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Abstract
We describe here how planetary ephemerides are built in the framework of General Rel-
ativity andhow they canbeused to test alternative theories.We focuson thedefinitionof the
reference frame (space and time) in which the planetary ephemeris is described, the
equations of motion that govern the orbits of solar system bodies and electromagnetic
waves. After a review on the existing planetary and lunar ephemerides, we summarize the
results obtained considering full modifications of the ephemeris framework with direct
comparisons with the observations of planetary systems, with a specific attention for the
PPN formalism. We then discuss other formalisms such as Einstein-dilaton theories, the
massless graviton and MOND. The paper finally concludes on some comments and rec-
ommendations regarding misinterpreted measurements of the advance of perihelia.

Keywords Gravitation · Alternative gravity theories · Experimental
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1 Introduction

The current definition of what is an ephemeris is a table giving the future positions of
a planet, comet, or satellite. By extension, it also includes the dynamical framework
from which the planetary positions and velocities are estimated. This framework
includes not only the dynamical modeling and the reference system with which the
motion is described, but also the sample of observations used for adjusting the
constants of the model. In this review, we will mainly focused on ephemerides of
planets, but there are also ephemerides of natural and artificial satellites, small bodies
(comets, asteroids) and pulsars.

With the 19th century and the golden age of the big refractors (Verdet 1990), the
astrometry of planets has known a significant improvement, leading to an increased
accuracy of the dynamical theories describing their motions. Together with these
improvements, came the inconsistencies between very accurate observed positions of
planets, such as Uranus, and the classical Newtonian modeling of gravity. In the case
of Uranus, a significant—even at this epoch—difference of several seconds of arc
between its observed positions and the positions proposed by the models, based on
Newton’s laws, opens the door to a major controversy of the century. Why the
Uranus orbit does not match with the observations when, for instances, comet
ephemerides are able to predict accurately their return in the visible sky? Since 1821,
the explanation of an unknown planet perturbing the orbit of Uranus has been
proposed. A hunt for the unseen planet started with an intensification in 1844 and the
hidden celestial object, called Neptune, was finally discovered in 1846 by Galle in
Berlin at the location that was predicted by Le Verrier and Addams. This episode
signs the paramount of classical celestial mechanics of the 19th century. However, an
other problem remains: the orbit of Mercury. At the beginning of the 20th century,
catalogs of planetary observations have been built with a worldwide effort and
provided angular positions for almost one century with accuracies below the level of
few seconds of arc. During this period, when no direct measure of the planetary
distance was possible, the constraints on the size of the planetary orbits were
obtained thanks to the long interval of observations and precise determination of the
mean motions, and consequently, with the third Kepler law, of the semi-major axis.

In the case of Mercury, the observed variation of the Mercury orbit was far too
important to be left unexplained in comparison to the observational accuracy of the
end of the 19th century and the beginning of the 20th century. Following the example
of Neptune and Uranus, people proposed the existence of another hidden object,
called Vulcain, perturbing the orbit of Mercury the same way that Neptune perturbs
the one of Uranus. The problem was that no one was able to observe Vulcain. Some
proposed that the planet could be always located on the other side of the sun relative
to the earth, making it impossible to be seen from earth. Others proposed a
modification of Newton’s potential equation. However, it was Einstein who
ultimately explained Mercury orbit, positing that gravity was not a force, but a
result of the spacetime curvature caused by the mass of celestial bodies (Einstein
1915).
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Decades later, thanks to the remote exploration of the solar system, planetary
ephemerides have evolved with high accurate astrometric observations obtained for
planet and natural satellites thanks to the navigation tracking of spacecraft (s/c)
orbiting these systems. Table 1 gives a good comparison between three generations
of planetary ephemerides developed at key stages of their evolution: from the end of
the classical Newtonian celestial mechanics (Gaillot and Le Verrier 1913), to the
beginning of the space regular exploration (Standish 1983) and up to the present time
(Park et al. 2021; Fienga et al. 2019).

Since the beginning of the space exploration, general relativity has been
continuously tested with planetary orbits, for instance, using the first direct radar
measurements on the telluric planet surfaces (Shapiro 1964). These measurements
were the first direct estimations of the Earth–Venus, Mercury or Mars distances used
as direct constraints in the construction of planetary ephemerides (Ash et al. 1967;
Standish et al. 1976). With the Apollo and Lunokhod missions on the Moon and the
installation of light reflecting corner cubes, a new step is reached as centimetric
measures of the Earth–Moon distances are obtained with Lunar Laser Ranging (LLR)
since then, with regular improvement of the measurement accuracy (Murphy et al.
2008; Turyshev et al. 2013b; Courde et al. 20170. In 1983, the first tracking data
from the Viking landers on Mars have been included in the numerical integration of
the Mars orbit at JPL (Newhall et al. 1983). With these measurements and those of
the first Pioneer and Voyager flybys of the Jovian and Saturnian systems, the
accuracy of the planetary ephemerides enters into the age of kilometer accuracies for

Table 1 4 generations of planetary ephemerides: accuracies of the observations used for the construction
of the ephemerides either with angular measurements (columns labeled angle) or with direct distance radar
and spacecraft tracking observations (Columns labeled distance Earth-). These values give an idea of the
expected precision obtained by the ephemerides during the period of observations indicated in the second
row of the table. It does not preclude from a degradation of the quality of the ephemerides out from the
period. The last column gives the estimation of the advance of perihelia D _- as computed with general
relativity. For the Earth, D _- is of about 0.1”.yr�1

Ephemerides Gaillot (Gaillot and Le
Verrier 1913)

DE102 (Standish 1983) DE440/INPOP19a (Park
et al. 2021; Fienga et al.
2019)

GR

Data span 1800–1913 1913–1983 1924–2021

Angle Distance Earth- Angle Distance Earth- Angle Distance Earth- D _-
” km ” km ” km ”.yr�1

Mercury 1 450 0.050 5 0.002 0.004 0.43

Venus 0.5 100 0.050 2 0.002 0.006 0.14

Mars 0.5 150 0.050 0.050 0.001 0.0015 0.065

Jupiter 0.5 1400 0.1 10 0.010 0.020 0.019

Saturn 0.5 3000 0.1 600 0.001 0.020 0.010

Uranus 1 12,700 0.2 2540 0.050 10 0.005

Neptune 1 22,000 0.2 4400 0.050 50 0.0033

Pluto 1 24,000 0.2 4800 0.050 2400 0.0027
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the planets and few tens of centimeter for the Moon thanks to LLR. At this level of
accuracy, the modelisation of the planetary dynamics was upgraded including
asteroid perturbations of the 5 biggest objects, Mars rotation improvement but also
figure-figure effect for the modelling of the Earth–Moon tidal deformations (Standish
2001). Since 2010, the s/c tracking measurements are still improving thanks to the
installation of more efficient transpondeurs. It is now possible to study the orbit of
Mars with an accuracy of less than a meter and since 2016 to have a monitoring of
Jupiter and Saturn orbits with an accuracy of tens of meters.

With these accuracies, the complexity of the dynamical model increases and it is
clear that the solar system becomes a more and more interesting tool for testing
general relativity or alternative theories of gravity. First tests of general relativity with
modern planetary ephemerides have started in 1978 (Anderson et al. 1978) with
regular improvements since then.

In this review, we will focus on planetary ephemerides, setting aside the topic of
gravity tests using the Earth–Moon system due to its complexity. Our incomplete
understanding of the Moon internal structure significantly limits, indeed, the testing
of alternative theories. But in order to introduce these limitations, a detailed
presentation of the complex mechanisms between the internal structure of the Moon,
its deformations, general relativity and their impacts on LLR observations (at very
close frequencies) has to be done, and we think that it is out of the scope of the
present work.

Here, we first explain how a planetary ephemeris is built from its native relativistic
framework. We give the dynamical model and the data sets used for its fits as well as
the problematics related to the fit itself. We try, at this stage, to give an introduction to
some of the concepts hidden behind the construction of planetary ephemerides. We
then review classic results obtained in the general relativity and post-Newtonian
limits for the modern period. In a third part, we discuss state-of-the-art approaches
for directly confronting alternative theories of gravity with planetary observations in
the most consistent possible way. Finally we give a quick overview of other types of
tests, deduced by interpreting planetary ephemeris accuracy at the light of different
gravitational frameworks. We will try to convince the readers that such results have
to be considered with a lot of caution because of the lack of consistency between the
framework with which the planetary ephemeris is built and the one proposed by the
authors.

Finally, we acknowledge that this review may have limitations. We apologize in
advance for any inadvertent omissions in the references and welcome feedback from
our readers.

2 Basic concepts behind planetary ephemerides

2.1 Prerequisites: a brief primer on general relativity

In classical Newtonian mechanics, space and time are treated as absolute concepts.
For instance, the time span is assumed to be uniform throughout the universe. But the
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main lesson from general relativity is that not only space and time are relative notions
rather than absolute ones, but also that the structure formed by space and time is
curved by the energy of matter. This notably means that the very notion of distances
in space and time depends on the observer, and also that observation may be
impacted by the curvature of spacetime. This implies a wide range of subtleties when
one describes motions at a level at which Newton’s theory is no longer accurate
enough. In what follows, we provide a brief summary of what is required to
understand those subtleties.

2.1.1 Newton’s theory

According to the first law of motion in Newton’s theory, an inertial motion is an
uniform motion in a straight line. As a consequence, free fall motions are not inertial
in Newton’s theory, but are accelerated by the gravitational force F. This force acts
between every massive objects and reads

FAB ¼ �FBA ¼ GMAMB

r2AB

rAB
krABk ; ð1Þ

where M is the equivalent to the charge in Coulomb’s law, but for gravity and G the
constant of gravitation.1 M is usually named gravitational mass, since it is related to
the gravitational force. According to the second law of motion, the acceleration that
follows from this force is

mAaA ¼ FAB; ð2Þ
where mA is the inertial mass of the body A. Namely, to accelerate a body A with
acceleration aA, a force FAB needs to be applied, regardless of the type of force in
question-it could be gravitational or electrostatic etc. Just as one would not expect a
relationship between the charge q in the electrostatic force and the inertial mass, one
should not anticipate a relationship between the gravitational “charge” M and the
inertial mass m. However, observations indicate otherwise, compelling Newton to
postulate the equivalence of gravitational and inertial mass. This is known as the
equivalence principle.

A common way to derive the equation of motion in classical mechanics is through
the definition of a Lagrangian of motion—of the general form L ¼ K � V , where K
is the kinetic energy and V the potential energy. The Lagrangian of motion in the
theory of Newton reads

LN ¼ mv2

2
þ mU ; ð3Þ

1 Indeed, Coulomb’s law between two charges reads jF12j ¼ kC jq1jjq2j=r212, where kC is Coulomb’s
constant.
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where v is the velocity of the moving object and U is the Newtonian potential that
satisfies the Poisson equation

DU ¼ �4pGqm; ð4Þ
where qm is the mass density of the gravitational sources.2 For instance, for a sum of
spherical bodies A,

Uðxi; tÞ ¼
X
A

GmA

jxi � xiAðtÞj
; ð5Þ

is solution of Eq. (4),with xi and xiAðtÞ the positions of the moving object and of the
gravitational sources A, respectively, where

mA ¼
Z
A
qmd

3r: ð6Þ

Indeed, applying the Euler–Lagrange equation

oL
ox

� d

dt

oL
ov

¼ 0; ð7Þ

on LN leads to Newton’s equation of motion

a ¼ $U ; ð8Þ
which reproduces Eq. (2) with Eq. (1) for M ¼ m. In the Newtonian framework, the
speed of light, c, and the constant of gravitation, G, are constants. Time and space are
universal and space is flat.

2.1.2 Proper time in special relativity

At the onset of the XXth century, a group of physicists understood that time and
space were not separate concepts, but instead, composed a singular entity known as
spacetime. In this new understanding, time and space became relative notions, and
the structure of spacetime, according to Minkowski, possessed a Lorentzian nature—
which means that the variation of the proper time of an observer follows

c2ds2 ¼ �gabdx
adxb ¼ c2dt2 � dx2 � dy2 � dz2; ð9Þ

where gab is named the Minkowski metric, and ft; xg inertial and non-rotating
coordinate systems.3 Throughout the text, we use the metric signature ð�;þ;þ;þÞ
and Einstein’s summation notational convention—which is such that

2 Note that the potential energy with this definition of the gravitational potential indeed reads V ¼ �mU ,
such that one indeed verifies that LN ¼ K � V in Eq. (3).
3 Non-rotating with respect to what will be the subject of a discussion in Sect. 2.1.4.
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ArBr :¼Pr ArBr. The variable c will be identified in Sect. 2.1.9 as the speed of
light, but more fundamentaly, it fixes the causal structure of the flat spacetime
equation Eq. (9). Lorentz transformations of special relativity are simply the coor-
dinate transformations that leave the structure of the metric Eq. (9) unchanged. They
read

T ¼ c t � v � x
c2

� �
; X ¼ xþ cvt þ ðc� 1Þ vðv � rÞ

v2
; ð10Þ

where v2 ¼ v � v and where v is the velocity between the two inertial reference
frames, and with the Lorentz factor c defined as

c :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q ; ð11Þ

Contrary to popular wisdom, it is Eq. (9)—not the Lorentz transformations equation
Eq. (10)—that is needed to derive the difference in time elapsed between two twins
in Langevin’s twin paradox.4 Let us assume a pair of observers that are at the same
location at the spacetime events A and B, but one of the observer stays at rest while
the other accelerates to leave and return to the other observer (see Fig. 1).

In terms of the reference frame of the observer at rest fsr; xg, the accelerated
observer’s proper time sa between the two events A and B reads

saAB ¼
Z
CAB

dsa ¼
Z
CAB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
dsr; ð12Þ

according to Eq. (9), with v ¼ dx=dsr, and where CAB is the accelerated trajectory of
the accelerated observer in the reference frame of the observer at rest. Given a
trajectory CAB, one can derive the proper time of the accelerated observer elapsed
between the events A and B. It is worth noting that Eq. (12) would not maintain the
same form if one attempts to derive the proper time elapsed for the rest observer from
the coordinates of the accelerated observer. This is because the Minkowski metric
[Eq. (9)] does not remain invariant for an accelerated reference frame fsa;Xg. In the
proper reference frame of an accelerated (but non-rotating) observer, the metric
Eq. (9) would instead read (Ni and Zimmermann 1978)

c2ds2 ¼ 1þ a � X
c2

� �2

c2ðdsaÞ2 � dX 2 � dY 2 � dZ2; ð13Þ

4 Langevin’s twin paradox presents a scenario in which one twin travels to space at a high speed and
returns to find the other twin has aged more. This highlights the relativistic effect of time dilation, as
described in the theory of special relativity. The paradox’s essence is rooted in a perceived contradiction:
both twins should ostensibly observe the other with a similar relative motion, which would therefore result
in the same ‘anomalous’ aging effect for both when solely using Lorentz’s transformations Eq. (10) in the
derivation.
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where a is the acceleration of the proper reference frame of an accelerated observer.
This fact alone dispels any paradox, as the situations of the two observers are distinct
both physically and mathematically. From Eq. (12), one can infer that the elapsed
proper time of an observer who has been accelerated between two arbitrary spacetime
events A and B is always smaller than the elapsed proper time of an observer at rest
saAB\srAB. In other words, this means that for an inertial observer the following action

S ¼ �mc2
Z

ds ¼ �mc2
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

r
dt ¼

Z
LSRðxa; vaÞdt; ð14Þ

is maximal, where LSR is, therefore, the Lagrangian of motion of special relativity:

LSR ¼ �mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
: ð15Þ

Fig. 1 Schematic illustration of the trajectories (world-lines) of two observers, one at rest and the other
accelerated. The accelerated trajectory correspond to the curve CAB
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2.1.3 Free fall and proper time in general relativity

In general relativity, the free fall of a point mass m aslo maximizes the proper time s,
but which is now defined by

sAB ¼
Z
CAB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gabdxadxb

q
; ð16Þ

where CAB means that the integration is taken along a given path between the
spacetime positions5 A and B of the observer.6 In cartesian coordinates for instance,
one has xi ¼ ðx; y; zÞ. gab is the spacetime metric, which depends on the position, and
which represents the curvature of spacetime. As we will see below, the metric is
solution of the Einstein-Hilbert equation of general relativity.

The definition of the proper time for an observer in Eq. (16) is true whether or not
the motion of the observer is accelerated. It is important to keep in mind that unlike
in Newton’s theory, a free falling observer in general relativity has an inertial motion
—that is, it is not accelerated. In general relativity, inertial bodies follow geodesics of
spacetime that correspond to free fall trajectories. This is forced upon the theory by
the equivalence principle, which states that the inertial mass is indeed equivalent to
the gravitational mass.

But since the free fall of an observer maximizes its proper time, it means that
Eq. (16) has to be an extremum in the case of a free fall motion. It means that the path
CAB between the events A and B must be such that it extremizes Eq. (16). As a
consequence, it must follow the Least Action Principle7 of Lagrangian mechanics
that demandes the extremization of an action defined upon a Lagrangian. Indeed,
from Eq. (16), one can define the following action

S ¼ mc2s ¼
Z

Lðxa; vaÞdt; ð17Þ

where va ¼ c dxa=dx0 ¼ dxa=dt is a velocity expressed in terms of the coordinates
fxag and where the Lagrangian reads

L ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gabðxrÞvavb

q
: ð18Þ

The Least Action Principle demands that dS ¼ 0. Given a specific spacetime metric
gab, one can therefore compute the equations of motion by applying the Euler-
Lagrange equation on Eq. (18). The equation can also be applied on the formal
definition of equation (18) and one then gets the general form—that is, for all
spacetime metrics—of the equations of motion (for massive point particles) that reads

5 Also named “events”.
6 Let us note that we use the mostly plus convention for the signature of the metric (�þþþ), and that we

use the Einstein summation convention, such that XrY r :¼P3
r¼0 XrY r. xa ¼ ðct; xiÞ ¼ ðct; x~Þ ¼ ðct; xÞ,

where i ¼ 1; 2; 3.
7 The Least Action Principle might be more appropriately termed the Extremum Action Principle, since it
primarily requires that the variation of the action remains null: dS ¼ 0. This implies that the action is at an
extremum.
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d2xa

dt2
¼ Ca

r� � C0
r�
va

c

� �
vrv�; ð19Þ

where

Cc
ab :¼ 1

2
gcrðoagrb � obgar � orgabÞ; ð20Þ

is named the Christoffel connection with gcr, the contravariant metric—which is
such that gargrb ¼ dab, where d is the Kronecker symbol. Besides, an accelerated
trajectory would read

d2xa

dt2
� Ca

r� � C0
r�
va

c

� �
vrv� ¼ Fa; ð21Þ

where Fa is the force responsible for the acceleration.

2.1.4 Einstein equation and the Newtonian approximation

The spacetime metric is curved by the energy of matter according to the Einstein
equation that reads

Rab � 1

2
gabR ¼ 8pG

c4
Tab; ð22Þ

where Rab is the Ricci tensor (see Sect. 2.1.5) defined as

Rab ¼ olC
l
ab � obCl

al þ Cl
rlC

r
ab � Cl

rbC
r
al; ð23Þ

and

R ¼ gr�Rr� ð24Þ
is the Ricci scalar, and Tab is the stress-energy tensor of the material fields—which
we will define in Sect. 2.1.6. The stress-energy tensor represents the energy content
of the matter fields that generate the curvature of spacetime. Otherwise, we will see
below that G corresponds to the constant of Newton, also known as the gravitational
constant.

The Newtonian approximation
In the Newtonian formalism given in Sect. 2.1.1, we assume that the speed of the
considered bodies is small with respect to the speed of light v2=c2 � 1. Let us add
the constant �mc2 to this Lagrangian, which does not impact the equation of motion,
but which is such that one reproduces the Lagrangian of motion of special relativity
equation Eq. (15) at leading order when U ¼ 0, that is
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LSR ¼ �mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

r
¼ �mc2 1� v2

2c2

� �
þO

v4

c4

� �
: ð25Þ

Now, the Lagrangian of motion for the theory of Newton reads

LN ¼ �mc2 1� v2

2c2
� U

c2

� �
: ð26Þ

Let us stress that for an orbit, one has v2=c2 �U=c2 � 1 in the theory of Newton.
This approximation ought to remain valid at leading order in general relativity in the
weak field limit. As a consequence, for now on, we will use the notation Oðc�2nÞ to
refer to both Oðv2n=c2nÞ and OðUn=c2nÞ. Since the theory of Newton is already
accurate in the solar system, we expect the theory of general relativity to reproduce
the trajectories of the Newtonian theory at leading order. Therefore, one expects that
there exists a spacetime metric that reproduces the Lagrangian equation Eq. (26) at
leading order. One can check that injecting the following metric in Eq. (18)

�c2ds2 ¼ ds2 ¼ � 1� 2U

c2

� �
c2dt2 þ dx2 þ dy2 þ dz2; ð27Þ

where ds is the spacetime line element defined as ds2 ¼ gabdxadxb, gives back the
Lagrangian of motion of the theory of Newton equation Eq. (26), up to corrections of
order Oðc�4Þ. Therefore, one expects the metric in Eq. (27) to be solution of general
relativity at leading order for the kind of weakly gravitating sources that we have in
the solar system.8 It can be indeed verified that by injecting the metric Eq. (27) in the
Einstein-Hilbert equation Eq. (23), the resulting differential equation reads

DU ¼ �4pGqm þOðc�2Þ; ð28Þ
where qm is the mass density of the gravitational sources defined as
qm ¼ T00=c2 þOðc�2Þ. It corresponds to Newton’s universal law of gravitation as
long as G is indeed the gravitational constant. One has therefore identified G in
Eq. (22) to Newton’s constant from the weak-field and slowly moving limit of the
theory that leads to the same field equation as Newton’s theory at leading order.

Therefore, general relativity produces the same trajectories at leading order as
Newton’s theory. This is called the Newtonian approximation of general relativity.

However, let us stress that even at this level of approximation, the two theories
differ drastically—in a way that can be tested at the experimental level already.
Indeed, in general relativity, the variation of an observer proper time ds [Eq. (27)]
with respect to the proper time of another observer depends explicitly on their
different positions in a gravitational potential U. This means that two observers at
different locations in the gravitational potential will not agree on the evolution of

8 As opposed to a neutron star or a black-hole.
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time. This effect, although minute, can be tested if one has accurate enough clocks. In
other words, had we developed atomic clocks with sufficient precision prior to our
ability to observe the motions of celestial bodies in the solar system, we could have
confirmed the superiority of general relativity over Newton’s theory. This could have
been achieved by comparing the frequencies of two clocks located at different
positions relative to the geoid. However, due to our atmosphere’s transparency,
astronomers identified the limitations of Newton’s theory through the anomalous
advance of Mercury’s perihelion—see Table 1 for the numerical value of this
advance—before quantum physicists could create sufficiently accurate atomic clocks.
We will further discuss the advance of the perihelion of Mercury in Sect. 2.1.8.

Finally, one can see in Eq. (27) that space it flat9 at leading order, such that free
fall trajectories in the solar system are essentially the consequence of the curvature of
the temporal dimension, not the spatial one.

Gauge invariance of Newton’s equation and the definition of coordinate times
Newton’s equation Eq. (28) is notably invariant under the following change of the
potential:

U ! U þ akðtÞxk þ bðtÞ; ð29Þ
where akðtÞ and b(t) are arbitrary three-vector and scalar that depend on time.10 One
often says that the Eq. (28) is invariant under the change of gauge defined by Eq. (29).

The change of gauge in Eq. (29) corresponds to a change of the coordinate time
being used to describe a motion. This is a major difference with respect to Newton’s
theory where there is a unique time. A coordinate time is simply a mathematical
construction of a time that can be related to the proper time of an observer, but not
necessarily. For instance, it can simply be defined according to purely mathematical
criteria, such as the simplicity of the field equations.

In order to illustrate the dependence of the Newtonian potential to the coordinate
time being used, let us define a coordinate time that would correspond to the proper
time of an imaginary observer that is so remote from the barycenter of the solar
system that it can be at rest with respect to the solar system because the potential of
the solar system and its gradient at their location is negligible. Assuming that this
imaginary observer is indeed at rest with respect to the solar system, this means that
the coordinate time t corresponds to the (fictional) proper time s such that dt ¼ ds at
the location of this (fictional) observer. The Newtonian potential in this gauge—or,
equivalently, with this coordinate time—reads

Uðxi; tÞ ¼
X
A

GmA

jxi � xiAðtÞj
; ð30Þ

where mA and xiAðtÞ are the masses and the positions of the bodies A. Alternatively,
one could define a coordinate time that corresponds to a (fictional) observer that

9 Space is Euclidean in Eq. (27), such that it satisfies the Pythagorean theorem.
10 Adding any term dU that is such that DdU ¼ 0 leaves Newton’s equation invariant.
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would be at rest at the center of the coordinate system xi ¼ 0. In this gauge, the
Newtonian potential would instead read

Uðxi; tÞ ¼
X
A

GmA
1

jxi � xiAðtÞj
� 1

jxiAðtÞj
� xjxjAðtÞ
jxiAðtÞj3

" #
; ð31Þ

because having dt ¼ ds in Eq. (27) at the center imposes Uðxi ¼ 0Þ ¼ 0, and being

at rest imposes r~U jxi¼0 ¼ 0. The transformation from the potential expressed in the
coordinate time of a remote observer to the potential expressed in the coordinate time
of an observer at the center of the coordinate system takes the form of Eq. (29) with

akðtÞ ¼ �
X
A

GmA
xkAðtÞ
jxiAðtÞj3

: and bðtÞ ¼ �
X
A

GmA

jxiAðtÞj
: ð32Þ

This notably means that the leading order of the equation of general relativity is
invariant under specific changes of time coordinate. As we will see in Sect. 2.1.5, this
is a leftover of the invariance of general relativity through a change of coordinate
system. It is really important to notice that while the field equation Eq. (28) is
invariant under some changes of the coordinate time, the actual solution of the
potential is not, as one can check from Eqs. (30) and (31).

