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A perturbative scheme is applied to calculate corrections to the leading, exponentially small (beyond-all-
orders) amplitude of the “trailing” wave asymptotics of weakly localized solitons. The model considered is
a Korteweg–de Vries equation modified by a fifth order derivative term, ϵ2∂5x with ϵ ≪ 1 (fKdV). The
leading order corrections to the tail amplitude are calculated up to Oðϵ5Þ. An arbitrary precision numerical
code is implemented to solve the fKdVequation and to check the perturbative results. Excellent agreement
is found between the numerical and analytical results. Our work also clarifies the origin of a long-standing
disagreement between the Oðϵ2Þ perturbative result of Grimshaw and Joshi [SIAM J. Appl. Math. 55, 124
(1995)] and the numerical results of Boyd [Comput. Phys. 9, 324 (1995)].
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I. INTRODUCTION

Oscillons—slowly radiating lumps in theories contain-
ing scalar fields with a well-defined core and living for very
long times—have generated quite some interest in view of
their numerous physical applications [1,2]; for recent
reviews see [3–5] and the references cited therein. An
important problem is to determine the radiation rate and
lifetimes of oscillons; see Refs. [6,7] for recent results
and also for further references. In Refs. [4,8,9] the
perturbative scheme of Ref. [10] has been generalized to
a large class of theories, yielding the leading order estimate
for oscillon lifetimes. The main idea has been to approxi-
mate slowly radiating oscillons through the adiabatic
evolution of appropriate stationary configurations, called
“quasibreathers”—weakly localized lumps with asymptotic
standing wave tails [11,12]. Quasibreathers are time peri-
odic and can be thought of as oscillons made stationary by
incoming radiation from infinity. Determination of the
amplitude of the quasibreather wave tails is necessary to
deduce the radiation rate of time-dependent oscillons. A
rather nontrivial aspect of the perturbative computation of
the standing wave tail amplitude for quasibreathers corre-
sponding to long-lived oscillons is that it is beyond all
orders in perturbation theory.

It still remains a challenging problem to calculate higher
order corrections to the oscillating tails of quasibreathers.
To prepare the ground for such higher order computations
we have taken up a much simpler problem—the compu-
tation of higher order corrections to asymptotic wave tails
in the familiar Korteweg–de Vries (KdV) equation modi-
fied by a fifth order derivative term (fKdV), also called the
Kawahara equation [13,14]. The fKdV equation plays an
important role in many applications in plasma physics and
in hydrodynamics. For a detailed derivation of the fKdV
equation in a hydrodynamical context see [15]. A crucial
point of interest of the fKdV equation from our point of
view is that the familiar solitary wave solutions of the KdV
equation are deformed into oscillon-type objects, losing
continuously some of their mass by radiating small
amplitude waves in the direction of propagation [16]. It
has been proven that the spatially localized solitary
traveling wave solution of the KdV equation ceases to
exist when a fifth order dispersion term proportional to ϵ2 is
added [17,18]. What happens is that the extra dispersion
term causes the KdV solitary wave to develop a radiating
tail whereby it loses energy [16]. Bounded, stationary
solutions of the fKdV equation are weakly localized, in
that asymptotically they tend to a standing wave “tail.”
This is to be contrasted to the exponential falloff of the
well localized KdV solitons. In this context such weakly
localized, stationary solutions, baptized “nanopterons”
have been studied systematically in Refs. [19,20].
For both the quasibreathers and the nonlocal solitons of

the fKdVequation, the tail amplitude is exponentially small
in terms of a parameter (ϵ) which characterizes the specific
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perturbation or describes the core amplitude (for quasi-
breathers), and to leading order it can be written as

αm ¼ λ

ϵν
exp

�
−
σ

ϵ

�
; ð1Þ

where λ, ν, and σ are constants. For the fKdV case the
exponent in the denominator is ν ¼ 2, σ ¼ π=2 (in suitable
units) while for spherically symmetric oscillons ν ¼
ðd − 1Þ=2 where d is the number of spatial dimensions.
The proportionality constant λ is rather nontrivial to com-
pute. Following the technique pioneered in Ref. [10], the
value of λ can be obtained by going through a complicated
asymptotic matching calculation in the complex plane. For
the fKdVequation the leading order result has been obtained
in Ref. [21] with the result λ ≈ 19.969π.
It is desirable to compute higher order corrections to the

leading order result (1) from both a theoretical and a
practical point of view. One would like to establish a
systematic framework for such calculations, quantify the
contributions of higher order terms, but it is also necessary
to know higher order corrections in order to compare the
results to numerical simulations for small, but obviously
finite values of ϵ. For very small ϵ values where the leading
order term is supposed to dominate, the tail amplitude
becomes so small that it is extremely demanding and
difficult to calculate by numerical methods. This empha-
sizes the necessity to investigate corrections to Eq. (1). For
the fKdV problem and also for quasibreathers, it is to be
expected that the leading order result (1) gets several types
of corrections, with the dominant ones involving only ϵ. In
the simplest case such corrections can be written as a power
series of ϵ of the form

αm ¼ λ

ϵν
exp

�
−
σ

ϵ

�
ð1þ ζ1ϵþ ζ2ϵ

2 þ ζ3ϵ
3 þ � � �Þ; ð2Þ

where ζj are some yet unknown constants. (For d ≥ 2

dimensional oscillons there are also ϵ ln ϵ and similar
logarithmic terms [9].) For most cases including the scalar
field problem the tail amplitude has been calculated only to
leading order; i.e., even ζ1 is unknown yet. On the other
hand, for the fKdV equation detailed properties of weakly
nonlocal solitons have been under intense scrutiny, and
even the computation of ζ1 and ζ2 was undertaken by
Grimshaw and Joshi in Ref. [22]. Since we expect that
similar methods to that of Ref. [22] will be applicable for
the more complicated scalar field problem as well, a
thorough understanding of the higher order contributions
in the fKdV problem appears to be necessary to us, which is
the subject of the present paper.
According to the results of Ref. [22], the first

two corrections in Eq. (2) are given as ζ1 ¼ −π and
ζ2 ¼ π2=2 ≈ 4.935 in suitable units. The value of ζ1 is
in agreement with the numerical computations by

Boyd [20,23,24], using a multiple precision pseudo-
spectral code. According to the numerical estimates of
Boyd, however, −0.1 < ζ2 < 0, which is clearly in disagree-
ment with the result of Ref. [22]. As far as we know, the
reason for this discrepancy has remained unknown up to now.
We have succeeded to compute higher order corrections

in Eq. (2) up to order ϵ5, and while confirming the result
for the value of ζ1 ¼ −π of Ref. [22], we have found
ζ2 ¼ π2=2 − 5 ≈ −0.065198, a value which is quite con-
sistent with the numerical estimates of Ref. [24].
To check our analytical results we have also developed a

multiple precision pseudospectral numerical code to solve
the fKdVequation. Since the tail amplitude for the intended
ϵ parameter range can be many orders of magnitude smaller
than 10−16, the use of arbitrary precision arithmetic is
indispensable. The speed of present day personal com-
puters and the efficiency of the available multiple precision
arithmetic libraries allows us to reach significantly higher
precision than what was available earlier. The running time
of our code also allows us to apply a numerical minimi-
zation algorithm to find the phase of the tail where the tail
amplitude is really minimal. This was not included in
earlier publications. Comparison of the coefficients of the
higher order corrections, ζ1 � � � ζ5, with the results of our
numerical simulations shows remarkably good agreement.
In particular, the numerical value of ζ2 agrees with our
perturbative result to five digits of precision, leaving little
doubt as to its correctness. We have also obtained a very
high order (∼100) asymptotic expansion in ϵ of the phase of
the minimal amplitude wave tail in the Wentzel–Kramers–
Brillouin (WKB) approximation. We could compare up to
order 15 the expansion of the phase with the numerical
results and an excellent agreement has been found.
The plan of the paper is the following: In Sec. II the fifth

order KdV equation is introduced and its basic properties
are discussed. Next, in Sec. III our implementation of the
spectral method is described in some detail. In Sec. IV the
small ϵ expansion for the “core” part of the solution is
carried out. In Sec. V in the framework of the WKB
approximation, the linearized solution around the core is
determined to arbitrary order. The amplitude of the wave
tail is given up to order 6, and the phase is given explicitly
up to order 11. Sections VI and VII contain the most
important calculations, namely carrying out the asymptotic
matching to fourth order in ϵ of the complex extension of
the “inner” and of the “outer” part of the solution, near the
first singularity in the complex plane. Section VIII contains
our conclusions.

II. FIFTH ORDER KdV EQUATION

The Korteweg–de Vries equation modified by a small
fifth derivative term can be written as [15,21]

ϵ2uyyyyy þ uyyy þ 6uuy þ ut ¼ 0; ð3Þ
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where u is a function of the time t and spatial coordinate y,
and ϵ is a small non-negative parameter. The indices denote
derivatives with respect to t and y. We only consider
stationary solutions traveling with speed c to the right, so
that u is time independent when x ¼ y − ct is used as a
comoving spatial coordinate,

ϵ2uxxxxx þ uxxx þ ð6u − cÞux ¼ 0: ð4Þ

This form clearly shows that if u is a solution and uc is a
constant, then uþ uc is also a solution moving with speed
cþ 6uc. The equation can be integrated once, yielding

ϵ2uxxxx þ uxx þ 3u2 − cu ¼ M; ð5Þ

where M is a constant that can be interpreted as the mass
flux [22]. If u and its derivatives tend to zero in either the
positive or negative x direction, then necessarily M ¼ 0.
For ϵ > 0 bounded solutions necessarily have an asymp-
totic oscillating tail in both directions. In this case M
becomes determined by the boundary conditions. Two
different boundary conditions have been used in the
literature. One possibility, used by Boyd [20,23,24], is to
impose no mass flux by requiring M ¼ 0. Another choice,
applied by Grimshaw and Joshi [22], is to set the integral of
u zero for an interval of x corresponding to the wavelength
of one oscillation, thereby keeping the fluid volume
constant with respect to the u ¼ 0 solution. Even in this
latter caseM is extremely small, of order α2, where α is the
tail amplitude, which turns out to be exponentially small in
ϵ. An α2 order small shift in u and c can be used to set M
zero. In the present paper we are interested in solutions for
relatively small values of ϵ. From now on we set M ¼ 0,
and our aim is to solve the equation

ϵ2uxxxx þ uxx þ 3u2 − cu ¼ 0; ð6Þ

for positive values of the two parameters ϵ and c.
Equation (6) remains invariant under the rescalings

u ¼ ξ2ū; x ¼ 1

ξ
x̄; c ¼ ξ2c̄; ϵ ¼ 1

ξ
ϵ̄; ð7Þ

for any ξ > 0 constant. Note that ϵ2c remains invariant. It
would be possible to use this freedom to scale either of the
constants ϵ or c to some given value, and consider (6) as an
equation containing only the other parameter. Following
Grimshaw and Joshi [22], we use this rescaling freedom to
set the speed parameter c to a specific known function of ϵ.
The actual form of the function cðϵÞ will be fixed a bit later
by the requirement that the spatial decay rate of the core of
the solution should be parameter independent. Still, with
this choice we reduce the number of parameters in the
problem from two to only one, keeping only ϵ.

