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Superconducting cavities can operate analogously to Weber bar detectors of gravitational waves,
converting mechanical to electromagnetic energy. The significantly reduced electromagnetic noise results
in increased sensitivity to high-frequency signals well outside the bandwidth of the lowest mechanical
resonance. In this work, we revisit such signals of gravitational waves and demonstrate that a setup similar
to the existing MAGO prototype, operating in a scanning or broadband manner, could have sensitivity to
strains of ∼10−22 − 10−18 for frequencies of ∼10 kHz–1 GHz.

DOI: 10.1103/PhysRevD.108.084058

I. INTRODUCTION

The first detection of gravitational waves (GWs) in
the hertz to kilohertz range by the LIGO and Virgo
Collaborations [1] was the pinnacle of decades of research
activity, opening a new path to observe the Universe. The
science case to extend the observational frequency range
is especially strong. This has motivated the current land-
scape for existing and planned efforts, including cosmic
microwave background (CMB) [2,3] and pulsar timing
array [4,5] measurements, future laser [6–10] and atom
interferometers [11–13], and new astrophysical signa-
tures [14–16], which together hold promise to cover a
wide range of frequencies below a kilohertz. There is also
motivation to extend sensitivity to higher frequencies.
While searches with small correlated interferometers [17]
and piezoelectric mechanical resonators [18] have

produced initial sensitivity focused around a megahertz,
there are no established methods to systematically cover
the orders of magnitude of the unexplored GW spectrum
ranging from kilohertz to gigahertz, which is the focus
of this work.
Aside from a few exceptions [19–24], high-frequency

GWs are harbingers of physics beyond the Standard Model
both in the cosmos today and the earliest stages of the
Universe, as no known astrophysical objects are suffi-
ciently dense to produce GWs above ∼10 kHz. Perhaps
the most well motivated of such signals are those generated
by primordial cosmological events. Indeed, causality
restricts their wavelength to be smaller than the Hubble
radius at the time of production, which implies that GWs
originating from when the Universe was hotter than
1011 GeV are guaranteed to have a frequency above
10 kHz today. Unfortunately, measuring such primordial
GWs is extremely challenging, since the successful pre-
dictions of big bang nucleosynthesis and measurements of
the CMB severely restrict their contribution to the radiation
energy density (see, e.g., Ref. [25]). This puts the direct
observation of primordial GWs above ∼1 kHz out of reach
for present-day experiments. Other new physics sources of
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high-frequency GWs may result in larger signals, but these
are less universal, such as those arising from the inspiral of
light primordial black holes [26–28] or the superradiant
production and annihilation of light bosons around nearby
black holes [29–31]; while slightly less generic, both would
point to exciting new physics if discovered.
In this work, we discuss an experimental strategy

capable of detecting these more speculative signals. The
approach we consider, based on the interaction between
electromagnetic (EM) and mechanical resonances, was
pioneered in the late 1970s [32–34] and led to a nascent
experimental effort by the Microwave Apparatus for
Gravitational Waves Observation (MAGO) Collaboration
in the early 2000s [35,36] which was unfortunately culled
before coming to fruition (a prototype version of this
experiment is currently in public display at the University
of Genoa). In our study, we combine an improved under-
standing of the signal and noise sources in a prototypical
setup to argue for reviving interest in this experimental
program.
The experimental setup is as follows. A superconducting

radio-frequency (SRF) cavity is prepared with two EM
resonant modes at frequencies ω0 and ω1. The first of these
we call the pump mode, which is to be loaded with EM
energy. A GW of frequency ωg ≪ ω0;ω1 ∼ 1 GHz inter-
acts with the pump mode and sources EM power at
ω0 � ωg ≫ ωg, thereby constituting a frequency-
conversion or “heterodyne” process. The mode at ω1 is
initially empty and can be tuned such that the GW
frequency ωg matches the mode splitting, ωg≃ jω1−ω0j,

allowing for resonant transfer of EM energy from the pump
mode into this signal mode. As depicted schematically in
Fig. 1, two coexisting signal mechanisms can induce this
transition: (i) the direct coupling of gravity to the EM
energy in the pump mode through the inverse Gertsenshtein
effect [37,38] and (ii) the coupling of gravity to the
mechanical body of the cavity, which induces EM mode
mixing. As originally noted in Ref. [33] and discussed in
further detail here, the latter signal is parametrically
enhanced compared to the former for ωg ≪ ω0. In this
work, we show for the first time the potential reach of a
broadband setup, where the frequency splitting between
EM modes is held fixed. We find that operating the MAGO
detector in this manner has the potential to probe orders
of magnitude of new parameter space in the 10 kHz
to gigahertz range. The large quality factors Q ∼ 1011 of
SRF cavities allow them to act as efficient converters
of mechanical to EM energy and operate with much
smaller readout noise than the mechanical-EM transducers
employed in modern Weber bar experiments [39–42]. In
this sense, the optimal setup described here functions as a
Weber bar with significantly reduced EM noise, resulting in
increased sensitivity to GW frequencies that are outside the
bandwidth of the mechanical resonance. This is discussed
in more detail in Sec. VI. As a result, even for fixed EM
frequency splittings, in which case most GW frequencies
can only excite the signal off resonance, the reduced EM
noise allows this setup to potentially operate as an exquisite
broadband detector of high-frequency GWs. In this case,
such a search has the added benefit of being sensitive to

FIG. 1. Cartoon of a two-spherical-cell setup, illustrating the two coexisting signals. The pump mode E0 of the cavity is driven at
frequency ω0 ∼ 1 GHz (orange). The incoming gravitational wave of frequency ωg either directly couples to the electromagnetic fields
(left inset) or indirectly by exciting the mechanical vibrational modes at frequencies ωp (right inset), thereby sourcing electromagnetic
power at ω0 � ωg. Thus, the signal mode E1 at frequency ω1 is resonantly excited if ωg ≃ jω1 − ω0j, which is read out by a directional
coupler centered around ω1. The mode profiles of the mechanical vibrations (as indicated by the solid boundary of the cells) and the
electromagnetic modes (orange and blue lines) are shown for an optimal configuration. A scan across various gravitational wave
frequencies amounts to tuning the electromagnetic frequency difference ω1 − ω0, which can be performed by, e.g., varying the diameter
of the central aperture connecting the two cells.
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transient signals that would otherwise be missed by a
scanning experiment. For the analysis in this paper, we
will consider spherical-cell SRF cavities (such as those
employed in the MAGO prototype), since their enhanced
symmetry allows greater coverage of the GW sky as well as
the availability of analytic results for the various mode
profiles.1 However, this setup can be applied to any cavity
geometry, including the elliptical cavities currently used for
state-of-the-art SRF systems.
Compared to previous work, we introduce three new

results: (i) we compute a new source of signal from the direct
coupling between the GWand the EM energy in the cavity,
(ii) we discuss the sensitivity of a broadband operation of the
experimental apparatus, where the parameters of the cavity
are not resonantly tuned to the GW frequency, and (iii) we
analytically determine the GW-mechanical and mechanical-
EM coupling for spherical cavities, allowing us to estimate
the sensitivity as a function of the GW’s polarization and
direction of propagation. The outline of this paper is as
follows. In Sec. II, we discuss signals arising from either the
GW-mechanical orGW-EMcoupling. In Sec. III, we discuss
additional details regarding mechanical and EM mode
couplings. In Sec. IV, we summarize the main contributions
to noise. We use these results in Sec. V to estimate the
projected sensitivity of a scanning or broadband setup,
and we compare to other experiments such as modern-
day Weber bars and lumped-element circuits in Sec. VI.
Finally, we conclude and discuss future directions in
Sec. VII. Additional technical details regarding our signal
and noise estimates are provided in a series of appendixes.