In the coordinate time defined as the proper time of the fictional remote observer
t ¼ sr, the proper time of fictional observer at the center of the coordinate system so
reads

so ¼ t � 1

2c2

Z X
A

GmA

jxiAðtÞj
dt; ð33Þ

provided that they are indeed at rest with one another. See Sect. 3.2.2 for a discussion
on the coordinate times that are used by the community, following the IAU rec-
ommendations (Soffel 2003).

Dependence of a coordinate time to the trajectories of the gravitational bodies
Equation (33) teaches us something very important. Depending on its definition, a
coordinate time can depend explicitly on the trajectories of the gravitational bodies
xAðtÞ. As a consequence, in order to define such a coordinate time in practice, it is
necessary to estimate the positions of the celestial bodies over time with enough
accuracy.

But why would one want to define such a coordinate time if it means that one must
already have an accurate knowledge of the trajectories of the gravitational bodies in
order to define it? Simply because one has to define such a coordinate time in order to
compare different observations made at various locations by several observers. The
proper time of each observer is indeed different and the differences between the
various proper times depend on the observers’ relative trajectories in the gravitational
potential. Therefore, in order to compare the various observations, one first has to
define a coordinate time that will be used to transform the proper time of every
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observer to this coordinate time, such that after the transformation, all the
observations are expressed in a common time. We will see in Sect. 2.1.7 that at
the post-Newtonian level—or, the next-to-leading order—similar considerations
must be taken into account for the definition of space.

Any definition of a coordinate time could be used in theory. However, in practice,
a coordinate time is usually defined as being the proper time of a fictional observer at
some convenient location in the solar system, such as at its barycenter or at the geoid
of the Earth. Such coordinate times are defined by the International Astronomical
Union, as we will further discuss in Sect. 3.2.2.

But since one needs to know the trajectories of the gravitational bodies in the solar
system in order to construct this coordinate time, it means that one needs to use
planetary ephemerides to construct such a time. Therefore, planetary ephemerides
actually deliver the coordinate times defined by the International Astronomical Union
to the community, as discussed more in details in Sect. 3.2.2.

Rotating reference frames
TheNewtonian approximation of the spacetimemetric in general relativity assumes the
form of Eq. (27) only within a specific category of coordinate systems, typically
referred to as inertial frames. Notably, the coordinate system must be kinematically
non-rotating relative to distant celestial objects such as quasars. This suggests that the
rotation (or absence thereof) of a local reference frame must be defined in relation to
exceedingly distant objects. In support of his theory,Newton posited this coincidence as
evidence of an absolute space, serving as the stage for dynamic events and providing a
reference for defining rotation. In contrast, figures such as Leibniz and later Mach,
contended that this apparent coincidence reveals that inertia is relative, dependingmore
on the universe matter content than on an absolute space. Heavily influenced by these
perspectives, Einstein proposed the principle of relativity of inertia, later referred to as
Mach’s principle (Einstein 1918). This principle stipulates that spacetime is wholly
determined by itsmatter content. Considering general relativity accommodates vacuum
solutions,whether Einstein’s theory satisfies the principle of relativity of inertia remains
debated (Barbour and Pfister 1995). However, practically speaking, the solar system
asymptotic metric must be integrated into the larger spacetime metric effectively
generated by distant sources. This requirement accounts for why inertial reference
frames are non-rotating relative to very remote sources in general relativity—
considering they can be approximated as stationary due to their minimal relative
angular velocity in the sky over certain timescales.

2.1.5 Invariance of the laws through a change of coordinate system

Tensors
The tensorial nature of the Einstein–Hilbert equation Eq. (22) enforces the
covariance principle,11 which demands that the laws of Nature do not depend on
the choice of the coordinate system. Indeed, tensorial equations—such as Eq. (22)—

11 Or, principle of relativity (Einstein 1918).
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are invariant under change of coordinates. A tensor is defined by the way it
transforms under a change of coordinates. A tensor W, with n contravariant indices
and m covariant indices transform as

W a1:::an
b1:::bm

fxrg ¼
Y
ak

Y
bk

oxak

oX lk

oX mk

oxbk

 !
W l1:::ln

m1:::mm fX rg: ð34Þ

Tensorial equations are manifestly invariant under coordinate change, that is:

Ar1r2...rp
a1a2...an fxrg ¼ Br1r2...rp

a1a2...an fxrg , A
x1x2...xp

b1b2...bn
fX rg ¼ B

x1x2...xp

b1b2...bn
fX rg: ð35Þ

Because the metric field is a tensor, one can notably verify with Eq. (34) that the line-
element ds defined from the metric as follows

ds2 ¼ �c2ds2 ¼ gabfxrgdxadxb ¼ gabfX rgdX adX b ð36Þ
is invariant under coordinate change when integrated along a world-line. Indeed, the
proper time of an observer cannot depend on any coordinate system as it is a
measured quantity. Let us note however, that according to this definition, the
Christoffel connection defined in Eq. (20) is not a tensor as it transforms as follow:

Ca
lmfxrg ¼ oxa

oX b

oX r

oxl
oX q

oxm
Cb
rqfX rg � o2xa

oX roX q

oX r

oxl
oX q

oxm
: ð37Þ

One can also check that the difference between two connections is a tensor. What the
covariance principle means in particular is that the laws of physics are independent
with respect to the observer, whether the observer is inertial or not. While this is very
satisfying at the fundamental level, it also implies an intrinsic ambiguity about the
coordinates that one can use, as they are all equivalent in principle.

Observables
Certain coordinate systems can result in what are known as spurious effects. These are
essentially false effects arising solely from the coordinate system and do not reflect
reality. Determining whether an effect is genuine or spurious can be challenging unless
all calculations are made with respect to actual observables. Parameters referred to as
observables are independent of the coordinate system, and therefore, can correspond to
quantities that an observer can directlymeasure. These include values such as the proper
time elapsed for an observer between two events, or, aswewill discuss shortly, the angle
between two light cones at the observer’s location. On the contrary, it is very important
to keep inmind that positions, trajectories, or velocities, are not observables, but have to
be reconstructed from observations after assuming a specific coordinate system—as
well, as we will see, as a model for the dynamics of bodies and light.

Observables are scalar quantitites
According to Eq. (34), the only type of tensors that do not depend on the coordinate
system are scalars, which are such that
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Sfxrg ¼ SfX rg: ð38Þ
Tensors, if not scalars, therefore cannot represent observable quantities.

Positions in two dimensions: projection on the celestial sphere From an observer’s
perspective, the only tangible element related to the spatial distribution of any distant
object is the relative angular separation in the sky between the images of two objects.
This measurement can be made without reference to any specific coordinate system.
This angular separation corresponds to angles between the light cones connecting the
distant objects to the observer at the observer’s location, as shown in Fig. 2.

However, observers typically project at their location the vector of the light cones,
which join the distant objects to the observer’s location, onto a coordinate-dependent
representation of their celestial spheres. This process is where coordinate systems
become to be used. Importantly, it must be noted that the relative position (angle) of
the same distant objects as viewed by two different observers can vary. This is
because in general relativity, both time and space are relative to the observer and to
its gravitational environment. Hence, there is no such thing as absolute positions. In
simpler terms, the celestial spheres for different observers differ in general. Although
this effect is minute for observers in the solar system, it nonetheless needs to be
accounted for in modern astrometry.

Fig. 2 Schematic illustration of the angle (a) determined by an observer (O) at their location, between two
null-geodesics—see Sect. 2.1.9—that link the observer to two sources (Q and S) of electromagnetic waves.
Each null-geodesic represents a segment of the light-cone centered on an emitter
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In practical terms, an object location on the celestial sphere is determined by
observing the angular separation in the sky between the object and reference points
like quasars, from the perspective of the observer. Indeed, due to their extremely
remote location, the apparent movement of these reference points is negligible at the
present level of accuracy for the astrometric measurements for these objects (see
Sect. 3.2.3), and they can therefore indeed serve as static reference points (or
astrometric candle light).

However, there is another significant effect to consider, which is also illustrated in
Fig. 2: the propagation of light is not generally linear. This means that if an observer sees
a remote object at a particular location on his celestial sphere, it doesn’t imply that the
object is actually at that position on the sphere. This effect is referred to as gravitational
lensing (or deflection of light in the solar system) and is due to the fact that light
propagates on null-geodesics, see Sect. 2.1.9—which are not straight lines in general.
Although its impact is relatively weak for objects within the solar system, it highlights
the inherent difficulty of attributing positions on the celestial sphere in general relativity.

Hence, assigning a two-dimensional position to an object in general relativity not
only necessitates the definition of a coordinate system, but also requires a model of
the gravitational field through which light has propagated. Consequently, any
position in general relativity is model-dependent and is essentially a reconstruction
from observations.

The third dimension: range There are various methods to infer the distance
between a remote object and an observer. For s/c, the most accurate technique is
typically the measure of the time delay between the emission of a signal in the
direction of the spacecraft and the reception of the returned signal by the probe
(ranging). Essentially, this involves measuring the round-trip time of an electromag-
netic signal emitted at a given frequency between an observer and a spacecraft. Given
that the signal propagates at a constant speed in vacuum, this propagation time can be
converted into a distance. However, while the signal indeed travels at the speed of
light in a vacuum locally, its propagation time measured by a given observer can be
affected by the gravitational field localised between the source of emission and this
observer, along the trajectory of the electromagnetic signal. As a result, even when a
the signal follows a straight line between two points, the propagation time would not
correspond to the Euclidean distance between these points divided by the speed of
light. This effect is known as the Shapiro delay—See Sect. 2.1.9.

Therefore, determining distances through ranging techniques not only depends on
the specific choice of the coordinate system considered but also depends on the
knowledge one has on the gravitational potential in the solar system. Consequently,
distances are both model and theory dependent. Indeed, the potential in the solar
system is reconstructed by solving the field equations of a given theory—e.g.
Equation (27)—after assuming a specific model for the solar system that “sources”
the field equations—e.g. the right hand side of Eq. (27).
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Let us stress in particular that a modification of the field equations of general
relativity therefore implies the need for a new analysis of the measures, leading to a
new determination of the distances.

The need of conventions for coordinate systems Because space and time are
relative, for various observers to compare their respective observations and agree on
the positions of bodies, they must define a set of coordinates that allows to convert
their respective observations in terms of positions in space and time. This is the role
of the IAU recommendations that we will discuss in Sect. 3.2.

2.1.6 The action of general relativity

Just as the equations of motion can be derived from the Euler–Lagrange equation, the
field equation of general relativity can be derived from a Lagrangian density that is
defined based on the metric field and the various material fields. The key difference
lies in the type of dynamical variables used in the Lagrangian: instead of using
position and velocity as dynamical variables, one considers the fields and their
derivatives as dynamical variables in the case of a Lagrangian density.12 One can
define the action of general relativity as follows

SGR ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

R

2j
þ Lm

� �
; ð39Þ

where g is the metric determinant, Lm the Lagrangian density of matter fields, and
j ¼ 8pG=c4 the coupling constant between matter and curvature. In order to derive
the Euler–Lagragian equation, R is treated as a functional constructed upon the
metric field and its derivative—see Eq. (24). Lm is then a functional constructed upon
the matter fields and their derivative. For instance, for an electromagnetic field one
has

Lm ¼ 1

4l0
gargb�ðoaAb � obAaÞðorA� � o�ArÞ ð40Þ

where l0 is the magnetic permeability of vacuum, and Aa is the electromagnetic four-
vector. Let us note that one has Aa ¼ ð/=c;AÞ where / is the scalar potential and A
the vector potential of classical electromagnetism, form which one can compute the
electric and magnetic fields (Jackson 1998).

Defining a theory from its action rather than from its equations is convenient
because it allows one to be sure that the theory possesses conservation laws for the
considered theory, which derive from Noether’s theorem that states that every
symmetry of a Lagrangian implies the existence of a conservation law (Noether
1918; Wald 1984). Therefore, most modern theories are defined from an action,
although there are some exceptions—such as MOND, see Sect. 4.7.

12 Note that mathematicians typically refer to
ffiffiffiffiffiffiffi�g

p
L as a density because L is a scalar and a scalar

multiplied by the square root of the determinant corresponds to a mathematical object referred to as a
density of weight �1; however, physicists typically refer to L as a density, as it carries the dimension of an
energy density and is frequently associated with the definitions of kinetic and potential energy densities.
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Applying the principle of least action on the action (39), one recovers the
Einstein–Hilbert equation of general relativity Eq. (22), with

Tab ¼ � 2ffiffiffiffiffiffiffi�g
p dð ffiffiffiffiffiffiffi�g

p
LmÞ

dgab
; ð41Þ

where d stands for a variational derivative. It is worth noting that from Noether’s
theorem, the diffeomorphism invariance—that is, the invariance under change of
coordinates—of the matter Lagrangian Lm implies the (covariant) conservation of the
stress-energy tensor

rrT
lr ¼ 0; ð42Þ

where rr is the covariant derivative defined as followed for a tensor X with k
contravariant indices and l covariant indices:

rrX
l1:::lk
m1:::ml ¼orX l1:::lk

m1:::ml

þ Cl1
rkX

k:::lk
m1:::ml þ � � � þ Clk

rkX
l1:::k
m1:::ml

� Ck
rm1

X l1:::lk
k:::ml

� � � � � Ck
rml
X l1:::lk
m1:::k

:

ð43Þ

This is, of course, consistent with the geometrical fact that rrGlr ¼ 0, with
Glm ¼ Rlm � 1=2 glmR, the Einstein tensor, where Rlm is the contravariant Ricci
tensor defined from the covariant Ricci tensor Rlm and the contravariant metric tensor
glm as Rlm ¼ glagmbRab.

2.1.7 The post-Newtonian approximation of general relativity and gauge invariance

First, let us recall that the metric of general relativity at the Newtonian level, for a
reference frame that is not kinematically rotating with respect to distant celestial
bodies,13 reads

g00 ¼ �1þ 2U

c2
þOðc�3Þ; ð44Þ

g0i ¼ Oðc�2Þ; ð45Þ

gij ¼ dij þOðc�1Þ; ð46Þ
such that one indeed has

ds2 ¼ � 1� 2U

c2

� �
c2dt2 þ dx2 þ dy2 þ dz2; ð47Þ

at leading order. The truncation between leading and next-to-leading orders in
Eqs. (44)–(46) are made with respect to the equation of motion that derives from the

13 Beyond rotating coordinate systems, it’s noteworthy that one could also define and utilize coordinate
systems with shear, instead of pseudo-cartesian coordinate systems. However, such systems are rarely used
because they would notably complicate the calculations, and likely also hinder understanding.
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Lagrangian of motion Eq. (18). Indeed, the Lagrangian of motion with Eqs. (44)–(46)
reads

L / 1þ 1

c2
v2

2
� U

� �
þOðc�3Þ: ð48Þ

One can show that a set of coordinate systems exists in general relativity that are such
that, at next-to-leading order, the metric reads (Damour et al. 1991)

g00 ¼� 1þ 2w

c2
� 2w2

c4
þOðc�5Þ; ð49Þ

g0i ¼� 4wi

c3
Oðc�4Þ; ð50Þ

gij ¼dij 1þ 2w

c2

� �
þOðc�3Þ; ð51Þ

where w and wi are gravitational potentials. This is the so-called post-Newtonian
metric of general relativity, in conformally cartesian coordinates.14 Assuming this
metric, the field equation of general relativity reduces to

Dwþ 3

c2
o2ttwþ 4

c2
o2tjwj ¼ �4pGrþ O c�3

	 

; ð52Þ

Dwi � o2ijwj � o2tiw ¼ �4pGri þ O c�2
	 


; ð53Þ

where r ¼ c�2ðT 00 þ TkkÞ and ri ¼ c�1T0i, such that r and ri are zeroth order quan-
tities—because Tlm ¼ Oðc2; c; c0Þ in the weak-field and slowly moving
approximation.15

Post-Newtonian gauge invariance
One can check that the equations Eqs. (52)–(53) are invariant under the following
transformations

w0 ¼w� 1

c2
otk; ð54Þ

w0
i ¼wi þ 1

4
oik; ð55Þ

where k is an arbitrary differential function. Indeed, while the form of the metric in
Eqs. (49)–(51) completely fixes the type of spatial coordinates being considered, it

14 The name conformally cartesian stems from the fact that one has g00gij ¼ �dij þOðc�4Þ—that is, the
space-space component of metric gij multiplied by a conformal factor (here, the time-time component of
the metric g00) is flat up to c�4 corrections. It’s worth noting that such coordinate systems generally do not
exist in general in theories other than general relativity—at least when the metric considered still defines
the proper time ds2 ¼ �gabdxadxb and not a conformal frame.
15 One can verify that with the stress energy tensor of dust, which reads Tab ¼ �qmu

aub, where qm is the
rest mass density and ua ¼ dxa=ds, such that u0 � c.
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leaves a freedom at the level of the time coordinate. This gauge invariance indeed
corresponds to a shift of the time variable

dt ¼ c�4kðxaÞ: ð56Þ
After having imposed a non-kinematically-rotating frame with respect to distant
celestial objects (such as quasars), a central world-line and the use of conformally
cartesian coordinates, Eq. (56) is a remaining freedom of our coordinate system.

Harmonic gauge
The International Astronomical Union recommends (Soffel 2003) the use of
harmonic coordinates that are such that

gabCr
ab ¼ Oðc�5; c�4Þ: ð57Þ

However, because of the use of conformally cartesian coordinates, the space com-
ponent of this condition gabCi

ab ¼ Oðc�4Þ is already satisfied, and one is left with the
time component of this condition that, considering the metric Eqs. (49)–(51), reduces
to

otwþ ojwj ¼ Oðc�2Þ: ð58Þ
With this condition, Eqs. (52)–(53) reduce to

hmw ¼� 4pGrþ O c�3
	 


; ð59Þ

Mwi ¼� 4pGri þ O c�2
	 


; ð60Þ
where hm and Mwi are respectively the d’Alembertian and Laplacian of the usual flat
Minkowski spacetime:

hm ¼ �c�2o2tt þ M; ð61Þ

where for instance, M ¼ o2xx þ o2yy þ o2zz in Cartesian coordinates.

2.1.8 The Einstein–Infeld–Hoffman–Droste–Lorentz equation of motion

Up to corrections that can be taken into account at a later stage, celestial bodies in the
solar system can be approximated as being non-rotating point particles. This
approximation has been explored for the first time by Lorentz and Droste
(1917a, 1917b)—translated in Lorentz and Droste (1937)—and re-derived later by
Einstein et al. (1938). The stress-energy tensor for point particles is simply the stress-
energy tensor of a dust fluid

Tlm ¼ qmu
lum; ð62Þ

where ua ¼ dxa=ds is the proper four-velocity of the fluid. In terms of conserved
mass along the fluid geodesics dmA=ds ¼ 0, it reads
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Tlm ¼
X
A

mA u0=cffiffiffiffiffiffiffi�g
p vlAv

m
Ad

ð3Þðx� xAðtÞÞ; ð63Þ

where dð3Þ is the 3-dimensional delta function, and va ¼ dxa=dt the coordinate four-
velocity of the fluid, such that ua ¼ u0va=c. Equation (63) used the fact that
ulrrTlr ¼ 0 —which follows from Eq. (42)—such that one has the usual New-
tonian conservation of the mass density orðq�vrÞ ¼ otq� þ oiðq�viÞ ¼ 0 for the
density q� :¼ ffiffiffiffiffiffiffi�g

p
qmu

0=c. Solving the Einstein–Hilbert equation (22) with this
approximation, and in the harmonic gauge Eq. (58), leads to the metric in Eqs. (49)–
(51) with

w ¼ w0 � 1

c2
Dþ Oðc�4Þ; ð64Þ

wi ¼
X
A

GmA

rA
viA þ Oðc�2Þ; ð65Þ

where

w0 ¼
X
A

GmA

rA
; ð66Þ

where rA ¼ x� xAðtÞ, rA ¼ jrAj, and

D ¼
X
A

GmA

rA
�2v2a þ

X
B 6¼A

GmB

rBA
þ 1

2

rAvAð Þ2
r2A

þ rAaA

" #( )
; ð67Þ

with rAB ¼ jxB � xAj. We should note that this corresponds to the metric recom-
mended by the International Astronomical Union (Soffel 2003), subject to correc-
tions accounting for the fact that celestial bodies are not point-like but extended
objects, and that these bodies possess angular momentum relative to the frame that is
fixed with respect to distant objects, such as quasars. Fortunately, these corrections
are numerically small, such that they can safely be added a posteriori at the leading
order, without impacting the calculation of the next-to-leading order.

Now, injecting this metric into the definition of the Lagrangian of motion Eq. (18),
one gets for a test particle B the following Lagrangian of motion

LB ¼� mBc
2 þ mB

v2B
2
þ
X
A 6¼B

GmAmB

rAB
þ mBv4B

8c2

þ 1

c2
X
A6¼B

GmAmB

rAB
�4vA � vB þ 3

2
v2B þ 2v2A �

ðvA � rABÞ2
2r2AB

� rAB � aA
2

" #

� 1

c2
X
A6¼B

GmAmB

rAB

X
D6¼A

GmD

rAD
þ
X
D 6¼B

1

2

GmD

rDB

" #
þOðc�4Þ:

Injecting this Lagrangian into the Euler–Lagrange equation Eq. (7), one finally gets
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the Einstein–Infeld–Hoffman–Droste–Lorentz (EIHDL) equation of motion given in
Eq. (90) in Sect. 3.3.

The advance of perihelion of Mercury
When focusing solely on the two-body problem, one can examine the secular
changes of the orbital elements by treating the c�4 term in the equation of motion
Eq. (90) as perturbations to Keplerian orbits. For instance, the secular advance of a
perihelion in the two-body problem can be expressed as follows

D _- ¼ 6p
Gðm1 þ m2Þ
að1� e2Þc2 ; ð68Þ

where a is the Keplerian semi-major axis, e the eccentricity and mi the mass of the
body i.

2.1.9 The propagation of light in general relativity

From the Lagrangian of a free electromagnetic field Eq. (40), one derives the
following equation for the free electromagnetic field in a curved spacetime

rrF
ar ¼ orFar þ Ca

r�F
�r þ Cr

r�F
a� ¼ 0; ð69Þ

where rr defines the covariant derivatives associated to the Christoffel connection
Eq. (43). Using the definition of the electromagnetic tensor in Sect. 2.1.6, and
translating the 4-vector potential in terms of electric and magnetic fields (Jackson
1998), one recovers the equations of Maxwell for free electromagnetic fields if

spacetime is flat—that is hmE~ ¼ 0 and hmB~ ¼ 0, where hm is the usual D’Alem-
bertian of flat Minkowski spacetimes defined in Eq. (61). Considering the Lorenz
gauge rrAr ¼ 0, Eq. (69) reduces to

hAa � garRr�A
� ¼ 0:; ð70Þ

where one defines the covariant D’Alembertian as h ¼ gr�rrr�. Now, let us
expand the 4-vector potential as follows (Misner et al. 1973)

Al ¼ R al þ �bl þ O �2
	 
	 


expih=�
n o

; ð71Þ

where RfXg means the real part of X. The leading order in the � expansion corre-
sponds to the geometric optics approximation. It induces that

krrrk
a ¼ 0; ð72Þ

where the wave-vector is defined as ka :¼ garorh and

krk
r ¼ gr�k

rk� ¼ 0: ð73Þ
Equation (72) means that in the geometric optics limit, electromagnetic waves
follow spacetime geodesics
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dka

dk
þ Ca

lmk
lkm ¼ 0; ð74Þ

where k is an affine parameter of the geodesics, such that ka ¼ dxa=dk. Equation (73)
means that those geodesics are such that the line element is null (ds2 ¼ 0) along the
trajectories of the electromagnetic waves in the geometric optics approximation. One
therefore generically says that light follows null-geodesics, although this is in fact
correct only in the geometric optics approximation. The fact that ds2 ¼ 0 along the
geodesics of light implies that the trajectory lies on the null spacetime cones, which
define the causal structure of spacetime. In other words, the speed of light is indeed
equivalent to the speed c appearing in the definition of the line element Eq. (36). But
it also means that there is no notion of proper time for light since the line element
ds2 ¼ �c2ds2 is null along their geodesics.

Null-geodesics and astrometric observables
Because electromagnetic waves follow null-geodesics of a curved spacetime in the
geometric optic approximation, the trajectories of electromagnetic waves are curved
in general, notably leading to the deflection mentioned in Sect. 2.1.5 and represented
in Fig. 2.

One side of astrometry is about determining the projection of the positions of
celestial bodies on the celestial sphere as they are seen by an observer, based on their
angular measurements. Indeed, as detailed in Sect. 2.1.5, what measures an observer
are the angles between the null-cones that link them to the sources of the observed
electromagnetic waves.