We denote the value of c≡ cðϵÞ in the ϵ → 0 limit by c0.
For ϵ ¼ 0 and c0 > 0 Eq. (6) has the well-known KdV
solitary wave solution

u0 ¼ 2γ2sech2ðγxÞ; ð8Þ

where the positive ϵ independent constant γ is defined by

c0 ¼ 4γ2: ð9Þ

Localized asymptotically decaying solutions of the KdV
equation only exist for c0 > 0. Since our aim is to look for
solutions that are as similar to solitary waves as possible,
we assume that both c0 and cðϵÞ are positive.
We are looking for solutions for which asymptotically u

becomes small. The linearization of Eq. (6) around u ¼ 0
has four independent solutions. The exponentially decaying
or growing solutions have the form u ¼ expð2γ̃xÞ, where

ϵ2ð4γ̃2Þ2 þ 4γ̃2 − c ¼ 0: ð10Þ

Since we assume c > 0, this has two real valued solutions
for γ̃, determined by

4γ̃2 ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ2c

p

2ϵ2
: ð11Þ

The remaining two oscillating solutions can be written in
the form u ¼ expðikx=ϵÞ. This is a natural parametrization,
since the spatial frequency tends to infinity when ϵ goes to
zero. The linearization of (6) gives two real solutions for k,
given by

k2

ϵ2
¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ2c

p

2ϵ2
: ð12Þ

Subtracting (11) from (12) and rearranging, we obtain the
simple relation between k and γ̃,

k2 ¼ 1þ 4ϵ2γ̃2: ð13Þ

Taking the ϵ → 0 limit of Eq. (10) and comparing with
(9), it follows that γ̃ tend to γ when ϵ goes to zero.
Grimshaw and Joshi [22] made the choice to impose that γ̃
is ϵ independent, in which case obviously γ̃ ¼ γ. This is a
natural option, since it makes the decay rate of the core
independent of the parameter ϵ, and the expansion formal-
ism becomes considerably simpler. We will also assume
γ̃ ¼ γ from now on. As a consequence of this choice, the
parameter c necessarily becomes ϵ dependent, and from
(10) we obtain

c ¼ 4γ2 þ 16γ4ϵ2: ð14Þ
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This is the specific c≡ cðϵÞ function that we ensure by the
appropriate use of the rescaling in (7).
Since we are looking for real solutions, instead of the

exponential form u ¼ expðikx=ϵÞ for the tail, we write

u ¼ α� sin

�
kjxj
ϵ

− δ�

�
: ð15Þ

The amplitude αþ and phase δþ in the positive direction can
be different from that of α− and δ− in the negative direction.
Using the trigonometric form it is enough to use the
positive root in (13); hence in the following we will set

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γ2ϵ2

q
: ð16Þ

A conserved quantity defined as

F ¼ −
1

2
cu2 þ 2u3 þ uuxx −

1

2
u2x

þ ϵ2
�
uuxxxx − uxuxxx þ

1

2
u2xx

�
ð17Þ

can be interpreted as an energy flux [16,22]. Using (4) it
is easy to check that Fx ¼ 0. Substituting the form (15) of
the tail, to leading order the energy flux turns out to be
F ¼ α2�=ð2ϵ2Þ. Since F is constant, it follows that the
amplitude of the tail at the two directions must necessarily
agree, at least for small amplitudes. The phases can also be
made to agree by a small shift in x, but the argument is not
giving any information about the symmetry of the core.
Numerical simulations also support the conjecture that
solutions which have a single large core and small tails in
both the positive and the negative directions are necessarily
reflection symmetric. The important consequence is that
there are no solutions for which there is a small tail in one
direction and exponential decay without any tail in the
other direction. Our numerical simulations show that for
each small ϵ there is a solution which decays exponentially
to zero for x > 0, and it has a core region similar to the KdV
solitary wave, but continuing further to the negative
direction the solution blows up at some finite x < 0 before
a standing wave tail could appear. Hence in the following
we consider only solutions which are symmetric with
respect to x ¼ 0. For large x > 0 their tail is characterized
by the parameters α and δ,

u ¼ α sin

�
kx
ϵ
− δ

�
: ð18Þ

Even after using the rescaling (7) to ensure the intended ϵ
dependence of c according to (14), there is still a remaining
freedom to set c0 to any desired positive value. It is sufficient
to solve Eq. (6) numerically or analytically for only one
special choice of c0, since other solutions can be obtained by

the above rescalings. The choicemade by Boyd in [20,24] is
c0 ¼ 4, which is a natural option since it corresponds to
γ ¼ 1. For easier comparison with Boyd’s results we will
also use c0 ¼ 4 in our numerical calculations.
In this paper we mostly use the notations introduced by

Grimshaw and Joshi in [22], but we discuss the connection
with the variables and equations used by Boyd [20,23,24].
Applying the rescaling (7) with ξ ¼ 1=ϵ we get ϵ̄ ¼ 1, and
hence the ϵ2 factor disappears in front of the fourth
derivative term. Introducing a further rescaled function
by ū ¼ v̄=6, the coefficient of the quadratic term can
change, and we obtain the form of the fKdV equation
used by Boyd,

v̄x̄ x̄ x̄ x̄ þ v̄x̄ x̄ þ
1

2
v̄2 − c̄ v̄ ¼ 0: ð19Þ

In this case the only parameter is c̄ ¼ ϵ2c ¼
4γ2ϵ2 þ 16γ4ϵ4.

III. NUMERICAL METHOD

We apply a pseudospectral numerical method (see,
e.g., [25]) to solve Eq. (6), looking for solutions u that
are symmetric at x ¼ 0. Since the tail has infinitely many
oscillations, spatial compactification with standard
Chebyshev expansion cannot be used efficiently in this
case. Boyd [20,23,24] used an additional basis function to
represent the oscillating tail. In our numerical simulations
we match the solution to the tail given in (18) at the outer
numerical boundary x ¼ L. By appropriate rescalings it is
always possible to arrange that c is given by (14) with
γ ¼ 1. For any chosen parameter ϵ and phase δ the
numerical problem can be solved to obtain a corresponding
tail amplitude α. We use two boundary conditions at x ¼ L,

ϵ2uxx þ k2u ¼ 0; ð20Þ

ϵ sin

�
kx
ϵ
− δ

�
ux − k cos

�
kx
ϵ
− δ

�
u ¼ 0: ð21Þ

Together with the symmetry assumption these conditions
make the solution unique.
We introduce an alternative independent variable θ by

x ¼ L cos θ. The center x ¼ 0 corresponds to θ ¼ π=2, and
the outer boundary to θ ¼ 0. We fix some order N, and
represent the function u by N Fourier components Un,

u ¼
XN−1

n¼0

1

ρn
Un cosð2nθÞ; ð22Þ

where

ρn ¼
�
1 if 1 ≤ n ≤ N − 2;

2 if n ¼ 0 or n ¼ N − 1:
ð23Þ
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We only include even Fourier components because of the
reflection symmetry at the center. Actually, this corre-
sponds to expansion in even indexed Chebyshev polyno-
mials T2nðx=LÞ, since cosðnθÞ ¼ Tnðcos θÞ. The solution
can be alternatively represented by its values at N collo-
cation points xn ¼ L cos θn, where θn ¼ πn=ð2ðN − 1ÞÞ
for 0 ≤ n ≤ N − 1. For the function values we introduce the
notation ũn ¼ uðxnÞ. The value of u at the center is ũN−1,
while at the outer boundary it is ũ0. Using (22), the
collocation values can be obtained by matrix multiplication,

ũn ¼
XN−1

j¼0

CnjUj; Cnj ¼
1

ρj
cos

njπ
N − 1

: ð24Þ

The inverse transformation is

Un ¼
XN−1

j¼0

Fnjũj; Fnj ¼
2

N − 1
Cnj: ð25Þ

This corresponds to calculating the Fourier coefficients by
numerical integration based on the collocation points. In
both directions, the transformation corresponds to type I
discrete cosine transform, DCT-I.
Multiplication of functions can easily be calculated using

the collocation values, while derivatives can be naturally
obtained using Fourier coefficients. The Fourier coeffi-
cients ðUxxÞn of the second derivative of the function u
represented by Un can be calculated as

ðUxxÞn ¼
XN−1

j¼0

Dð2Þ
nj Uj; ð26Þ

where

Dð2Þ
nj ¼

8<
:

8

ρjL2
jðj2 − n2Þ if j ≥ nþ 1;

0 if j < nþ 1:
ð27Þ

The second derivative matrix in the collocation picture can

be obtained as D̃ð2Þ
nj ¼ CnlD

ð2Þ
lp Fpj, where the summation

for repeated indices is understood. The fourth derivative
matrix can be obtained most easily by multiplying the

second derivative matrix by itself, Dð4Þ
nj ¼ Dð2Þ

nl D
ð2Þ
lj . For the

boundary condition we also need the first derivative, but
only at the boundary. This can be calculated by the scalar
product Vnũn, where

Vn ¼
XN−1

j¼0

4j2

L
Fjn: ð28Þ

Since Eq. (6) is nonlinear, we use an iterative procedure,
called the Newton-Kantorovich method to solve it (see,
e.g., Appendix C of [25]). Suppose that at the nth step we

have an approximate solution uðnÞ. The next approximation
shall be uðnþ1Þ ¼ uðnÞ þ Δ. Substituting into (6) and
linearizing for Δ we obtain the equation