II. SIGNALS

We now describe in detail the two classes of aforemen-
tioned signals, arising from a GW directly interacting with
either the photons or mechanical body of the loaded SRF
cavity (see the insets of Fig. 1). To leading order in the GW
strain h, these signals are distinguishable, as each only
affects the other at Oðh2Þ. Therefore, we will treat them
separately henceforth. While these two signals are on equal
footing conceptually, in practice the mechanical signal is
overwhelmingly larger and will determine our analysis and
detection strategy. An interesting aspect is that, as we will
see, the mechanical signal dominates over the EM one even
for GWs that do not resonantly excite a mechanical mode,
such that additional tuning of the mechanical resonances is
not necessary to achieve sensitivity to strains smaller than
10−20 across a wide range of frequencies.
Before providing a detailed derivation of these signals,

let us first briefly comment on why the mechanical signal
dominates. Heuristically, this is due to the fact that the
mechanical vibrations of the cavity are much less “stiff”

than the EM resonances, arising from the small speed of
sound in typical solids compared to the speed of light. As a
result, the internal binding forces of the material do not
hamper the GW’s ability to mechanically distort the system,
even for wavelengths much larger than the size of the cavity.
Let us now show this in more detail. Throughout this
work, we take the GW frequency to be much smaller
than the typical EM resonant frequency of the cavity,
ωg ≪ ω0 ∼ 1 GHz, which is true in all of the parameter
space of interest. As derived in, e.g., Refs. [49,50], GWs
interact directly with the EM field of the pump mode E0 ∼
Oð10Þ MV=m and source an effective current of the form
jeff ∼ ðE0=LcavÞhPDeiðω0�ωgÞt, where hPD is the GW ampli-
tude in the proper detector (PD) frame2 and Lcav ∼ ω−1

0 is
both the characteristic length scale of the cavity and the scale
over which the EM fields vary by an Oð1Þ fraction. When
ωg ≃ jω1 − ω0j, this current resonantly excites the EM field
of the signal mode at the level of

EðEMÞ
sig ∼QemhPDE0 ∼QemðωgLcavÞ2hTTE0; ð1Þ

where Qem is the EM quality factor of the cavity and in
the second equality we related the GW amplitude in the
PD frame to that in the transverse-traceless (TT) frame
by hPD ∼ ðωgLcavÞ2hTT.
In comparison, the mechanically induced signal stems

from the tidal force imparted to the cavity walls by the GW,

FðmechÞ
sig ∼ ðMcav=LcavÞhPD, where Mcav is the mass of the

cavity. Note that although FðmechÞ
sig =EðEMÞ

sig is independent
of ωg, crucially the mechanical signal in this setup does not
measure force, but rather displacement, which introduces
favorable scaling in the quasistatic limit ωgLcav ≪ 1. In
particular, outside the bandwidth of a mechanical reso-
nance, the force imparted by the GW displaces the cavity
walls by a fractional amount

ΔxðmechÞ
sig

Lcav
∼

FðmechÞ
sig

McavLcav

1

max ðωg; cs=LcavÞ2

∼ hTT min

�
1;
ωgLcav

cs

�
2

; ð2Þ

where the “max” and “min” quantities incorporate the
elastic response of the cavity with a speed of sound cs ≪ 1
in the limit that the mechanical frequency is higher or lower
than that of the GW. This displacement mixes the two EM
modes, resonantly exciting the signal field at the level of

EðmechÞ
sig ∼QemðΔxðmechÞ

sig =LcavÞE0, yielding

1Spherical Weber bars have been studied in, e.g.,
Refs. [43–48].

2In Ref. [49], we showed that the proper detector frame is the
appropriate one for cavity experiments. We also provided a
resummation of the metric in that frame to all orders in ωgLcav,
which was necessary for ωgLcav ∼Oð1Þ. Here, since we are
instead interested in the case where ωgLcav ≪ 1, we only keep the
leading-order terms in ωgLcav.
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EðmechÞ
sig ∼QemhTTE0 min

�
1;
ωgLcav

cs

�
2

: ð3Þ

We see that due to the cavity’s small speed of sound
cs ∼ 10−6, the mechanically induced signal of Eq. (3)
dominates over the direct EM signal in Eq. (1). In
particular, the former is enhanced by ðGHz=ωgÞ2 for
cs=Lcav ∼ kHz ≪ ωg ≪ 1=Lcav ∼ GHz and 1=c2s for ωg ≪
kHz for a cavity of size Lcav ∼Oð10Þcm. In Secs. II B
and II C, we substantiate these parametric estimates,
incorporating further details regarding the GW-EM, GW-
mechanical, and mechanical-EM coupling of the cavity.
The discussion presented throughout this work is valid in

the quasistatic limit, ωg ≪ L−1
cav ∼ 1 GHz. In particular, we

will restrict our analysis to ωg ≤ ω0=10. For completeness,
let us briefly comment on the alternative situation that
ωg ≳ L−1

cav. In this case, the mechanical signal is no longer
parametrically enhanced compared to the direct EM one, as
can already be seen by comparing Eqs. (1) and (3). As a
result, an analogous search at higher frequencies is not
likely to yield sensitivity that is competitive with other
proposed techniques, since, e.g., a resonant cavity setup
with a much larger applied static B field can achieve greater
sensitivity for ωg ∼ L−1

cav [49]. Furthermore, at the level of
the signal analysis, the high-frequency regime requires
employing the fully resummed metric in the PD frame [49].

A. Scanning vs broadband

Before discussing the signals at a more detailed level in
the sections below, let us briefly comment on the two
different experimental approaches discussed throughout
this work. In particular, we will investigate the potential

sensitivity of an apparatus operated in a manner in which
the EM mode splitting ω1 − ω0 is either tuned to the GW
frequency or held fixed, corresponding to a scanning (i.e.,
resonant) or nonscanning (i.e., broadband) setup, respec-
tively. Although the sensitivity of a scanning search
exceeds that of a broadband one on general grounds, there
are various reasons to consider the latter. First, designing a
cavity that scans across orders of magnitude in frequency
space is nontrivial. Second, often underemphasized in the
literature, is that it is highly time and labor intensive to
scan across a wide range of frequencies when searching
for highly coherent signals. For instance, although we will
assume in this work that it takes a time te ¼ 1 yr to scan
across a single e-fold in GW frequency (comparable to
many resonant axion dark matter experiments), this
does not account for the time required to tune the
parameters of the experimental apparatus at each new
point in ω1 − ω0 ¼ ωg. In practice, an experiment that
nominally should take a few years to run might in actuality
require on the order of a decade to obtain its projected
sensitivity. Third, and perhaps most important, is the fact
that a scanning experiment may easily miss transient
signals whose frequencies evolve on timescales compa-
rable to the short amount of experimental time spent at
each frequency step.
A few schematic examples of GW signals are shown in

Fig. 2. A generic high-frequency GW (ωg ≳ 10 kHz)
couples to the cavity by driving a low-lying mechanical
mode off resonance. The induced vibrational motion of
the cavity causes pump mode photons at ω0 ∼ 1 GHz to
be excited to signal photons at ω0 þ ωg. Thus, if the EM
modes are tuned such that, e.g., ω1 ≃ ω0 þ ωg, then the
signal mode is resonantly excited with a response that is

FIG. 2. Schematic of the frequency power spectrum for the experimental setup. A gravitational wave with frequency ωg (green line)
drives a low-lying mechanical mode (dotted black line) above its resonant frequency ωp, thereby exciting a small fraction of pump mode
photons at ω0 ∼ 1 GHz (red line) to signal photons at a frequency ω0 þ ωg. In a “scanning” setup, the electromagnetic mode splitting is
fixed to match the gravitational wave frequency, such that such signal photons are within the bandwidth of the electromagnetic signal
mode (dotted blue line) and are thus resonantly amplified (tall purple arrow). In a “broadband” setup, the electromagnetic mode splitting
is held fixed, and generically the electromagnetic signal at ω0 þ ωg is not resonantly excited (short purple arrow).
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enhanced by the large EM quality factor Qem of the cavity.
If, on the other hand, the EM mode splitting is held fixed,
most GWs will excite the signal mode off resonance with
significantly suppressed power. However, since most noise
sources are similarly suppressed at frequencies comparable
to the signal frequency, such a broadband setup is still
sensitive to small GW strains. In this case, such nonreso-
nant signals are not directly amplified by the large EM
quality factor. Nevertheless, Qem ≫ 1 still indirectly aids
the sensitivity of such an experiment, as it suppresses the
strength of irreducible EM noise.