As explained notably in Hees et al. (2014a), one way to get a covariant
definition16 of the position of the electromagnetic sources in the celestial sphere as it
appears for an observer, is to use the tetrad formalism (Misner et al. 1973; Klioner
and Kopeikin 1992), by giving the direction of observation of an incoming
electromagnetic wave in a tetrad E comoving with the observer OB, as one can see in
Fig. 3. We write El

hai the components of this tetrad, where hai corresponds to the

tetrad index and l is a normal tensor index that can be lowered and raised by use of
the metric. The tetrad is assumed to be orthonormal so that

glmE
l
haiE

m
hbi ¼ ghaihbi; ð75Þ

g being the flat Minkowski metric, and the vector El
h0i is chosen to be timelike, such

that El
hii is spacelike. Then, the wave-vector kl ¼ glmkm becomes in the tetrad frame

associated to the observer

khai ¼ El
haikl: ð76Þ

The incident direction of the wave in the tetrad frame is given by the following
normalization

16 That is, a definition that is invariant under change of coordinate systems.
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nhii ¼ khiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
djkkhjikhki

q ¼ khii

kh0i
¼ � khii

kh0i
: ð77Þ

This quantity is the actual astrometric observable at the location of the observer. For
more details, we refer the reader to Misner et al. (1973), Klioner and Kopeikin
(1992), and Hees et al. (2014a).

The other side of astrometry is about determining the distance of remote objects,
which leads us to the concept of the Shapiro delay.

Shapiro delay
In the solar system, most of the time, the trajectory of light can be approximated as
being straight lines at leading order.17 That is, one has
xiðtÞ ¼ nicðt � teÞ þ xie þOðc�2Þ—where e stands for the emission, and ni is a
constant normalized vector. One can use this information in order to compute the
coordinate time elapsed between the emission and the reception of light, without the
need to actually solve the geodesic equation (74). From the null condition Eq. (73),
one has, indeed, that ds2 ¼ 0 between the emission and the reception of the
electromagnetic wave. This means that glmdxmdxl ¼ 0, where glm is given by
Eqs. (49)–(51). However, since light travels at the speed of light, vi=c is not a
negligible quantity, and it is necessary to maintain the same order of development in
terms of c�n in the metric to account for all the relevant terms at a given order for the
propagation of light. As a result, when considering deviations from the trajectory of
light relative to special relativity up to the order Oðc�3Þ, the relevant metric is

Fig. 3 Illustration of an electromagnetic wave with frequency mA emitted by OA with a wave four-vector
of components klA and received by OB at a frequency mB and with a wave four-vector of components klA .
Image reproduced with permission from Hees et al. (2014a), copyright by APS

17 This approximation holds true when one is sufficiently distant from the gravitational lensing regime,
but starts to fail near this regime, resulting in the emergence of the so-called enhanced terms during the
derivation of light trajectory in geometric configurations where this approximation is only marginally
accurate (Ashby and Bertotti 2010; Linet and Teyssandier 2016). For a brief discussion on this matter, we
refer to Sect. 3.4.1.
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ds2 ¼ � 1� 2U

c2

� �
c2dt2 þ 1þ 2U

c2

� �
ðdx2 þ dy2 þ dz2Þ þOðc�3Þ ¼ 0; ð78Þ

where U ¼ wþOðc�2Þ—see Eqs. (28) and (52). Integrating over this equation, one
gets the coordinate time elapsed between the emission and the reception Ter ¼ tr � te

c Ter ¼ jxir � xiej þ
2

c2

Z r

e
Udl þOðc�3Þ; ð79Þ

where the integration is taken along the straight line xiðtÞ ¼ niðt � teÞ þ xie that
connects the emission and the reception events. It appears as if light experiences a
delay due to the presence of a gravitational field. This delay is known as the Shapiro
delay, named after Irwin Shapiro who was the first to predict this effect (Shapiro
1964). More on this delay in Sect. 3.4.1.

Hence, the Shapiro delay has to be taken into account in order to recover the
distance—in terms of a given coordinate system—from the measured round-trip
propagation time. This means that distances constructed from observations not only
depend on the coordinate system being used, but also depend on the model for the
gravitational potential U along the trajectory of the electromagnetic wave.

It is crucial to have in mind that what is typically probed by solar system
experiments—such as in Bertotti et al. (2003b)—is not so much the delay in Eq. (79),
but rather its variation as the observed electromagnetic signal traverses different
sections of the gravitational potential U.18 More specifically, these experiments
usually probe the delay variation with respect to the the minimum distance between
the electromagnetic signal trajectory and the gravitating body (also called impact
parameter). For a comprehensive discussion on this topic, we direct readers to
Chapter 6.3 in Wald (1984).

2.1.10 Alternative gravitational theories

All the aspects of the aforementioned content may be subject to modifications in an
alternative theory to general relativity—see Sect. 4. Hence, one must exercise caution
when considering alternative theories of gravity, as the introduced modifications can
impact the entire modeling process—from the definition of the coordinate system, to
the equations of motion of light and massive bodies—and consequently the analysis
of the observations.

2.2 Basics on ephemeris

An ephemeris is a table of positions and velocities given at different time steps. One
can compute an ephemeris for artificial satellites, planetary bodies (planets, natural
satellites, asteroids, comets...) but also pulsars. In order to provide to the user

18 The mathematical expression of the delay as given in Eq. (79) is gauge-dependent, and thus does not
represent an observable quantity by itself. For detailed discussions on this, we refer readers to Gao and
Wald (2000) and Minazzoli et al. (2019).
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accurate estimations of the dynamical states of the considered body, several
ingredients are necessary.

First, one needs to agree upon a set of both time and space coordinates given in a
properly defined frame. This frame will be preferably inertial and the coordinate
system will give an easily understandable representation of the body motion. This
coordinate system will also be used to confront the dynamical modeling of the
motion to the observations (see in step 3). The selection of the frame—in which the
motion and the observations will be described—and its characterisation in space and
time (metrics) will constitute the step 1 of the ephemeris construction (red boxes in
Fig. 4).

Second, we shall identify and develop the appropriate dynamical model for
describing the most accurately the motion of the bodies. This step (black box in
Fig. 4) requires the writing of an equation of motion according to the frame defined
in the step 1. In the dynamical modeling, one must include all the gravitational
perturbations expected for the considered system. A numerical integration of the
equations of motion is also usually performed in order to provide to the users
positions and velocities for discrete times. Analytical resolutions were also proposed
up to the beginning of the 21st century but stopped when the planetary observations
became too accurate in regards to the size of the analytical series (see for example
Fienga and Simon 2005).

At this step, one may consider that the ephemeris is built. However, in particular in
the solar system, the localisation of the object of interest has been monitored by

Fig. 4 Schematic representation of the construction of ephemeris applied to the planetary case. SSB stands
for solar system barycenter (see Sect. 3.2.4), TDB (UTC) stands for Barycentric Dynamimcal Time
(Universal Time Coordinate, respectively) (see Sect. 3.2.2). The description of the dynamical model is the
case of planetary ephemerides is done in Sect. 3.3, and the presentation of the observational data sets in
Sect. 3.4

123

    1 Page 28 of 99 A. Fienga, O. Minazzoli



observers and a comparison between its modeled and observed dynamical states
(positions and velocities) is used for improving the model and then, to continue the
process of construction of the ephemeris.

It is important to stress that the transformation from computed positions and
velocities to observed quantities (direct radar range to the planetary surface, s/c
navigation range and frequency shift, angular positions, pulsar time of arrival)
requires some hypothesis on the space and time coordinate system in play and on
how the observations have been obtained (see for example the Shapiro delay in
Sect. 4.2.5 or Sect. 3.5). The data used for building planetary ephemerides are then
not independent from the framework used for describing gravity.

In a third step, we consider the information on the positions and/or velocities
obtained by the observers. As explained previously, and as it will be described in
details in Sect. 3.4 in the case of planetary ephemerides, these informations are
deduced from observations that can be ranges, frequency shifts, angular positions
relative to reference stellar or quasi-stellar objects (part of astrometric catalogues or
not) in different wavelengths (from optical to radio), in most of the cases centered on
Earth or on specific locations at its surface. In general, at this step (blue boxes in
Fig. 4), the observations are closely analysed in order to remove outliers, and to
identify and correct potential biases and systematics.

The forth step (orange box in Fig. 4) is the confrontation between the observed
quantities analysed at step 3 and the same quantities estimated with the dynamical
model at step 2. From this comparison, are obtained the residuals, which are the
differences between model and observations. In order to have the most accurate
modelisation of the observed positions, one looks for minimizing the residuals by
considering different causes:

● a mismodeling in the motion of the body. In this case, the step 2 has to be
reconsidered and the dynamical modeling modified for example by adding more
perturbations.

● parameters used in the model that are not close enough from their real values. The
model is then corrected by updating the values of the parameters.

● some systematics or bias in the observations were not accounted for properly and
still remain in the residuals. A modification of step 4 is then necessary.

It is of course not easy to isolate the different causes of the residuals. But,
nevertheless, in order to reduce the differences obtained at step 4, one systematically
starts with correcting the parameters of the model by using either a classic least
squares method or a Bayesian approach (see for example the discussion in Sect. 3.5).
Once the model has its parameters updated considering the current set of
observations, if residuals still present some signatures different from white noise,
one can investigate the correctness of the dynamical modeling or the data analysis
procedure. This very generic procedure—that can be used for a wide set of natural or
artificial bodies—can be sketched by Fig. 4. This figure shows that the definition of
the frame in which will be described both the motion and the observations is a crucial
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step for the prediction of the dynamical status of whatever object, from artificial
satellites to quasi-stellar objects.

With the improvement of the measurement accuracy on planetary positions and
velocities, the Newtonian paradigm of an universe with flat Cartesian coordinate
systems and straight photon path failed to explain the observations. As discussed in
introduction, the first evidence of the Newtonian failure was the case of the advance
of perihelia of Mercury, explained by Einstein (1915). On Table 1, are compared the
accuracies reached by three generations of planetary ephemerides and the advance of
perihelia as predicted by general relativity. It is immediately visible that even with the
Gaillot ephemerides in the late 19th century (Gaillot 1888; Gaillot and Le Verrier
1913), after three years of observations, the accumulated advance of perihelia for
Mercury (1.29 s of arc) is greater than the observational accuracy of this epoch (1 s of
arc). This leads to the choice of general relativity as a preferred framework over
Newton’s laws.

However, other frameworks can also be proposed for describing the most accurate
astrometric observations of planets in our solar system. In most cases, these
alternative theories tend asymptotically to general relativity in the context of our
weak field solar system.

In Sect. 4, we review the alternative gravity models for which dedicated planetary
ephemerides have been constructed and published in existing literature. We prioritize
these models because we believe that only a fully developed ephemeris, as described
in Fig. 4, can conclusively constrain, or even rule out, an alternative theory of
gravitation. For a detailed discussion with examples, we refer to Sect. 5.

3 Planetary and lunar ephemerides in general relativity

3.1 State-of-the-art for planetary and lunar ephemerides

The motion of the planets and asteroids in our solar system can be solved directly by
the numerical integration of their equations of motion, or with analytical
approximations of their orbits. As it has been shown in Fienga and Simon (2005),
the analytical models for the main planet orbits are not accurate enough (due to the
limited number of terms in the series) in comparison with the meter level
uncertainties reached by the modern observations of planets. Therefore, in the
following, we will only consider the planetary ephemerides in their numerical form.

Based on the first preliminary versions of the numerical integration of planetary
motions (Devine and Dunham 1966; Ash et al. 1967), the DE96 JPL ephemerides
(Standish et al. 1976) was first of the known and widely distributed accurate
numerical ephemerides fitted to observations developed by JPL. These were followed
by DE102 (Standish 1983), DE200 (Standish 1990), DE403 (Standish 1995) and
DE405 (Standish 2001). All these ephemerides are numerically integrated with a
variable step-size, variable-order, Adams method. Their dynamical model includes
point-mass interactions between the eight planets and Pluto, the Sun and a diverse
number of asteroids, relativistic PPN effects (Moyer 1971, 2000) and lunar librations
(Newhall et al. 1983). Since DE96, regular improvements have been added to the DE
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ephemerides. Ephemerides such as DE421 (Folkner et al. 2008), DE430 (Folkner
et al. 2014) and DE440 (Park et al. 2021) have been constructed and fitted with
increasingly dense sets of space mission tracking data. Numerical ephemerides have
also been developed at the Institute of Applied Astronomy of the Russian Academy
of Sciences (EPM) and at the Observatory of Paris and the Côte d’Azur Observatory
(INPOP). They are based on a dynamical model similar to the JPL one but with
specific characteristics, in particular regarding the interactions between the main
planets and the asteroids. Several possible additional contributions have been
included in the EPM ephemerides such as the interactions of Trans-Neptunian
Objects (TNOs) by the mean of one or several rings (Pitjeva and Pitjev 2018) and the
influence with the Jupiter Trojens (Pitjeva and Pitjev 2020). The EPM ephemerides,
are fitted to optical, radar and space tracking data and have an accuracy comparable
to the JPL ephemerides (Krasinsky et al. 1988; Krasinskii et al. 1993; Pitjeva
2001, 2005a; Pitjeva and Pitjev 2014). They have been intensively used for
estimating PPN parameters and the hypothetical secular variation of the gravitational
constant (Pitjeva 1993, 2005b; Pitjeva et al. 2021). Since 2003, INPOP planetary
ephemerides are developed, integrating numerically the Einstein–Infeld–Hoffman–
Droste–Lorentz (EIHDL) equation, as proposed by Moyer (1971, 2000) (see Sect. 3),
and fitting the parameters of the dynamical model to the most accurate planetary
observations. The main INPOP releases are INPOP08 (Fienga et al. 2009),
INPOP10a (Fienga et al. 2011a), INPOP17a (Viswanathan et al. 2017), and
INPOP19a (Fienga et al. 2019). For this family of ephemerides, a specific care has
been brought on the consistency between the GR framework defined by the IAU and
the actual equations of motion and time-scale used in the ephemerides. In particular
in 2009, INPOP08 (Fienga et al. 2009) was the first ephemeris built with consistent
planetary orbits and time-scales (see Sect. 3.2.2). In 2010, INPOP10a (Fienga et al.
2011a) was also the first to fit the gravitational mass of the Sun instead of the
astronomical unit for consistency reasons.

These three families of planetary ephemerides differ in the dynamical model (see
Sect. 3.3.2) such as the number of point-mass objects (more or less main-belt
asteroids, TNOs) to consider in the EIHDL point-mass interaction, additional
accelerations to implement (Lense–Thirring acceleration, TNOs rings, Trojan rings,
etc.) as well as in the size of the planetary datasets used for the adjustments of the
models (see Sect. 3.4) and by the way this adjustment is performed (see Sect. 3.5).
Table 2 summarises these distinctions. However, it is important to stress that, despite
their specific characteristics, the accuracy of these models are very close to each other
and involve towards an even closer consistency.

3.2 Reference frame theory in general relativity

The general relativistic framework of the planetary ephemerides since 2006 is the one
summarized by the IAU2000 and IAU2006 conventions (Soffel 2003; Petit and
Luzum 2010).

Because general relativity is a covariant theory, an infinite set of coordinate
systems could be used in principle in order to describe space-time events—see
Sect. 2.1. The International Astronomical Union (IAU) has therefore set the standard
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Table 2 Solve-for parameters for recent ephemerides. S01 (Standish 2001), F08 (Folkner et al. 2008), F14
(Folkner et al. 2014), P17 (Park et al. 2017), P05 (Pitjeva 2005a), P14 (Pitjeva and Pitjev 2014), P18
(Pitjeva and Pitjev 2018), P21 (Pitjeva et al. 2021), F09 stands for Fienga et al. (2009), F11 for Fienga et al.
(2011a), F19 (Fienga et al. 2019), F21 (Fienga et al. 2021a). Column 3 and 4 indicate the model used for
describing the perturbations induced by the main belt asteroids as well as the number of corresponding
parameters where Columns 5 and 6 give the same informations but for Trans-Neptunian objects
(Sect. 3.3.2). Column 7 indicates which ephemeris accounts for the Lense–Thirring acceleration (see
Sect. 3.3.3) and Column 8 if the ephemeris was built with the astronomical unit (AU) fitted or with the
gravitational mass of the sun fitted (GM�). It also gives if the integration of the TT-TDB equation was done
simultaneously with the equations of motion (see Sect. 3.2.2). Finally, Column 9 gives the time interval
covered by the observations used for the fit

References Main belt asteroids TNO Others Period

Model Fit Model Fit LT

DE

DE405 S01 300 3 GM ?

3 densities

N N N AU 1924:1998

DE421 F08 343 11 GM ?

3 densities

N N N AU 1924:2007

DE430 F14 343 343 GM N N N GM�,
TDB

1924:2018

DE440 P17 343 343 GM 36 ? 1 ring 1 Y GM�,
TDB

1924:2020

EPM

EPM2004 P05 301 ? 1 ring 6 GM ?

3 densities

N N N AU 1913: 2004

EPM2011 P14 301 ? 1 ring 21 GM ?

3 densities

21 ? 1 ring 1 N AU,TDB 1913:2011

EPM2017 P18 301 ? 1 ring 21 GM ?

3 densities

30 ? 3
rings

1 Y GM�,
TDB

1913:2016

EPM2019 P21 301 ? 1 ring
? 2 Trojan
groups

24 GM ?

3 densities

30 ? 3
rings

1 Y GM�,
TDB

1913:2017

INPOP

INPOP08a F09 300 ? 1 ring 34 GM ?

3 densities

N N N AU,TDB 1913:2007

INPOP10a F11 289 ? 1 ring 145 GM N N N GM�,
TDB

1913:2010

INPOP19a F19 343 343 GM 9 ? 3 rings 1 N GM�,
TDB

1924:2019

INPOP21a F21 343 343 GM 509 1 Y GM�,
TDB

1924:2020
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coordinate systems that people are recommended to use, notably through the
IAU2000 recommendations (Soffel 2003). Two main reference systems have been
defined, as well as the transformation between one another: the barycentric celestial
reference system (BCRS) and the geocentric celestial reference system (GCRS). Both
reference systems are defined at the post-Newtonian level and use the harmonic
gauge. Beyond the harmonic gauge condition, the freedom in chosing the coordinate
systems is further reduced by fixing the form and properties of the metric and the
gravitational potentials.

Planetary ephemerides are integrated in the BCRS and are linked to the realization
of ICRS, by VLBI observations of s/c orbiting planets (see Sect. 3.2.3).

3.2.1 General relativity barycentric metric

The BCRS is defined with the coordinates (ct,xi), where t ¼TCB (see Sect. 3.2.2).
The metric is taken to be kinematically fixed with respect to distant quasi stellar
objects (QSO). The catalog gathering QSO astrometric positions and velocities used
as fixed standards for the definition of the kinematically fixed BCRS is the
International Celestial Reference Frame (ICRF) (Ma et al. 1998; Fey et al. 2015;
Charlot et al. 2020). The general form of the BCRS metric is taken to be the
following Soffel (2003) (see Sect. 2.1.7 for details on its derivation)

g00 ¼� 1þ 2w

c2
� 2w2

c4
þOðc�5Þ

g0i ¼� 4wi

c3
þOðc�4Þ

gij ¼dij 1þ 2w

c2

� �
þOðc�3Þ ;

ð80Þ

where w and wi are respectively a scalar gravitational potential and a vector potential,
c being the speed of light. The harmonic gauge conditions then imply that the
potentials w and wi satisfy the following equations:

� 1

c2
o2

ot2
þr2

� �
w ¼ �4pGrþO c�4

	 

; ð81Þ

r2wi ¼ �4pGri þO c�2
	 


; ð82Þ
where r and ri are the gravitational mass and mass current defined upon the stress-
energy tensor:

r ¼ 1

c2
T00 þ Tss
	 


; ri ¼ 1

c
T0i: ð83Þ

In this definition, the gravitational perturbations induced by other bodies in the
vicinity of the solar system (stars, galaxies, dark matter, dark energy) are ignored.
The solar system is considered as an isolated system—which is possible in general
relativity, thanks to the equivalence principle and the resulting “effacement of
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internal degrees of freedom in the global problem and of the external world in the
local system” (Damour 1989; Klioner and Soffel 2000), but not in general for
alternative theories of gravity—e.g. not in MOND (Milgrom 2009, 2014), see
Sect. 4.7. For a solar system composed by non-rotating point-mass objects, the
previous barycentric potentials are w ¼PA wA and wi ¼PA w

i
A with

wA ¼ lA
rA

1þ 2
v2A
c2

� 1

c2
X
B6¼A

lB
rBA

� 1

c2
ðrA:vAÞ2

r2A
þ rA:aA

 !" #
;

wi
A ¼ lA

rA
viA ;

ð84Þ

where lA :¼ GmA is the gravitational parameter of the body A, rAT is the relative
position of body T with respect to A, rAT ¼ jrAT j and vA is the coordinate velocity of
body A while aA is its coordinate acceleration in the BCRS.

The same type of framework can be defined for a reference system centered on the
Earth center of mass and leads to the definition of the Geocentric Celestial Reference
System (GCRS). The GCRS is suitable in practice for the modeling of processes in
the vicinity of the Earth, whereas the metrics of Eqs. (80) and (84) will be used for
modeling the light propagation and motion of celestial objects in the solar system in
the BCRS.

The coordinate transformations between the BCRS and the GCRS involve a
complicated set of functions that are defined in the resolution B1.3 of the IAU2000
resolution (Soffel 2003).

3.2.2 Time-scales in the solar system

The time-scales in the BCRS and GCRS are denoted by TCB and TCG, respectively
(Soffel 2003). The relation between TCB and TCG are given in Soffel (2003). At the
Earth level, the Terrestrial Time (TT) has been defined in order to remain close to the
realized atomic time (TAI). It differs from the TCG by a constant rate (Soffel 2003).

Fig. 5 Various relativistic time-scales and their relations. Each of the coordinate time-scales TCB, TCG,
TT and TDB can be related to the proper time sA of an observer A, provided that the trajectory of the
observer in the BCRS and/or GCRS is known (Petit and Luzum 2010). Dashed lines represent
transformations with fixed rates, whereas full lines represent transformations that depend on the metric
potentials, following to the IAU recommendations (Soffel 2003)
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Likewise, at the level of the solar system barycenter, the TDB is defined as a linear
transformation of the TCB. The relations between the various time scales is shown in
Fig. 5.

The difference between TT and TDB is produced by planetary ephemerides, by
integrating the following equation together with the equations of motion (Klioner
2008; Fienga et al. 2009)

dðTT � TDBÞ
dðTDBÞ ¼ LB þ 1

c2
a

� �
ð1þ LB � LGÞ � LG þ 1

c4
b; ð85Þ

with LB and LG are defining constants for TDB relatively to TCB and TT relatively to
TCG, respectively (see e.g. Klioner 2008, Petit and Luzum 2010 for the full defi-
nition) and where

a ¼ � 1

2
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;

ð86Þ

following the notations of Eq. (84). Park et al. (2021), terms related to the pertur-
bations induced by the oblateness of the Sun were also added in the DE440 (TT-
TDB) computation.

Finally, planetary observations are also related to time. Following the IERS
conventions (Petit and Luzum 2010), those observations obtained on the ground are
given in UTC, related to TDB by TT and TAI. The observations obtained in other
planetary systems (e.g. positions of a spacecraft orbiting Mercury) are, up to now,
given also in UTC as the differences between the coordinate time defined for the
corresponding planetary system (in the previous example, Mercury) and TDB or TT,
are not significant at the present day accuracy. However, with missions such as Bepi-
Colombo, it will be necessary to account for the local gravitational potential in the
definition of the observational time scales (e.g. Turyshev et al. 2013a, Nelson and Ely
2006, Milani et al. 2002). In conclusion, it is important to keep in mind that the
various measured proper times are converted beforehands into coordinate times—
according to the laws of general relativity.

3.2.3 Inertial frame

The coordinate frame of the planetary and lunar ephemerides is linked to the
International Celestial Reference System (ICRS) by its current realization achieved
by VLBI measurements of the positions of extragalactic radio sources (e.g., quasars)
defined in the ICRF (Standish 1998b). The planetary orbits are tied to ICRF because
the observations used for their adjustment have been obtained in the ICRF. For the
inner planets, the VLBI observations of Venus and Mars-orbiting missions give a tie
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with an accuracy better than the milliarcsecond (Fienga et al. 2011a; Folkner et al.
2014). For the outer planets, the link is maintained with the same level of uncertainty
thanks the VLBI observations of Jones et al. (2019), Fienga et al. (2011a), and
Folkner et al. (2014) orbiting Jupiter and Saturn, respectively. Some other methods
have been investigated for enhancing the link between planetary ephemerides and
ICRF. In particular, one can notice the use of Lunar Laser Ranging observations
(Pavlov 2020) and the use of GAIA DR2 asteroid positions (Deram et al. 2022). The
tie between the planetary ephemerides frame and ICRF is confirmed to be sub-mas
level accuracy in both approaches.

3.2.4 Definition of the solar system barycenter (SSB)

The definition of the solar system barycenter at the origin of the time of integration is
based on the hypothesis of the conservation of the energy of the dynamical system
composed by the planets, the Moon and the asteroids (including Trans-Neptunian
Objects) in the solar system. The position R and the velocity V of the center of mass
are then invariant. Using the notation of DE430 (Folkner et al. 2014), it comes

R ¼
P

i l
�
i riP

i l
�
i

¼ 0

V ¼ dR

dt
¼ 0

8>><
>>: ð87Þ

where ri and vi being respectively its barycentric position and velocity vectors of the
planet i. l� is given by

l�i ¼ li 1þ v2i
2c2

� 1

2c2
X
j6¼i

lj
rij

 !