ϵ2Δxxxx þ Δxx þ 6uðnÞΔ − cΔ ¼ R; ð29Þ

where the residual is

R ¼ −ϵ2uðnÞxxxx − uðnÞxx − 3ðuðnÞÞ2 þ cuðnÞ: ð30Þ

According to our experience, less than ten steps of iteration
is enough to get extremely high precision solutions for this
problem. The iteration can be started from the KdV solitary
wave solution (8). We consider (29) as N algebraic
equations at the collocation points. The left-hand side
can be considered as a linear matrix operator Lnj multi-
plying the collocation values Δj of the unknown function
Δ. The collocation values Rn of residuals can be calculated
at each step from the previous approximation. We replace
two lines of Lnj by values enforcing the boundary con-
ditions, while replacing the corresponding elements in Rn
by the previous error in the boundary conditions. The result
turns out to be quite insensitive of which lines we replace;
for example, we can use line 0 and N − 2. After this, the
matrix equation can be solved for Δj. Updating uðnÞ by
adding the calculated Δ yields the next approximation.
We have written equivalent C and Cþþ codes to solve

the numerical problem. Since we are interested in compar-
ing the numerical results to the analytical ones, we intend to
calculate the tail amplitude α for relatively small ϵ values. It
can be seen easily that the usual 16 or 19 digits arithmetic is
not enough for our aims. The core amplitude is always
close to 2. If the tail amplitude α is of the order 10−a, and
we intend to calculate it to b digits of precision, then the
whole numerical procedure should be carried out with at
least aþ b digits of precision. There are freely available
numerical packages for calculations with arbitrarily many
digits of precision that are fast enough for our purposes.
For our Cþþ codes we have used the Class Library for
Numbers (CLN) [26]. Our codes using the C library for
arbitrary-precision ball arithmetic (ARB) [27,28] turn out
to be about 20 times faster, due to more advanced matrix
manipulation methods. However, writing programs using
ARB is more difficult, since it requires separate lines of
codes for each elementary algebraic manipulation, such as
addition or multiplication of numbers.
To illustrate the structure and precision of the obtained

solutions we present some results for ϵ ¼ 0.05. We use
c0 ¼ 4 (and consequently γ ¼ 1) in all our numerical work.
For the phase we choose δ ¼ 6γϵ ¼ 0.3 for this example,
which corresponds to the linear approximation of the phase
belonging to the minimal tail amplitude [see (65) and (57)
for details on that]. To include a large enough portion of the
tail we set the outer boundary at L ¼ 30. In Fig. 1 we plot
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logarithmically the x dependence of the function u. The
downward spikes correspond to zero crossings in the
tail. To illustrate the precision of the numerical solution
and the matching, we also plot the difference of u and
the inward continuation of the matched tail (18), using the
tail amplitude α ¼ 4.811363414 × 10−10 provided by the
numerical code. The extremely good agreement of u and
the tail for x > 23 indicates that the obtained α is precise to
10 digits. To reach this precision we need at least N ¼ 500
collocation points and 26 digits of precision during the
whole numerical calculation. At this resolution the running
time on our desktop computer is about 90 s for the CLN
code, and only 2 s for the ARB code. Even if we increase
the resolution further, the difference from the matched tail
will not go below 10−20 for the present ϵ value. The reason
for this is that we represent the matched tail with the
linearized solution (18). If the tail amplitude is α, then we
make an error of order α2 by this choice.
Numerical calculation of symmetric solutions with very

small tails have been first reported by Boyd in [23],
applying spectral methods. In that paper the solution is
matched to a higher order nonlinear representation of the
tail. Boyd called the method cnoidal matching, since in the
ϵ ¼ 0 case the spatially periodic higher amplitude KdV
solutions are given by the elliptic cosine function cn. In our
present paper we are interested in solutions with such tiny
tails that the linear tail approximation is adequately precise.
In a subsequent paper [24] Boyd has presented high
precision results for the case when the asymptotic phase
of the tail is δ ¼ 0. The use of multiple precision arithmetic
allowed the calculation of extremely small tail amplitudes
for ϵ < 0.05. We have checked that our code reproduces the
tail amplitudes listed in Table II of [24]. Note that since
Boyd uses the variables discussed in Eq. (19), the amplitude
α given in that paper is equal to 6ϵ2α using our notations.
The speed of our code allows us to search numerically

for the phase δm for which the tail amplitude is minimal,

α ¼ αm. We are not aware of such a study in the literature.
Using Brent’s minimization method [29], usually about 20
iterations are enough to get the necessary precision. In
Table I we list the phase δm and minimal amplitude αm for
several choices of the parameter ϵ. In the table we also
include the radius of the core, which we estimate by the
lowest value of x where there is a zero crossing in the
function u. For x > xcore the oscillating tail dominates. For
higher ϵ values we can reach fewer digits of precision
because the matching to the linear approximation of the tail
brings an error of order α2m. In these cases there is a slight
dependence on how the outer boundary L is chosen. For
ϵ < 0.05 we present only 10 digits, even if we can reach
higher precision with our spectral code. The reason for such
precise calculations is that we intend to compare to the
higher order analytical results presented in the next
sections. The smaller ϵ is the more computational resources
are necessary. To get the values for ϵ ¼ 0.012 we have used
5000 collocation points with 105 digits arithmetic, and the
calculation using the ARB library took several hours on a
desktop computer.

IV. EXPANSION PROCEDURE FOR THE CORE

From this section on we concentrate on analytical
methods and compare them to our numerical results. We
construct an asymptotic expansion, in powers of the small
parameter ϵ, which can be used to describe the core region
of an almost localized solitary wave solution. Since the
amplitude of the oscillating tail in the faraway region is
exponentially small in ϵ, this expansion is not able to
describe those oscillations. Into Eq. (6) we substitute the
expansions

u ¼
X∞
n¼0

unϵ2n; ð31Þ

c ¼
X∞
n¼0

cnϵ2n; ð32Þ

1×10-20

1×10-15

1×10-10

 1×10-5

 1

 0  5  10  15  20  25  30

�=0.05
�=0.3

x

|u-u�|
|u|  

FIG. 1. The red curve shows u as a function of x. Subtracting
the function uα ¼ α sinðkx=ϵ − δÞ corresponding to the matched
tail we obtain the blue curve.

TABLE I. Numerically calculated values of the minimal tail
amplitude αm, the corresponding phase δm, and the core radius
xcore. The order of optimal truncation for the expansion describ-
ing the core is listed in the last column (see Sec. IV).

ϵ αm δm xcore Nopt

0.15 4.1 × 10−2 0.958 2.56 3
0.1 6.572 × 10−4 0.60552 4.77 6
0.07 1.802403 × 10−6 0.4207362 7.72 10
0.05 4.811363375 × 10−10 0.3001268310 12.1 14
0.035 1.472008979 × 10−15 0.2100205651 18.2 21
0.025 4.771438977 × 10−23 0.1500037632 26.8 30
0.017 1.527829748 × 10−35 0.1020005424 41.2 45
0.012 5.935328843 × 10−52 0.0720000947 60.1 64
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where un are functions of x and cn are numbers [20,22].
To obtain a meaningful finite result, the asymptotic series
has to be truncated at some positive integer order. The error
of the approximation is the smallest when the series is
truncated at the optimal order Nopt, which is expected to
increase proportionally with 1=ϵ. The error of the optimally
truncated series is anticipated to be exponentially small in
ϵ, just as the oscillating tail that this expansion cannot
describe. Substituting into Eq. (6), the vanishing of the ϵ
independent part gives the KdV equation

u0;xx þ 3u20 − c0u0 ¼ 0; ð33Þ
which has the solution given by (8). For a given c0 this is
the unique localized single-core solution when symmetry
with respect to x ¼ 0 is assumed. For n > 0, the vanishing
of the coefficient of ϵ2n yields

un−1;xxxx þ un;xx þ
Xn
j¼0

ð3uj − cjÞun−j ¼ 0: ð34Þ

If we assume that the functions are known up to order
n − 1, then this equation can be considered as a linear
inhomogeneous differential equation for determining un,

un;xx þ 6u0un − c0un ¼ Rn; ð35Þ
where

Rn ¼ −un−1;xxxx − 3
Xn−1
j¼1

ujun−j þ
Xn
j¼1

cjun−j: ð36Þ

General solutions of the homogeneous problem with
Rn ¼ 0 can be obtained as linear combinations of two
solutions. The first solution is the derivative of u0, which is
antisymmetric. The other solution blows up exponentially
at infinity. It follows that the solution of the inhomogeneous
problem (35) which is symmetric with respect to x ¼ 0 and
localized has to be unique.
Proceeding order by order in n, it turns out that the

inhomogeneous source term can be written as a finite sum
of powers of sech2ðγxÞ,

Rn ¼
Xnþ2

j¼1

Rn;jγ
2nþ4sech2jðγxÞ: ð37Þ

The functions un can be expanded similarly,

un ¼
Xnþ1

j¼1

un;jγ2nþ2sech2jðγxÞ: ð38Þ

The powers of γ are included in order to make Rn;j and un;j
rational numbers without γ factors. Comparing with (8)
follows that u0;1 ¼ 2.

Using the identities for the derivatives of sechjx (see,
e.g., Appendix A of [20]), from (36) it follows that for
n ≥ 1,

Rn;j ¼−16j4un−1;jþ8ðj−1Þð2j−1Þð2j2−2jþ1Þun−1;j−1
− ð2j−4Þð2j−3Þð2j−2Þð2j−1Þun−1;j−2

−3
Xn−1
l¼1

Xlþ1

m¼1

ul;mun−l;j−mþ
Xn−jþ1

l¼1

ĉlun−l;j; ð39Þ

where ĉl ¼ γ−2l−2cl. This expression for Rn;j is valid only if
we substitute zero for every occurrence of un;j when j < 1

or j > nþ 1. If the coefficients un;j are known up to order
n − 1 in the first index, then (39) can be used to calculate
the source term Rn in (35). For j ≥ 2 all sech2jðγxÞ terms in
Rn can be generated from appropriate sech terms in un.
However, when setting the right-hand side of (35) to
sech2ðγxÞ the symmetric, asymptotically decaying solution
can be written as

un ¼
1

2
sech2ðγxÞð1 − γx tanhðγxÞÞ: ð40Þ

This solution goes to zero at infinity as x expð−2γxÞ which
is a slower decay than the expð−2γxÞ decay of the other
terms. Because of this, we must avoid this source term by
setting Rn;1 ¼ 0 for all n. Since Rn;1 contains ĉn linearly,
this can be achieved at any order by the appropriate choice
of ĉn. Proceeding with the calculation it turns out that
ĉ0 ¼ 4, ĉ1 ¼ 16, and ĉj ¼ 0 for all j ≥ 2, consistently
with (14).
From (35) it follows that for 2 ≤ j ≤ nþ 1,

4ðj2−1Þun;jþ½12− ð2j−1Þð2j−2Þ�un;j−1 ¼Rn;j: ð41Þ

For j ¼ nþ 2 we obtain

½12 − ð2nþ 3Þð2nþ 2Þ�un;nþ1 ¼ Rn;nþ2: ð42Þ

The equation for j ¼ 1 is simply Rn;1 ¼ 0. If all Rn;j

coefficients are already calculated at order n, then un;nþ1

can be obtained from (42). After this, all un;j−1 can be
calculated one by one in decreasing order in j using (41).
This algorithm can easily be implemented using any
algebraic manipulation software. Results for the coeffi-
cients up to order n ¼ 4 are given in Table II. A similar
algorithm to calculate un;j has been presented in Table 10.5
of Boyd’s book [20]. Note that there is a typo in the
pseudocode there: the summation in the phase speed
contributions should start from m ¼ 1, not from 0.
If the solution u has already been calculated precisely by

some numerical method, we can compare it to various
orders of the above ϵ expansion, defining the error of the
Nth order analytic approximation by
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ΔuN ¼ u −
XN
n¼0

unϵ2n: ð43Þ

Choosing ϵ ¼ 0.05 and the symmetric solution u with the
minimal tail, in Fig. 2 we plot the functions ΔuN for three
values of N for which the error is the smallest. Clearly, for
this ϵ value the optimal truncation is at Nopt ¼ 14. Since all
un decay exponentially, for large x the difference should
agree with the oscillating tail. The figure shows that for the
optimal truncation this holds even in most of the inner
region, since now the core radius is xcore ¼ 12.1. It turns out
that close to the center the error is even smaller. We have
obtained similar plots for the other ϵ values listed in Table I.
The values of Nopt for various ϵ values are listed in the last
column of the table. It can be checked that Nopt increases
proportionally to 1=ϵ. The contribution of the nth term in
the expansion (31), i.e., the function unϵ2n, is generally the
smallest for n ¼ Nopt þ 1, or in some cases for n ¼ Nopt, as
one can expect it for asymptotic series.