B. Mechanical signal

Gravitational waves interact with the mass of the entire
system, inducing a tidal force that shakes and deforms the
cavity at the frequency ωg. Working in the PD frame, the
force density imparted by the GW in the long-wavelength
limit is fi ≃ −Ri0j0xjρcav, where Rμνρσ is the Riemann
tensor, xj the spatial coordinate with respect to the cavity’s
center of mass, and ρcav the cavity mass density [51]. Since
Rμνρσ is invariant under coordinate transformations atOðhÞ,
it is convenient to compute it in the TT frame, such that
Ri0j0 ≃ −ḧTTij =2. The resulting displacement of the cavity
wall away from its equilibrium position is decomposed as
Uðx; tÞ ¼ upðtÞUpðxÞ, where Up are the dimensionless
spatial profiles of the pth mechanical normal mode (nor-
malized to unity when averaged over the volume Vshell of a
single thin spherical shell) and up the corresponding time-
dependent amplitude. Also parametrizing the coherent
GW as hTTij ¼ h0ĥ

TT
ij eiωgt, where h0 is the characteristic

strain amplitude in the TT frame and ĥTTij ∼Oð1Þ, the
equation of motion governing the mechanical coupling of
the GW to the cavity is then [51]

üp þ
ωp

Qp
u̇p þ ω2

pup ≃ −
1

2
ω2
gV

1=3
cavη

g
mechh0e

iωgt: ð4Þ

Above, ωp is the mechanical resonant frequency, Qp

the mechanical quality factor, Vcav the volume of a
single spherical cavity, and we have defined the dimension-
less coefficient ηgmech that quantifies the GW-mechanical
coupling,

ηgmech ¼
ĥTTij

V1=3
cavVshell

Z
Vshell

d3xU�i
p xj; ð5Þ

where Vshell ≪ Vcav is the volume of conducting material in
one of the thin spherical shells.
The deformation upðtÞ of the cavity acts as a time-

dependent perturbation to the Hamiltonian that has nonzero
overlap between the pump and signal modes, thereby
transferring power between the two (a process which is
resonantly enhanced if ωg ≃ jω1 − ω0j). This can be seen at

the level of the classical equations of motion. We first
decompose the electric field as Eðx; tÞ ¼ eiðtÞEiðxÞ,
where Ei is the spatial profile of the pump (i ¼ 0)
and signal (i ¼ 1) mode and ei the corresponding time-
dependent amplitude (and similarly for the B fields). As
derived in Appendixes C and D, the mechanical perturba-
tion up couples to the EM modes e0;1 through

ë1 þ
ω1

Q1

ė1 þ ω2
1e1 ≃ −2ηEMmechω

2
1V

−1=3
cav upe0; ð6Þ

where Q1 is the EM quality factor of the signal mode. We
have also defined an additional dimensionless coefficient
ηEMmech that controls the mechanical-EM coupling:

ηEMmech ¼ V1=3
cav

R
S0
dA · UpðE0 ·E�

1 − B0 ·B�
1ÞR

Vcav
d3xjE1j2

; ð7Þ

where the integral in the numerator is performed over the
unperturbed cavity surface S0. From the right-hand side of
Eq. (6), we see that GW-induced vibrations (oscillating
at ωg) and the pump mode (oscillating at ω0) act as a
driving term that can resonantly excite the signal mode
if ω0 � ωg ¼ ω1. Furthermore, Eq. (7) implies that this
process is optimized for EM field profiles that are aligned
between the two modes. In Sec. III below, we will revisit
the requirements to achieve ηgmech; η

EM
mech ∼Oð1Þ.

The equations of motion in Eqs. (4) and (6) can be solved
after Fourier transforming to frequency space. As derived in
Appendix E, the power spectral density (PSD) of the signal
power arising from a coherent source of GWs coupling to
the pth mechanical resonance is given by

SðmechÞ
sig ðωÞ ≃ 1

4

Qint

Qcpl
jηgmechj2jηEMmechj2

× Pinh20
ω4
0Sê0ðω − ωgÞ

ðω2 − ω2
1Þ2 þ ðωω1=Q1Þ2

×
ω4
g

ðω2
g − ω2

pÞ2 þ ðωgωp=QpÞ2
; ð8Þ

where we have adopted the PSD conventions of
Refs. [52,53]. In Eq. (8), Qint is the intrinsic EM quality
factor of the cavity and Pin ¼ ðω0=QintÞ

R
d3xe20jE0j2 is the

input power of the pump mode. The parameter Qcpl

controls the degree of coupling to the readout, which
dictates the loaded quality factor of the signal mode by
Q−1

1 ¼ Q−1
int þQ−1

cpl. Hence, a “critically coupled” or “over-
coupled” setup corresponds to Qcpl ¼ Qint or Qcpl ≪ Qint,
respectively. In Eq. (8), we have also introduced the PSD
Sê0ðωÞ of the pump mode waveform, such that a mono-
chromatic pump mode corresponds to ê0 ¼ cosω0t. For a
coherent GW, we must account for the spectral spread of
the pump mode itself, which is determined by the width
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Δωosc of the external oscillator used to drive the cavity [53].
Approximating the external oscillator as spectrally flat
within a narrow region centered around ω0, we have

Sê0ðωÞ ≃
π2

Δωosc
ΘðΔωosc=2 − jω − ω0jÞ: ð9Þ

In our estimates, we assume that this is much narrower than
the signal mode bandwidth (but still resolvable within an
integration time of tint) such that t−1int ≪ Δωosc ≪ ω1=Q1,
which is true for commercially available oscillators [54]. In
the case that the GW is resonant with the EM splitting
(ωg ≃ jω1 − ω0j), the integrated form of Eq. (8) determines
the total signal power to be

PðmechÞ
sig ≃

1

4

Q2
1Qint

Qcpl
jηgmechj2jηEMmechj2Pinh20

×

8<
:

ω4
g

ðω2
g−ω2

pÞ2 ; jωg − ωpj ≫ ωp=Qp;

Q2
p; jωg − ωpj ≪ ωp=Qp;

ð10Þ

where the two cases correspond to whether the GW is off
(top) or on (bottom) resonance with the mechanical mode.
Alternatively, in the case that the GW signal is not resonant
with the signal mode (e.g., if ωg ≫ jω1 − ω0j ≫ ω0=Q1),
then the signal power is suppressed by a factor of
∼ω2

0=ðQ1ωgÞ2 ≪ 1 compared to Eq. (10). From Eq. (10)
we can glean several features. First, note that when the GW
is resonant with the mechanical mode ωg ≃ ωp, the signal
power is independent of ωg and enhanced by Qp. For
ωg ≫ ωp, the signal remains independent of ωg but is no
longer enhanced by Qp. Finally, if ωg ≪ ωp for all
mechanical modes, the signal power decouples as
ðωg=ωpÞ4, which is expected on general grounds, since
in the ωg → 0 limit we recover flat space.
Special care needs to be taken when considering the GW

coupling to the mechanical modes of the cavity, which we
model as two independent hollow spheres (numerical
simulations have shown that this is a good approximation
for frequencies above ∼1 kHz [36]). First, as discussed in
Appendix B, GWs couple only to the so-called “spheroi-
dal” modes (i.e., vibrations related to changes in volume as
opposed to fixed-volume “toroidal” modes arising from
rotation or shear) of the system [51]. Not only do GWs
solely couple to such modes, but from angular momentum
selection rules it can be shown that only l ¼ 2modes can be
excited to leading order in ωgV