_l�i ¼
li
2c2

X
j6¼i

lj
ðrj � riÞ:ðvj þ viÞ

r3ij

 !
8>>>>><
>>>>>:

ð88Þ

with li the product of the gravitational constant G with the inertial mass of the body
i. The term _l�i is not included in DE430 nor DE440 ephemerides (Folkner et al. 2014;
Park et al. 2021) but is accounted for in the INPOP ephemerides (Fienga et al. 2008).
The positions and velocities of the SSB are then obtained by integration of the
following equations and up to the c�2 order,P

i l
�
i ri ¼ 0P

i l
�
i vi þ _l�i ri ¼ 0

�
ð89Þ

In the INPOP formalism (Fienga et al. 2008), Eqs. (89) and (88) are solved only at
the initial step of the planetary integration and a constant vector in positions and
velocities is subtracted to all the body positions and velocities for having R and V to
0. Once the frame is centered on the SSB defined by Eq. (89) at J2000 (inital date of
integration for INPOP epehemerides), the equations of motion of the solar system
bodies and of the Sun are integrated in this fixed frame. The method described here is
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used by the INPOP planetary ephemerides since INPOP08 (Fienga et al. 2008). In
JPL DE430 ephemerides (Folkner et al. 2014), the Sun initial coordinates are set up
such as R and V are 0, the equations of motion of the Sun, the Moon, planets, and
asteroids being then integrated in the fixed frame. In the former JPL DE versions,
such as DE421 (Folkner et al. 2008), the Sun coordinates were set up at each step of
integration for maintaining R and V to 0 all along the integration process. A
description of the successive SSB implementations for older JPL versions can be
found in Folkner et al. (2014) and discussions concerning possible uncertainties are
presented in Fienga et al. (2008) and Folkner et al. (2014). It is interesting to note
that, for the tests of the Equivalence Principle (Sect. 4.2), li of Eqs. (89) and (88) will
still correspond to the product of G with the inertial mass of the body. It will then
differ from the gravitational mass used for computing the planetary acceleration as in
Eq. (90).

3.3 The dynamical model

3.3.1 Point-mass interactions

In the context of Soffel (2003) and of the metric defined in Eqs. (80) and (84), one
can then, in the mass-monopole approximation, write the equations of motion of
bodies as well as the conservation laws satisfied by the SSB as given in Damour and
Vokrouhlický (1995). In BCRS, the equation of motion for the point-mass interaction
is given by

aT ¼ �
X
A 6¼T

lA
r3AT

rAT

�
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r3ATc

2
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� �2

� 1

2
rAT � aA � 4

X
B 6¼T

lB
rTB

�
X
B 6¼A

lB
rAB

)

þ
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2

X
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lA
c2rAT

aA ;

ð90Þ

This equation is known as the Einstein–Infeld–Hoffmann–Droste–Lorentz (EIHDL)
equation of motion, and it is numerically integrated for obtaining the modern plan-
etary ephemerides in general relativity at the first post-Newtonian c�2 level. Addi-
tional accelerations induced by the oblateness of the Sun (Sect. 3.3.4) or frame
dragging effects (Sect. 3.3.3) are also accounted for in order to describe the motion of
the planets at the level of accuracy required by the modern space mission observa-
tions. Other multipole moments than the Sun quandrupole moment are negligeable at
the current level of accuracy.
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3.3.2 Asteroid perturbations

Differences in the number of point-mass perturbations exist between planetary
ephemerides. Table 2 summarizes them by splitting the case of the Main-Belt
asteroids (MBA) on the one hand, and of the Trans-Neptunian objetcs (TNO) on the
other hand. The problem of the modelisation of the MBA perturbations on the inner
planet orbits has been addressed since DE405 (Standish 2001). The issue is that there
is a considerable number of objects (at least 250,000), for which the masses are
unknown, that can potentially interact gravitationally with the inner planets (mainly
Mars). With DE405 (Standish 1998a), 5 asteroids (Ceres, Pallas, Vesta, Iris and
Bamberga) have been identified as the main perturbers associated with an averaging
of the effect induced by the rest of the MBA based on taxonomic classifications. But
this modelisation shows its limits with the improvement of the accuracy of the Mars-
orbiter tracking data (Standish and Fienga 2002). Williams (1984) proposed a list of
343 individual objects among the MBA gathering the most perturbing asteroids to
consider for the construction of accurate planetary ephemerides. That list has been
confirmed by Kuchynka and Folkner (2013) and since DE430 this is the Williams
(1984) objects that are taken into account in DE and INPOP planetary ephemerides,
with their masses individually fitted to observations together with the initial
conditions of planet orbits, the mass of the Sun and the Earth–Moon mass ratio
(Folkner et al. 2014; Fienga et al. 2019). A detailed description of the complexity of
such an adjustment is out of the scope of this review but more comments on the
accuracy obtained for these mass determinations can be found in Kuchynka and
Folkner (2013) and Fienga et al. (2020a). In order to overcome this problem, but also
to reduce the time cost of integrating an important number of objects, it has been
proposed to substitute or to complement the MBA individual point-mass contribution
by a global ring potential.

The first ring modelisation was proposed by Krasinsky et al. (2002) as a static ring
fixed at 2.8 AU from the SSB. An updated model maintaining the total linear and
angular momenta of the system has been implemented in Fienga et al. (2009) and
Kuchynka et al. (2010) as a way to account for additional MBA contribution
associated with a shorter list of individual point-mass perturbers. This approach has
not be retained for MBA in DE (Folkner et al. 2014) and INPOP (since INPOP13c
(Fienga et al. 2014)) ephemerides but kept in EPM ones associated with individual
mass and density determinations for 3 classes of MBA (Pitjeva and Pitjev 2018).

After the introduction of the Juno and Cassini tracking data, it became clear that
the perturbations induced by the TNO have to be included in the model. Pitjeva and
Pitjev (2018), Di Ruscio et al. (2020b) and Park et al. (2021), individual point-mass
perturbations of the most massive and binary Trans-Neptunian objects have been
added together with a circular ring for accounting for the average effect of the rest of
the TNO. However as the TNO orbits are more eccentric than the MBA ones, Fienga
et al. (2021a) had introduced, instead of a circular ring, 500 individual point-mass
TNO perturbers with observed orbits19 but of equal mass. This latest assumption

19 extracted from the astord database (Moskovitz et al. 2022).
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simplifies the adjustment as only one parameter (the total mass spread over 500
objects) is used and fitted for characterising the TNO perturbations.

The full 1PN general relativity equation of motion is only taken into account for
the first biggest MBA (Ceres, Pallas, Vesta, Iris and Bamberga). For the rest of the
MBA and the TNO point-mass interactions, the perturbations on the planet orbits,
and on the other asteroid orbits, are estimated at the Newtonian level only. This is
done in order to reduce the computational cost, but it is consistent with the overall
PN perturbative approach—given that those perturbations are already very small at
the Newtonian level, such that their contributions at the post-Newtonian level are
negligible.

3.3.3 Lense–Thirring acceleration

The Lense–Thirring (LT) acceleration induced by the Sun rotation has been recently
added in modern planetary ephemerides (Pitjeva and Pitjev 2018; Park et al. 2021;
Fienga et al. 2021b). Its new introduction is justified by the accuracy reached by
space missions, especially those close to the Sun and Mercury such as Messenger and
BepiColombo (Genova et al. 2018). It also has been shown that it helps for
disentangling the PPN parameters for their contribution to the planetary motions
(Fienga et al. 2021a).

Iorio et al. (2011) has also shown that this effect contributes to about 10% of the
dynamical acceleration induced by the shape of the Sun in General relativity (see
Sect. 3.3.4). The acceleration induced by the Lense–Thirring effect generated by a
central body (here the Sun) at the first post-Newtonian approximation is given by

aLT ¼ 2GS

c2r3
3k:r
r2

ðr ^ vÞ � ðk ^ vÞ
� �

ð91Þ

where G is the gravitational constant, c the speed of light, S is the Sun angular
momentum such as S ¼ S k where k is the direction of the Sun rotation pole defined
according to the IAU right ascension and declination (Archinal et al. 2018), r and v
are the position and velocity vectors of the planet relative to the Sun and c is the PPN
parameter for the light deflection, equal to 1 in general relativity. The Lense–Thirring
effect hence depends on the Sun angular momentum, S that can be obtained by
considering different models for the Sun rotation including both the rotation of the
convective region well constrained by helioseismology and the rotation of the Sun
core (see Fienga et al. 2021a for discussion).

3.3.4 Shape of the sun

Among the solar multipole moments, only the degree 2 order 0 term of the spherical
harmonic decomposition of the Sun gravity field, J�2 —which is identified to the
oblateness of the Sun— leads to a significant impact on the planetary ephemerides at
the current level of accuracy. The J�2 induces an acceleration aJ�2 ¼ ðaxJ�2 ; a

y
J�2
; azJ�2

Þ to
be added to EIHDL Eq. (90) such as (Sharma et al. 2016; Ivashkin 2021):
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ð92Þ

where l� and R� are the gravitational parameter and the radius of the Sun,
respectively, r is the heliocentric distance of the planet, (x, y, z) being its heliocentric
coordinates.

It is common to see in the literature dealing with geodesy and geophysics the
contribution of J�2 as time variations of the osculating elements of the perturbed orbit
such as (Kaula 1966; Bertotti et al. 2003a):

_a ¼ 0; _e ¼ 0; _i ¼ 0
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8>>>>>>>>>>><
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ð93Þ

with a, e, n and i are the semi-major axis, the eccentricity, the mean motion and the
inclination of the planetary orbit impacted by the oblateness of the Sun. M is the
planet mean anomaly. We give these equations Eq. (93) as a simple illustration of the
type of contribution one may get from the Sun quadrupole. It is then clear that the

major contribution of this quadrupole term is on the advance of nodes _X and perihelia
_x of the planetary orbits. This system of equations is also somehow useful to
apprehend the potential correlations that may appear between the Sun quadrupole
moment and the semi-major axis and eccentricity.

Figure 6 shows J�2 values deduced from planetary ephemerides including or not
the Lense–Thirring contribution. It is clear, from this figure, that the introduction of
the Lense–Thirring acceleration in the model improves significantly the J�2
determinations. The values obtained with LT (Fienga et al. 2021a; Park et al.
2017) are indeed closer to the ones issued from helioseismologic surveys (Pijpers
1998; Antia et al. 2008) than those obtained before the LT introduction (Fienga et al.
2019; Iorio et al. 2011; Viswanathan et al. 2017; Fienga et al. 2014; Folkner et al.
2014; Fienga et al. 2011a, 2009). In general relativity, the difference in J�2 with or
without LT is of about about 7–10%.

As it will be developed in Sect. 4.1, the introduction of gravity theories that are
different but close to general relativity induces modifications of the previous
Eqs. (90)–(92). In this context, the value of J�2 can also be determined with planetary
ephemerides in the PPN framework, like given in Table 5. But we will see that the
value of J�2 can be strongly correlated to the value of non-general relativity
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parameters, and in particular the PPN parameter b (Milani et al. 2002)—as one can
get an intuition from Eq. (100). In Sect. 4.1, we will see that the determination of the
Sun oblateness when one includes PPN deviations plays a key role in the context of
the global adjustment of planetary ephemerides.

3.4 Planetary datasets

The modern planetary ephemerides are characterised by the role of planet positions
deduced from spacecraft missions either by navigation tracking or by the use of radio
science data. In both cases, it is the distance between a station on the ground and a
spacecraft orbiting of flying over a planet that is used for the construction of
planetary ephemerides. The angular position between the same spacecraft and an
extra-galactic source (generally a reference beacon for the construction of the inertial
frame, ICRF) is also of great importance for the adjustment of the planetary
ephemerides as it allows the tie of the planetary planes to the ICRF (see Sect. 3.2.3).
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I20a
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I19a

I17a

I13c

I10a

I08

D414
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Sun J2 x107 in GRT
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Fig. 6 Values of the Sun oblateness J�2 obtained with different ephemerides and other methods in the
general relativity frame. H stands for values deduced from helioseismology, P points values obtained in a
partial fit of planetary orbits (i.e. considering only a couple of planets for the fit, like Mercury and the
Earth), N indicates values obtained before the introduction of the Lense–Thirring acceleration in the
dynamical modeling and Y gives the values obtained after the introduction. The dotted lines give the limits
of the less constraining helioseismologic value from Pijpers (1998). In y-axis, are given the references:
G18 is Genova et al. (2018), P98 (Pijpers 1998), A08 (Antia et al. 2008), I20a (Fienga et al. 2021a), D440
(Park et al. 2017), I19a (Fienga et al. 2019), I17a (Viswanathan et al. 2017), I13c (Fienga et al. 2014),
D414 (Konopliv et al. 2006), I10a (Fienga et al. 2011a) and I08 (Fienga et al. 2009). It is important to note
that in Genova et al. (2018), only the orbit of Mercury is considered
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Optical meridian transit and CCD angular positions are mainly kept for the constraint
on the outer planet orbits. A full description of the different data sets used for the
construction of the planetary ephemerides can be found in Folkner et al. (2014) and
Fienga et al. (2009) and regular updates are presented for every new releases such as
for DE440 (Park et al. 2021) or INPOP19a (Di Ruscio et al. 2020b). Table 3 gives the
different data sets used for the construction of INPOP21a (Fienga et al. 2021b),
counting a total of about 200,000 observations, this number of course varying from
one ephemeris to another. Very similar datasets have been used by DE440 (Park et al.
2021).

3.4.1 Time delay of the propagation of light

The propagation of light is affected by the curvature of spacetime. Although the
trajectory of light is bent in gravitational potentials, this bending is negligible for
radio science in the solar system,20 and the main effect is known as the Shapiro
delay: the propagation time between two points is not simply the Euclidean BCRS
distance over the speed of light between an emission point e and a reception point r,
but it also involves a delay in general relativity that depends on the gravitational
potentials as follows (Moyer 2000)

cðtr � teÞGRT ¼ Rþ
X
A

2
lA
c2

ln
n � rrA þ rrA þ 4lA

c2

n � reA þ reA þ 4lA
c2

; ð94Þ

where the R is the Euclidean coordinate distance, n ¼ ðrr � reÞ=krr � rek, riA ¼
ri � rA and riA ¼ kriAk with i ¼ e or r. Note that Eq. (94) slightly differs from the
actual Shapiro equation through the c�2 terms in the logarithm function. It has lately
been realized that this version of the Shapiro delay—rather than the usual equation
without the additional c�2 terms in the logarithm—allows to account for the so-called
second order time propagation enhanced terms, which can become numerically
significant for particular conjunction situations despite formally being next-to-lead-
ing-order (or c�4) terms (Ashby and Bertotti 2010; Linet and Teyssandier 2016). In
practice, the difference between the two versions of the Shapiro delay is irrelevant for
current planetary ephemerides.

However, it has been realized during the last decade that for close solar
conjunctions, additional enhanced c�4 terms may no longer be negligeable, in
particular for BepiColombo MORE (Mercury Orbiter radio science Experiment)
(Hees et al. 2014a; Cappuccio et al. 2021) measurements. As a consequence, for
close conjunction events, one might have to go beyond Eq. (94) and use a full second
order time propagation time formula. This will be challenging in many different ways
—see Appendix A. For planetary ephemeris construction, BepiColombo MORE
experiment should provide range measurements up to close to 5	 to the Sun, that is,

20 Because it is a second order effect in the post-Newtonian development of the propagation time.
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Table 3 Detailed example of a planetary ephemeris (here INPOP21a) data sample extracted from Fienga
et al. (2021b). Column 1 gives the observed planet and information on the type of observations, Column 2
gives the type of data or the name of spacecraft used for producing the data. Columns 3 and 4 give the time
interval and the a priori uncertainties provided by space agencies or the navigation teams, respectively. In
Column 2, MRO for Mars Reconnaissance Orbiter and MO for Mars Orbiter. Flybys stands for average
normal points obtained during a flyby of a spacecraft with U, C, P, V gives the normal points obtained after
the flybys of Ulysses, Cassini, Pioneer and Voyager respectively. radar is for direct radar ranging on
planetary surfaces, VLBI stands for Delta-DOR observations and Transit þ CCD gives the optical angular
observations obtained by transit, photographic plates or CCD. H14 stands for Hees et al. (2014b)

Planet/type [unit] s/c or method Period Averaged accuracy

Mercury

Direct range [m] Surface 1971.29: 1997.60 900

Radio science range [m] Messenger 2011.23: 2014.26 5

Navigation range [m] Mariner 1974.24: 1976.21 100

Mercury

VLBI [mas] Magellan, Venus Express 1990.70: 2013.14 2.0

Direct range [m] Surface 1965.96: 1990.07 1400

Navigation range [m] Venus Express 2006.32: 2011.45 7.0

Mars

VLBI [mas] MGS, MRO 1989.13: 2013.86 0.3

Navigation range [m] Mars Express 2005.17: 2019.37 2.0

Radio Science range [m] MGS 1999.31: 2006.70 2.0

Radio Science range [m] MRO/MO 2002.14: 2014.00 1.2

Navigation range [m] Viking 1976.55: 1982.87 20.0

Jupiter

VLBI [mas] Galileo 1996.54: 1997.94 11

Juno 2016:2020 0.5

Optical RA/Dec [arcsec] Transit?CCD 1924.34: 2008.49 0.3

Flyby RA/Dec [mas] U,C, P, V 1974.92: 2001.00 8.0

Flyby range [m] U,C, P, V 1974.92: 2001.00 2000

Radio science range [m] Juno 2016.65: 2020.56 20

Saturn

Optical RA/Dec [arcsec] Transit?CCD 1924.22: 2008.34 0.3

VLBI RA/Dec [mas] Cassini 2004.69: 2017.9 0.6

JPL H14 [m] Cassini 2004.41: 2014.38 25.0

Navigation [m] Cassini 2006.01: 2009.83 6.0

Radio science: Titan flybys [m] Cassini 2006.01: 2016.61 15.0

Radio science: grand finale) [m] Cassini 2017.35: 2017.55 1.0

Uranus

Optical RA/Dec [arcsec] Transit?CCD?photo 1924.62: 2013.75 0.25

Flyby RA/Dec [mas] Voyager 1986.07 50

Flyby range [m] Voyager 1986.07 50

Neptune

Optical RA/Dec [arcsec] Transit?CCD?photo 1924.04: 2007.88 0.3

Flyby RA/Dec [mas] Voyager 1989.65 15.0

Flyby range [m] Voyager 1989.65 2
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close to conjunction (Fienga et al. 2021a). For such close-to-the-Sun observations, a
specific analysis will have to be done in order to account for the neglected terms of
Eq. (94), but in the framework defined by the IAU (harmonic gauge).

In any case, when one deals with an alternative theory of gravity, one has to take
care of the consistency between the different levels of construction of the ephemeris:
modifying the Shapiro delay or the equation of motion for massive bodies is not
without consequences on the other.

3.4.2 Radio science and navigation data

This type of data represent more than 65% of the full data sample used for the
construction of the planetary ephemerides. It gathers measurements of distances in
terms of time delays obtained during orbital or flyby phases of space missions, either
during the regular navigation process, or during specific scientific sessions dedicated
to radio science experiments. In this latter case, a detailed assessment of the
capabilities of the radio transpondeur used for the re-emission of the captured signal
is needed for the analysis (see e.g. Cappuccio et al. 2020). The measurement is the
time differences between the time of emission of the signal by a ground-based
antenna, the time of capture by the transponder on board of a spacecraft, the time of
re-emission by this transponder after amplification and the time of reception of the
transmitted signal by the same or a different ground-based antenna. Using a known
orbit of the spacecraft around or near the planet, it is then possible to deduce the
planetary range measurement, by accounting for the distance between the spacecraft
and the centre of mass of the planet estimated during the s/c orbit determination. The
accuracy of the range constraints deduced from the radio science and navigation data
is then strongly dependant on the uncertainties of the spacecraft orbit determination.

The distribution of the data per missions is given in Fig. 7. In numbers, the Mars
orbiter observations dominate, followed by the Venus tracking data. In terms of
accuracy, the Mars data also lead the fit together with the less numerous but
important tracking data of the Juno mission orbiting Jupiter as well as the Cassini
radio science and tracking data for Saturn. The predominance in numbers and
accuracy of the Mars observations on the planetary ephemerides data sample explain
why some tests of general relativity have been said to be driven by the Mars orbit
(Will 2018a), whereas Bernus et al. (2019) stressed also the importance of the outer
planet radio science experiments.

Furthermore, in term of gravitational framework, these observations are also given
in the framework used for studying the motion of the spacecraft around the planet.
This framework is usually general relativity and discussions have been held
regarding the consistency of testing alternative theories of gravity with observational
constraints obtained in general relativity (see Verma et al. 2014). The most simple
way to solve this problem is to operate the spacecraft orbit determination (OD) in the

123

    1 Page 44 of 99 A. Fienga, O. Minazzoli



same framework as the one of the alternative theories to be tested. But as the s/c
navigation is regularly interrupted, even during orbital phases, by engine boosts or
attitude corrections, introducing significant changes in the orbit, OD is usually done
over a short duration of time (from few hours to few days), in between these
manoeuvres. Most of the time, up to now, alternative theories of gravity start to
significantly differ from general relativity over longer time intervals. But it is clear
that with the increase of the accuracy in the s/c orbit tracking, the modified general
relativity that one wants to test should also be implemented during the OD process.
See for example De Marchi and Cascioli (2020).

In parallel to the radar tracking, navigation teams also acquire positions of the
spacecraft relative to extra-galactic sources by using facilities also dedicated to VLBI
observations. This type of observations, called Delta -DOR, represent less than 1% of
the full data sample but they are crucial for linking the ephemeris reference frame to
the ICRF (see Sect. 3.2.3). The first were obtained in 1981 (Donivan and Newhall
1981) with the Viking Mars lander. Technical description related to the production of
this type of observations can be found in Folkner et al. (1994) and Moyer (2000). The
most recent planetary ephemerides account for a total of about 300 VLBI positions,
mainly extracted from the tracking data of Mars, Venus, Jupiter and Saturn orbiters
with accuracies about less than 1 milliarcsecond of degree (mas) (Jones et al.
2011, 2019; Park et al. 2021).
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Fig. 7 Example of distribution in percentages of the radio science and tracking data and the optical
observations. On the left-hand side, data samples are identified by planets (Ma stand for Mars, Me for
Mercury, Ve for Venus, Ju for Jupiter, Sa Saturn and UN for Uranus and Neptune) and by missions. On the
right-hand side, the data sample are identified according to the observed planet. A specific tag is made on
the set of astrometric positions obtained by Camargo et al. (2022). The presented datasets correspond to the
one of INPOP21a (see Table 3). Roughly similar distribution is present for DE and EPM ephemerides
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3.4.3 Angular ground-based observations

Finally, the observational data base is completed by the optical observations of outer
planets. This set constitutes about 35% of the full data sample, and, despite their
uncertainties, are crucial for Uranus and Neptune. For these two planets, only 1 flyby
per planet has been acquired during the Voyager missions, leading to a weak
constraint for several decade-long orbits. Direct transit observations of planets or
satellites are part of the optical data samples as well as astrometric positions deduced
from CCD observations and photographic plates. Both planet and satellite positions
are included. In the case of satellite astrometry, the position of the planetary
barycenter is deduced using satellite ephemerides (see Camargo et al. 2022). The
long-term (several decades) behaviour of outer planet orbits is then driven by the
planet barycenter equation of motion as given in Eq. (96), but also by the satellite
dynamics. Additionally, depending on the reference frames used for the data
publications, different algorithms are applied for transforming the astrometric
positions (for example given in FK3, FK4 or FK5) to ICRF. Such transformations
guarantee, at the level of accuracy of the optical data (about 50 to 100 mas), the link
between the INPOP outer planet frame and ICRF. VLBI observations enforce this
link at the VLBI accuracy which means a factor of at least 100 compared to the
optical tie. On Fig. 7 are given an example (for INPOP21a) of the percentages of
optical observations per planet. A specific tag is made on the data sample provided
by Camargo et al. (2022) who did a new reduction of astrometric long-term
observations of the Uranian main satellites obtained at the Pico dos Dias from 1982
to 2011, using the Gaia EDR3 as reference.

3.5 Fitting procedures

The main construction of planetary ephemerides uses a classic least squares
approach. The total number of fitted parameters can be found in Table 2. It changes
from one ephemeris to an other, depending the perturbations included in the model
and the observational parametrizations required for the data analysis. Thus, to the
parameters presented in Table 2, spacecraft bias accounting for additional transpon-
deur delays or additional ground-station delays (Kuchynka et al. 2012) have also to
be added as well as parameters related to solar plasma corrections (Verma et al. 2013;
Pitjeva et al. 2021).

Complementary methods have been proposed to make accuracy assessments, to
overcome the problems of high correlated parameters, in particular in the frame of
testing alternative theories of gravity (see Sect. 4), or of multiple correlations
between parameters, as in the case of the determination of asteroid masses (Fienga
et al. 2020a). In the context of computing threshold values for the violation of general
relativity, Fienga et al. (2015) had tested genetic algorithm approaches for identifying
sets of parameters (PPN b, c, the Sun oblateness J�2 and secular variations of the
gravitational mass of the Sun, _l=l) with which planetary ephemerides can be
computed and fitted to the observations with an comparable accuracy to the
ephemeris (in this case INPOP15a) built in general relativity. Different approaches
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based on v2 analysis with fixed PPN or alternative theory parameters have been
investigated as well, using random walk exploration methods associated with various
cost functions (Bernus et al. 2019, 2020, 2022; Fienga et al. 2021a). These methods
have in common to be very conservative and to give larger constraints than those
obtained with the least square procedures. See Sect. 4.1 for the full discussion.