V. WKB SOLUTION

We intend to linearize Eq. (6) around some solution u.
This solution may be a numerically obtained symmetric
solution with a small tail in both directions, or an
asymmetric solution that tends to zero for positive x.

The important point is that the core region should be
approximated well by the expansion (31). Substituting
u → uþ uw into (6) and linearizing gives

ϵ2uwxxxx þ uwxx þ 6uuw − cuw ¼ 0: ð44Þ

We will apply this formalism for uw which turns out to be
exponentially small in terms of ϵ; hence the linear approxi-
mation is well justified. As we have seen, in the asymptotic
region there are oscillations with spatial frequency propor-
tional to 1=ϵ. Hence we use the WKB method to search
for solutions of (44). The first step is to substitute
uw ¼ βc expA, where A is a function of x, and βc is a
complex constant. Then we expand A in powers of ϵ,
starting with a 1=ϵ term,

A ¼
X∞
n¼−1

Anϵ
n; ð45Þ

and solve the resulting equation order by order in ϵ. Since
all Ak appear only in differentiated form, there will be
additive complex scalar freedom in all of these functions.
All these can be absorbed into the complex valued ϵ
dependent factor βc.
To leading ϵ−2 order we obtain ðA−1xÞ2½ðA−1xÞ2 þ 1� ¼ 0.

Sincewe are looking for high frequency solutions, we are not
interested in the A−1x ¼ 0 solution. We continue with the
choiceA−1x ¼ −i, since the solution obtained fromA−1x ¼ i
turns out to be the complex conjugate to all orders in ϵ.
Proceeding order by order in ϵ, at each order we obtain a
condition determining Anx. The first few functions are

A−1 ¼ −ix; ð46Þ

A0 ¼ 0; ð47Þ

A1 ¼ −2iγ2xþ 6iγ tanhðγxÞ; ð48Þ

A2 ¼ 15γ2sech2ðγxÞ; ð49Þ

A3 ¼ 2iγ4xþ 111iγ3sech2ðγxÞ tanhðγxÞ; ð50Þ

A4 ¼
525

2
γ4sech2ðγxÞ½3sech2ðγxÞ − 2�; ð51Þ

A5 ¼ −4iγ6xþ 3

5
iγ5½12267sech4ðγxÞ − 4089sech2ðγxÞ

þ 632� tanhðγxÞ; ð52Þ

A6 ¼
3

2
γ6sech2ðγxÞ½49317sech4ðγxÞ

− 49317sech2ðγxÞ þ 8050�: ð53Þ

It is natural to choose the value of the additive constants
in A2n−1 to make the functions antisymmetric at x ¼ 0. The

TABLE II. First few values of un;j.

n↓ j→ 1 2 3 4 5

0 2 � � � � � � � � � � � �
1 −20 30 � � � � � � � � �
2 60 −930 930 � � � � � �
3 −2472 21036 −66216 49662 � � �
4 − 240780

7
− 3177030

7
23319570

7
− 48197250

7
28918350

7

-6×10-10

-4×10-10

-2×10-10

 0

 2×10-10

 4×10-10

 6×10-10

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

�u
N

x

�u13 �u14 �u15

FIG. 2. Difference of the Nth order approximation of
the ϵ expansion (31) from the minimal tail symmetric solution
u for ϵ ¼ 0.05. The horizontal lines show the tail amplitude
αm ¼ 4.811363375 × 10−10.

FODOR, FORGÁCS, and MUSHTAQ PHYS. REV. D 107, 105002 (2023)

105002-8



form of A2n can be made unique by requiring that the
functions tend to zero at infinity.
The terms proportional to x in the odd indexed An

functions can be absorbed into the A−1ϵ
−1 ¼ −ix=ϵ term if

we replace it by −ikx=ϵ, where k is the ϵ dependent
constant defined in (16). This can be done by setting

−
ix
ϵ
þ
X∞
n¼1
odd

Anϵ
n ¼ −

ikx
ϵ

þ
X∞
n¼1
odd

iÃnϵ
n; ð54Þ

where for positive integer n the functions Ã2n−1 are
defined by

A2n−1 ¼ iÃ2n−1 − ixγ2n
ð−1Þnþ1ð2nÞ!
ð2n − 1Þðn!Þ2 : ð55Þ

Inserting the k factor into the linear term is natural, since the
asymptotic spatial frequency is k=ϵ, which is valid to all
orders in ϵ. All these new functions with odd indices have a
finite limit at infinity, which we denote by

δ̃2n−1 ¼ lim
x→þ∞

Ã2n−1; ð56Þ

since they will determine the asymptotic phase shift of the
minimal tail configuration. The first few values are

δ̃1 ¼ 6γ; ð57Þ

δ̃3 ¼ 0; ð58Þ

δ̃5 ¼
1896

5
γ5; ð59Þ

δ̃7 ¼
67140

7
γ7; ð60Þ

δ̃9 ¼
2662320

7
γ9; ð61Þ

δ̃11 ¼
1301363652

77
γ11: ð62Þ

We have calculated δ̃n for n < 100 using algebraic manipu-
lation software.
For real x all even indexed An are real, and hence they

will contribute to the amplitude of the linearized solution.
The odd An are all purely imaginary, so they will determine
the phase. The general solution of the linearized problem
that takes real values for real x can be obtained by a linear
combination of the solutions belonging to A−1 ¼ −ix and
A−1 ¼ ix,

uw ¼ β exp

�X∞
n¼2
even

Anϵ
n

�
sin

�
kx
ϵ
− δw −

X∞
n¼1
odd

Ãnϵ
n

�
: ð63Þ

Here β and δw are real constants with arbitrary ϵ depend-
ence. They are related to the magnitude and phase of the
complex constant βc. The exponential term can be directly
expanded in powers of ϵ, providing

uw ¼ β

�
1þ

X∞
n¼2
even

Ãnϵ
n

�
sin

�
kx
ϵ
− δw −

X∞
n¼1
odd

Ãnϵ
n

�
; ð64Þ

where the even indexed coefficients Ãn can easily be
obtained from the original An. The first few functions
are Ã2 ¼ A2, Ã4 ¼ A4 þ 1

2
A2
2, and Ã6 ¼ A6 þ A4A2 þ 1

6
A3
2.

For δw ¼ 0 the function uw is antisymmetric with respect to
x ¼ 0, while for δw ¼ π=2 it is symmetric.

A. Phase of the tail

Since the A2n functions tend to zero at infinity, β gives
the asymptotic amplitude of the oscillation represented by
uw in (64). The amplitude in the core region is modified by
the factor which is Oð1Þ, so the linear correction uw
remains small even in the core region. The asymptotic
behavior of the function for positive x is uw ¼ β sinðkx=ϵ −
δw − δmÞ with

δm ¼
X∞
n¼1
odd

δ̃nϵ
n; ð65Þ

where the constants δ̃n for odd n are defined in (56).
The same function near the center behaves as uw∼
sinðkx=ϵ − δwÞ, since Ã2n−1 ¼ 0 at x ¼ 0 in (64). The
asymptotic phase comes from two contributions. The part
δw gives the phase near the center, while the ϵ dependent
constant δm gives the additional phase shift between the
center and positive infinity.
Another way to consider uw in (64) is to decompose it to

a sine part with δw ¼ 0 and a cosine part corresponding to
δw ¼ π=2, both with arbitrary amplitudes,

uw ¼
�
1þ

X∞
n¼2
even

Ãnϵ
n

��
βsin sin

�
kx
ϵ
−
X∞
n¼1
odd

Ãnϵ
n

�

þ βcos cos

�
kx
ϵ
−
X∞
n¼1
odd

Ãnϵ
n

��
: ð66Þ

The sine part is antisymmetric at the center x ¼ 0, while the
cosine part is symmetric. The cosine part with arbitrary βcos
amplitude can be added to any symmetric solution u of (6),
showing that the symmetric solution is not unique. On the
other hand, the sine part of the tail of any symmetric
solution has a fixed amplitude. Let us suppose that a certain
symmetric solution u of (6) has a small-amplitude tail given
by (18) at large distances for x > 0. This tail can also be
written as
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u ¼ α cosðδ − δmÞ sin
�
kx
ϵ
− δm

�

− α sinðδ − δmÞ cos
�
kx
ϵ
− δm

�
: ð67Þ

Adding uw with βsin ¼ 0 and βcos ¼ α sin ðδ − δmÞ, the
cosine part of the tail becomes completely canceled, and we
obtain the minimal tail symmetric solution, um ¼ uþ uw.
Adding uw with nonzero βsin would destroy the central
symmetry of u. For given ϵ the minimal tail solution is
unique, and the tail for x > 0 has the asymptotic behavior

um ¼ αm sin

�
kx
ϵ
− δm

�
; ð68Þ

where αm ¼ α cos ðδ − δmÞ. Consequently, the minimal
tail-amplitude symmetric solution necessarily has the phase
δm in the tail, which has already been calculated in terms of
the asymptotic series (65).
In Fig. 3 we compare the numerically calculated min-

imal-amplitude asymptotic phase δm and its various order
approximations provided by (65),

δðjÞm ¼
Xj

n¼1
odd

δ̃nϵ
n: ð69Þ

We plot logarithmically the relative difference Δδj ¼
jðδm − δðjÞm Þ=δmj for j ≤ 15. Since δ̃3 ¼ 0, naturally
Δδ1 ¼ Δδ3. For ϵ≲ 0.07 the numerical values of Δδj
are decreasing as ϵjþ1. The deviations from the straight
line of δ̃13 and δ̃15 for ϵ ¼ 0.012 show that the numerical
result for this ϵ value is less than 18 digits precise. This is
due to the necessary high resolution and long running times
for such small values of ϵ. Although we do not show Δδj

for higher j in the figure, the precision of this agreement
can be further improved for not so small ϵ values. For
example, for ϵ ¼ 0.02 our numerically calculated δm agrees

to 34 digits with δð47Þm . The fact that we obtain numerical
results correct to so many digits of precision shows the
remarkable power of the exponentially convergent spectral
method when it is combined with arbitrary precision
arithmetic. On the other hand, for high ϵ values it is
apparent that (65) is indeed an asymptotic series. For
example, for ϵ ¼ 0.15 the best approximation of the

numerical result is given by δð9Þm , higher orders giving
larger and larger errors. In this case the smallest δ̃nϵ

n

contribution to the sum in (65) belongs to n ¼ 11, which is
just a little smaller than the contribution of the n ¼ 9 term.
In general, an asymptotic series is expected to give the best
approximation when the summing is stopped at the term
that gives the smallest contribution to the result.
Another important consequence of (67) is that for a given

ϵ the tail amplitude α of any symmetric solution with phase
δ is related to the minimal tail amplitude αm by

α ¼ αm
cos ðδ − δmÞ

: ð70Þ

Since αm is exponentially small, this relation is valid to
higher polynomial orders in ϵ. To numerically check
Eq. (70), for various ϵ values we have calculated δm,
αm, and for different δ phase shifts the amplitudes α.
According to our results, the error in (70) turns out to be
order α2, similar to the error in the numerically calculated α
caused by the linear tail approximation. Because of the high
precision of this relation it is appropriate to concentrate on
the minimal tail amplitude in the following. We should like
to point out that in the limit of δ → π=2, Eq. (70) yields

αjδ¼π
2
¼ αm

�
1

6γϵ
þOðϵÞ

�
; ð71Þ

which agrees with the result of Ref. [30]. Taking um as the
minimal tail symmetric solution with asymptotics in (68)
and subtracting uw with β ¼ αm and δw ¼ 0 in (64), the
oscillating tail of the asymmetric solution u− ¼ um − uw
becomes totally canceled in the positive x direction. Using
the linear approximation, the solution u− would appear to
have double tail amplitude in the negative directions.
However, it has been shown in [22] using an energy flux
conservation law that no such solution can exist. From
numerical simulations we can actually see that although the
core domain remains quite similar to that of the symmetric
one, the asymmetric solution blows up in the negative x
direction before the double-amplitude tail could appear.
Nevertheless, u− plays an important role in the analytical
calculation of the minimal tail amplitude.