1=3
cav ≪ 1 [51]. The mechani-

cal response of the cavity is described by a forest of such
spin-2 resonances. However, not all resonances contribute
equally to the response. To simplify the signal analysis, it is
therefore helpful to identify the mechanical mode that leads
to the largest signal, as a function of the GW frequency. We
find that, independent of ωg, the signal is in fact dominated

by the lowest-lying l ¼ 2 mechanical resonance with
frequency minωp ∼ 10 kHz. This is simple to see for
ωg ≪ 10 kHz, since in this case Psig ∝ ðωg=ωpÞ4, as
discussed above. For higher-frequency GWs, we first note
that the GW-mechanical coupling decreases as a function of
the number of nodes that the mechanical mode possesses
along the radial direction within the cavity walls, since
the GW is approximately spatially uniform for ωg ≲ ω0.
As a result, we find in Sec. III that beyond the first few
mechanical resonances, the scaling is well approximated
by ηgmech ∝ 1=ω2

p (this scaling may change significantly for
different cavity geometries). Furthermore, the mechanical
quality factor is expected to decrease with frequency as
Qp ∝ 1=ωp [55]. As a result, aside from the special case
where ωg ≃ ωp for the first few mechanical modes, it is the
off-resonance response of the lowest-lying spin-2 mode
that dominates the signal at most GW frequencies. This is
shown in Fig. 3, where the total signal PSD (shown as the
solid blue line) is given by the sum over the contributions of
the individual mechanical resonances and is well approxi-
mated by just the response of the lowest-lying mode. In
particular, the individual contribution of a higher mechani-
cal resonance is plotted as a dotted blue line, which is
shown to contribute a subdominant fraction of the total
signal power.

C. Electromagnetic signal

Here, we briefly describe the signal arising from the
direct interaction between the GW and the EM modes of
the cavity. As explained above, this is parametrically
suppressed compared to the mechanically induced signal
in the ωgV

1=3
cav ≪ 1 limit. However, we note that the

sensitivity of an experiment optimized for this signal
could be enhanced, in principle, if vibrational noise
was significantly reduced using, e.g., active feedback.
Although, as we describe below in Sec. V, achieving
sensitivity comparable to the mechanically induced signal
does not seem feasible, we describe the direct EM signal
here for the sake of completeness.
The direct interaction of the GW with the pump mode

sources an effective current, which in the PD frame is
given by3 [49,50]

jμeff ¼ ∂ν

�
hPDαβ

�
1

2
ηαβFμν þ ηβνFαμ − ηβμFαν

��

≡ ðωgV
1=3
cav Þ2h0ω0hE0iĵμðxÞeiðω0�ωgÞt; ð11Þ

where in the above expression hE0i is taken to be the
volume-averaged amplitude of the pump field, ĵðxÞ is a
dimensionless vector that accounts for the EM mode

3The possible ambiguity in the definition of electromagnetic
fields discussed in [56,57] does not affect our results or our
previous work [49], as explained in Appendix A.1 of [58].
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profiles and the GW polarization, and the factor of
ðωgV

1=3
cav Þ2 arises from relating the metric in the PD frame

to that in the TT frame hPD ∼ ðωgV
1=3
cav Þ2h0. When

ωg ≃ jω1 − ω0j, this resonantly excites the signal mode,
leading to a total integrated signal power of [49,52,53]

PðEMÞ
sig ≃

1

2

Q2
1Qint

Qcpl
jηgEMj2Pinh20 × ðωgV

1=3
cav Þ4; ð12Þ

where we have defined the dimensionless GW-EM
coupling

ηgEM ¼
R
d3xE�

1 · ĵ

ðVcav

R
d3xjE1j2Þ1=2

: ð13Þ

Note that compared to the mechanically sourced signal in
Eq. (10), the direct EM signal in Eq. (12) is suppressed by
a factor of maxðωg;ωpÞ4V4=3

cav . This confirms the intuition
laid out in the discussion near Eqs. (1) and (3) and justifies
our focus on the mechanical signal in this work. It is
instructive to compare Eq. (12) to the signal power
attainable in a setup employing static EM fields. For
instance, Ref. [50] recently proposed a modified version
of the “DMRadio” axion dark matter experiment, consist-
ing of a static B field applied to an LC circuit (whose
resonant frequency is matched to ωg). As shown in
Ref. [50], a distinct readout specialized to the GW-
generated EM field (in the form of a “figure-8” loop
pickup) enables the same ωg-scaling as shown in Eq. (12).

III. MECHANICAL AND ELECTROMAGNETIC
MODE COUPLING

In this section, we highlight key requirements of the
cavity design, focusing on optimization of the GW-
mechanical and mechanical-EM couplings, as defined in
Eqs. (5) and (7), respectively. An optimal design will
enable Oð1Þ values for both couplings, as well as EM
modes with a tunable frequency splitting matched to the
GW frequency. We show below that a coupled-cavity setup
with judiciously chosen EM polarizations meets these
requirements, enabling sensitivity across a broad range
of GW frequencies (see Sec. V). A more detailed treatment
is given in Appendixes B and D.
A single spherical cavity with inner radius a ∼ 10 cm

possesses EMmodes separated by a characteristic frequency
splitting of ∼1 GHz and low-lying mechanical modes
with frequency ∼10 kHz. To probe subgigahertz GWs,
we envisage employing a system similar to the existing
MAGOprototype [35,36], consisting of two nearly identical
spherical cells, electromagnetically coupled via a small
circular aperture, as shown in Fig. 1. For a narrow aperture,
the pump and signal modes of the coupled system are well
approximated as consisting of the symmetric (orange lines
in Fig. 1) and antisymmetric (blue lines in Fig. 1) linear
combination of single-sphere modes. We therefore denote
the pumpE0 and signalE1modes of the total cavity as tensor
products of single-sphere modes Ẽ of the left and right cell.
In particular, we take the pump and signal modes to have
identical field configurations in the left cell but opposite
field profiles in the right cell, such that E0 ¼ Ẽ ⊗ RẼ and

FIG. 3. PSDs evaluated at ω0 þ ωg for the total mechanical signal (blue line) and noise arising from thermal occupation of the EM
modes (pink line), thermal occupation of the mechanical modes (green line), and a quantum-limited amplifier (cyan line). The
characteristic strain of the coherent gravitational wave is set to h0 ¼ 10−20. The contribution of a single excited mechanical mode at
∼1 MHz to the signal (dashed blue line) and noise (dashed green line) is also shown. See Sec. IV for further details regarding noise. The
parameters of the cavity are the same as shown later in Fig. 5. Left: PSDs for a scanning setup, in which the EMmode splitting is fixed to
the GW frequency, ω1 − ω0 ¼ ωg and the quality factor of the signal mode isQ1 ¼ 1010. Right: PSDs for a Nonscanning setup, in which
Q1 ¼ 105 and the EM mode splitting is fixed to the lowest-lying spin-2 mechanical resonance, ω1 − ω0 ¼ minωp ∼ 10 kHz with
mechanical quality factor Qp ¼ 106.
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E1 ¼ Ẽ ⊗ ð−RẼÞ (and similarly for theB fields), whereR
is a rotation matrix acting on the right-cell mode, which
accounts for the relative spatial orientation between the two
spheres.4 For an aperture of radius d joining two spherical
cells of radius a, the induced frequency splitting between the
twomodes is roughlyΔωEM ∼ ðd=aÞ3ω0 ≪ ω0, whereω0 ∼
10 GHz is the resonant frequency in the absence of the
coupling [59]. Thus, an aperturewith amechanically tunable
radius spanning ∼1 mm-few cm induces a splitting of
∼1 kHz–100 MHz. In our calculations,we ignore collective
mechanical oscillations and take themechanicalmodes to be
those of uncoupled spherical shells. In Ref. [36], this was
found to be a good approximation for ωg ≳ 10 kHz.