A final but important comment is about the masses used for the construction of the
ephemerides

Most of the planetary masses are not obtained during the construction of the
planetary ephemerides but during the orbit determination of one or several spacecraft
flying in planetary systems (see Table 4). They are obtained by combination of data
from different missions and techniques, usually in the general relativity framework.
For example, in the case of Neptune and Uranus, it is even a combination of Voyager
radio tracking data, ground-based optical observations and images acquired by the s/c
that leads to the determination of the mass of the planetary system. The s/c orbit and
gravity field (mass) determinations are complex as they depend on various sources of
interactions from solar radiation pressure, atmospheric dragging, maneuver residual
accelerations to non-stochastic accelerations. For that reason, these s/c orbit and
gravity field determinations are usually done independently from the planetary
ephemerides.21 These masses are therefore obtained in the framework of the s/c orbit
and of the gravity field determination algorithm, which assumes generally general
relativity. Only, the gravitational mass of the Sun, the ratio between the mass of the
Earth and the mass of the Moon (invariant to any change of the gravitational
constant) as well as a variable number of asteroid gravitational masses (see
Sect. 3.3.2) are, in fact, estimated during the planetary ephemeris adjustment. In the
case of a test of the violation of the Equivalence principle, the fact that some of the
masses used in the ephemeris are obtained in the general relativity framework can
introduce an inconsistency in the method. In principle, it should be necessary to
consider a more global approach, including the s/c orbit determination in the same
framework than the one of the planetary ephemeris. So far, such an attempt was only
operated for Parametrized post-Newtonian tests (see Sect. 4.1).

4 Tests of alternative theoretical frameworks with planetary
ephemeris

Thanks to the accuracy of the most recent observations but also to the more than one
century long data span, planetary ephemerides are excellent tools for testing general
relativity and its alternatives. In principle, if the model of gravity is not accurate
enough, or does not well represent the physics as seen by the observations, it should
then lead to a deterioration of the differences (residuals) between observed and
computed quantities—deduced from the ephemeris. When the deterioration of
residuals built with an alternative theory becomes statistically significant with respect
to the residuals obtained in the general relativity framework, one can say that it
disfavors the alternative theoretical framework—or favors general relativity over its

21 Even if iterations are sometimes necessary.
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alternative. On the opposite, if the residuals obtained with an alternative theory are
significantly improved—that is, if there are significantly smaller—in comparison to
the one obtained in the general relativity framework, it favors the alternative theory.
However, so far, this has never occurred.

In the following sections, we will explore various theories or phenomenologies
that have been scrutinized using planetary ephemerides. The selection of certain
theories or phenomenologies to test, rather than others, can be driven by several
considerations. One of them could be the historical circumstances. For example, the
Parametrized Post-Newtonian (PPN) framework was developed during the early
stages of the general relativity testing era and has since been widely employed in
tests involving planetary ephemerides.

Another factor could be the complexity of the task, both in terms of numerical
computations and statistical methodology. The larger the number of parameters to
constrain a theory has, the larger the dimension of the theoretical space there is to
examine. Additionally, there is an increasing risk of introducing multiple correlations
between the parameters of the theory, as well as between these parameters and those
of the solar system (i.e., masses). Given that it can take up to eight hours of
computation to adjust the solar system parameters of the ephemeris at a single point
in the parameter space (Mariani et al. 2023), achieving a densely filled parameter
space becomes highly computationally demanding if the parameter space dimension
is greater than one. Moreover, the statistical methodology also grows more complex
with an increase in the number of parameters to constrain.

There is also the risk of missing a genuine detection-that is, obtaining better
residuals in an alternative theory than in general relativity for a specific parameter
value-if the parameter space of alternative theories explored is too sparsely
populated. Therefore, it is of paramount importance to have a densely filled
parameter space, which consequently makes computational time requirements
escalate with the number of parameters to constrain. In the case of a classic least
square approach, the risk of high correlations between parameters associated with the
observational uncertainties also limit the possible theories to be tested. As a result,
tests are often conducted on theories or phenomenologies that hinge on few
parameters only.

4.1 Parametrized post-Newtonian framework

For many metric theories—that is, theories for which the additional gravitational
fields22 do not couple to matter directly, such that the theories satisfy the weak
equivalence principle by design—all the differences with respect to general relativity
can be taken into account through parameters that appear in front of the gravitational
potentials in the metric (Will 2014, 2018b). This is the case for instance for scalar-
tensor theories, vector-tensor theories, or tensor-vector-scalar theories, and notably
TeVeS (Will 2014). Indeed, because the weak equivalence principle is enforced by
hand by imposing that the additional gravitational fields do not couple to matter

22 Sometimes called “degrees of freedom” in the theoretical literature.
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directly, particles still follow geodesics of the metric and proper time is still defined
from the metric only.23

Many theories then turn out to generate the same type of metrics, where the
differences with respect to general relativity can be parametrized by a set of a few
parameters in the metric only—which values depend upon the theory considered.
This comes in handy, as it allows to derive all the equations necessary in planetary
ephemerides—that are, the time-scale definitions, the motion of celestial bodies and
the Shapiro delay—from a single original parametrized metric. This whole
framework is therefore called the parametrized post-Newtonian (PPN) formalism.

Nevertheless, as it will be discussed in Sect. 4.1.2, the coordinate system being
used for planetary ephemerides matters, and one has to make sure that the coordinate
system being used for alternative theories is compatible at the required level of
accuracy with the IAU standards used to convert observables (e.g. the roundtrip of an
electromagnetic signal measured in terms of the proper time of the local clock) into
spatial and temporal coordinate positions (e.g. the distance24 of a spacecraft with
respect to the ground-based station being used).

Among the 10 PPN parameters discussed in Will (2014) and Will (2018b), we
shall first only consider the Eddington–Robertson–Schiff parameters c and b,
because most of the planetary ephemerides to this date focused on those parameters.
A complete description of the PPN parameters will be discussed in Sect. 4.1.4. Let us
write the metric as follows (Klioner and Soffel 2000)

Table 4 Planetary masses used in DE440 (Park et al. 2021) and INPOP19a (Fienga et al. 2021b): List of
sources providing masses used in the ephemerides, with Column 1 giving the considered planet, Column 2
the reference and Column 3 the type of observations used for the mass computation

Planet References Mission

Mercury Konopliv et al. (2020) Messsenger

Venus Konopliv et al. (1999) MAGELLAN

Mars Konopliv et al. (2016) MRO, MGS, Odyssey, Pathfinder, MER, Viking

Jupiter barycenter Durante et al. (2020) Juno ? 5 s/c flybys ? ground-based and s/c optical data

Jacobson (2021b)

Saturn barycenter Jacobson (2021a) Cassini ? ground-based ? s/c optical data

Di Ruscio et al. (2020a)

Uranus barycenter Jacobson (2014) Voyager 2 ? ground-based optical data

Neptune barycenter Jacobson (2009) Voyager ? ground-based and s/c optical data

23 Technically, a theory satisfies the weak equivalence principle if it exists a conformal (or disformal)
representation for which the metric is the only gravitational field that appears in the matter Lagragian
density according to the comma-goes-to-semicolon rule (Misner et al. 1973). For instance, the additional
scalar-field appears in the matter Lagrangian density in the Brans–Dicke theory when written in the
Einstein representation (or frame), but not in the (original) Jordan representation. Hence, because of the
latter, the Brans-Dicke theory satisfies the weak equivalence principle.
24 Which is dependent upon the coordinate system being used.
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In general relativity, the PPN parameters b and c equal to one, but not for alternative
theories in general.

The form of the metric given in Eq. (95) is not sufficient in order to completely fix
the coordinate system, and one has to impose an additional constraint (or gauge) in
order to specify the metric field equations—see, e.g., Klioner and Soffel (2000).
Since the IAU recommends the coordinates (or gauge) to be harmonic for general
relativity (Soffel 2003), it seems relevant to consider harmonic coordinates for
alternative theories as well, such that (at least) the coordinate systems of the
alternative theory reduce to the IAU coordinate systems in the limit for which both
theories cannot be distinguished at the level of accuracy of the observations.

Ambiguity of the definition of harmonic coordinates
The very definition of what one may call harmonic coordinates can be ambiguous for
alternative theories of gravity. For instance, for scalar-tensor theories, one can impose
the usual post-Newtonian harmonic conditions—gabC0

ab ¼ 0—either in the Jordan

frame, or in the conformal Einstein frame (Damour and Esposito-Farese 1992;
Kopeikin and Vlasov 2004; Minazzoli and Chauvineau 2011; Will 2018b; Kopeikin
2019). But both choices reduce to the general relativity harmonic coordinate in the
limit for which the difference between general relativity and the scalar-tensor theory
becomes negligeable (e.g. for the Brans–Dicke parameter that is such that x ! 1).
Imposing the harmonic conditions in the Einstein frame has been shown to lead to
more convenient properties (Damour and Esposito-Farese 1992; Kopeikin and
Vlasov 2004; Minazzoli and Chauvineau 2011; Kopeikin 2019), notably with respect
to the full theory of reference frames (Kopeikin and Vlasov 2004). However, this
definition of harmonic coordinates then becomes theory-dependent (Will 2018b). In
order to alleviate the ambiguity, Kopeikin and Vlasov (2004); Kopeikin (2019) used
the name “Nutku gauge”—or “conformal harmonic gauge”—when the harmonic
conditions are imposed on the metric in the Einstein frame rather than in the Jordan
frame. Will (2018b), it corresponds to the “generalized harmonic gauge”.

4.1.1 Equations of motion, Lense–Thirring and Shapiro delay

In harmonic coordinates, the EIHDL equation of motion in the barycentric frame
[Eq. (90)] reads as follows25

25 However, the transformations between the barycentric and geocentric reference frames slightly depend
on the specific type of harmonic coordinates being used Kopeikin and Vlasov (2004).
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with c and b, the Parametrized Post Newtonian (PPN) parameters. They are equal to
1 in general relativity, such that one recovers the usual EIHDL Eq. (90) in that case.

Additionally, directly from the metric Eq. (95), one can deduce that the Shapiro
delay becomes

cðtr � teÞPPN ¼ Rþ
X
A

ðcþ 1Þ lA
c2

ln
n � rrA þ rrA þ 2 ð1þcÞlA

c2

n � reA þ reA þ 2 ð1þcÞlA
c2

; ð97Þ

with the same notations as Eq. (94).
The Lense–Thirring acceleration is also modified and reads:

aPPNLT ¼ ð1þ cÞ GS
c2r3

3k:r
r2

ðr ^ vÞ � ðk ^ vÞ
� �

ð98Þ

with the notation of Eq. (91).
It is also important to stress that only the PPN parameter c appears in the Shapiro

delay formula that is used for the computation of the propagation time of light and
doppler shift (see Sect. 3.4). As a consequence, the impact of this parameter can be
more easily disentangled from the effect of other parameters, in particular with
conjunction events for which one directly probes the differential evolution of
Eq. (97) with respect to evolution of the impact parameter during the conjunction
(Bertotti et al. 2003b). This disentangling of the c parameter is also enhanced by the
LT contribution, which depends on c.

Since the first radar echos obtained from the Mercury surface (Shapiro 1964), it
has been possible to evaluate the departure from unity of the PPN parameters in the
context of the planetary orbit computation. Such estimations are done during the
construction of the planetary ephemerides when the initial conditions of the planetary
orbits are fitted to observations with a least square procedure (Ash et al. 1967;
Standish et al. 1976), together with other parameters such asteroid masses.
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4.1.2 Time-scales

As mentioned in Sect. 3.2.2, planetary ephemerides produce the difference between
the TT and the TDB. In the PPN framework, Eq. (86) has to be modified as follows
(Manche 2011)
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Comments on reference frame theory in alternative theories
The difficult subject of reference frame systems in alternative theories has not been
investigated systematically. In fact, it has been explored explicitly only for a class of
massless scalar-tensor theories “à la Brans–Dicke” (Kopeikin and Vlasov 2004), after
some previous effort to characterize it in a general standard post-Newtonian approach
(Klioner and Soffel 2000). Fortunately in practice, the differences between coordinate
systems in general relativity versus PPN framework are numerically negligible—notably
given the already tight constraints that one already has on the PPN parameters.

4.1.3 Constraints and correlations

An important discussion related to the PPN parameter determinations using least
square methods is the correlations between b, c and other contributions to the
planetary accelerations. This problem has been pointed out a long time ago
(Anderson et al. 1978) but it is still vivid today. In particular, if we consider the
analytical expression of the advance of the perihelia for planetary orbits D _-PLA, as
given in Will (2014), the two main contributions of this equation are the PPN term
ð2þ 2c� bÞ and a term giving the impact of the Sun oblateness J�2 . But we can also
add the main belt asteroid contribution and the LT effect defined in Sect. 3.3.3, such
as per orbit, one gets (Bertotti et al. 2003a)

D _-PLA ¼ l�ðtÞ 

2

3

ð2c� bþ 2Þ
a ð1� e2Þc2 þ D _-LT ðS; cÞ

� �

þ J�2
R2
�

a2 ð1� e2Þ2 þ D _-AST ðlAST ; aAST ; eAST Þ
ð100Þ

where aAST ; eAST ; lAST are respectively the asteroid orbit semi-major axis and
eccentricity and its gravitational mass perturbing the planet orbits (main-belt and
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trans-neptunian objects), a, e are the semi-major axis and eccentricity of the planet
orbit and finally, c and l� are the speed of light and the gravitational parameter of
the Sun. This latest quantity can be time-varying as discussed in Sect. 4.3.
D _-LT ðS; cÞ is the Lense–Thirring effect presented in Sect. 3.3.3. A discussion about
other contributing terms such as PN cross-terms, de Sitter precession and 2PN
crossterms has been proposed by Will (2018). The conclusion is that these 3 addi-
tional contributions could have some importances in the coming years with the Bepi-
Colombo mission. In any case, they are implicitely taken into account when
numerically integrating the EIHDL equation of motion.

Note that Eq. (100) is an analytical approximation of the perihelia advance rate
that is useful in order to get a sense of some of the correlations that may arise
between different quantities. The actual value would have to be inferred from the
numerical integration of the equations of motion in the solar system with the total
acceleration, atotalT :

atotalT ¼aT ðlSS ; c; b; ICSSÞ þ aJ�2 ðl�; J
�
2 Þ þ aLT ðS�; cÞ; ð101Þ

where aT ; aJ�2 ; aLT are the point-mass interaction acceleration given in Eq. (96), the

acceleration induced by the oblateness of the Sun Eq. (92) and the Lense–Thirring
acceleration Eq. (98) respectively, ICSS stands for the initial conditions of the
numerical integration for the solar system bodies, including asteroids.

It is rather understandable from Eq. (100) that there can be some level of
correlation between, e.g., the semi-major axis (which follows from the initial
conditions in the numerical integration) and the post-Newtonian parameters c and b.
One can also see that for disentangling the different contributions, it is more efficient
to have several orbits with significantly different semi-major axis a and eccentricities
e as the PPN acceleration depends on a when the Sun oblateness acceleration
depends on a2 [see Eqs. (100) and (93)]. It is also interesting to compare the Sun J�2
determinations obtained in general relativity—equivalent to consider b and c fixed to
one—presented on Fig. 6 with the those obtained in adding the PPN parameters b
and c into the global planetary fit as on Fig. 9. It appears first that, besides the
differences between ephemerides, the general relativity estimations (with b and c
fixed to unity) have globally reduced error bars (i.e. less uncertainty induced by less
correlation), as one can see, for example, with INPOP20a (2:218� 0:03 in general
relativity versus 2:165� 0:12 in PPN), or the partial fit obtained by Genova et al.
(2018) (2:271� 0:003 in general relativity versus 2:246� 0:02 in PPN). Secondly,
biases affect also the J�2 determinations obtained with fitted PPN parameters as these
latest can be significantly different from the J�2 values obtained in general relativity.
These bias are due to the correlations between the PPN parameters and J�2 . In the
case of the Earth–Moon system, the relation is even more complex as it also includes
the tidal contributions depending on the internal structures of the two bodies.

In order to overcome the problem of the correlations between the parameters,
other methods of inversion such as random walk exploration or Genetic Algorithm
have been proposed (see Sect. 3.5). They usually give more conservative constraints
than the direct least square method as it is visible on Table 5 and Fig. 8. On these
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table and figure, one can find the estimations of PPN parameters b and c
determinations based on planetary ephemerides. Three families of determinations are
proposed. The first noted FF gathers least square fitted evaluations of PPN
parameters, J�2 and secular variation of the gravitational parameter of the Sun, l�. As
discussed previously on Sects. 3.3.4 and 3.5, these parameters are strongly correlated
and thus are affected by biases (see Figs. 6, 9) and underestimated uncertainties. The
second type of determinations given on Table 5 with the label PF are the one
deduced with one (at least) of these parameters fixed in the planetary ephemeris
adjustment. These estimations are less correlated than the FF ones and give more
reliable assessments but are limited to only one value (usually either c or J�2 are fixed
and b is fitted). Finally, the latest category is obtained by Genetic Algorithm (Fienga
et al. 2015) or random walk exploration (Fienga et al. 2021a). They investigate the
space of parameters more largely than the two former methods, leading to usually
larger intervals for possible general relativity violations. On Table 5, values obtained
in the context of one single planet analysis (Mercury) with only one single spacecraft
(MESSENGER) data analysis (Genova et al. 2018) are also given for comparisons.
The obtained results show smaller uncertainties than the planetary determinations but
might be affected by possible biases. As it was shown in the Eq. (100), the use of
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Fig. 8 Constraints on PPN parameters b and c obtained from planetary ephemerides as presented in
Table 5. The shadded area is the zone common to all the constraints. The lightgrey lines give the constraint
on c extracted from the Cassini experiment (Bertotti et al. 2003b). Three categories are considered: the
values obtained from a full global fit, the one obtained using random walk exploration methods (RW) and
finally, the one constrained either in fixing one of the two parameters [usually c like in Konopliv et al.
(2011); Park et al. (2017)] either in considering only one planetary orbit (like the Mercury orbit for Genova
et al. (2018). These categories were labelled according to the Column 3 of Table 5 and the annotated text
refers to Column 2 of Table 5
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multiple orbits favors the disentangling of the different planetary contributions.
Moreover, the value of b is obtained by introducing the Nordvedt relation Eq. (126)
in the equation of motion and in the fitting procedure which supposes to consider
only metric theories and increases the correlations between the fitted parameters (see
Sect. 4.2).

Finally, as one can see on Fig. 8, all the PPN estimations obtained with the three
methods are consistent with general relativity, with no significant departure from
unity for b and c. By considering the common overlaps of all the recently published
intervals obtained with planetary ephemerides, the two following constraints are
obtained:

ðb� 1Þ ¼ ð�0:45� 1:75Þ 
 10�5

ðc� 1Þ ¼ ð0:55� 1:35Þ 
 10�5
ð102Þ

These values represent an improvement of about 3 orders of magnitude for c and b in
comparison to the historic first determination of Anderson et al. (1978). We can
expect the same type of improvements in the coming years, especially with the
outcomes of the BepiColombo mission (Imperi et al. 2018; De Marchi and Cascioli
2020).

Table 5 PPN parameters b and c obtained with planetary ephemerides. Columns 1, 2 and 3 give
respectively the reference, the ephemeris involved and method used (MSG). As explained in the text
(Sect. 4.1), we consider a classification based on 3 types of adjustment methods: the direct least square fit
combining b, c, all the ephemeris parameters and the oblateness of the Sun, J�2 (FF), the partial fit where
some parameters are fixed such as c or J�2 and the other are fitted (PF), the random walk exploration (RW)
where b and c are randomly sampled when the rest of the parameters (including J�2 ) are fitted. The results
obtained solely from considering Mercury orbit (MSG) are provided for informational purposes

References PE Method b� 1 
 105 c� 1 
 105 J�2 
 107

Pitjeva (2001) EPM2000 FF 40 ± 20� 10 ± 10� 2.43 ± 0.67�
Standish (2001) DE405 FF 10 ± 10 � 40 ± 10� 2.46 ± 0.68�
Pitjeva (2005b) EPM2004 FF 0 ± 10 � �10 ± 20 � 1.9 ± 0.3

Fienga et al. (2009) INPOP08a PF 7.5 ± 12.5 0.0 fixed to 1.82

Fienga et al. (2011a) INPOP10a PF �4:1 ± 7.8 �6:2 ± 8.1 fixed to 2.40

Konopliv et al. (2011) DE421 PF 4 ± 24 fixed to 2.1 fixed to 1.8

Pitjeva and Pitjev (2013) EPM2011 FF �2 ± 3 4 ± 6 2.0 ± 0.20

Verma et al. 2014 INPOP13c FF 0.2 ± 2.5 �0:3 ± 2.5 2.40 ± 0.20

Fienga et al. (2015) INPOP15a FF �6:7 ± 6.9 �0:8 ± 5.7 2.27 ± 0.25

Fienga et al. (2015) INPOP15a RW 0.00 ± 6.90 �1:55 ± 5.01 2.22 ± 0.13

Park et al. (2017) DE440 PF �2:6 ± 3.9� fixed to 2.1 2.25 ± 0.09�
Genova et al. (2018) DE438 MSG �1:625 ± 1.8 fixed to 2.1 2.246 ± 0.02

Fienga et al. (2021a) INPOP20a PF 1.9 ± 6.28 2.64 ± 3.44 2.165 ± 0.12

Fienga et al. (2021a) INPOP20a RW �1:12 ± 7.16 �1:69 ± 7.49 2.206 ± 0.03
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4.1.4 The extended PPN formalism

SPN gauge versus harmonic gauge
Usually, the extended standard post-Newtonian formalism assumes a gauge (or
coordinate system) that is quite different from the one recommended by the IAU that
is called the standard post-Newtonian (SPN) gauge. In general relativity already,
while the harmonic condition26 at the post-Newtonian level reads

gabC0
ab ¼ Oðc�5Þ; ð103Þ

the SPN conditions read (Damour et al. 1991)

ojg0j � 1

2
o0gjj ¼ Oðc�5Þ; ð104Þ
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Fig. 9 Values of the Sun oblateness J�2 obtained when considering PPN parameters b and c as varying
parameters. The dotted lines give the limits of the less constraining helioseismologic value from Pijpers
(1998). F stands for Full fit, RW for random walk exploration method and P for partially fitted ephemerides
(some parameters are fixed). N (respectively Y) indicates that the value has been obtained without
(respectively with) LT. In y-axis, are given the references: G18 is Genova et al. (2018), I20a (Fienga et al.
2021a), D440 (Park et al. 2017), I13c (Fienga et al. 2014), E04 and E11 in Pitjeva and Pitjev (2013). E00 is
Pitjeva (2001), D405 (Standish 2001) and I15a (Fienga et al. 2015). It is important to note that in Genova
et al. (2018), only the orbit of Mercury is considered

26 On top of the strong isotropy condition imposed on the metric, which fixes the space coordinate
(Damour et al. 1991; Soffel 2003)—see Sect. 2.1.7.
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ojgij � 1

2
oi gjj � g00
	 
 ¼ Oðc�4Þ: ð105Þ

It implies that the field equations are modified, such that, instead of Eqs. (81)–(82),
one has (Damour et al. 1991)

DwSPN ¼ �4pGrþOðc�4Þ; ð106Þ

DwSPN
i � 1

4
otoiwSPN ¼ �4pGri þOðc�2Þ: ð107Þ

The difference between the potentials in the harmonic and the SPN gauges reads
(Soffel 2003)

wSPN ¼ wþ c�2o2ttv=2þOðc�3Þ; wSPN
i ¼ wi � o2tiv=8; ð108Þ

with

v :¼ G

Z
d3x0r t; x0ð Þkx� x0k: ð109Þ

In terms of coordinates, the transformation between the two coordinate systems reads
(Klioner and Soffel 2000; Will 2018b)

tSPN ¼ t � 1

2
otv; ð110Þ

xSPN ¼ x: ð111Þ
While both gauges can be used in principle, the harmonic gauge has been found to be
much more convenient for deriving the reference frame theory in the solar system
(Damour et al. 1991), such that harmonic coordinates have been used in the reference
frame theory upon which the IAU recommendations have been built. A thorough
comparison between the two coordinate systems in the full PPN framework can be
found in Will (2018b).

Full PPN metric in harmonic gauge
The full PPN framework considers all the possible different potentials that could
contribute to the metric, assuming that the Newtonian potential is the leading
potential—which may not be the case for a massive gravity theory for instance, see
Sect. 4.4. Furthermore, the PPN framework can only deal with theories for which the
Weak Equivalence Principle has been enforced by hand by requiring that the
additional gravitational fields do not appear in the material part of the action. In the
PPN framework, test particles indeed follow the geodesics of space-time, meaning
that matter reacts to the space-time metric only. While this is necessary in order to
have a theory for which all test particles fall alike by construction, one could question
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the theoretical relevance of such a restriction (Damour 2012)—see Weak Equiva-
lence Principle in Sect. 4.2.