 1×10-18

 1×10-16

 1×10-14

 1×10-12

 1×10-10

 1×10-8

 1×10-6

 0.0001

 0.01

 0.012  0.02  0.03  0.05  0.1  0.15

��
j

�

��1,��3
��5
��7
��9
��11
��13
��15

FIG. 3. Log-log plot of Δδj ¼ jðδm − δðjÞm Þ=δmj, showing the
relative difference of the numerically calculated δm from its

various order analytic approximations δðjÞm .
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VI. ASYMPTOTIC MATCHING ON THE
COMPLEX PLANE

A. Complex extension

Since the amplitude α of the tail is exponentially small in
terms of ϵ, it cannot be determined by the direct expansion
and WKB methods that we have used for the calculation of
the phase δ. To deal with the amplitudewe have to extend the
functions to the complex x plane and study them near the
singularity closest to the real x axis, applying the method of
matched asymptotic expansions [10,21]. We will apply the
Laplace transform to solve the inner problem [22].
We extend analytically Eq. (6) and its solution u to the

complex x plane. The value of the function u at the point
x ¼ xr − ixi has to be the complex conjugate of the value at
x ¼ xr þ ixi, according to the Schwarz reflection principle.
If the original real function is symmetric at x ¼ 0, then the
extension will naturally satisfy uðxr þ ixiÞ ¼ uð−xr − ixiÞ.
In this case the value of u at x ¼ −xr þ ixi will be the
complex conjugate of the value at x ¼ xr þ ixi, and the
function must take real values on the imaginary axis.
The extension of an antisymmetric function, satisfying
uð−xÞ ¼ −uðxÞ, has the property that uð−xr þ ixiÞ is −1
times the complex conjugate of uðxr þ ixiÞ, and it must be
purely imaginary on the imaginary axis.
We also extend to the complex x plane the asymptotic

expansion (31) of u, where un depends on x according
to (38), with already calculated coefficients unj. All x
dependence is through powers of the function sech2ðγxÞ,
which is singular at the points x ¼ ð2nþ 1Þiπ=ð2γÞ, for
integer n. The closest singularity above the real axis is at
x ¼ iπ=ð2γÞ. In a neighborhood of this singularity we
define the rescaled q complex coordinate by

x ¼ iπ
2γ

þ ϵq: ð72Þ

Near the singularity sech2ðγxÞ has a Laurent series expan-
sion starting with a ε−2q−2 term. The expansion of u can be
obtained by adding various powers of this using some
algebraic manipulation software. Since u is growing as ϵ−2

near the singularity, it is natural to write the result in terms
of the rescaled function

v ¼ ϵ2u: ð73Þ

Substituting (72) into (31), expanding in powers of 1=q,
and then also in powers of ϵ, we obtain that

v ¼
X∞
n¼0

γ2nϵ2nvn; ð74Þ

where the expansions of the first three functions are

v0 ¼ −
2

q2
þ 30

q4
−
930

q6
þ 49662

q8
−
28918350

7q10
þ � � � ; ð75Þ

v1 ¼
2

3
; ð76Þ

v2 ¼ −
2q2

15
þ 2

3
þ 64

q2
þ 5856

5q4
−
827520

7q6
þ � � � : ð77Þ

Since there are only even powers of qwith real coefficients,
any truncated versions of the above series correspond to the
complex extension of symmetric functions. Apart from the
exactly known constant v1 all vn functions are given in
terms of asymptotic expansions in 1=q. We use these
expansions in some domain where both ϵq and 1=q are
small; hence ϵ2nvn can be small too.

B. Inner problem

Using the rescaled function v and the complex coor-
dinate q Eq. (6) becomes

vqqqq þ vqq þ 3v2 − ϵ2cv ¼ 0; ð78Þ

where c also depends on ϵ according to (14). If we search
for solutions of this equation as an expansion of the form
(74), then taking the various ϵn contributions we obtain
differential equations for vn. The first two equations are

v0qqqq þ v0qq þ 3v20 ¼ 0; ð79Þ

v1qqqq þ v1qq þ 2v0ð3v1 − 2Þ ¼ 0: ð80Þ

The equation for v2 will be studied in Sec. VII.
Independently of v0, the second equation can always be
solved by v1 ¼ 2=3. Since this also agrees with the result
obtained in (76), we will use this solution for v1 from now
on. These equations for vn are the nth order representations
of the so-called inner problem. The expansion solutions
(75)–(77) of the outer problem will be used as matching
conditions for vn. These asymptotic expansions provide
valid boundary conditions when Imq < 0 is fixed and
Req → þ∞, determining unique inner solutions, which

we denote by vð−Þn . The functions vð−Þn do not have any
oscillating tail in the positive direction Req > 0. They can
be associated with the unique asymmetric solution u− of the
original Eq. (6) for which there is no tail in the positive x
direction.

1. Zeroth order inner problem

An appropriate precise solution of the ϵ independent
Eq. (79) can be used to determine the tail amplitude of the
solution u of (6) to leading order in ϵ. An expansion
solution for v0 consistent with (75) can be searched for in
the form
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v0 ¼
X∞
n¼1

bð0Þn q−2n: ð81Þ

Equation (79) gives the following equation for the
coefficients:

ð2n − 2Þð2n − 1Þð2nÞð2nþ 1Þbð0Þn−1 þ ð2nÞð2nþ 1Þbð0Þn

þ 3
Xn
j¼1

bð0Þj bð0Þn−jþ1 ¼ 0: ð82Þ

For n ¼ 1 there is no bð0Þn−1 term, and the nonzero solution is

bð0Þ1 ¼ −2. For n ≥ 2 we can obtain a recursion relation by
taking the first and the last terms out of the summation,

ð2n−3Þð2nþ4Þbð0Þn ¼−ð2n−2Þð2n−1Þð2nÞð2nþ1Þbð0Þn−1

−3
Xn−1
j¼2

bð0Þj bð0Þn−jþ1: ð83Þ

The obtained coefficients are the same as those in (75). For

large n the coefficients diverge as bð0Þn ∼ ð−1Þnð2n − 1Þ!.
Following the method introduced in [22], we look for the

solution of (79) in the form of a Laplace transform of a
function V 0

0ðsÞ,

v0 ¼
Z
Γ
I0ðsÞds; I0ðsÞ ¼ expð−sqÞV 0

0ðsÞ; ð84Þ

where the contour Γ is from s ¼ 0 to infinity, satisfying
ReðsqÞ > 0. The prime is here because V 0

0ðsÞ is the
derivative of a function V0ðsÞ that can be defined in terms
of the Borel transformation [21]. However, we will only use
the V 0

0ðsÞ defined by (84) in the following. Using the
identity for the Laplace transform of powers of swe can see
that V 0

0ðsÞ can be expanded as

V 0
0ðsÞ ¼

X∞
n¼0

að0Þn s2nþ1; ð85Þ

where

að0Þn ¼ bð0Þnþ1

ð2nþ 1Þ! : ð86Þ

This can also be written as bð0Þn ¼ ð2n − 1Þ!að0Þn−1.
Substituting into (82) we get

að0Þn−1 þ að0Þn þ 3

ð2nþ 3Þ!
Xn
j¼0

ð2jþ 1Þ!ð2n− 2jþ 1Þ!að0Þj að0Þn−j

¼ 0: ð87Þ

Separating the first and last terms in the summation and

using that að0Þ0 ¼ −2, one can obtain a recursion relation
which is valid for n ≥ 1,

ðnþ 3Þð2n− 1Þ
ðnþ 1Þð2nþ 3Þa

ð0Þ
n

¼−að0Þn−1−
3

ð2nþ 3Þ!
Xn−1
j¼1

ð2jþ 1Þ!ð2n− 2jþ 1Þ!að0Þj að0Þn−j:

ð88Þ
The singularities of the function V 0

0ðsÞ will be deter-
mined by the large n behavior of the coefficients. The

leading order behavior is að0Þn ≈ Kð−1Þn, where K ≈ 19.97.
The constant K will be very important in the following,
since it will determine the radiation amplitude. Hence
we intend to calculate K to several digits precision.
Unfortunately, no fully analytical method is known for
this calculation. We look for the large n behavior of the
coefficients in the form

að0Þn ¼ð−1Þnãð0Þn ; ãð0Þn ¼KG0ðnÞ; G0ðnÞ¼ 1þ
X∞
j¼1

gj
nj
:

ð89Þ
The constants gj should be determined by substituting this
expansion into (87). We assume that n is large, but if we are
interested in a finite number of gj constants, we do not have
to take into account all the nþ 1 terms in the summation
in (87). We substitute (89) into the equation

ãð0Þn − ãð0Þn−1 þ
Xjm
j¼0

ð−1ÞjWð0Þ
n;jã

ð0Þ
n−j ¼ 0; ð90Þ

where

Wð0Þ
n;j ¼

6

ð2nþ 3Þ! ð2jþ 1Þ!ð2n − 2jþ 1Þ!að0Þj ; ð91Þ

and jm is some positive integer.
The more terms we intend to determine forG0ðnÞ in (89),

the higher jm we should choose. However, the constants

Wð0Þ
n;j only involve að0Þj with small j, so they can be

calculated explicitly. We can use algebraic manipulation
software to substitute a truncated version of the expan-
sion (89) into (90). Taking the coefficients in increasing
powers of 1=n, we can determine the constants gj. The first
seven terms of the result yield

G0ðnÞ ¼ 1 −
3

n
þ 39

4n2
−

69

2n3
þ 1929

16n4
−
3381

8n5
þ 46041

32n6

−
1089483

224n7
þ � � � : ð92Þ
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Toget the correct coefficients up to this order one has to set at
least jm ¼ 3. Thismeans thatwe use at least the first four and
last four terms from the summation in (87), but can neglect
the others in between. The importance of (92) is that it allows
us to determine the constantK to several digits precision by
calculating the concrete coefficients from the recursion up to
moderately high n values. Using some algebraic manipu-

lation program, the calculation of að0Þn by (88) can be made
faster by using floating point arithmetic valid to hundred
digits precision instead of using exactly represented but very
long rational numbers. In this way the first few thousand
coefficients can be calculated in a couple of minutes. The
approximation for the proportionality constant can be
calculated using an appropriately truncated version of

