixing efficiency.

The end …
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Stabilité 3D du jet légerStabilité 3D du jet léger

Floquet analysis of the axisymmetric jet

Vortex de Stuart, r=0,5 Rouleau KH homogène, Re=1500 Rouleau KH s=3, Re=1500

Pierrehumbert et Widnall JFM 114 (1982) : λz = 0,6 λx – Klaassen et Peltier JFM 227 (1991)

Recherche déductive des modes propres transverses de la cdm et azimuthaux du jet léger
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Outline of the talkOutline of the talk

• The 2D mixing-layer in the nonlinear regime and the secondary baroclinic instability

• The strain field of 2D light jets

• Transition to three-dimensionality in light jets and the question of side-jets

• Spontaneous side jets in absolutely unstable light jets,Spontaneous side jets in absolutely unstable light jets,

• If understood may help mixing,If understood may help mixing,

• Experimental, Floquet analysis and DNS approach to get relevant dataExperimental, Floquet analysis and DNS approach to get relevant data

• Baroclinic instability of heavy vortices and some elements on vortex interaction in 
inhomogeneous 2D turbulence
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Non-barotropic vortices Non-barotropic vortices 
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• Vorticity of the gaussian vortex :

• Orthoradial velocity and centripetal acceleration :

• Density field on an elleptic patch :

• Density gradient vector :

• Baroclinic torque :

Analysis of the gaussian vortex on an elliptic density patchAnalysis of the gaussian vortex on an elliptic density patch



7676

The axisymmetrization of the light vortexThe axisymmetrization of the light vortex
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The breakdown of an heavy vortexThe breakdown of an heavy vortex
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Mass segregation in 2D turbulenceMass segregation in 2D turbulence

Décroissance de turbulence 
bidimensionnelle
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Mass segregation in 2D turbulenceMass segregation in 2D turbulence

Passive scalar 2D turbulence Inhomogeneous 2D turbulence
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Outline of the talkOutline of the talk

1. The 2D mixing-layer in the nonlinear regime and the secondary baroclinic instability

2. The strain field of 2D light jets

3. Transition to three-dimensionality in light jets and the question of side-jets

4. Baroclinic instability of heavy vortices and some elements on vortex interaction in 
inhomogeneous 2D turbulence

• Light vortex stable, heavy vortex unstable,Light vortex stable, heavy vortex unstable,

• Mass segregation by vorticity in 2D inhomogeneous turbulence,Mass segregation by vorticity in 2D inhomogeneous turbulence,

• Enstrophy (hence dissipation) generation.Enstrophy (hence dissipation) generation.

Thank you …