The full PPN metric in harmonic coordinates27 reads (Will 2018b):

g00 ¼� 1þ 2U þ 2wHarm � 2bU 2
� þ 1� 1

2
a1 þ a2 þ 2n

� �
€Xþ

þ UPF
Harm;

ð112Þ

g0j ¼� 2ð1þ cÞ þ 1

2
a1

� �
Vj � 1

4
a1X;0j þ UPF

jHarm; ð113Þ

gjk ¼ð1þ 2cUÞdjk ð114Þ
with

wHarm ¼ 1

2
ð2cþ 1� 2nÞU1 � ð2b� 1� nÞU2 þ U3 þ ð3c� 2nÞU4

þ nU6 � nUW ;
ð115Þ

UPF
Harm ¼� a1w

2U � a1w
jVj þ a2w

jwkXjk � 2a2 � 1

2
a1

� �
wjX;0j; ð116Þ

UPF
jHarm ¼� 1

2
a1w

jU þ 1

4
a1w

kXjk ; ð117Þ

where w is the coordinate velocity of the PPN coordinate system relative to the mean
rest frame of the universe, and with the following metric potentials

U ¼
Z

q0�

kx� x0k d
3x0;Vj ¼

Z q0�v0j
kx� x0k d

3x0;X ¼
Z

q0�kx� x0kd3x0; ð118Þ

U1 ¼
Z

q0�v02

kx� x0k d
3x0; U6 ¼

Z
q0� v0 � x� x0ð Þ½ �2

kx� x0k3 d3x0; ð119Þ

U2 ¼
Z

q0�U 0

kx� x0k d
3x0; U3 ¼

Z
q0�P0

kx� x0k d
3x0; ð120Þ

U4 ¼
Z

p0

kx� x0k d
3x0; ð121Þ

UW ¼
Z

q�0q�00
x� x0ð Þ

kx� x0k3 �
x0 � x00ð Þ
kx� x00k �

x� x00ð Þ
kx0 � x00k

� �
d3x0d3x00; ð122Þ

27 Defined here as a “Nutku gauge”, that is om½ð1þ ð1þ cÞUÞ ffiffiffiffiffiffiffi�g
p

glm� ¼ 0, and not om½ ffiffiffiffiffiffiffi�g
p

glm� ¼ 0—
see discussion on the ambiguity of the definition of harmonic coordinates in Sect. 4.1.
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where q� :¼ qu0
ffiffiffiffiffiffiffi�g

p
is the “conserved” mass density28—in the sense that it satisfies

the Newtonian conservation equation otq� þ ojðq�vjÞ ¼ 0.29 The whole set of PPN
parameters is c; b; n; a1; a2; a3; f1; f2; f3; f4. The parameter n is non-zero in any
theory of gravity that predicts preferred-location effects such as a galaxy-induced
anisotropy in the local gravitational constant GL (also called “Whitehead” effects);
a1; a2; a3 measure whether or not the theory predicts post-Newtonian preferred-frame
effects; a3; f1; f2; f3; f4 measure whether or not the theory predicts violations of
global conservation laws for total momentum (Will 2014).

Untill now, the full PPN framework has not been investigated with planetary
ephemerides. First, one would have to derive the equation of motion in harmonic
coordinates for point-mass interations that follows from the more general hydrody-
namical situation depicted in Eqs. (112)–(122). Also, let us stress that the issue of the
definition of the SSB has to be carefully checked, notably for the parameters that
correspond to a violation of the conservation laws of momentum. Finally, the more
the parameters, the more computationally demanding the study is, and one therefore
has to think about the best way(s) to explore and constrain the landscape of
parameters. Hence, several studies still seem to be needed before being able to
constrain the full PPN framework with planetary ephemerides.

Nevertheless, measurements of PPN parameters other than b and c such as
a1; a2; f1,in the weak field regime, have been proposed early, by Anderson et al.
(1978), and in the context of the mission BepiColombo by Milani et al. (2002) and
De Marchi and Cascioli (2020), using Mercury orbit. As explained in Will (2014),
the contribution of the preferred-frame parameters are included in the ratio between
the planet mass and the Sun mass, leading to contributions to a maximum of 1
10�4

for Jupiter and 1
10�7 for Mercury. De Marchi and Cascioli (2020) expect a
constraint for a1 at the level of 10�7 and up to 7 
10�8 for a2, with BepiColombo
and future Venus missions. These estimations are obtained with covariance analysis
of tracking observations of s/c orbiting planets. They are interesting as they estimate
the capabilities of future missions for disentangling of the PPN contributions on the
planetary motions.

In the strong field regime, constraints have been obtained for the parameters a1; a3
and f2 using pulsar timing (Stairs 2003).

4.2 Equivalence principle

While a deviation for particles with different compositions falling equally in a given
gravitational field would indicate a violation of the Weak Equivalence Principle
(WEP), a deviation for extended bodies with different gravitational self-energies
would be a sign of a violation of the Gravitational Weak Equivalence Principle
(GWEP), which is part of the Strong Equivalence Principle (SEP) as defined in Will
(2018b). In all cases, with planetary ephemerides, one seeks to check the Universality
of Free Fall (UFF)—that is, to check whether or not all bodies fall alike in a given

28 q is the density of rest mass of a fluid element as measured in a local, freely falling, momentarily
comoving frame. One has q ¼ rþOðc�2Þ, where r is defined in Eq. (83).
29 Note that one therefore has X ¼ vþOðc�2Þ.
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gravitational potential. Such violations naturally occur in various modifications of
general relativity, and in particular in theories with more than four dimensions like in
string theories (Damour and Polyakov 1994; Damour et al. 2002), for which the
constants of the standard model of particles turn out to be dynamical entities
(Damour and Donoghue 2010; Damour 2012).

As we will see, the violations of both the WEP and GWEP have in common the
fact that the equation of motion at the Newtonian level reads as follows

aT ¼ �
X
A6¼T

lGA
rAT
r3AT

1þ dT þ dATð Þ; ð123Þ

where dT and dAT are coefficients that depend on the composition of the bodies T and
A, for the case of the violation of the WEP only. For the case of the violation of the
GWEP only, dT depends on the ratio between the gravitational and inertial masses
and dAT ¼ 0—such that

mG

mI

� �
T

¼ 1þ dT ; ð124Þ

where mG and mI are the gravitational and inertial masses respectively. Note that lGA is
the gravitational parameter constructed with the gravitational mass mG

A such as
lGA ¼ ð1þ dAÞlIA, where lIA:¼ GmI

A is the gravitational parameter obtained with the
inertial mass mI

A. Equation (123) is the most general equation that still satisfies New-
ton’s third law of motion (Viswanathan et al. 2018). As we will see in Sect. 4.6, one can
have both a violation of the WEP and the GWEP at the same time—that is, dT can
depend both on the composition of the body T and on its internal gravitational energy.

The equivalence principle is currently tested at different scales: on the one hand on
the laboratory scale for WEP with the torsion balance and MICROSCOPE, and on
the other hand, the astronomical scale for GWEP with LLR30 and compact objects —
at the level of about 10�13 with torsion balances (Adelberger et al. 2003a), 10�15

with the MICROSCOPE experiment (Touboul et al. 2022) and 10�14 with LLR
(Williams et al. 2012; Viswanathan et al. 2018; Biskupek et al. 2021).

The latest LLR results (Biskupek et al. 2021) are more accurate that what can be
achieved with the sensitivity of planetary ephemerides as discussed in Viswanathan
et al. (2018). We give however a brief overview of the equations at stake below,
mainly in the perspective of the BepiColombo mission that should lead to a
significant improvement of the sensitivity of planetary ephemerides on the tests of the
equivalence principle.

Finally, it is interesting to note that constraints on the violation of SEP have been
obtained in strong field regime, mainly using the chronometry of millisecond pulsars.
For a deeper dive into this captivating subject, we direct the reader to Kramer et al.
(2021), Freire et al. (2012), and Voisin et al. (2020).

30 LLR tests also include a WEP contribution as the Earth and Moon have different compositions
(Adelberger 2001).
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4.2.1 The case of metric theories

While metric theories satisfy the WEP by design (see Sect. 4.1), they do not satisfy
the SEP in general—in the sense that bodies with different gravitational self-energies
would not follow the same trajectories in general (Nordtvedt 1968a, b). This notably
induces that for extended bodies with enough gravitational self-energy such as
planets, the ratio between their gravitational and the inertial masses is no longer one
as in general relativity, but instead depends on the body self-gravitational energy that
can be approximated for uniformly distributed spherical bodies as follows

mG

mI

� �SEP

T

¼ 1þ g
 3

5

GmG
T

c2RT
; ð125Þ

where RT is the radius of the astronomical body T and mG
T is its gravitational mass.

The parameter g, known at the Nordtvedt parameter, quantifies the possible violation
of the SEP and can be fitted together with the rest of the planetary and lunar
ephemeris parameters. In the most generic case, g can be seen as an independent
parameter and be introduced in Eq. (125), common to all the bodies. However, in the
case of the metric theories, it can be related to the PPN parameters such as (Will
2018b):

g ¼ 4ðb� 1Þ � ðc� 1Þ � a1 � 2

3
a2: ð126Þ

Although note that only the cases for which a1 ¼ 0 and a2 ¼ 0 have been considered
in planetary ephemerides so far—see Sect. 4.1.4 for a discussion on the extended
parametrized post-Newtonian framework. In principle, the introduction of Eq. (126)
in the global adjustment of planetary ephemerides should increase the correlations
between b, c, g and the other ephemeris parameters, including J�2 (Ashby et al.
2007). However, simulations for the MORE BepiColombo experiment indicate a
significant improvement of the b, J�2 and g correlation (from 0.9 to 0.3) thanks to the
high accuracy of the Mercury-Earth range measurements that should be obtained
(few tens of centimeters) by the mission (Milani et al. 2002; De Marchi et al. 2016;
Imperi et al. 2018; De Marchi and Cascioli 2020). Finally, recent attempt using
Messenger tracking data leads to a measurement of g at the level of 7 
10�5 but this
estimation has been done in considering only the Mercury orbit (Genova et al. 2018).
Even in these very favorable conditions, it gives a slightly less restrictive limit than
the latest LLR evaluation from Biskupek et al. (2021) with a deduced g value of 5

10�5.

4.2.2 The case of non-metric theories

As discussed in Sect. 4.1, metric theories satisfy the WEP because the additional
gravitational fields (beyond the metric) do not couple directly to matter. However,
one could question the reason why additional gravitational fields would not couple to
matter. Indeed, at the fundamental level, there does not seem to be any reason to
expect that outcome (Damour 2012). Moreover, extra-gravitational fields with non-
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minimal couplings to matter are ubiquitous in various attempts to unify the whole set
of fundamental interactions in physics—such as in Kaluza-Klein or superstring
theories (Damour 2012), for instance. Finally, such non-minimal couplings can also
appear from radiative quantum corrections of theories that satisfy the WEP at the
classical level (Armendariz-Picon and Penco 2012)—whereas the WEP in general
relativity is immune to quantum corrections due to the specific symmetries of general
relativity (Armendariz-Picon and Penco 2012). Therefore, it seems that beyond
general relativity, violations of the WEP should be expected at some level—either at
the classical level already, or from quantum corrections to the classical action.

Decoupling mechanisms
Since the equivalence principle is observed to be satisfied with an ever increasing
level of accuracy, non-metric theories need to possess mechanisms that are able to
hide the effects of the additional gravitational fields in the solar system. They are
often called “decoupling” or “screening” mechanisms.31 They can take their roots
from the fact that the additional fields are simply massive enough to propagate over
very short distances only—such as what happens with flux compactification in string
theory (Douglas and Kachru 2007)—or from the suppression of the coupling during
the evolution of the universe—such as the Damour–Nordtvedt decoupling mecha-
nism (Damour and Nordtvedt 1993; Damour and Polyakov 1994)—or from the
dependence of the effective mass, or coupling, of the additional gravitational field to
the local density—such as the chameleon and symmetron mechanisms (Khoury and
Weltman 2004; Hinterbichler and Khoury 2010)—or from non-perturbative effects—
such as the Vainstein mechanism (Vainshtein 1972; Babichev and Deffayet 2013)—
or simply from exact cancellations in the field equations—such as the intrinsic
decoupling (Minazzoli and Hees 2013, 2016) that notably appears in entangled
relativity (Arruga et al. 2021).

4.2.3 The equivalence principle in a planet-satellite system

Considering the generic Eq. (123), we can deduce for the couple of the bodies T and
A that the difference between their accelerations toward the Sun S reads

Da �aA � aT ¼ �G �mAT

r3TA
rTA þ GmG

S

rST
r3ST

� rSA
r3SA

� �

þ GmG
S

rST
r3ST

ðdT þ dST Þ � rSA
r3SA

ðdA þ dSAÞ
� �

;

ð127Þ

with �mAT � mG
A þ mG

T þ ðdT þ dTAÞmG
A þ ðdA þ dTAÞmG

T . For gravitationally boun-
ded systems like the Earth–Moon system, one can further approximate both distances
appearing in this last term as being approximately equal, such that the relevant term
in order to check a potential violation of the EP through a violation of the universality
of free fall (UFF) is

31 Note that decoupling and screening mechanisms have been proposed first and foremost for theories that
do satisfy the WEP, often in order to be able to explain the acceleration of the expansion of the universe
without impacting with the well-constrained solar system phenomenology.
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DaUFF  aEDESM ð128Þ
where E, S and M stand for the Earth, the Sun and the Moon respectively, and with

DESM ¼ dE þ dSEð Þ � dM þ dSMð Þ½ �: ð129Þ
Equation (128) was introduced in Williams et al. (2012) for theories that violate the
GWEP only, for which DESM ¼ DEM such that

DEM ¼ mG

mI

� �
E

� mG

mI

� �
M

� �
: ð130Þ

In that case, Eq. (128) becomes

DaUFF  aEDEM; ð131Þ

4.2.4 The equivalence principle at planetary scale

At planetary scale, Eqs. (128) or (131) are not valid anymore. Indeed, planets are at
different distances from the Sun and EP tests cannot be limited to the differences
between two accelerations. In that case, one has to use the more general Eq. (123)
instead.

A confusion can occur when defining the SSB because the gravitational
parameters that appear in the equations of motion are constructed with the
gravitational masses; whereas the gravitational parameters that are used to define the
SSB should be constructed with the inertial masses, as pointed out in Milani et al.
(2002) and Genova et al. (2018)—see also Sect. 4.6. It was an issue in particular for
previous versions of planetary ephemerides, such as Folkner et al. (2008), where the
SSB positions and velocities were estimated at each step of integration with the
gravitational parameters appearing in the equations of motion.

However, as explained in Sect. 3.2.4, in planetary ephemerides such as INPOP08
(Fienga et al. 2008) and the followings, the SSB position and velocity are estimated
once, before integrating the motion of planets, using planetary initial conditions,
inertial masses and Eqs. (89) and (88). As explained in Sect. 4.6, Bernus et al. (2022)
have checked with a specific theory that violates both the WEP and the GWEP that
those equations indeed remain the ones that characterize the SSB at the required level
of accuracy for planetary ephemerides—provided that inertial masses are used for the
definitions and not gravitational masses—as originally suggested in Milani et al.
(2002) and Genova et al. (2018).

4.2.5 Comment on the mass in the Shapiro delay equation

As soon as the SEP is violated, there is a potential ambiguity about the gravitational
parameter that appears in the Shapiro delay Eq. (97). Indeed, the gravitational
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parameter in the Shapiro delay could either be constructed on the inertial mass, or on
the gravitational mass. As we will see in Sect. 4.6 Eqs. (157)–(158), one can derive
from first principles that the gravitational parameter that appears in the Shapiro delay
is the one built upon the inertial mass, that is lIA ¼ GmI

A ¼ ð1� dAÞGmG
A , with:

cðtr � teÞ ¼Rþ
X
A

ðcþ 1Þ l
I
A

c2
ln
n � rrA þ rrA þ 2 ð1þcÞlA

c2

n � reA þ reA þ 2 ð1þcÞlA
c2

; ð132Þ

¼Rþ
X
A

ðcþ 1Þ l
G
A

c2
1� g
 3

5

lGA
c2RA

� �



ln
n � rrA þ rrA þ 2 ð1þcÞlA

c2

n � reA þ reA þ 2 ð1þcÞlA
c2

:

ð133Þ

There is a somewhat simple explanation to that. One must recall that the original
Nordtvedt effect was derived for the sum of point particles of (inertial) mass m that
are gravitationally bounded together. The metric is bent by those masses m, and the
sum of all the masses corresponds to the inertial mass of the overall body that is
composed from all thoses masses, to lowest order (Nordtvedt 1968b). Since the
Shapido delay simply derives from the null condition ds2 ¼ 0 for light, the Shapiro
delay must depend on this sum of inertial masses. What the Nordtvedt effect tells
additionally, is that the center of mass of this collection of masses does not follow the
same trajectory as would an inertial mass, but follows the trajectory given by the
following equation instead

aT ¼ �
X
A 6¼T

lGA
rAT
r3AT

1þ g
 3

5

lGT
c2RT

� �
: ð134Þ

4.2.6 The issue of time in non-metric theories

The issue with theories that violate the WEP is that they usually also violate the local
position invariance (Uzan 2011), such that the behaviour of clocks not only may be
modified with respect to general relativity depending on the position in the
gravitational field, but also may depend on the clock composition. Therefore, one
may expect that this should complicate the tests of such theories with planetary
ephemerides, given that positions of astronomical bodies are given in one of the
coordinate times recommended by the IAU, and which are perfectly independent of
the composition of the clocks that has been used. Fortunately, the local position
invariance is tested to a very high level of accuracy on Earth with various atomic
clocks (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al. 2013; Godun et al.
2014; Huntemann et al. 2014). Indeed, thanks to the eccentricity of the Earth’s orbit,
one can probe a potential variation of the ratio between the frequencies of atomic
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clock with different compositions depending on the variation of the local value of the
Sun’s gravitational field. Because the local position invariance is tested with atomic
clocks at a level of accuracy that is far beyond what is used in space navigation, one
can neglect this potential effect in planetary ephemerides.

4.3 Variation of the gravitational constant G

With respect to the subject of the potential variation of constants (Uzan 2011),
planetary and lunar ephemerides have been mostly used for testing an hypothetical
variation of Newton’s constant G, or a related value, the Astronomical Unit (Hellings
et al. 1983; Anderson et al. 1987, 1989; Pitjeva 1993).

Before 2012 and the decision by the International Astronomical Union (Capitaine
et al. 2012) to redefine the Astronomical Unit (AU) as a constant with a fixed value,
the AU was indeed part of the parameters estimated during the construction of
planetary ephemerides. The Gauss constant k was fixed (Standish 2001) and the AU
was estimated from this equation

GM� ¼ ðAUÞ3k2=D2 ð135Þ
where D is the length of the day and GM� is the gravitational parameter of the Sun.
In this context, AU values and its hypothetical time variations have been estimated
with planetary fit by Krasinsky and Brumberg (2004). In the same manner, an

estimation of _G
G was also obtained, together with the value of AU. A first test of such a

variation has been initiated by Hellings et al. (1983), using the data obtained with the
Viking mission on Mars. On a regular basis, the planetary ephemerides were then

published with updates for _G
G based on a global adjustment including also AU and

PPN parameters (Pitjeva 1993; Standish 2001; Pitjeva 2005b). Results are gathered
in Table 6.

After 2012, the AU has been fixed to 149597870700 m, closing the door to the
estimation of dAU=dt, but leading to a more consistent determination of the
gravitational parameter of the Sun, GM� noted l�, now fitted in planetary
ephemerides. As it is reviewed in Uzan (2011), some theories propose that the
gravitational constant can vary with time. Thus, an hypothetical variation of G in
time has been introduced in the planetary ephemerides, but it is not straightforward
since it affects both the planetary and the Sun gravitational parameters l.

For the planets, because they do not lose or gain mass, the time variation of G

induces a direct variation of the gravitational parameter lP such _lP=lP ¼ _G=G. For
the Sun, its intrinsic mass loss _M� has also to be considered. As a consequence, the
following equations are added to the system of equations integrated numerically
during the planetary ephemerides construction

_l�
l�

¼
_G

G
þ

_M�
M�

; ð136Þ

where l� is the gravitational paramater of the Sun and
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_lP
lP

¼
_G

G
; ð137Þ

with lP is the gravitational parameter of bodies other than the Sun.
At each step t of the numerical integration of the planetary equations of motion,

the following quantities are estimated:

M�ðtÞ ¼ M�ðt0Þ þ ðt � t0Þ 
 _M�; ð138Þ

MPðtÞ ¼ MP; ð139Þ

GðtÞ ¼ Gðt0Þ þ ðt � t0Þ 
 _G; ð140Þ

lðtÞ ¼ GðtÞ 
MðtÞ; ð141Þ
where t0 is the date of the origin of the planetary ephemeris. Let us note that the
gravitational parameter lðtÞ also appears in the computation of the Shapiro delay (see

Table 6 Values of _l�=l� found in the literature deduced from planetary ephemerides. The Column 3
indicates the type of method used for the estimation: either the full fit (FF), the partial fit (PF) in or the
random walk exploration (RW). See text for details. For Fienga et al. (2021a), PF�� indicates that the
oblateness of the Sun is strongly constrained by helio-seismological value. So this solution cannot be seen
as a free fit but as a partial fit. Analysis of the MESSENGER mission is labeled MSG in Column 3 using
only the Mercury orbit. The _G=G values are deduced with _l�=l� and _M�=M� given in Column 5. The

value of _G=G deduced from Pitjeva and Pitjev (2013) is not the one published by the authors but was
obtained in using the same value of _M�=M� as for Konopliv et al. (2011)

References PE Method _l�=l� 
 1014

yr�1

_M�
M�


 1014

yr�1

_G=G 
 1014

yr�1

Before AU fixed

Pitjeva (1993) EPM1988 FF NA NA 470 ± 470

Pitjeva (2001) EPM2000 FF NA NA 4 ± 8

Standish (2001) DE405 FF NA NA 1 ± 8

Pitjeva (2005b) EPM2004 FF NA NA −2 ± 5

After AU fixed

Konopliv et al. (2011) DE421 PF 1 ± 16 −9.2 ± 6.1 10.2 ± 22.1�

Pitjeva and Pitjev
(2012)

EPM2010 FF −5 ± 4 −6.7 ± 3.1 1.65 ± 8.77

Pitjeva and Pitjev
(2013)

EPM2011 FF −6.3 ± 6.4 −6.7 ± 3.1 0.4 ± 11.1

Fienga et al. (2015) INPOP15a FF −5.0 ± 2.9 −9.2 ± 6.1 4.2 ± 9.0

RW −4.3 ± 7.4 −9.2 ± 6.1 4.9 ± 13.5

Genova et al. (2018) MSG −6.130 ± 1.47 −10 ± 1 4 ± 7.5

Pitjeva et al. (2021) EPM2021 FF −10.2 ± 1.4 −11.05 ± 2.35 0.85 ± 3.75

Fienga et al. (2021a) INPOP20a PF�� −8.8 ± 2.9 −9.2 ± 6.1 0.4 ± 9.0

−11.05 ± 2.35 2.25 ± 5.25

RW −10.3 ± 22.8 −9.2 ± 6.1 −0.8 ± 28.4
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Sect. 3.4.1). In this case, the value of lðtÞ, corresponding to the date of the obser-
vation, is computed with Eq. (141) and re-introduced in the Shapiro Eq. (94).

M�ðt0Þ is the mass of the Sun fitted during the construction of the ephemeris, and
Gðt0Þ is the Newtonian gravitation constant as defined by the IAU (Luzum et al.
2011). The effect of the time variation of G being largely induced by the gravitational
parameter of the Sun more that the ones of the planets, one then deduces the value of
_G=G by considering its impact of the Sun contribution [Eq. (136)] and a fixed value

for the Sun total mass loss,
_M�

M�
. Pitjeva and Pitjev (2012) have proposed an interval of

values for the total solar mass loss of

_M�
M�

¼ ð�0:67� 0:31Þ 
 10�13 ð2rÞ yr�1; ð142Þ

This estimation considers the mass loss by the Sun, but also the mass gained by
falling materials (comets, asteroids etc...). Pinto et al. (2011) have estimated a mean
mass loss from wind emission of charged particles during the 11-year solar cycle:

_M�
M�

¼ ð�0:55� 0:15Þ 
 10�13 ð3rÞ yr�1; ð143Þ

instead of Eq. (142). In 2021, a detailed evaluation of Pitjeva et al. (2021) gives

_M�
M�

¼ ð�1:105� 0:235Þ 
 10�13 ð3rÞ yr�1; ð144Þ

This value accounts for the solar wind radiation as well as the accumulation of
interplanetary dust falling on the Sun together with comets. The authors conclude

that the value of
_M�

M�
in Pitjeva and Pitjev (2012) is overestimated.

On Table 6, are gathered the values of _l�=l� obtained by different authors jointly

with PPN parameter estimations as well as the _G=G deduced using the value of
_M�

M�
specified in the same Table. It is important to stress that the correlations between the
PPN parameters, _l�=l� and the other fitted parameters of the planetary ephemerides
being non zero (see e.g. Table 6 from Fienga et al. 2015), the values given in Table 6
have to be considered as part of a global fit, and consequently they are planetary
ephemeris dependent. Direct adjustments with all parameters fitted together (Pitjeva
and Pitjev 2013; Pitjeva et al. 2021), partial fits (Konopliv et al. 2011; Fienga et al.
2021a) but also random walk exploration algorithms have been used for obtaining
constraints on _l�=l�, given in Table 6. As explained in Sects. 3.5 and 4.1, the
partial fit consists to fix one PPN parameter and then fit _l�=l� together with the rest
of the planetary parameters. The random walk exploration algorithm fixes the PPN
parameters and _l�=l� according to random values, and performs a regular fit for the
rest of the planetary parameters. The obtained ephemerides are then selected
according to different statistical criteria (Fienga et al. 2015, 2021a). The latest two
approaches (partial fit and random walk exploration algorithms) give larger intervals
of possible values than the direct fit of all parameters, as one can see in Table 6.
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One can also mention _G=G estimations deduced, not directly from planetary
ephemerides, but from the adjustment of one single planet orbit during the analysis of
radar tracking data analysis of one given space mission. This is the case for example
with Mercury and the MESSENGER data operated by Genova et al. (2018), noted
MSG in Table 6. In this work, it has to be stressed that only Mercury orbit was
considered in the analysis. Nevertheless, in all the cases produced in Table 6, no clear
indication of a time variation of G is visible, despite the improvements of the
planetary ephemerides and of the estimation of the solar mass loss (Pitjeva et al.
2021). Finally, other technics or methods have been used for measuring possible
variations of the gravitational constant, G. One can cite for example, the

determination of _G=G deduced from pulsar timing (Stairs 2003; Zhu et al.
2015, 2018; Kramer et al. 2021). The obtained limit is then one order of magnitude

greater (e.g. j _G=Gj\0:9
 10�12 yr�1 from Zhu et al. 2018) than the one obtained
with planetary ephemerides although the gravitational regimes are quite different
(strong field regime for the pulsar measurements and weak field for planetary
ephemerides).