G0ðnÞ asK ≈ að0Þn ð−1Þn=G0ðnÞ. The result up to 22 digits is

K ¼ −19.96894735876096051827: ð93Þ

The high precision will be useful becausewe intend to study
higher order ϵ corrections in the following sections.
The series (85) for V 0

0ðsÞ is convergent for jsj < 1 and
can be analytically extended for larger jsj, showing that
V 0
0ðsÞ is unique. On the other hand, several different v0

functions can be obtained from it using the Laplace
transform (84), depending on how the path Γ is located
with respect to the singularities of V 0

0ðsÞ. The function
V 0
0ðsÞ satisfies an integral equation presented in Eq. (31)

of [22]. All singularities are located on the imaginary axis at
s ¼ �ni, where n is any positive integer. There is no
singularity at s ¼ 0.
Calculating v0 by (84) in a domain where argðqÞ is close

to zero, it is natural to choose the positive real s axis as the
curve Γ. The solution obtained in this way is the asym-

metric vð−Þ0 , which is determined by the boundary condition

(75) for Req > 0. We can extend the vð−Þ0 defined by the
Laplace transform integral to the domain −π < argðqÞ ≤ 0,
but for argðqÞ ≤ −π=2 the contour Γ cannot remain on
the real axis, and it should move into the region where

0 < argðsÞ < π=2. However, if the function vð−Þ0 is defined
smoothly on the positive part of the real q axis, it cannot be
extended by the integral (84) to the negative part of the axis,
where argðqÞ ¼ −π. That would require crossing the
singularities on the upper half of the imaginary axis by

the contour Γ. The solution vð−Þ0 defined in this way will
correspond to the asymmetric solution u− of (6) which
tends to zero exponentially for x → ∞ in the positive
direction. This solution has a core that is very close to the
core of the minimal tail symmetric solution, but it generally

diverges in the negative x direction. There is a similar vðþÞ
0

function that can be calculated using (84), which is valid for
−π ≤ argðqÞ < 0. Then the contour Γ has to be chosen in
the quadrant π=2 < argðsÞ ≤ π. This solution is obviously
the conjugated mirror image of the previous one with

respect to the imaginary q axis. The difference of vð−Þ0 and

vðþÞ
0 can be calculated using the residue theorem. The

dominant contribution to the difference will be given by the
singularity at s ¼ i, so we need to determine the behavior
of V 0

0ðsÞ close to there. This can be inferred from the large n

behavior of the coefficients að0Þn in (85).
The residue at s ¼ i of the function I0ðsÞ will be

determined by substituting the leading order part of (89),
which corresponds to G0ðnÞ ¼ 1. The result can be
summed,

I0ðsÞ ≈ expð−sqÞK
X∞
n¼0

ð−1Þns2nþ1

¼ expð−sqÞ Ks
1þ s2

: ð94Þ

Since the residue of s=ð1þ s2Þ is 1=2, it follows that

Res
s¼i

I0ðsÞ ¼ expð−iqÞK
2
: ð95Þ

The residues at the singularities s ¼ ni, where n ≥ 1
integer, will be proportional to expð−inqÞ; hence we can
neglect their contributions. The residue theorem can be
applied by choosing a curve going from s ¼ 0 to infinity in
the domain 0 < argðsÞ < π=2 and coming back in the
region π=2 < argðsÞ ≤ π. The difference of the two func-
tions is

vð−Þ0 − vðþÞ
0 ¼ πiK expð−iqÞ; ð96Þ

which is valid for any q satisfying Imq < 0.
Grimshaw and Joshi also define a third function, vðmÞ

0 , by
setting the contour Γ exactly as the upper half of the
imaginary s axis, running through all the singularities there.
This way the integral will take half of the pole contribu-
tions, yielding

vð−Þ0 − vðmÞ
0 ¼ 1

2
πiK expð−iqÞ: ð97Þ

Since all the að0Þn are real, from (84) and (85) follows that

the function vðmÞ
0 has no imaginary part on the imaginary q

axis; hence it corresponds to a symmetric u solution on the
real x axis. Actually, since K is real, it belongs to the one
with minimal tail amplitude. Larger tail amplitude sym-
metric solutions could be obtained by adding αr expð−iqÞ
to vð−Þ0 with arbitrary real αr. Taking the imaginary part
of (97) on the lower half of the imaginary axis we
obtain that

Imvð−Þ0 ¼ 1

2
πK expð−iqÞ for Req¼ 0; Imq< 0: ð98Þ
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The behavior of Imvð−Þ0 along the lower part of the imaginary
axis for large jqj is determined by the constant K given
in (93). This result will allow us to determine theminimal tail
amplitude for symmetric solutions in the next sections.

C. Complex extension of the linear correction

All functions An defined in Sec. V contains various
powers of sechðγxÞ; hence the linear correction uw is
singular at the same places as the original u solution.
Close to the singularity at x ¼ iπ=ð2γÞ we substitute (72)
for x into (63) to obtain a function depending on q.
Expressing the sine function as a difference of two
exponentials, we can neglect the small term proportional
to exp½−kπ=ð2γϵÞ�; hence

uw ¼ iβ
2
exp

�X∞
n¼2
even

Anϵ
n

�

× exp

�
kπ
2γϵ

− ikqþ iδw þ i
X∞
n¼1
odd

Ãnϵ
n

�
: ð99Þ

Using (54) to bring back the original An, we can write this
into the simpler form, using a single summation for all n,

uw ¼ iβ
2
exp

�
kπ
2γϵ

�
exp ð−iqþ iδwÞ

× exp

�
−
ðk − 1Þπ

2γϵ
þ
X∞
n¼1

Anϵ
n

�
: ð100Þ

We keep k as it is in the first exponential term, but
substituting the form (16) of k into the third term we
see that ðk − 1Þ=ϵ is small. Hence we proceed first by
expanding the argument of the third exponential in powers
of 1=q, and then we expand the exponential of the result in
ϵ. The result correct up to order ϵ4 is

uw ¼ iβ
2
exp

�
kπ
2γϵ

�
exp ð−iqþ iδwÞ

× ½ð1þ 5γ2ϵ2ÞQ0ðqÞ þ γ4ϵ4Q2ðqÞ � � ��; ð101Þ

where

Q0ðqÞ ¼ 1þ 6i
q
−
33

q2
−
237i
q3

þ 1890

q4
þ 17028i

q5

−
167733

q6
þ � � � ; ð102Þ

Q2ðqÞ ¼ −
2iq3

15
−
q2

5
þ 39iq

5
− 25þ 234i

q
−
14343

5q2

−
181119i
5q3

þ � � � : ð103Þ

We should like to point out that Eq. (101) disagrees with
Eq. (48) of Ref. [22], where the factor ð1þ 5γ2ϵ2Þ is
missing. The truncated versions of the asymptotic expan-
sions QnðqÞ correspond to complex extensions of sym-
metric functions. Hence, for δw ¼ 0 the function uw is
purely imaginary on the imaginary q axis, corresponding to
the complex extension of an antisymmetric function. If
δw ¼ π=2, then uw is real on the imaginary axis, and it
corresponds to a symmetric function. Remember that β and
δw may also have ϵ dependence.

D. Amplitude up to third order

There are two important solutions of Eq. (6), the
symmetric solution um that has minimal tail, and the
asymmetric solution u− that has no tail for x > 0. They
both can be calculated by numerical methods, but no
accurate analytical solutions are known for either of them.
However, their difference can be determined very precisely
by the earlier presented higher order WKB method. The
difference um − u− is exponentially small in terms of ϵ, not
just in the tail but also in the core domain, and even on the
complex x plane, including the matching region near the
singularity. This allows us to represent the difference with
the linearized solution uw in (64) with appropriate tail-
amplitude β and phase δw. The symmetric solution um has
the oscillating tail given by (68), with amplitude αm and
phase δm. The tail for x > 0 can be compensated by uw to
obtain the asymmetric solution,

u− ¼ um − uw for β ¼ αm; δw ¼ 0: ð104Þ

This equation is also valid on the complex q plane where uw
is given by (101).
Although the difference uw is relatively small with

respect to um in the core region and on its complex
extension, there is a place where it can be clearly observed.
Because of its symmetry, um is purely real on the imaginary
axis, on both the complex x and q planes. Hence it follows
from (104) that the imaginary parts of u− and −uw have to
agree there,

Imu− ¼ −Imuw for Req ¼ 0; Imq < 0; ð105Þ

where β ¼ αm and δw ¼ 0 in the form (101) of uw. This
equality is valid to any order in ϵ and 1=q. The solution of
the inner problem discussed earlier can be used to obtain
the imaginary part of u− on the imaginary axis. The
importance of (105) is that after this we can directly obtain
the minimal tail amplitude αm ¼ β as well.
To leading order in ϵ we can use (98) to determine the

imaginary part of u− on the imaginary axis. Using v ¼ ϵ2u
in (73) and v ≈ v0 in (74) we obtain that
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Imu−¼
πK
2ϵ2

expð−iqÞð1þOðϵ2ÞÞ for Req¼ 0; Imq< 0:

ð106Þ

Comparing this with Imuw according to (105), considering
the leading order part of (101), since αm ¼ β, we obtain the
expression for the minimal tail amplitude,

αðk;1Þm ¼ −
πK
ϵ2

exp

�
−

kπ
2γϵ

�
: ð107Þ

The notation k in the upper index indicates that according
to (16) we keep k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4γ2ϵ2

p
inside the exponential.

Writing 1 in the upper index shows that this result is precise
to linear order in ϵ, since the expression is valid up to a
factor of ð1þOðϵ2ÞÞ.
To leading order in ϵ we can substitute k ¼ 1, and we

obtain the result first derived by Pomeau et al. in [21],

αð0Þm ¼ −
πK
ϵ2

exp

�
−

π

2γϵ

�
: ð108Þ

In Eq. (21) of [21] the double tail amplitude has been
calculated for the asymmetric solution which tends to zero
exponentially for x → −∞. Furthermore, there is an addi-
tional unnecessary factor of 2 there because of a 1=2 lost
earlier, and an obviously missing fraction slash in the
exponential. In Fig. 4 we compare the various order

analytic results αðjÞm in this section to the numerical
amplitude αm calculated by the high precision spectral
method. We plot logarithmically the relative difference

ΔαðjÞm ¼ jðαm − αðjÞm Þ=αmj as a function of ϵ. Since the
numerical result is much more accurate in these cases,

ΔαðjÞm shows the relative error of the jth order analytic
expansion result.