A. GW-mechanical coupling coefficient

Here we discuss the GW-mechanical coupling ηgmech
of Eq. (5) for the setup described above. Since the GW
directly excites the mechanical mode of the cavity, we take
the GW’s direction of propagation and the mechanical
profile Up to be oriented along the same axis. In this case,
we can calculate ηgmech for any mechanical mode p, as
specified by the radial index n ≥ 1 and two spherical
harmonic indices l and m defined with respect to the
GW axis. The frequencies of these modes are degenerate
in the inclination index m and increase with increasing n
and l. As discussed in Appendix B, GWs only couple to
spheroidal l ¼ 2mechanical modes. Restricting our analy-
sis to this subset, we find that the optimal coupling is
achieved for the ðl; n; mÞ ¼ 212 mode, which has a
resonant frequency of ωp ∼ 12 kHz for a spherical niobium
cavity with inner radius a ¼ 20 cm and thickness 5 mm.
In particular, a numerical determination of this GW-
mechanical coupling yields ηgmech ≃ 0.35.
An Oð1Þ GW-mechanical coupling is achieved for only

the few lowest-lying spin-2 mechanical modes. This is due
to the fact that for 10 kHz ≪ ωg ≪ 1 GHz, the GW is
approximately uniform throughout the entire cavity volume,
whereas the mechanical mode profile is not (see the func-
tional form of Up in Appendix A), which suppresses the
overlap volume integral in Eq. (5). In particular, for large
radial index n ≥ 3, the increasing number of radial nodes in
Up gives rise to a coupling that scales as ηgmech ∝ 1=ω2

p. In
this work, we take the resonant frequencies of the mechani-
cal modes to be fixed. Regardless, as discussed above in
Sec. II B and shown explicitly in Sec.V below, this setup still
has powerful sensitivity to GWs well outside the bandwidth
of the lowest-lying mechanical resonance.

B. Mechanical-EM coupling coefficient

In this section, we briefly discuss the EM-mechanical
coupling ηEMmech of Eq. (7). Further details are provided in

Appendix D. As shown below, for an optimal choice of
the EM modes, ηEMmech ∼Oð1Þ is obtained for a significant
fraction of GW propagation directions and polarizations.
Approximating the left and right cells as spheres of
comparable size, Eq. (7) is given by the sum of individual
surface integrals,

ηEMmech ¼
V1=3
cavR

d3xjẼj2
�Z

S0L

dA · UpðjẼj2 − jB̃j2Þ

−
Z
S0R

dA · UpðjRẼj2 − jRB̃j2Þ
�
; ð14Þ

where S0L and S0R are the unperturbed surfaces of the left
and right cavity, respectively. Since the GW wavelength is
much larger than the size of the experimental setup, the
polarization of Up is the same for both cells. Furthermore,
since the l ¼ m ¼ 2 mechanical mode Up is odd under a
rotation of π=2, the two integrands in Eq. (14) are
maximized and add constructively if: (i) the normal
component of the mechanical mode and magnitude of
the EM mode possess the same symmetry axis and angular
structure, and (ii) the relative EM orientationR is given by
a rotation of π=2 along the GW’s direction of propagation.

FIG. 4. Sky map of the mechanical-electromagnetic coupling
ηEMmech as a function of the direction of propagation of a plus-
polarized GW, where the coordinate and polarization conventions
are given in Appendix D. The map is shown in terms of equatorial
coordinates of the GW source, such that the polarization of the
excited mechanical mode aligns with the propagation direction of
the GW. The pump and signal electromagnetic modes correspond
to combinations of TE112 single-sphere modes that are symmetric
or antisymmetric across the two cells with a relative offset in
polarization by a rotation of π=2 (refer to the discussion in Sec. III
for further details). The mechanical mode of each cell is taken to
be the l ¼ 2, n ¼ 1, m ¼ 2 spheroidal mode with a polarization
fixed by the direction of the GW source. For this choice of
mechanical mode, the GW-mechanical coupling is ηgmech ≃ 0.35.
The maxima, at which ηEMmech ∼Oð1Þ, correspond to points where
the direction of the incoming GW is aligned with one of the
electromagnetic axes.

4The spherical symmetry is broken by the aperture joining the
two cavities and hence their relative orientation is physical.
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An example of such an arrangement is shown in Fig. 1. In
Appendix D, we confirm this by numerically evaluating
ηEMmech for various relative polarizations of the TE112 EM
mode in either cell.
We calculate the mechanical-EM coupling ηEMmech as a

function of the GW’s direction of propagation on the sky
for an optimal selection of cavity modes (i.e., for Up and
Ẽ and B̃ consisting of the 212 mechanical mode and the
TE112 EM mode, respectively), fixing the left-right rela-
tive EM orientation to be a rotation of π=2. This is
displayed in Fig. 4, which shows that ηEMmech ∼Oð1Þ across
a large fraction of the sky and that the coupling is
maximized when the GW’s propagation direction is
aligned with one of the EM axes. We also note that in
contrast to the GW-mechanical coupling of the previous
subsection, ηEMmech ∼Oð1Þ for many of the higher excited
mechanical resonances as well, since the EM modes
only couple to Up across the cavity surface, as opposed
to the volume. For this setup, the normal component
of the mechanical mode scales as Up · n̂ ∝ sin2 θ cos 2ϕ,
whereas the EM modes evaluated along the surface are
jẼj2 ¼ 0 and jB̃j2 ∝ cos2 θ cos2 ϕþ sin2 ϕ. Hence, both
the mechanical and EM factors of Eq. (14) are quad-
rupolar and have nonzero overlap when integrated over
the cavity surface.

IV. NOISE SOURCES

In this section, we discuss the importance of various
noise sources. Our results are summarized in Fig. 3, which
shows noise PSDs for various experimental configurations.
The most dominant source of noise in this setup is expected
to arise from external vibrations that couple to the cavity
and induce a resonant transfer of EM energy, analogous to
the mechanical signal of Sec. II B. Generalizing Eq. (4), the
mechanical response of the cavity to an external force is
given by

üp þ
ωp

Qp
u̇p þ ω2

pup ¼ Fp=Mcav: ð15Þ

Above, Fp is the force projected on the pth mechanical
mode, which is related to the external force density f by

Fp ¼
Z
Vshell

d3xf · Up: ð16Þ

As in Sec. II B, we Fourier transform Eqs. (6) and (15)
to determine the noise power arising from mechanical
vibrations:

SðmechÞ
noise ðωÞ ≃ Qint

Qcpl
jηEMmechj2Pin

ω4
0

ðω2 − ω2
1Þ2 þ ðωω1=Q1Þ2

SFp
ðω − ω0ÞM−2

cavV
−2=3
cav

ððω − ω0Þ2 − ω2
pÞ2 þ ððω − ω0Þωp=QpÞ2

: ð17Þ

Appearing in Eq. (17) is the same mechanical-EM overlap
factor, ηEMmech, as discussed for the GW signal. However,
unlike the signal, for which the lowest-lying spin-2
mechanical resonance dominates, many resonances will
be relevant for mechanical noise. This is due to the fact
that, unlike subgigahertz GWs, external source of vibra-
tions need not be spatially uniform across the cavity and
thus may have Oð1Þ spatial overlap with higher mechani-
cal modes.
To estimate the noise power in Eq. (17), we see that we

need to determine the PSD of the force SFp
ðωÞ, which has

reducible contributions from, e.g., seismic noise and the
cryogenic system, as well as irreducible thermal fluctua-
tions from the cavity itself. Measurements of SRF cavity
microphonics at Fermilab have detected the presence of
vibrations at an rms value of hu2pi1=2 ∼ 0.1 nm [60,61],
though no specific attempts were made to improve this
because it was sufficient for the particular design goal of
the cavity. We use this measurement to determine the
force responsible for such vibrations, by noting that the
maximal displacement should arise from exciting
the lowest mechanical resonance at a frequency of
minωp ∼ 10 kHz [52,53]:

SFp
ðminωpÞ ≃ 4πM2

cav minðωpÞ3hu2pi=Qp

∼ 10−11 N2Hz−1 ×

�
Mcav

10 kg

�
2
�
minωp

10 kHz

�
3

×
�hu2pi1=2
0.1 nm

�
2
�
106

Qp

�
: ð18Þ

Note that Eq. (18) defines the size of the force PSD only
at a frequency of minωp ∼ 10 kHz.5 We could not find
direct measurements of vibrational noise for much larger
frequencies, so we perform a conservative extrapolation of
this estimate in order to determine the force power for
ω ≫ 10 kHz. High-Q mechanical resonators operating at
megahertz frequencies and above have been demonstrated
to reach the thermal noise floor [62], but these results
cannot be easily incorporated into our estimates since the