4.4 Massive gravity

Unlike in electromagnetism—like with the Proca theory (de Rham 2014; Proca
1936)—, there is not a unique definition for what massive gravity might entail (de
Rham 2014). In field theory, massive interactions typically result in a Yukawa
suppression of these interactions at the scale of the Compton wavelength. However,
due to its tensorial rather than vectorial nature, this may not necessarily be the case
for a fully consistent theory of massive gravity (de Rham 2014). Nonetheless, from a
phenomenological perspective, it is possible to test whether a Yukawa suppression of
gravitational potentials occurs within the solar system. Formally, this would lead to
the following modification of the Newtonian potential (Will 2018a)

w ¼ wNewtonexpð�r=kgÞ; ð145Þ
which can be developped as Bernus et al. (2019)

w ¼ wNewton 1þ 1

2

r2

k2g

 !
þOðk�3

g Þ; ð146Þ

after a convenient change of coordinate system that absorbs the constant term in the
gravitational potential—which has no impact on the observables.

As discussed in Sect 4.5, this modification is different from a fifth force, for which
the new potential is an affine function of the Yukawa suppression instead of a linear
function (Fischbach et al. 1992; Will 2014). Fifth forces usually originate from the
existence of an additional gravitational field that is massive—e.g. a massive scalar
field (Wagoner 1970; Hees et al. 2018)—rather than considering that the field
equation on the metric perturbation itself has a mass term. Indeed, Eq. (145) is
solution of a massive gravitational potential equation that reads
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Dw� w

k2g
¼ �4pGr: ð147Þ

Obviously, as long as kg is big enough, the gravitational phenomenology in the
Newtonian regime can reduce to the one of general relativity to any given level of
accuracy. Also, if kg is large enough that only the leading order correction in
Eq. (146) has a significant contribution to the metric, one can assume that only the
Newtonian part of the post-Newtonian expansion is modified with respect to the
equations of motion in general relativity Eq. (90).

In that situation, the equation of motion only has one extra term with respect to the
usual EIHDL equation Eq. (96) that reads Bernus et al. (2019)

da
kg
A ¼ 1

2k2g

X
A6¼T

lT
rAT

rAT þOðk�3
g Þ; ð148Þ

and further assuming that light still propagates along null geodesics, the Shapiro
delay reads (Bernus et al. 2019)

cðtr � teÞ ¼cðtr � teÞGRT
þ
X
A

lA
c2

1

2k2g
ln b2

n � rrA þ rrA
n � reA þ reA

þ n � ðrrArrA � reAreAÞ
� �

;
ð149Þ

where cðtr � teÞGRT corresponds to the general relativity light time given in Eq. (94),
b is the minimal distance between the light path and the central body (here the Sun).
This expression is an approximation at c�2 level, the additional terms induced by
gravitational field mass being negligible relative to the present day accuracy for
commonly admitted kg (with kg [ 2:8
 1012 km (Will 2018a, 1998)).

Likewise, from Eq. (146), the difference between a clock A and a BCRS time t still
is

dsA
dt

¼ 1� 1

c2
v2A=2þ U xAð Þ� 

; ð150Þ

up to terms of order Oðk�2
g c�2Þ. For instance, assuming a conservative bound of

kg [ 2
 1012 km, the correction to Eq. (150) at the surface of the Earth would be

less than 10�17ð�R2
�=k

2
g, where R� is the radius of the EarthÞ time less than the

contribution of the last term in the bracket of Eq. (150)—that is, far beyond what can
be achieved with present clocks stability (Guena et al. 2012).

By analogy with standard quantum physics, the Compton length can also be
interpreted in terms of a mass of the graviton mg following the relation:

kg ¼ �h

cmg
; ð151Þ

with �h the Planck constant, and c the speed of light. Will (2018a) proposed to use
solar system ephemerides to improve the constraints on kg in the Newtonian limit.
The starting point was that a massive gravitational field should lead to a modification
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of the perihelion advance of solar system bodies. Hence, based on current constraints
on the perihelion advance of Mars derived from Mars Reconnaissance Orbiter
(MRO) data, Will estimates that the Compton wavelength should be bigger than
ð1:4� 2:7Þ 
 1014km (resp. mg\ð4� 8Þ 
 10�24 eV/c2), depending on the specific
analysis. However, making an estimation from quantities derived from ephemerides
that assumed other theorerical frameworks—here, the perihela advances per orbit and
their uncertainty in either general relativity or PPN frameworks—cannot account for
the fact that the mass of the graviton is correlated to the various parameters of the
ephemeris (e.g. masses, semi-major axes etc.). While a graviton with a non-zero mass
may impact the solar system dynamics, so also does a change of the various other
parameters of the ephemerides. Because of the correlation between mg (or kg) and
other parameters, any modification induced by a non-null value of mg may—at least
in part—be reabsorbed by the modification of other parameters of the ephemerides.

In order to overcome this issue, Bernus et al. (2019, 2020) and Mariani et al.
(2023) have built planetary ephemerides fully developed in the massive gravity
framework of Eq. (145) and fitted over the data sample of INPOP17a, INPOP19a and
INPOP21a respectively. The results of these investigations are given on Table 7.

Bernus et al. (2019, 2020) had used a method of random walk exploration that is
more conservative that the Monte Carlo Markov Chain (MCMC) algorithm used by
Mariani et al. (2023). With the same random walk exploration method, but using the
updated INPOP21a ephemerides, Mariani et al. (2023) obtained a constraint that is 3
times smaller than Bernus et al. (2020). This improvement is induced by the use in
INPOP21a of the latest Juno and Mars orbiter tracking data up to 2020 as well as a fit
of the Moon-Earth system to LLR observations also up to 2020. By improving the
procedure with MCMC, Mariani et al. (2023) was able to push the limit of detection
of the mass of the graviton at a new level, with a constraint at 1:01
 10�24 eVc�2

(resp. kg � 122:48
 1013 km) with a 99.7% confidence level.
It is somewhat interesting to compare these constraints to the ones deduced from

the observation of gravitational waves. Indeed, it is assumed that a massive
gravitational field that leads to Eq. (147) might also modify the dispersion relation of
gravitational waves as follows (Abbott et al. 2021; Will 1998)

E2 ¼ p2c2 þ mgc
2; ð152Þ

where E and p are the energy and momentum of the wave.
Such a modified dispersion relation causes gravitational waves frequency modes

to propagate at different speeds, leading to an overall modification of the phase
morphology of gravitational waves with respect to the general relativity predictions.
Since the morphology of gravitational wave phase has been consistent with general
relativity so far, it led to severe constraints on the value of mg that are reproduced on
Table 7.

Even if a massive gravity theory actually leads to both the phenomenological
consequences represented in Eqs. (147) and (152), there is absolutely no reason for
the constraints from ephemerides on the one hand, and from gravitational waves on
the other hand, to be at the same level accuracy.
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Each type of constraints is relevant on its own right given that they test different
phenomenologies—that is, Eq. (145) versus Eq. (152)—which may (or may not) be
related, depending on the underlying massive gravity theory that one is considering.
For instance, screening mechanisms that kick-in for high density environments—
such as the Vainshtein mechanism (Babichev and Deffayet 2013)—may impact
Eq. (145) and not Eq. (152). This notably seems to be the case for ghost-free massive
gravity (de Rham 2014).

4.5 Yukawa potential and fifth force

Whereas one can imagine that the metric field itself has a mass—see Sect. 4.4—it is
also possible to imagine the existence of additional gravitational fields that are
massive, while the metric field would remain massless. In such situations, the
potential often.32 becomes an affine function of the Yukawa suppression as follows
(Wagoner 1970; Fischbach et al. 1992; Will 2014)

w ¼ wNewtonð1þ aexpð�r=kÞÞ; ð153Þ
where a is the strength (relative to gravity) and k the range of the force. This type of
modifications of the Newtonian potential is often referred to as a fifth force (Will
2014). Depending on whether the additional massive field couples universally to
matter or not, the fifth force can be either composition-dependent or independent
(Will 2014).

Solar system tests—such as the ones realised with planetary ephemerides—
usually focus on composition independent models. Konopliv et al. (2011), constraints

Table 7 Limits obtained for the Compton length kg in km as defined in Eqs. (148) and (149). Are also
given the corresponding values in term graviton mass mg in eV=c2. Are also indicated, for comparisons, the
values obtained with INPOP17a (Bernus et al. 2019), INPOP19a (Bernus et al. 2020), and INPOP21a
(Mariani et al. 2023) as well as the estimations for the dynamical mode from Virgo-Ligo GWTC-1 and
GWTC-3 (Abbott et al. 2019, 2021). For INPOP21a, two values at 90% confidence level (CL) are given:
the one indicated in the column RW corresponds to value obtained with the same method (random walk
exploration) as Bernus et al. (2019) and Bernus et al. (2020) and the one given in ColumnMC corresponds
to MCMC results

CL GWTC-1 GWTC-3 INPOP17a INPOP19a INPOP21a

RW MCMC
0.90 0.90 0.90 0.90 0.9 0.9

Graviton mass

kg 
 10�13 [km] 2.6 9.77 1.83 3.93 12.01 209.67

mg 
 1023 [eV/c2] 4.7 1.27 6.76 3.16 1.03 0.059

Fifth force
kffiffiffiffi
jaj

p 
 10�13 [km], a[ 0 1.83 3.93

kffiffiffiffi
jaj

p 
 10�13 [km], a\0 3.77

32 But not always (Hees et al. 2018)
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on the Yukawa potential were deduced from the analysis of Mars orbiter tracking
data and from the construction of a Mars updated ephemeris. Figure 10 shows that
already in 2011, the constraints from planetary ephemerides were at the level of the
constraints from lunar ephemerides. As explained in Bernus et al. (2019), in the limit
k � r and with a[ 0, one can use the constraints given in Sect 4.4 for the test of
massive graviton, in order to deduce constraints on the Yukawa potential. These
constraints are given in Table 7 and Fig. 10. The green lines on this figure show the
improvements of the new generation of planetary ephemerides relative to the one use
in Konopliv et al. (2011), as well as the new limits obtained at solar system scale. A
new limit (labelled IBC) obtained by simulating the introduction of BepiColombo
MORE experiments as predicted by De Marchi and Cascioli (2020) and Fienga et al.
(2022) is also indicated. Let note that, because fifth force models in Eq. (153) depend
on two parameters (a and k), whereas the massive graviton models in Eq. (145)
depend on only one (kg), the mapping between the two breaks down for small
Compton wavelength. This explains why the green lines in Fig. 10 are restricted to
the right part of the plot.
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Fig. 10 Observational constraints obtained for the Yukawa potential extracted from A03, standing for
Adelberger et al. (2003b). The green lines give the constraints deduced from the INPOP planetary
ephemerides graviton tests presented in Table 7: I17a stands for Bernus et al. (2019), I19a for Bernus et al.
(2020), I21a and I21a?MC for Mariani et al. (2023). K11 indicates the limits deduced from Mars tracking
data analysis by Konopliv et al. (2011)
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4.6 Einstein-dilaton theories

The case of Einstein-dilaton theories is somewhat very interesting for the
phenomology of alternative theories in the solar system, because it allows one to
consistently derive the equations of motion, Shapiro delay and conserved quantities
in a framework that leads to a violation of both the WEP and the GWEP.

Einstein-dilaton theories are scalar-tensor theories that violate the WEP at the
fundamental level, because they possess at least one massless scalar-field that couples
non-minimally to matter fields. They are somewhat expected as being the low energy
effective gravitational action of string theories (Damour and Polyakov 1994; Damour
et al. 2002)33—and other higher than four dimensional theories (Overduin and
Wesson 1997)—which generically predict the existence of one (or several) additional
scalar-field(s) that mediates gravity: the dilaton field (and the moduli fields that come
from the compactification of the extra-dimensions in string theories). Tests of
Einstein-dilaton theories with planetary motions have been proposed by Damour and
Donoghue (2011) based on the equations of Damour and Donoghue (2010). The first
results for the massless dilaton with planetary ephemerides have been published in
Bernus et al. (2022).

4.6.1 Equations of motion and Shapiro delay

The general action for an Einstein-dilaton theory34 may be written as (Minazzoli and
Hees 2016; Bernus et al. 2022)

S g;wi;u½ � ¼ 1

2jc

Z
f ðuÞR� xðuÞ

u
ulu;l

� � ffiffiffiffiffiffiffi�g
p

d4x

þ 1

c

Z
LSM g;wi½ � þ Lint g;wi;u½ �ð Þ ffiffiffiffiffiffiffi�g

p
d4x

ð154Þ

where LSM is the Lagrangian density of matter described by the standard model of
particle physics and Lint the Lagrangian density of the interactions between the
dilaton field u and matter. Such interactions can be parametrized by arbitrary
functions of the scalar-field as follows

Lint ¼ �DeðuÞbeðeÞ
2e

FlmF
lm � DgðuÞb3ðg3Þ

2g3
Ga

lmG
lm
a

�
X

i¼e;u;d

ðDmiðuÞ þ cmi
DgðuÞÞmi

�wiwi

ð155Þ

where Flm is the Faraday tensor, Ga
lm is the gluons tensor, e and g3 are respectively the

33 Let us note, however, that the current consensus among string theorists is that all the scalar fields
acquire a potential through the moduli stabilization mechanism (Douglas and Kachru 2007), such that they
mediate gravity with a very small range instead of being of infinite range—unlike the part of gravity that is
mediated by the metric field.
34 With a massless dilaton field. Note that Damour and Donoghue (2010) assume that the phenomenology
they derive is valid for light dilaton fields as well. However, even a minute mass can lead to an entirely
different phenomenology in the solar system, as one can check in Hees et al. (2018).
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photons and the gluons coupling constants, beðeÞ ¼ ko ln e=ok and b3ðg3Þ ¼
ko ln g3=ok are their respective beta functions relative to the quantum scale invari-
ance violation, where k is the energy scale of the considered physical processes, mi is
the fermion mass, wi their spinor, and cmi

¼ �ko lnm=ok is the beta function relative
to the dimensional anomaly of the fermion masses coupled to the gluons. The DiðuÞ
functions describe the different couplings between the matter fields and the dilaton.
This Lagrangian density is a straightforward non-linear generalisation of the action
considered by Damour and Donoghue (2010).35

Assuming a linear coupling—such as in Damour and Donoghue (2010)—and at
leading order in the composition dependent effects, the acceleration reads (Bernus
et al. 2022)

aT ¼ �
X
A6¼T

lA
r3AT

rAT 1þ dT þ dATð Þ �
X
A6¼T

lA
r3ATc

2
rAT

(
cv2T þ ðcþ 1Þv2A

� 2ð1þ cÞvA � vT � 3

2

rAT � vA
rAT

� �2

� 1

2
rAT � aA � 2c

X
B6¼T

lB
rTB

þ
X
B6¼A

lB
rAB

)

þ
X
A 6¼T

lA
c2r3AT

2ð1þ cÞrAT � vT � ð1þ 2cÞrAT � vA½ �ðvT � vAÞ

þ 3þ 4c
2

X
A 6¼T

lA
c2rAT

aA

ð156Þ
Equation (156) depends on c ¼ ð1� a20Þ=ð1þ a20Þ and dA ¼ ddA þ dNA with ddA ¼
a0~aA=ð1þ a20Þ and dNA ¼ ðc� 1ÞxA j = ~mAc2 where xA is the self-gravitational
energy of the body A. The fundamental parameters on top of which they are built are
a0, the universal coupling constant, and ~aA ¼ dm̂QA

m̂ þ ddmQA
dm þ dmeQ

A
me

þ deQA
e ,

where QA
m̂, Q

A
dm, Q

A
me
, and QA

e are the dilatonic charges, estimated according to the
composition of the considered bodies. In these equations, A stands for the planet to
consider, lA being its gravitational parameter. Bernus et al. (2022) simplify the
problem by considering two average charges for the telluric and gaseous bodies only,
because of the similar dilatonic charges for these two classes of objects. This
approximation leads to the reduction of the number of the tested parameters from 10
to 3 for the linear coupling case: a0, ~aT , ~aG, for which T and G stand for telluric and

35 Although note that in Damour and Donoghue (2010), the dilaton fields does not couple to all the trace
terms—that is, the classical part of the trace in addition to all the relevant quantum trace anomalies.
However, it has been shown in Nitti and Piazza (2012) that it is much more convenient to consider the
parametrization in Eq. (155) because it recovers the fact that in the limit of metric theories, the dilaton field
couples to the total trace, as it should. Indeed, with this parametrization, metric theories corresponds to
Di ¼ Dj8i; j. The fact that in metric theories, any gravitational scalar degree of freedom must couple to the
total trace is a property of conformal couplings. This is consistent to the fact that the mass of a composite
object equals the total trace of the fields that compose the particle due to the constraint that the internal
stresses all vanish (this is true even if some of the internal forces do not contribute to the trace, such as
classical electromagtetism) (Nitti 2022).
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gaseous bodies respectively. Let note that lA is here the product of G with the
gravitational mass mG

A .
From there, one has to also account for different effects, such as the Nordvedt

effect that (in the case of the linear coupling) reads dNA ¼ �ð1� cÞ 3lA
5RAc2

with RA the

planet radius, or the modification of the time travel that, at the required level of
accuracy, reads (Bernus et al. 2022)

cðtr � teÞ ¼ Rþ
X
A

ð1þ c� dAÞ lAc2 ln
n � rrA þ rrA þ 4lA

c2

n � reA þ reA þ 4lA
c2

: ð157Þ

Let us note that

ð1þ c� dAÞlA ¼ ð1þ cÞlIA; ð158Þ
at the required level of accuracy, where lIA is the gravitational parameter constructed
with the inertial mass, such that lIA ¼ ð1� dAÞlA. This means that the mass involved
in the Shapiro delay is the inertial mass and not the gravitational mass—as already
discussed in Sect. 4.2.5.

4.6.2 Conserved quantities and the definition of the SSB

From the Lagrangian formulation of the equations of motion, Bernus et al. (2022)
show that the following barycenter constant vector is a first integral of the equations
of motion

q ¼ G � V t; ð159Þ
where

G ¼ c2

h

X
A

lAzA 1� dA þ v2A
2c2

� 1

2c2
X
B 6¼A

lB
rAB

 !
ð160Þ

are the coordinates of the relativistic barycenter of the system and

V ¼ c2P
h

ð161Þ

is the velocity of the barycenter motion. h is the conserved energy—whose value
does not affect what follows but can be found in Bernus et al. (2022)—and P is the
conserved linear momentum that reads
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P ¼
X
A

pA

¼
X
A

lAvA 1� dA þ 1

2c2
v2A �

X
B 6¼A

lB
rAB

 !" #

� 1

2c2
X
A

X
B 6¼A

lAlB
rAB

ðnAB � vAÞnAB:

ð162Þ

From Eq. (162), one can see that the sum at leading order is over the gravitational
parameter based on the inertial mass lIA, because one has l

I
A ¼ lAð1� dAÞ at leading

order. This can be used in order to check what has been discussed in Sect. 4.2.4. Let
us note that it is consistent with Klioner (2016), and with Damour and Vokrouhlický
(1995) in the dA ¼ 0 limit.

4.6.3 Results

In Bernus et al. (2022), the planetary ephemerides used were INPOP19a (Fienga
et al. 2019) and, as in Fienga et al. (2020b), after integrating Eq. (156) for all bodies,
the orbits are adjusted to planetary observations and statistical criteria (cost
functions) are applied for selecting the distribution of the tested parameters for which
deduced ephemerides are compatible with instrumental uncertainties. The obtained
results for the linear coupling parameters are given in Table 8.

At 3-r, Bernus et al. (2022) obtained constraints at the level of 10�4 for a0 and aG
and 10�5 for aT. These results reflect the better accuracy reached for the telluric
planets in planetary ephemerides thanks mainly to Mars orbiters. They should be
improved by the future Bepi-Colombo measurements of Mercury orbit.

4.7 MOND

The modified Newtonian dynamics (MOND) is a framework that modifies
Newtonian dynamics a ¼ gN (where a is the acceleration of a test particle and gN
is the Newtonian gravitational field) by a ¼ g with (Milgrom 1983, 2014)

Table 8 Intervals of possible values for the 3 dilaton parameters as defined in Bernus et al. (2022): a0, the
universal coupling, aT the telluric planet coupling and aG the gazeous planet coupling

Confidence INPOP19a (Bernus et al. 2022)

90% 99.5%

a0ð
105Þ �0:94� 5:35 1:01� 23:7

aT ð
106Þ 0:24� 1:62 0:00� 24:5

aGð
105Þ 0:01� 4:38 �1:46� 12:0

ðc� 1Þ 
 108 0.2� 6 0:2� 11:2
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l g ¼ gN ; ð163Þ
where the interpolating function l is a function of the ratio g=a0 between the norm of
the gravitational field g and the MOND acceleration scale a0. It was developed as an
alternative explanation of the galactic rotation curves and the empirical Tully-Fisher
relation without relying on dark matter haloes (Milgrom 1983). Several attempts to
verify this framework at scales different from the galactic one have been made in the
past years (Milgrom 2009; Blanchet and Novak 2011; Magueijo and Bekenstein
2007; Skordis and Złośnik 2021). In the solar system, three main consequences of the
MOND phenomenology have been studied (Milgrom 1983; Hees et al. 2014a). Two
of them have been shown to be negligible considering uncertainties of planetary
mean motions (Sereno and Jetzer 2006). The last one is not negligible however, and
is known as the External Field Effect (EFE) (Milgrom 2009, 2010; Blanchet and
Novak 2011). The effect stems from the non-linearity of MOND equations, and—at
leading order in the multipole expansion (Blanchet and Novak 2011)—it induces an
anomalous quadrupolar correction to the Newtonian potential dUðQ2Þ that reads
(Milgrom 2009)

dUðQ2Þ ¼ �Q2

2
r2 cos2h� 1

3

� �
; ð164Þ

where h could be the angle pointing either toward the Galactic center, or toward the
Newtonian galactic field—depending on the model considered (Hees et al. 2014b).
This factor Q2 changes with the shape of the MOND coupling functions and, in the
solar system, Blanchet and Novak (2011) estimated that the values of Q2 can vary
from 3.8 
 10�26 to 4.1 
 10�26 s�2, and then evaluated that it would therefore lead
to additional advances of perihelia up to 5.81 mas.cy�1 for Saturn and even bigger
values for Uranus (�10:94 mas.cy�1). Milgrom (2009) had also proposed additional
Saturn perihelion precession rate of about 1.8 mas.cy�1. Nevertheless—as notably
emphasized in Blanchet and Novak (2011)—it is not consistent to take into account
only a particular MOND effect, like perihelion precession, and to compare it with
constraints obtained in other frameworks, such as the PPN framework. To tackle this
issue, Hees et al. (2014b) re-adjusted the parameters of planetary ephemeris when the
EFE is taken into account. Hees et al. (2014b), the anomalous quadrupolar correction
enters directly as a modification of the space-time metric that reads:

ds2 ¼ �1þ 2l
c2r

� 2dUðQ2Þ þ 2
l
c2r

� �2� �
c2dt2

þ 1þ 2l
c2r

þ 2dUðQ2Þ
� �

dl2;

ð165Þ

with dl2 � dx2 þ dy2 þ dz2, because this is what one ought to expect from a rela-
tivistic realisation of MOND dynamics. Using this new definition of the metric, Hees
et al. (2014b) introduced modifications into the EIHDL equations of motion and in
the Shapiro delay. An alternative planetary ephemeris has been built in this new
framework and has been adjusted to observations. A specific focus has been brought
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on the Saturn orbit as it is supposed to be the most affected by the MOND modi-
fication (as also estimated by Hees et al. (2014b),) but also the most constrained by
accurate observations (in this case Cassini tracking data). By fitting directly Q2 with
the rest of the planetary parameters, Hees et al. (2014b) obtained a constraint on Q2

of about ð3� 3Þ 
 10�27 s�2, which excludes a important interval of Q2 values
computed theoretically in Blanchet and Novak (2011) for various MOND interpo-
lating functions l. Considering other coupling functions, it is still possible to
maintain a MOND formalism in the solar system but at the cost of very limited
possibilities of couplings. This result is consistent with Milgrom (2009) for which the
predicted perihelion precession for Saturn, estimated for coupling functions la with
a[ 1=3, was significantly smaller than in Blanchet and Novak (2011).