With the k factor included in the exponential, the result

αðk;1Þm for the tail amplitude in (107) corresponds to Eq. (56)
of Grimshaw and Joshi [22]. Since

exp

�
−
kπ
2γϵ

�
¼ exp

�
−

π

2γϵ

��
1−πγϵþπ2

2
γ2ϵ2

−
�
π2

6
−1

�
πγ3ϵ3þ

�
π2

24
−1

�
π2γ4ϵ4

−
�

π4

120
−
π2

2
þ2

�
πγ5ϵ5þOðϵ6Þ

�
; ð109Þ

we can see that αðk;1Þm contains odd powers of ϵ in its
expansion. This shows that the inclusion of k in the
exponential improves the result to make it valid to linear ϵ
order. Since (74) and (101) contain only even powers of ϵ,
odd powers in the expansion of αm can only come from k in
the exponential. However, we will show below that contrary
to the claim in [22], the result (107) is not valid to ϵ2 order.
Substituting the expansion (109) into (107) we can

obtain an alternative first-order result for the amplitude,

αð1Þm ¼ −
πK
ϵ2

exp
�
−

π

2γϵ

�
ð1 − πγϵÞ: ð110Þ

Surprisingly, according to Fig. 4, αð1Þm has much lower

relative error than the other first order result αðk;1Þm . The

reason for this is that the ϵ expansion of αðk;1Þm contains an ϵ2

term with coefficient π2γ2=2 ≈ 4.93γ2 which is much
larger than the correct coefficient, which turns out to be
π2γ2=2 − 5γ2 ≈ −0.07γ2 as we will see a bit later.
As we have already seen, Eq. (80) for the second order

inner problem has an appropriate exact solution, v1 ¼ 2=3.
This has no imaginary part on the imaginary q axis. To this
approximation (74) gives v ≈ v0 þ γ2ϵ2v1; hence (106) is
also valid to ϵ2 order,

Imu−¼
πK
2ϵ2

expð−iqÞð1þOðϵ4ÞÞ for Req¼ 0; Imq< 0:

ð111Þ

On the other hand, Eq. (101) clearly has an ϵ2 part, because
of the ð1þ 5γ2ϵ2Þ factor. In order to make (105) valid to
order ϵ2 we have to cancel this contribution by an ϵ
dependent factor in the β ¼ αm amplitude. This way we
obtain a higher order generalization of (107) for the
minimal amplitude,

αðk;3Þm ¼ −
πK
ϵ2

exp

�
−

kπ
2γϵ

�
ð1 − 5γ2ϵ2Þ: ð112Þ

This approximation is correct to ϵ3 order, since the next
correction would be an ϵ4 term in the factor multiplying the
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FIG. 4. Log-log plot of ΔαðjÞm ¼ jðαm − αðjÞm Þ=αmj, showing the
relative difference of the numerically calculated αm from its

various order analytic approximations αðjÞm up to order three in ϵ.
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exponential term. As we can see in Fig. 4, the result αðk;3Þm is
significantly more precise than the lower order approx-
imations. For the lowest ϵ values considered, it gives the

amplitude to seven digits of precision. The amplitude αðk;3Þm

is the corrected version of the result, Eq. (56), in Ref. [22].
That expression is valid only to ϵ1 order. The correctness
of this additional 5γ2ϵ2 term in (112) is clearly supported
by the numerical simulations. Actually, the reported
differences between the analytical amplitude in [22] and
the numerical results of Boyd in [24] are due to this
missing term.
Using the expansion (109) we can obtain the following

second and third order results for the amplitude:

αð2Þm ¼−
πK
ϵ2

exp

�
−

π

2γϵ

��
1−πγϵþ

�
π2

2
−5

�
γ2ϵ2

�
; ð113Þ

αð3Þm ¼ −
πK
ϵ2

exp

�
−

π

2γϵ

��
1 − πγϵþ

�
π2

2
− 5

�
γ2ϵ2

−
�
π2

6
− 6

�
πγ3ϵ3

�
: ð114Þ

Strangely, as we can see in Fig. 4, αð2Þm gives a slightly less

precise approximation than the lower order result αð1Þm given
earlier in (110). The reason for this is that for the presented
range of ϵ the neglected third order term is still larger than
the second order one. Their orders become reversed only
below ϵ ≈ 0.00477, which is not accessible by our numeri-
cal code. However, when the ϵ3 term is included, we obtain

αð3Þm , which, according to the figure, is almost as precise as

αðk;3Þm in (112). As can be expected, all ΔαðjÞm and Δαðk;jÞm

tend to zero as ϵjþ1 in the figure, exceptΔαð1Þm which decays
faster in the presented ϵ interval. In the next section we will
determine the ϵ4 order correction to the amplitude in (112).
The fact that we can obtain even higher order results gives a
very strong support that the results in the present section are
correct.
The minimal amplitude tail has the asymptotic phase δm.

As we have already seen, the tail amplitude α of general
symmetric solutions with asymptotic tail phase δ can be
calculated from the minimal amplitude αm by (70).

VII. FOURTH ORDER

A. Inner problem

In this case the equations we have to solve follow from
the substitution of the expansion (74) of v into the inner
equation (78). The first two equations have already been
given in (79) and (80). After substituting v1 ¼ 2=3 the next
equation is

v2qqqq þ v2qq þ 6v0v2 − 16v0 −
4

3
¼ 0: ð115Þ

The function v0 is assumed to be known here. Although we
do not know an exact solution for v0, we can use the power
series asymptotic expansion (81) which starts according
to (75). There may also be an exponentially small correc-
tion, corresponding to (97), and given in more detail in (A2)
of Appendix.
Since (77) shows that the expansion of v2 consists only

of even powers of q, and starts with a q2 term, we look for
solutions in the form

v2 ¼
X∞
j¼−1

bð2Þj q−2j: ð116Þ

Substituting into (115) we obtain that bð2Þ−1 ¼ −2=15, and
for n ≥ 0 we get

ð2nÞð2nþ 1Þbð2Þn þ ð2n − 2Þð2n − 1Þð2nÞð2nþ 1Þbð2Þn−1

þ 6
Xn
j¼−1

bð2Þj bð0Þn−jþ1 − 16bð0Þnþ1 ¼ 0: ð117Þ

Separating the last term from the summation we can obtain

a recursion relation, similar to (83). The coefficients bð2Þn

that we get agree with those already given in (77). This
shows that we match the inner problem appropriately to the
outer problem.

B. Laplace transform

We intend to apply the Laplace transformmethod that we
have already used for the zeroth order in (84). Our aim is to
calculate the imaginary part of the asymmetric function vð−Þ2

on the imaginary q axis. However, for the j ≥ 0 integer we
cannot obtain qj as the Laplace transform of a smooth
function. Hence we have to separate those terms, defining
ṽ2 by

v2 ¼ −
2

15
q2 þ 2

3
þ ṽ2: ð118Þ

We can now look for ṽ2 in the form of the Laplace
transform of a function V 0

2ðsÞ,

ṽ2 ¼
Z
Γ
I2ðsÞds; I2ðsÞ ¼ expð−sqÞV 0

2ðsÞ; ð119Þ

where the contour Γ is from s ¼ 0 to infinity, satisfying
ReðsqÞ > 0. Similar to (85) and (86), from the identity for
the Laplace transform of powers of s it follows that

V 0
2ðsÞ ¼

X∞
n¼0

að2Þn s2nþ1; ð120Þ

where
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að2Þn ¼ bð2Þnþ1

ð2nþ 1Þ! : ð121Þ

Since bð2Þ1 ¼ 64, it follows that að2Þ0 ¼ 64. Substituting into
(117), for n ≥ 1 we get

að2Þn þ að2Þn−1þ
6

ð2nþ 3Þ!
Xn
j¼0

ð2jþ 1Þ!ð2n− 2jþ 1Þ!að2Þj að0Þn−j

−
4

5
ð2nþ 5Þð2nþ 4Það0Þnþ2 − 12að0Þnþ1 ¼ 0: ð122Þ

The recursion relation is

ðnþ 3Þð2n− 1Þ
ðnþ 1Þð2nþ 3Þa

ð2Þ
n

¼ −að2Þn−1 −
6

ð2nþ 3Þ!
Xn−1
j¼0

ð2jþ 1Þ!ð2n− 2jþ 1Þ!að2Þj að0Þn−j

þ 4

5
ð2nþ 5Þð2nþ 4Það0Þnþ2 þ 12að0Þnþ1: ð123Þ

For large n, the leading order behavior is að2Þn ∼ n3ð−1Þn.
It follows that the series for V 0

2ðsÞ is convergent. The
singularities are again located at s ¼ �ni, where n is any
positive integer, but not at s ¼ 0. To study the function near
the s ¼ i singularity we need to study the large n behavior

of the coefficients að2Þn . We look for the large n behavior in
the form

að2Þn ¼ ð−1Þnãð2Þn ; ãð2Þn ¼
X∞
l¼−3

gð2Þl

nl
: ð124Þ

For ãð0Þn we use the expansion (89) with the already
calculated coefficients given in (92). We substitute these
into the equation that follows from (122),

ãð2Þn − ãð2Þn−1 þ
Xjm
j¼0

ð−1ÞjWð0Þ
n;jã

ð2Þ
n−j þ

Xjm
j¼0

ð−1ÞjWð2Þ
n;jã

ð0Þ
n−j

−
4

5
ð2nþ 5Þð2nþ 4Þãð0Þnþ2 þ 12ãð0Þnþ1 ¼ 0; ð125Þ

whereWð0Þ
n;j is defined in (91), jm is the positive integer used

there, and

Wð2Þ
n;j ¼

6

ð2nþ 3Þ! ð2jþ 1Þ!ð2n − 2jþ 1Þ!að2Þj : ð126Þ

Equation (125) has a homogeneous part that can be

obtained by setting ãð0Þn ¼ 0. Note that the value of Wð0Þ
n;j

is nonzero even in this case. The homogeneous part agrees
exactly with Eq. (90); hence, it has the solution G0ðnÞ

multiplied by an arbitrary constant. It follows that the
general solution of (125) can be written as

ãð2Þn ¼ KðG2ðnÞ þ K2G0ðnÞÞ; ð127Þ

where K2 is an arbitrary constant and G2ðnÞ is a particular
solution. Its expansion can be obtained using some alge-
braic manipulation software, similar to (92),

G2ðnÞ ¼
16

15
n3 þ 28

5
n2 þ 368

15
n −

132

n
þ 4122

5n2
−
50833

10n3

þ 3144915

112n4
þ � � � : ð128Þ

We have chosen the unique particular solution G2ðnÞ for
which there is no n0 term. We can obtain the value of the

constant K2 by calculating að2Þn using (123) for large n,

similar to what we did for K in (93). Using K2 ≈
½að2Þn ð−1Þn=K −G2ðnÞ�=G0ðnÞ we get

K2 ¼ −36.544068193583744293: ð129Þ

C. Asymmetric solution

Our aim is to calculate the imaginary part of the
asymmetric v2 ≡ vð−Þ2 solution on the lower part of
the imaginary q axis. Obviously, this will be the same

as the imaginary part of ṽ2 ≡ ṽð−Þ2 , since they differ only by
two terms according to (118). We apply the same reasoning

as we did for vð−Þ0 in the paragraph before Eq. (94). The

function ṽð−Þj can be calculated in the domain −π <
argðqÞ ≤ 0 by the integral (119), with a contour in the
region satisfying 0 < argðsÞ < π=2. The imaginary part of

ṽð−Þ2 on the imaginary axis can be determined to leading
order using the residue of the function I2ðsÞ at s ¼ i.
Substituting (120), (124), and (127) we get