5This is not in contradiction with the previous statement that
many mechanical resonances are important in determining the
mechanical noise. The total displacement of the cavity walls is
dominated by the lowest resonance, but the transition of power
between EM modes at a given (higher) frequency can be
dominated by higher resonant modes.
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cryogenic environment is qualitatively different than the
liquid helium cooling system employed for SRF cavities.
Regardless, one can estimate the frequency dependence of
SFp

ðω > minωpÞ from first principles. It is possible to
show that most sources of vibrational noise fall off at high
frequencies at least as rapidly as SFp

ðωÞ ∼ 1=ω2 [63]. In
the absence of a direct experimental confirmation, we
conservatively take this noise to fall off linearly in
the frequency, i.e., SFp

ðω > minωpÞ ∼ SFp
ðminωpÞ×

ðminωp=ωÞ, which is a scaling that is much slower than
any source of environmental vibrations that we could
identify. Noise with a PSD proportional to 1=ω exists
in a variety of electronic systems (see, e.g., Refs. [64,65]
for a review).
Even for a cavity that is perfectly isolated from its

surrounding environment, an irreducible source of
vibrations emerges from the temperature of the cavity
itself. This can be quickly derived by noting that the
energy stored in mechanical vibrations is related to the
cavity temperature T via the equipartition theorem, such

that Mcavω
2
phu2pi=2 ¼ QpS

ðthÞ
Fp

ðωpÞ=ð8πMcavωpÞ ¼ T=2,

implying that the irreducible thermal force is given by

SðthÞFp
ðωpÞ ¼ 4πMcavωpT=Qp

∼ 10−22 N2Hz−1 ×

�
Mcav

10 kg

��
ωp

10 kHz

�

×

�
T
2 K

��
106

Qp

�
: ð19Þ

This same result can be readily obtained from the fluc-
tuation-dissipation theorem [66]. Note that unlike the
mechanical signal in Eqs. (8) and (10), which is indepen-
dent of the cavity mass, a larger mass suppresses mechani-

cal noise since SðmechÞ
noise ∝ SFp

ðωpÞM−2
cav scales asM−2

cav for an

external force of fixed strength or as M−1
cav when intrinsic

thermal vibrations dominate. In estimating the projected
sensitivity, we will consider both possibilities, correspond-
ing to mechanical noise comparable to existing measure-
ments in Eq. (18) or noise that has been attenuated to the
irreducible value in Eq. (19).
Mitigating vibrational noise down to its irreducible

thermal value in Eq. (19) requires a carefully designed
suspension system. This feat is considerably simplified in
our setup compared to LIGO due to the higher frequencies
that we consider but might be complicated by the cooling
system required to operate a superconducting cavity.
The instruments most similar to our own and already in
operation include Weber bars, which have succeeded in
suppressing vibrational noise down to such levels. For
instance, the Antenna Ultracriogenica Risonante per
l’Indagine Gravitazionale Astronomica (AURIGA) experi-
ment reported a noise power reduction of 10−24 at a

frequency of ∼5 kHz [67].6 Furthermore, since external
sources of vibrational noise are expected to rapidly fall off
with increasing frequency, it is possible that no such
suspensions are required. Although not discussed in detail
in this work, we expect that attaining the noise value given
in Eq. (19) requires significant suppression of vibrations
that emerge from the immediate cryogenic environment. In
fact, preliminary design strategies to mechanically isolate
the cavity from the liquid helium environment were
pursued previously by the MAGO Collaboration [36].
Although mechanical noise dominates throughout most

of the parameter space of interest, thermal occupation of
the EM modes and readout noise from the amplifier are
relevant at higher frequencies and well outside the reso-
nator bandwidth, respectively. Following Refs. [52,53],
these are incorporated by their respective PSDs:

SðEMÞ
noise ðωÞ ¼

Q2
1

QintQcpl

4πTðωω1=Q1Þ2
ðω2 − ω2

1Þ2 þ ðωω1=Q1Þ2
; ð20Þ

SðampÞ
noise ðωÞ ¼ πℏω: ð21Þ

In Eq. (20), we see that thermal noise, being internal to
the cavity, is filtered by the cavity response function and
has a peak value controlled by the temperature T (which
must be smaller than ∼2 K to maintain superconductivity)
and the intrinsic quality factor Qint ≳ 1010. In Eq. (21),
we have taken amplifier noise to be approximately spec-
trally flat within the sensitivity bandwidth (corresponding
to the range of frequencies narrowly centered around
ω0 þ ωg ∼ 1 GHz), independent of the cavity resonance,
since it arises due to the effective temperature of the
external readout system. We have also assumed that the
amplifier operates near the so-called standard quantum
limit, corresponding to a single photon per unit bandwidth
[68,69], which is the industry standard for currently
operating axion dark matter experiments at gigahertz
frequencies [70]. We have explicitly included the factor
of ℏ here as a reminder that we are considering quantum-
limited amplifier noise.
Additional sources of noise may also play a role, such as

“phase noise” of the external oscillator used to drive the
cavity in the presence of crosstalk between the pump mode
antenna and the signal mode. Mitigation of such phase
noise was a major driving factor for the readout design of
the MAGO experiment. In particular, the symmetric pump
and antisymmetric signal field configurations were driven
and readout using so-called “magic-tee” 180° hybrid

6Physically, we can envision a system with N cascaded
pendulums, such that their small mechanical resonant frequency
ωpend reduces the displacement of the cavity off resonance by a
factor of ðωpend=ωÞ2N . As an example, for ωpend ∼ 1 Hz, reducing
the cavity displacement by 10−8 at ω ∼ 1 kHz (and, hence, the
force PSD by 10−16) requires only two such pendulums.
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couplers, which were able to suppress power in such
crosstalk by a factor of ∼10−14 [35,36]. With this level
of crosstalk mitigation, we find that for commercially
available oscillators, phase noise is expected to be much
smaller than the mechanically induced noise described
above [52,53], but we include it for completeness in our
calculations, using the PSD derived in the appendix of
Ref. [53]. We also do not expect significant contributions
from superconducting nonlinearities; such effects source
power at odd harmonics of the pump mode with frequency
spread governed by the narrow bandwidth of the external
oscillator [71], and hence such noise does not have support
near the signal frequency ω0 þ ωg.

V. EXPERIMENTAL PARAMETERS AND
EXPECTED SENSITIVITY

We now apply the formalism developed above to
estimate the sensitivity to coherent GWs in the kilohertz
to gigahertz frequency range. In doing so, we assume an
apparatus of the form similar to the MAGO prototype,
consisting of two high-Q superconducting spherical cavity
cells joined by a small circular tunable aperture. As
discussed in Sec. III, the diameter of this aperture controls
the splitting between the pump and signal fields, which
for the MAGO prototype was designed to scan across
4–20 kHz [36]. As our work is primarily a theoretical study,
whose goal is to motivate further development of various
design strategies, we do not focus on a particular tuning
and readout design in our estimates below. Instead, we
consider the sensitivity to GWs across a much wider range
of frequency splittings. In doing so, we hold various
experimental parameters (such as crosstalk rejection) fixed
to the values achieved by the MAGO Collaboration more
than 15 years ago [35,36]. It is conceivable that at the
design stage different cavities can be optimized to target
different frequency ranges.
For concreteness, we adopt the following baseline

cavity parameters for our projections: a cavity volume
Vcav ¼ 30L and mass Mcav ¼ 10 kg, a temperature T ¼
1.8 K, a characteristic pump-mode EM field strength
E0 ¼ 30 MV=m, a mechanical quality factor Qp ¼ 106