5 Inconsistent tests with ephemeris outputs

In the literature, it is possible to find a wide range of constraints supposedly deduced
from planetary ephemerides. There are of two types:

The first type of tests are those considering residuals obtained after the
modifications of the equations of motion of the planetary systems—by, for example,
introducing additional terms produced by general relativity-like linearization of an
alternative theory—but without re-adjusting the newly modified dynamical system to
observations. This approach is equivalent to not considering any attempt to improve
the ephemerides as described in Fig. 4 in Sect. 2.2. It is clearly an issue because any
modification of the dynamical model must be re-adjusted to observations before any
interpretation of the obtained residuals. In essence, any comparison of a simulation,
which presupposed the parameters of the solar system bodies inferred in a different
theoretical framework, with the observations, will likely overestimate the deviations
in the new theoretical framework. This would primarily be because the simulation
did not use the most appropriate set of parameters for the solar system bodies-which
are, those that minimize the residuals, and which are obtained through readjustment
in a given framework. We can refer the reader to the extensive discussion of this very
basic concept applied to the massive gravity problem and notably presented in the
supplementary materials of Bernus et al. (2019).

The second category of indirect tests involves what we will term as derived
quantities, as explained in Sect. 5.1. We will discuss these indirect tests in detail in
the upcoming section.

5.1 Definitions

Several quantities can be provided as outputs of a given planetary ephemeris, notably
in order to give an idea of the accuracy of that ephemeris with respect to specific
aspects of the solar system phenomenology—such as, for instance, the values of the
perihelion and node advances per orbit for a given astronomical body, and their

uncertainties; or the secular variation of the gravitational constant _G=G and its
uncertainty. We shall call those quantities derived quantities in what follows.
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Derived quantities could also be the values and uncertainties of parameters such as
the post-Newtonian parameters c and b, or of the Compton wavelength in massive
gravity, or in the context of a fifth force. Table 9 gives a non-exhaustive series of
examples of possible interpretations of planetary ephemeris derived quantities for
testing alternative theories. It falls outside the scope of this review to detail theories
that have not been confronted and re-adjusted against planetary observations but
have only considered the derived quantities defined above. The reason for limiting
this review to fully tested theories, as presented in Sect. 4, is our belief that the
published constraints listed in Table 9 yield to unrealistic constraints, as we will
explain in Sects. 5.3 and 5.4. In particular, considering only derived quantities or un-
fitted residuals is equivalent to neglecting that these latest were obtained in a given
framework (usually general relativity), with instrumental uncertainties and correla-
tions between parameters.

5.2 The case of the advance of the perihelia and nodes

It is traditional when one investigates possible laws of gravitation in the solar system
to follow the Einstein’s steps and to consider supplementary advances in the
planetary orbital angles (mainly perihelion and node). Several methods have been
developed in the past fifty years in order to estimate possible remaining advances in
planetary perihelia and nodes that can be fully explained by general relativity.

The most direct method (e.g. presented in Pitjeva and Pitjev 2013) is the
adjustment of a quantity D- or DX (respectively supplementary advances of
perihelia and node) for all of the planetary orbits or only for some of them, together
with the rest of the planetary and relativistic parameters (masses, Sun oblateness,
initial conditions, PPN parameters...). One can get an intuition from Eq. (100) that
the fit of such derived quantities is affected by strong correlations between various
parameters of the ephemeris, such that the results are plagued with biases and
underestimated uncertainties.

The second approach is to introduce possible rotations of the planetary planes
while considering D- or DX fixed, and to build new planetary ephemerides
integrated with these fixed additional rotations and fitted to observations. The result
is then the limit of possible rotations that one can add without degrading the
planetary residuals (see Fienga et al. 2018). The advantage with the method is the
uncorrelated estimation of maximum value for D- or DX, the drawback is that what
is obtained is only an upper bound.

Finally, a third method consists in averaging planetary orbits (Park et al. 2017) for
obtaining residual precession of the perihelia. In this case, as for the two former
methods, the deduced residual precession could be induced by a violation of general
relativity, but also—and more likely—by some other sources of uncertainties (i.e
unmodeled asteroid perturbations).

Table 10 gathers some of the recently obtained values for D-, following the three
methods described above. However, based on the arguments presented in this Sect. 5,
the direct interpretation of these quantities, D- or DX, in terms of possible violation
of general relativity is strongly discouraged.
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Estimation of the dark matter density in the solar system
An example of misleading conclusion can be taken from the dark matter density
estimation. Pitjeva and Pitjev (2013), direct estimations of the density of the dark
matter inside the orbit of Saturn have been tested using two different implemen-
tations. The first one consists in adding an additional acceleration to the equations of
motion of the EPM planetary ephemerides such as:

aDMA ¼ lMðRÞ
rAT

rAT ; ð166Þ

where lMðRÞ is the gravitational parameter of an additional matter in a sphere of

radius R around the Sun. It turned out that such a direct modeling is highly affected
by the uncertainties induced by the asteroid masses and no conclusive measurement
of the mass of dark matter inside the solar system has been obtained in using
Eq. (166). The second attempt in Pitjeva and Pitjev (2013) was from the secular
advance of perihelia d-DM

A following the equation from Khriplovich and Pitjeva
(2006)

D-DM
A ¼ �3p

qDM
Msun

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2A

q
; ð167Þ

where D-DM
A is the supplementary advance of perihelia of the planet A induced by

dark matter of density qDM, supposed uniformly distributed at the planetary dis-
tances, eA being the eccentricity of the orbit. The most stringent constraint gives a
density for the dark matter up to the Saturn orbit of about qDM\1:1
 10�20 g cm�3,
leading to a dark matter mass smaller than 7.1 
10�11 solar mass. It is interesting to
note that this estimation is 5 orders of magnitude higher than the density for local
dark matter halo proposed by McMillan (2011), Weber and de Boer (2010) and

Table 9 Examples of interpretation of ephemeris derived parameters. d _-supp and d _Xsupp indicate the
supplementary advances in perihelia and nodes respectively

Theories Sections Impact on orbits References

MOND 4.7 d _-supp, d _Xsupp Blanchet and Novak (2011)

AWE/chameleons variation of PPN parameters Füzfa and Alimi (2007)

EP Burrage and Sakstein (2018)

Scalar field theories _G=G Uzan (2003)

Variation of of PPN parameters

Dark energy _G=G Steinhardt and Wesley (2009)

Dark matter 5.2 linear drift of AU Arakida (2010)

asupp Nordtvedt (1994)

d _-supp, d _Xsupp Frère et al. (2008)

Yukawa, fifth force 4.5 d _-supp Merkowitz (2010)

f(r) asupp de Felice and Tsujikawa (2010)

Variation of of PPN parameters

Massive graviton 4.4 d _-supp, d _Xsupp Will (2018a)
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Wardana et al. (2020) and estimated either by galactic simulations or by fit to
observations (including Gaia DR2 in Wardana et al. 2020). The third approach is in
the interpretation of the secular variation of the Sun gravitational mass as a combi-
nation of several phenomena including the fall of dark matter towards the Sun (Press
and Spergel 1985; Lundberg and Edsjö 2004; Blennow et al. 2018). In the scenario of
dark matter falling into the Sun, the mass of the Sun should decrease less rapidly.
However one can discuss the difficulty of disentangling the different contributions
from dust and comets falling into the Sun and plasma ejecta that have to be
accounted for in the Sun mass equation (see Sect. 4.3 for discussion). An attempt has
been proposed by Kardashev et al. (2005) but leading to a constraint of few percents
of the sun mass that can be assimilated to falling dark matter. This value is even
bigger than the one proposed by Pitjeva and Pitjev (2013) and is therefore not in
agreement with the expected estimations for local dark matter density.

Recently, Belbruno and Green (2022) simulated the impact of dark matter located
in the galactic halo on the motion of objects in the solar system. Their conclusions
are that only objects located in the outer solar system (after 80 AU), or objects
situated in saddle points, can allow a detection. This is consistent with what has been
already discussed, for example, by Klioner and Soffel (1993). Finally, in Sect. 4.7,
the determination of Q2 obtained by Hees et al. (2014b) can also be seen as a
measurement of the Galactic potential acting on the solar system, either induced by
the stellar population or induced by dark matter. This value presented in Sect. 4.7,
shows a clear lack of sensitivity of planetary ephemeris for the detection of the tidal
interactions coming from our galaxy.

All these results favour the fact that planetary ephemerides are not yet accurate
enough to measure local dark matter influences in the solar system.

5.3 What can often be found in the literature

Most of the bounds in the literature do not come from planetary ephemerides
developed in a given theoretical or phenomenological framework, but instead they

Table 10 1-r uncertainties (mas/yr) on the perihelion advance per orbit. These values were extracted from
Pitjeva and Pitjev (2013)—obtained with a full fit of the ephemeris including the perihelion advances—
from Fienga et al. (2018) and Fiengaet al. (2011b)—obtained with fixed values of the maximum advances—and
from Park et al. (2017)—obtained by studying averaged Mercury orbit

Planet Pitjeva and Pitjev (2013) Fienga et al. (2011b)

Mercury 0.03 0.006

Venus 0.016 0.015

Earth 0.0019 0.009

Mars 0.00037 0.0015

Jupiter 0.28 0.42

Saturn 0.0047 0.0065

Fienga et al. (2018) Park et al. (2017)

Mercury 0.02 0.015
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use the uncertainty on derived quantities as an input of the maximum tolerated
departure from general relativity that would be compatible with observations. For
instance, if the uncertainty on the perihelion advance per orbit for a given
astronomical body and a given ephemeris is less than a specific value, it is often
assumed that any modification of gravity has to induce an effect that is less than this
former limit. Therefore, if one computes that a specific theory should induce an effect
on, e.g., the perihelion advance per orbit for an astronomical body that is bigger than
the uncertainty on this derived quantity, then it is often claimed that this constraint
rules out this specific theory.

At first sight, it seems like a reasonable thing to do. Unfortunately, doing this is
problematic for the simple reason that derived quantities are obtained assuming a
specific theoretical framework, and that there is no guarantee that the adjusted
parameters of the ephemeris (masses, initial conditions etc.) would be the same in
another theoretical framework. Even more, it is not impossible, a priori, that another
theoretical framework actually leads to smaller residuals than general relativity after
adjusting the parameters of the ephemeris in this framework—which would mean
that this alternative to general relativity is favoured by the data for the considered
model of the solar system.

In other words, while one would claim to have derived a constraint on an
alternative theory from a derived quantity, actually one could very well have missed a
signal in favour of the alternative theory instead—which is precisely the opposite of
giving a constraint. This shows that using derived quantities as an input to constrain
alternatives to general relativity is not trustworthy in general.

The only way to compare the merit of two different theoretical frameworks is to
compare statistically the accuracy of the ephemerides adjusted to the data in each
theoretical framework—that is, the statistical amplitude of their residuals. If the
ephemeris in a given theoretical framework has significantly better (i.e. smaller)
residuals than in another theoretical framework, then it means that the former is
favoured by the data within the planetary model considered. Different planetary
models—see e.g. Sections 3.3.2 and 3.3.4—might also lead to different answers with
this respect.

5.4 Why consistency matters

The reason why the adjusted parameters of an ephemeris (masses, initial conditions
etc.) are in general different when one considers an alternative theory to general
relativity is because all the parameters of the ephemeris, the ones describing gravity
(e.g. PPN parameters, Compton wavelength of the Yukawa suppression etc.) and the
ones describing the bodies themselves and their orbits (masses, initial conditions,
shapes etc.), are more or less correlated to one another. The high degree of correlation
is also somewhat accentuated by the specific symmetry of planetary orbits, because
most of the motions are close to the ecliptic plane (and with relatively low
eccentricities), which limits the disentanglement of the effects of different parameters
during the fit of the ephemeris parameters—as one can get an intuition from the
approximated analytical expression, for instance, of the advance of the node
Eq. (100).
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This is exemplified notably with the oblateness of the Sun J�2 in Figs. 6 and 9.36

Indeed, due to the high level of correlations between the oblateness of the Sun and
the PPN parameters c and b, both the adjusted value of the J�2 and its uncertainty are
affected when c and b are not set to 1 a priori (see Sect. 4.1 for a full discussion).

From a formal perspective, Eq. (100) gives a good illustration of the problem in
terms of perihelion advance per planetary orbit. Because many different parameters
contribute to the advance, if an advance is, say, induced by a parameter related to the
description of gravity beyond what is acceptable in terms of deviation with respect to
the data, the fit will often lead to a modification of other parameters in order to
compensate for this unacceptable contribution—such that, in the end, the final
solution remains as close as possible to the data (i.e. the residuals are minimised).

As long as the statistical properties of the residuals of the ephemerides in distinct
theoretical frameworks are not significantly different, one cannot say which of the
two theoretical frameworks better explains the observations. This tells why one
cannot simply estimate the modification of the perihelion advance per orbit in an
alternative theory and compare it with the output value obtained while assuming
general relativity.

Another example is given by the Compton wavelength of a Yukawa suppression
of the Newtonian potential in a massive gravity framework—see Sect. 4.4. An
illustration of the high degree of correlations between parameters is given by Bernus
et al. (2019) in a table—reproduced here in Table 11—that gathers the correlations
between the Compton wavelength and some of the solar system parameters for the
INPOP17a planetary model.

Furthermore, statistics of the residuals for several planets were also displayed by
Bernus et al. (2019) in order to show their evolution if one assumes that the solar
system parameters are given by fits obtained when assuming general relativity
instead of re-adjusting them in the massive gravity framework. The conclusion of this
investigation is that not adjusting planetary ephemeris parameters within the
framework of massive gravity would have led to an overestimation of the constraint
on the value of the Compton wavelength by about one order of magnitude.

The Pioneer anomaly
Finally, one can discuss the case of the Pioneer anomaly. For some years, the
unexplained supplementary acceleration detected during the navigation of Pioneer 10
and 11 escaping the solar system, keeps the community active in looking for some
possible violations of GR that could produce such a phenomena. The reader can see
Turyshev and Toth (2010) for a complete review. Among the alternative theories that
were proposed to explain the Pioneer anomaly, some also impact the orbits of outer
planets. Most of the authors just consider the effect of the induced modification of the
planetary equations of motion without considering the new adjustment that one
should do for adapting the initial conditions to this new model (Lecian and Montani
2009; Iorio 2009, 2010). Page et al. (2009); Standish (2010) and Fienga et al. (2010)
show that the modification required for explaining the Pioneer acceleration anomaly

36 See also Fig. 6 in Milani et al. (2002) for an illustration of the correlation between J�2 and b� 1 in
simulations.
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induced, after fit, residuals marginally compatible with the observational accuracies
reached at this epoch (before the inputs of the Juno mission). These results restricted
severely the possibility of such modifications impacting also planetary orbits. After
that, only remained the alternative theories that were affecting the s/c orbit but not the
planetary bodies. Another attempt to explain the Pioneer anomaly within the
boundaries of conventional physics that does not affect the motion of the planetary
bodies was put forward by Kopeikin (2012). In their proposal, the Pioneer effect was
perceived as the cosmological consequence of a quadratic divergence between the
time scales of electromagnetic wave propagation within the Doppler tracking system
and the atomic clocks on Earth. However, Bertolami et al. (2010) and Turyshev et al.
(2012) conclusively demonstrated that the Pioneer acceleration can be explained by
considering the distinct thermal properties of each spacecraft face. Either way, the
Pioneer anomaly thus serves as a compelling illustration of the importance of
developing a fully consistent model when testing alternative theories to General
Relativity, and ensuring that this model is fitted to observations-a step that is
undeniably crucial.

6 Future directions

6.1 Theory

On the theory side, many aspects of alternative theories remain to be studied and
implemented in planetary ephemerides. Theorists do not lack of new ideas, and
therefore one should not fall short of new theories to investigate with planetary
ephemerides. However, not all existing theories that can lead to significant variations
in the solar system have been constrained with planetary ephemerides yet. As an
example, not even the full PPN framework Eqs. (114)–(122) have been completely
investigated so far with planetary ephemerides. This is not a surprise given the many
parameters involved, and given that the more parameters to test, the more difficult,
and computationally demanding, the study is—and also the worse the constraints on
each parameter are.

Table 11 Examples of correlations from Bernus et al. (2019) between various INPOP17b parameters and
the Compton wavelength kg . a, EMB and M� state for semi-major axes, the Earth–Moon barycenter and
the mass of the Sun respectively

kg a Mercury a Mars a Saturn a Venus a EMB GM�

kg 1 0.50 0.49 0.04 0.39 0.05 0.66

a Mercury � � � 1 0.21 0.001 0.97 0.82 0.96

a Mars � � � � � � 1 0.03 0.29 0.53 0.06

a Saturn � � � � � � � � � 1 0.003 0.02 0.01

a Venus � � � � � � � � � � � � 1 0.86 0.94

a EMB � � � � � � � � � � � � � � � 1 0.73

GM� � � � � � � � � � � � � � � � � � � 1
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Another example can also be given with the case of Brans-Dicke-like scalar-tensor
theories. A considerable portion of Brans-Dicke-like scalar-tensor theories—that is,
theories defined by Lint ¼ 0 in Eq. (154)37—have been exquisitely constrained by
observations of binary pulsars, owing to a strong field effect that cannot occur within
the solar system. Specifically, with certain selections for the function xð/Þ, the
scalar-field within compact objects like neutron stars can be amplified through a
nonlinear effect known as scalarization (Damour and Esposito-Farese 1993; Damour
and Esposito-Farèse 1996). This effect should lead to a significant violation of the
Strong Equivalence Principle38—see Sect. 4.2.1—that is not seen in binary pulsars.
For a deeper dive into this captivating subject, we direct the reader to Kramer et al.
(2021), Freire et al. (2012) and Voisin et al. (2020).

The PPN framework in Sect. 4.1 encompasses this class of theories with
c ¼ ð1þ xðu0ÞÞ=ð2þ xðu0ÞÞ, where u0 is the asymptotic value of u0 at the edge of

the solar system,39 and b� 1 ¼ x0ðu0Þð3þ 2xðu0ÞÞ�2ð4þ 2xðu0ÞÞ�1. The con-
straints on c and b obtained with planetary ephemerides in the PPN framework are
given in Fig. 8.

However, those constraints assume that c and b are independent parameters in the
field equations—which lead to the definition of the time and space coordinate
system, the equation of motion [see Eq. (90)] and of the Shapiro delay [see Eq. (97)]
—while they are not independent in those scalar-tensor theories whenever b 6¼ 1—
that is x0ðu0Þ 6¼ 0—given that xðu0Þ appears in both c and b.

As a consequence, one cannot directly convert the constraints in Fig. 8 in terms of
constraints on xðu0Þ and x0ðu0Þ. Therefore, it would be interesting to test those
specific theories with planetary ephemerides in order to compare with the constraints
with binary pulsars, in the regions of the theory space where one does not have the
non-linear strong-field scalarization effect. For instance, assuming xðuÞ ¼ xBD—
that is, x0ðu0Þ ¼ 0 and b ¼ 1—tests involving pulsars lead to xBD [ 130
 103

(Voisin et al. 2020)—although note that this value depends on the unknown
equations of state of neutron stars.

Considering the constraint on c obtained with the Cassini experiment (Bertotti
et al. 2003b), the limit on xðu0Þ instead is xðu0Þ[ 40
 103. This threshold should
also be better than what is currently possible with planetary ephemerides—but
perhaps not too far from what will be possible with the additional data from Bepi-
Colombo.

A general reminder of Sect. 5 is that, while the PPN framework serves as a highly
convenient phenomenological apparatus for testing alternative theories, its limitation
lies in its inability to accommodate potential dependencies between PPN parameters
(such as the discussed above or the one of Sect. 4.6) that could emerge within a given
theory. For example, in Brans-Dicke-like scalar-tensor theories, there is a certain
degree of interdependence at the level of the field equations between c and b since
they both depend on the parameter xðu0Þ of the theory.

37 Indeed, strictly speaking, Brans-Dicke theories are an even more restricted group, which is such that
Lint ¼ 0 and xðuÞ ¼ xBD in Eq. (154).
38 Even, occasionally, with large values of xðu0Þ.
39 Which could vary over cosmological times.

123

Testing theories of gravity with planetary ephemerides Page 85 of 99     1 



Consequently, one has to keep in mind that it is not generally possible to directly
translate constraints obtained on PPN parameters to potential underlying theories-
unless the theory predicts the parameters to be independent at the level of the field
equations of the considered theory (e.g. Scalar-Tensor, massive gravity, etc.).
Therefore, to establish constraints on the parameters of a specific theory—like xðu0Þ
and x0ðu0Þ— one should directly test that particular theory.

6.2 Observation

In terms of observations, much progress is anticipated, particularly in light of active
or future planetary missions such as BepiColombo. This mission will orbit Mercury
for more than a year and will provide unprecedented accurate measures of the
Mercury-Earth distance, and consequently, will produce stringent new limits on
deviations from general relativity. A lot of publications propose to include Bepi-
Colombo range simulations in order to provide possible new constraints on classic
general relativity tests, such as advance of the Mercury perihelion, PPN parameter
estimations, SEP or alternative tests (Milani et al. 2002; Ashby et al. 2007; De
Marchi et al. 2016; Imperi et al. 2018; De Marchi and Cascioli 2020; van der Zwaard
and Dirkx 2022; Fienga et al. 2021a, 2022). As previously explained, a specific care
should be taken on the consistency between the definition of the considered
framework (e.g. harmonics versus non-harmonics gauges, definition of the solar
system barycenter...), the tests performed and the claimed accuracy. The question of
consistencies and correlations between astronomical constraints and general relativity
tests in the full PPN context will then become even more urgent to address.

On the other side of the solar system, missions towards gas giants and outer solar
system will also be interesting for testing another types of general relativity violation
such as dark sector violations or dark matter clumps (Bergé et al. 2021, 2018).

Finally, among more exploratory projects, LISA-like configurations for interplan-
etary laser distance measurements between telluric planets (Earth, Mars and Venus)
have been proposed as a way to gain accuracy in planetary ephemerides and
sensitivity to general relativity violations such as the secular variations of the
gravitational constant (Smith et al. 2018). Despite the technical challenges of such
project (Bills and Skillman 2022; Bills and Gorski 2022), the outcome of these
measurements would indeed impact the global accuracy of the ephemerides, improve
significantly the Bepi-Colombo results but also allow for better constraints on the
distribution of mass in the solar system.

7 Summary

This paper describes how the planetary ephemerides are built in the framework of
General Relativity and how they can be used to test alternative theories. It focuses
specifically on the dependencies that exist behind the definition of the reference
frame (space and time) in which the planetary ephemeris is described, the equations
of motion that govern the orbits of solar system bodies and electromagnetic waves.
This paper then summarizes the results obtained considering consistent modifications
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of the ephemeris framework with direct comparisons with the observations of
planetary systems. The PPN formalism is the one that has been the most heavily
tested, and the results of its confrontation with planetary astrometry constitutes the
most developed part. The paper then moves on to specific alternatives to general
relativity such as Einstein-dilaton theories, a massive graviton phenomenology and
MOND. The paper finally concludes on some comments and recommendations
regarding misinterpreted estimations of the advance of perihelia, giving examples
such as the Pioneer anomaly interpretation or some attempts to measure dark matter
in the solar system.

As we hope this paper demonstrates, the consistency of the planetary ephemeris
framework is a crucial aspect in the field of testing alternative theories. Misinter-
pretations of results obtained in the general relativity framework can lead to
significant errors (e.g. Pioneer anomaly) or over optimistic constraints (e.g. mass of
the graviton).

Appendix A: Derivation of the Shapiro delay at the c - 4 level,
and related issues

In the following lines, we indicate some arguments stressing the complexity of
keeping a consistent framework for the derivation of the Shapiro delay at the c�4

level in the general data analysis framework of planetary ephemerides.
Indeed, although there are several c�4 formulae given in the literature already, e.g.

Ashby and Bertotti (2010), Deng and Xie (2012), Linet and Teyssandier (2013), Hees
et al. (2014a), Linet and Teyssandier (2016), Cappuccio et al. (2021) and Zschocke
(2022), most of them are not consistent with the coordinate system recommanded by
the IAU—the harmonic gauge—that is used in planetary ephemerides in order to
describe the motion of celestial bodies. Hence, one still has to convert those
propagation time formulae in the harmonic coordinate system. For instance, many
c�4 Shapiro equations are derived from an isotropic metric (Ashby and Bertotti 2010;
Linet and Teyssandier 2013; Hees et al. 2014a; Linet and Teyssandier 2016;
Cappuccio et al. 2021), whereas the metric in harmonic coordinates is not isotropic at
the full c�4 level, even for a spherical object at the center of the coordinate system—
see, e.g., Minazzoli (2012) for the difference between harmonic and isotropic
coordinate metrics at the c�4 level in the framework of general relativity and scalar-
tensor theories. A second order (c�4) propagation time formula with harmonic
coordinates has recently been derived in Zschocke (2022), but it assumes general
relativity and a single body at rest. In general, most of the propagation time formulae
in the literature indeed simplify the problem by assuming staticity of the celestial
bodies during the propagation of light, whereas one may have to go beyond this
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approximation at the required level of accuracy (Bertone et al. 2014; Zschocke
2016). A c�4 propagation formula in harmonic coordinates40 for light in the solar
system—that is, with many moving bodies—has been derived in Minazzoli and
Chauvineau (2011) and Deng and Xie (2012) in the framework of general relativity
and scalar-tensor theories, but the actual propagation time that results from it remains
to be derived. Otherwise, a c�4 propagation time formula for light rays in harmonic
coordinates, but restricted to one arbitrarely moving pointlike body, has been derived
in Zschocke (2016).
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