I2ðsÞ ≈ expð−sqÞK
X∞
n¼0

ð−1Þn½G2ðnÞ þ K2G0ðnÞ�s2nþ1:

ð130Þ

From the expansion of G0ðnÞ and G2ðnÞ only terms of the
form ð−1Þnnjs2nþ1 with j ≥ 0 will give contributions to
this residue. These terms can be summed, for example, for
j ¼ 1,

X∞
n¼0

ð−1Þnns2nþ1 ¼ −
s3

ð1þ s2Þ2 : ð131Þ

The sum can be calculated for other concrete j ≥ 0 values,
but we could not find a general formula valid for arbitrary j.
However, the general residue turns out to be very simple,
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Res
s¼i

X∞
n¼0

ð−1Þnnjs2nþ1 ¼ 1

2
ð−1Þj for j ≥ 0: ð132Þ

Hence from (92) and (128) we get

Res
s¼i

I2ðsÞ ¼ expð−iqÞK
2

�
−
16

15
þ 28

5
−
368

15
þ K2

�

¼ expð−iqÞK
2
ðK2 − 20Þ: ð133Þ

Next we define a symmetric function vðmÞ
2 by taking the

path Γ along the upper half of the imaginary axis. The

difference of vð−Þ2 and vðmÞ
2 can be calculated similar to

Eq. (97). The residue theorem can be applied by choosing
a curve going from s ¼ 0 to infinity in the domain
0 < argðsÞ < π=2 and coming back along the upper half
of the imaginary s axis. This way we have to take into
account half of the residue at s ¼ i, so we get

vð−Þ2 − vðmÞ
2 ≈

1

2
πiK expð−iqÞðK2 − 20Þ: ð134Þ

Here we write ≈ because we have not considered yet the

change in v2 due to the modification of v0 from vð−Þ0 to vðmÞ
0

in (115). This will provide a finite number of terms
proportional to qn expð−iqÞ with n > 0 integers. The
coefficients of those terms are completely fixed already
by the leading order constant K, which determines

vð−Þ0 − vðmÞ
0 according to (97). The detailed analysis of

the perturbations of Eq. (115) is given in Appendix. The
change in v2 due to the modification of v0 can be chosen in
a way that it does not influence the terms q0 expð−iqÞ
calculated in (134).
Analogously to (98), taking the imaginary part we obtain

that on the lower part of the imaginary axis

Imvð−Þ2 ≈
1

2
πK expð−iqÞðK2 − 20Þ: ð135Þ

Here and in the following few equations the approximate
equation sign indicates that we only consider the
q0 expð−iqÞ parts of the expressions. Using v ¼ ϵ2u and
(74) we obtain a higher order generalization of (111),

Imu− ≈
πK
2ϵ2

expð−iqÞ½1þ ðK2 − 20Þγ4ϵ4 þOðϵ6Þ� ð136Þ

for Req ¼ 0, Imq < 0.

D. Tail amplitude up to fifth order

We generalize the expression for minimal amplitude αm
in (112) by allowing a fourth order contribution,

αðk;5Þm ¼ −
πK
ϵ2

exp

�
−

kπ
2γϵ

�
ð1 − 5γ2ϵ2 − ξ2γ

4ϵ4Þ; ð137Þ

where ξ2 is a constant that will be determined below. This
approximation is correct to ϵ5 order, since the next

correction would be proportional to ϵ6. Substituting β ¼
αðk;5Þm and δw ¼ 0 into (101) and only considering the
q0 expð−iqÞ terms, we get

uw ≈ −
iπK
2ϵ2

expð−iqÞ½1 − ðξ2 þ 50Þγ4ϵ4 þOðϵ6Þ�: ð138Þ

According to (105), we compare the imaginary part on the
axis with (136) to obtain K2 − 20 ¼ −ξ2 − 50, which gives

ξ2 ¼ −K2 − 30 ≈ 6.544068193583744293: ð139Þ

In Fig. 5 we show the relative error of the analytic results

αðjÞm obtained in this section when compared to the precise
numerical amplitude αm. As can be expected, the relative
error of the jth order results tend to zero as ϵjþ1.
Using the expansion (109) we can obtain the following

alternative fifth order result for the amplitude:

αð5Þm ¼ −
πK
ϵ2

exp

�
−

π

2γϵ

��
1 − πγϵþ

�
π2

2
− 5

�
γ2ϵ2

−
�
π2

6
− 6

�
πγ3ϵ3 þ

�
π4

24
−
7π2

2
− ξ2

�
γ4ϵ4

−
�

π4

120
−
4π2

3
þ 7 − ξ2

�
πγ5ϵ5

�
: ð140Þ

We can also define a fourth order amplitude αð4Þm by

dropping the ϵ5 term from αð5Þm . The relative error of these
approximations are also shown in Fig. 5. The two different
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��m
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��m
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FIG. 5. Log-log plot of ΔαðjÞm ¼ jðαm − αðjÞm Þ=αmj, showing the
relative difference of the precise numerical αm from various order

analytic results αðjÞm , up to order five in ϵ.
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fifth order results are so close to each other that Δαð5Þm and

Δαðk;5Þm are indistinguishable in the logarithmic figure.

Actually, Δαðk;5Þm is larger by less than 2% than Δαð5Þm .

Both αð5Þm and αðk;5Þm are correct to nine digits of precision for
the smallest ϵ value shown.

VIII. CONCLUSIONS

We have considered the problem to compute corrections
to the beyond-all-orders small amplitude standing wave
tails of weakly localized soliton solutions in a fifth order
KdVequation—the KdVequation with an added fifth order
dispersion term, ϵ2∂5x. The fKdV equation is not only of
some genuine physical interest, but at the same time it also
serves for us as a simplified model to prepare the ground for
the significantly more complicated problem for oscillon-
quasibreathers in field theories. For ϵ ≪ 1 the simplest
stationary solution is a bounded, one-parameter family of
KdV-type solitons which are weakly localized due to an
asymptotic standing wave tail, tending to the KdV one-
soliton for ϵ → 0. These solutions are symmetric, and they
are characterized by the asymptotic phase, δ, of their tail.
Our main analytical result for the physically relevant
minimal amplitudewave tail can be succinctly presented as

αmin ¼
λ

ϵ2
e−

kðϵÞπ
2γϵ ð1 − 5γ2ϵ2 − ζ4γ

4ϵ4 þOðϵ6ÞÞ;
λ ≈ 19.9689π; ζ4 ≈ 6.5441;

where γ parametrizes the speed of the unperturbed KdV
soliton and the wave number, kðϵÞ ¼ ð1þ 4γ2ϵ2Þ1=2, has to
be expanded up to Oðϵ5Þ [see Eq. (140)]. Our paper
resolves a long-standing discrepancy for the Oðϵ2Þ coef-
ficient between the result of Ref. [22] and the numerical
results of Ref. [24].
The asymptotic phase of the minimal amplitude tail, δmin,

has been determined in a WKB approximation to rather
high (∼100) orders in ϵ. We have also found that for a given
ϵ, the tail amplitude, α, of any member of the one-parameter
family, characterized with phase δ, is related to the minimal
tail amplitude αmin by α ¼ αmin=cos ðδ − δminÞ.
We have also developed an efficient, arbitrary precision

pseudospectral code to solve the fKdV equation, to inves-
tigate the asymptotic standing wave tails to high numerical
precision. Our numerical code is fast enough so that we
can employ numerical minimization procedures to find the
value of the phase, δmin, of the minimal amplitude solution
very precisely, even for quite small values of ϵ. The
numerically obtained value for δmin agrees very well with
the optimally truncated asymptotic series result (see Fig. 3).
The remarkably good agreement of our higher order
perturbative results for αmin with our numerical calculations
(see Figs. 4 and 5) gives very strong support that both our

analytic and numerical considerations are correct and
reliable.
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APPENDIX: LINEAR CORRECTION TO THE
INNER PROBLEM

The complex extension of the exponentially small linear
correction uw to the outer solution has been calculated in
Sec. VI C. Similar small corrections can also be determined
to vn at each order of the inner problem. We proceed by
substituting vn → vn þ wn for all n and linearizing for wn.
From (79) we obtain

w0qqqq þ w0qq þ 6v0w0 ¼ 0: ðA1Þ

For v0 we can use the asymptotic expansion (81) that starts
with the terms given in (75). We search the solution for w0

in the form

w0 ¼
i
2
b0 expð−iqÞF0ðqÞ;

F0ðqÞ ¼ 1þ
X∞
j¼1

wðjÞ
0

qj
; ðA2Þ

where b0 and wðjÞ
0 are complex constants. Substituting

into (A1), the coefficients of the various powers of 1=q

determine the constants wðjÞ
0 . The first few terms give

F0ðqÞ ¼ 1þ 6i
q
−
33

q2
−
237i
q3

þ 1890

q4
þ 17028i

q5

−
167733

q6
þ � � � : ðA3Þ

This naturally agrees with the functionQ0ðqÞ given in (102).
Since Eq. (A1) is linear, the constant b0 can be arbitrary. Real
b0 corresponds to a function antisymmetric on the real axis,
while purely imaginary b0 to a symmetric one.
The linearization of the ϵ2 order inner equation (80) gives

w1qqqq þ w1qq þ 6v0w1 þ 2ð3v1 − 2Þw0 ¼ 0: ðA4Þ

For v1 ¼ 2=3 this equation becomes the same as (A1), and
the solutions are

w1 ¼
i
2
b1 expð−iqÞF0ðqÞ; ðA5Þ

where b1 is an arbitrary complex constant. Since v1 ¼ 2=3
satisfies the matching condition to the outer solution, and it
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is symmetric, without an imaginary part for Req ¼ 0, we do
not need to perturb v1, we can set b1 ¼ 0. On the other
hand, the ϵ2 part of (101) contains a perturbation corre-
sponding to (A5) with b1 ¼ 5b0. We had to cancel these
terms by a 1 − 5γ2ϵ2 factor in the amplitude αm in (112).
Linearizing (115) we obtain

w2qqqq þ w2qq þ 6v0w2 þ 2ð3v2 − 8Þw0 ¼ 0: ðA6Þ

The homogeneous part agrees with Eq. (A1) for w0;
hence we can always add an arbitrary constant times
expð−iqÞF0ðqÞ to the solution. Searching the solution in
the form

w2 ¼
i
2
expð−iqÞ

X∞
j¼−3

wðjÞ
2

qj
; ðA7Þ

from the coefficients of the various powers of q we obtain

w2 ¼
i
2
expð−iqÞ½b0F2ðqÞ þ b2F0ðqÞ�; ðA8Þ

where b0 is the constant in (A2), b2 is an arbitrary complex
constant, the function F0ðqÞ is given in (A3), and

F2ðqÞ ¼ −
2i
15

q3 −
1

5
q2 þ 39i

5
qþ 384i

q
−
18468

5q2

−
210744i
5q3

þ � � � : ðA9Þ

The function F2ðqÞ was made unique here by setting the
coefficient of the q0 term zero. The ϵ4 part of (101), which
is proportional to theQ2ðqÞ given in (103), can be obtained
from (A8) by setting b2 ¼ −25b0.
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