for the lowest-lying mechanical resonance, and an intrinsic
EM quality factor Qint ¼ 1010. The coupling coefficients
ηgmech and ηEMmech are computed assuming a MAGO-like
geometry (see Secs. II and III). In particular, we fix ηgmech ¼
0.35 and ηEMmech ¼ 1 in our analysis. Although we find that
the direct GW-EM coupling is significantly smaller for
such a cavity (ηgEM < ηgmech), we fix ηgEM ¼ ηgmech in our
projections to more meaningfully compare the mechanical
and EM signals in setups dedicated for either one. In
regards to experimental parameters and noise estimates, we
make assumptions different than that previously assumed
for MAGO in only two respects: (i) As detailed in Sec. IV,
we update the force PSD responsible for vibrational noise,

utilizing recent measurements of cavity microphonics at
Fermilab. (ii) We assume the frequency splitting between
the EM modes to be tunable across a much broader range.
Here, we do not specify the scanning mechanism but note
that detailed design strategies along this direction are in
progress at SLAC in relation to a prototype axion dark
matter experiment [52].
In this section, we estimate the sensitivity of both a

scanning and nonscanning (i.e., broadband) setup, for
which the EM frequency splitting is either tuned to the
GW frequency or instead is held fixed such that a generic
GW signal registers outside of the resonant bandwidth,
respectively. As we show below, if external vibrations can
be significantly attenuated, the existing MAGO cavity,
operated in a broadband manner, could be the most
sensitive instrument to GWs across a broad frequency
range (see the projection labeled “nonscanning” in Fig. 5).
To compute the signal-to-noise ratio (SNR) of a MAGO-
like setup, we combine all noise PSDs described in Sec. IV
to determine the total noise PSD SnoiseðωÞ. In doing so, we
include the contribution of all mechanical resonances to

SðmechÞ
noise ðωÞ (see Fig. 3). For a GW-induced signal PSD

SsigðωÞ, the SNR is given by integrating the ratio of signal
and noise PSDs squared:

SNR ≃
�
tint
2π

Z
∞

0

dω

�
SsigðωÞ
SnoiseðωÞ

�
2
�
1=2

; ð22Þ

where tint is the integration time spent at a fixed
frequency splitting. For a broadband search with fixed
frequency splitting, tint is simply the total run time
of the experiment. Instead, in a scanning setup, tint is related
to the time te needed to cover an e-fold in ωg by
tint≃ ðω0=ωgÞðte=Q1Þ≪ te, assuming ω0=Q1 ≪ ωg ≪ ω0.
Hence, in the latter case, tint is ωg dependent for a scanning
strategy employing a fixed te (which is a sensible choice
assuming a log-uniform prior for ωg). In our projections,
we adopt an e-fold time or total integration time of one year,
for a scanning or broadband setup, respectively. The
expression for the SNR in Eq. (22) can be evaluated
analytically in the case that a single noise source dominates.
As discussed in Sec. II B, since the GW’s coupling to
excited mechanical modes scales as jηgmechj ∝ 1=ω2

g for
ωg ≫ 10 kHz, the signal is dominated by the lowest-lying
spin-2mechanical resonance formost of the parameter space
of interest. Hence, in presenting the analytic expressions
below,we restrict to the case that the signal arises from aGW
driving this first mechanical mode at a frequency much
above its resonance, as this applies to most of the parameter
space of interest and simplifies the expressions considerably.
Let us begin by considering a mechanical-noise-limited

setup, which is valid for ωg ≪ Oð1Þ MHz (see Fig. 3).
In this case, for a coherent GW the SNR in Eq. (22)
evaluates to
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SNRmech noise ≃
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π3tint
2Δωosc

s
jηgmechðωsig

p Þj2

×
jηEMmechðωsig

p Þj2
jηEMmechðωnoise

p Þj2
M2

cavV
2=3
cav

SFp
ðωgÞ

h20ω
4
g

×

�
1; ωg ≠ ωnoise

p

1=ðQnoise
p Þ2; ωg ≃ ωnoise

p ;
ð23Þ

where we have assumed tint ≳ Δω−1
osc and in the first and

second lines we have taken the GW frequency to be out
or in resonance with a higher (non-lowest-lying) mechani-
cal mode, respectively; in the latter case, the noise is
resonantly enhanced, reducing the SNR by a factor of

1=ðQnoise
p Þ2. Note that Eq. (23) distinguishes between the

EM-mechanical coupling ηEMmech for a mechanical mode that
is excited by either the GWor noise. For most of the modes
considered, each of these coupling coefficients isOð1Þ. We
also see that the mechanical-noise-limited SNR scales as
SNR ∝ t1=2int ω

4
g=SFp

ðωgÞ, which is a rapidly growing func-
tion of ωg in a scanning or broadband setup for most
sources of vibrational noise.
Instead, if thermal EM noise is the largest contributor,

which is valid for ωg ≳Oð1Þ MHz in a scanning setup (see
the left panel of Fig. 3), then the mechanical signal yields
an SNR that is approximately

SNREMnoise ≃
1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πtint

2Δωosc

r
Q2

intjηgmechj2jηEMmechj2
Pin

T
h20:

ð24Þ

This implies that the EM-noise-limited SNR scales as
SNR ∝

ffiffiffiffiffiffiffiffiffiffiffi
te=ωg

p
for a scanning search. It is also crucial

to compare the dependence on the EM quality factorQint in
Eqs. (23) and (24). In particular, the signal in a mechan-
ically noise-limited setup is independent ofQint, as both the
signal and noise are similarly enhanced by the large quality
factor. However, in an EM-noise-limited setup, larger Qint
suppresses thermal occupation of the signal mode, such that
the SNR scales as the square of the intrinsic EM quality
factor for fixed input power Pin. The fact that EM noise is
drastically reduced by Qint ≳ 1010 (or, equivalently, that
the EM-noise-limited SNR is enhanced compared to the
mechanically noise-limited one) is directly the reason why
a MAGO-like setup is more sensitive to high-frequency
GWs than modern Weber bars, since the latter employ
electrical readout schemes with much smaller EM
quality factors. We will revisit this point in more detail
in the next section.
In a broadband setup, amplifier noise dominates for ωg ≳

Oð100Þ kHz (see the right panel of Fig. 3). Taking ωg ≫
jω1 − ω0j and 10 kHz ≫ ω0=Q1, the approximate SNR of
an amplifier-noise-limited broadband experiment is

SNRðbroadbandÞ
ampnoise ≃

1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πtint

2Δωosc

r
Qint

Qcpl
jηgmechj2jηEMmechj2

Pin

T
h20

ω0

ω2
g
:

ð25Þ

We see from Eq. (25) that the SNR decreases rapidly with
increasing ωg, since here the GW excites the signal mode
off resonance (i.e., ωg ≫ jω1 − ω0j), whereas the amplifier
noise is independent of the EM resonance. Unlike the
previous two examples, in this case overcoupling the signal
mode to the readout Qcpl ≪ Qint parametrically increases
the SNR, since amplifier noise is assumed to remain

FIG. 5. Reach of a MAGO-like setup to coherent GWs. The
mechanical (purple) and EM (blue) signals are separated for
visual comparison, but they would both be present in a single
experiment. The shaded purple and blue regions labeled “scan-
ning” and “scanning (EM)” show the sensitivity to mechanical
and EM signals, respectively, for a scanning setup in which
the EM mode splitting is matched to the GW frequency, i.e.,
ω1 − ω0 ¼ ωg and assuming vibrational noise as inferred by
recent Fermilab measurements of cavity microphonics. The solid
and dashed contours labeled “scanning (thermal)” and “non-
scanning (thermal)” show the sensitivity when vibrational noise is
attenuated to its irreducible thermal value, for a scanning or
broadband setup, respectively. In the latter case, the EM mode
splitting is fixed to the lowest-lying spin-2 mechanical resonance,
i.e., ω1 − ω0 ¼ minωp ∼ 10 kHz. In the scanning or broadband
setup, the time to cover an e-fold in ωg or the total experimental
time are fixed to 1 yr, respectively. The degree of overcoupling
to the readout is optimized for 105 ≤ Qcpl ≤ 1010 (fixed to
Qcpl ¼ 105) at each frequency for the scanning (nonscanning)
projections. Also shown in gray are existing limits from LIGO-
Virgo pulsar searches [72], AURIGA [41,67,73], BAW resona-
tors [18], and the holometer experiment [17]. The green shaded
region corresponds to signals generated from superradiant bo-
sonic clouds around black holes of mass M⋆ ∼M⊙ð105 Hz=ωgÞ
at a distance of 1 kpc (see Appendix F). Note that the LIGO-Virgo
bounds are specific to pulsars and therefore do not exclude
superradiance at these frequencies.
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independent of Qcpl. In our projections for a scanning
experiment, we optimize the SNR by marginalizing over
Qcpl for each value of ωg while demandingQcpl ≥ 105 [53].
Instead, for a broadband experiment we fix Qcpl ¼ 105.
Comparing Eqs. (23)–(25), we see that the impact of
various experimental parameters (such as the pump mode
power, quality factors, and vibration attenuation) depends
sensitively on the nature of the dominant noise source
and hence the particular frequency range considered. For
instance, if mechanical vibrations dominate the noise
budget, as in Eq. (23), the SNR is independent of the
EM quality factor and pump mode power; varying these
parameters affects both the signal and noise in the same
way since they enter through the same physical process. On
the other hand, these very same parameters are critically
important for enhancing the sensitivity when limited by EM
thermal noise, as in Eq. (24).
The above expressions provide analytic handles for

understanding the sensitivity to coherent GWs in various
frequency and noise regimes. In our actual estimates, we
employ a numerical evaluation of Eq. (22), incorporating
all noise sources previously discussed. Our results for the
sensitivity (corresponding to SNR ≥ 1) to coherent GW
sources (i.e., GWs that are more coherent than the external
oscillator used to drive the pump mode) are shown in Fig. 5
for a various experimental setups. The solid purple lines
correspond to a scanning experiment where the splitting
between the EM modes is tuned to the GW frequency at
every point (note that the mechanical modes are held fixed).
For the line labeled “scanning,” we adopt the vibrational
noise of Eq. (18), estimated from recent cavity microphon-
ics measurements at Fermilab. Instead, we assume that such
noise has been attenuated down to the irreducible thermal
value of Eq. (19) for the projection labeled “scanning
(thermal),” the feasibility of which is discussed above in
Sec. IV. The dashed purple line labeled “nonscanning
(thermal)” demonstrates the sensitivity of a broadband
setup employing an EM mode splitting fixed to the
frequency of the lowest-lying spin-2 mechanical resonance,
i.e., ω1 − ω0 ≃minωp ∼ 10 kHz, and, once again,

assuming vibrational noise attenuated to its irreducible
thermal value.7 Along the blue solid line labeled “scanning
(EM),” we also show the sensitivity of a scanning setup
limited by the vibrational noise given in Eq. (18) and
targeting the direct EM signal described in Sec. II C. As
discussed above, this signal is parametrically suppressed
compared to the mechanical one for ωg ≪ ω0, leading to a
drastically reduced sensitivity at small frequencies. Also
shown in Fig. 5 are existing limits (solid gray) on coherent
high-frequency GWs. These include searches performed
by LIGO and VIRGO for continuous gravitational waves
from pulsars8 [72], the Weber bar experiment AURIGA
[41,67,73], the holometer interferometer [17], and a bulk
acoustic wave (BAW) resonant mass antenna [18]. The
green shaded region corresponds to the predicted signal
strength of coherent GWs generated from superradiant
bosonic clouds around black holes of mass M⋆ ∼
M⊙ð105 Hz=ωgÞ at a distance of 1 kpc [30,74]. We refer
the interested reader to Appendix F for further discussion of
such signals.

VI. COMPARISONS TO OTHER EXPERIMENTS

In Fig. 5, we estimated the reach to coherent GWs with
amplitude h0. However, to compare to other experimental
setups, it is often more useful to phrase the sensitivity in
terms of the “effective noise strain” PSD Snoiseh , since it is
independent of choices regarding scan strategies and
observation time, and it can be used to determine the
reach by noting that the ratio of signal and noise PSDs is
Ssig=Snoise ¼ Sh=Snoiseh , where Sh is the PSD of the GW
strain hTT in the TT frame. To determine Snoiseh , we define
the “transfer function” T as the ratio between the signal
power and GW PSDs, Ssigðω0 þ ωgÞ ¼ T ShðωgÞ, for a
noncoherent GW source (i.e., one whose coherence time is
much shorter than the cavity ring-up time). Since Eq. (8)
was derived assuming a monochromatic GW source, Ssig
must be rederived assuming a spectrally broad signal. This
is done in detail in Appendix E, which shows that the
transfer function of a MAGO-like experiment is given by

T ≃
Pin

4

Qint

Qcpl

ω4
0jηEMmechðωsig

p Þj2
½ðω0 þ ωgÞ2 − ω2

1�2 þ ½ðω0 þ ωgÞω1=Q1�2
ω4
gjηgmechðωsig

p Þj2
ðω2

g − ωsig2
p Þ2 þ ðωgω

sig
p =Qsig

p Þ2 ; ð26Þ

where ωsig
p and Qsig

p are fixed to the frequency and
quality factor of the lowest-lying spin-2 mechanical
resonance. The expression above can be used to
convert the noise power PSDs of Sec. IV to effective
noise strain PSDs, Snoiseh ðωgÞ ¼ Snoiseðω0 þ ωgÞ=T . This
is done in Fig. 6, which shows the projections for existing
and proposed experimental setups phrased in terms of
ðSnoiseh Þ1=2.

7We have chosen this value for the EM mode splitting in a
broadband setup because it optimizes the reach across a wide a
range of GW frequencies and roughly matches the central fre-
quency splitting of the existing MAGO prototype.

8Note that the reach of LIGO-Virgo cannot be extrapolated
beyond ∼10 kHz. Besides the fact that current data are sampled at
∼16 kHz, there is also a lack of feasible calibration to understand
and control the changed optical response at high frequencies. We
thank M. Seglar and O. Piccinni for discussions on this point.
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Similar to Eqs. (23)–(25), we give analytic results for
Snoiseh in the case that a single noise source dominates
and that the signal arises from a GW driving the first
mechanical mode at a frequency much above its
resonance, ωg≫ωsig

p ∼10 kHz. Analogous to Eq. (23), for
a mechanical-noise-limited setup (e.g., for ωg ≪ 1 MHz),

Smech noise
h ðωgÞ ≃

4=ω4
g

jηgmechðωsig
p Þj2

jηEMmechðωnoise
p Þj2

jηEMmechðωsig
p Þj2

SFp
ðωgÞ

M2
cavV

2=3
cav

×

�
1; ωg ≠ ωp

Q2
p; ωg ≃ ωp;

ð27Þ

where in the first and second lines we have taken the GW
frequency to be out or in resonance with a higher (non-
lowest-lying) mechanical mode, respectively. Instead, for a
thermal EM-noise-limited setup analogous to Eq. (24) (e.g.,
for ωg ≳ 1 MHz in a scanning experiment), the effective
noise strain is

SEMnoise
h ðωgÞ ≃

16πT
jηEMmechj2jηgmechj2Q2

intPin
: ð28Þ

Finally, when amplifier noise dominates (e.g., for ωg ≳
100 kHz in a broadband setup), analogous to Eq. (25)
we have

Samp noise
h ðωgÞ ≃

16πQcplω
2
g

PinQintω0jηEMmechj2jηgmechj2
; ð29Þ

where we took ωg ≫ jω1 − ω0j and 10 kHz ≫ ω0=Q1.
The frequency scaling of the projections in Fig. 6
follows straightforwardly from these analytic expres-
sions. In our actual calculations, we incorporate all noise
sources previously discussed. In Fig. 6, we also show the
same limits (solid gray) as shown previously in Fig. 5
but now translated to Snoiseh . Also shown are projections
(dashed or dotted gray) of other experiments sensitive to
high-frequency GWs. These include the projected sen-
sitivity of aLIGO [77], Weber bar antennas [48,67],
the holometer experiment [17], levitated dielectric
stacks [75], a modified version of DMRadio [50] (see
Sec. VI B), and BAW resonant mass antennas [18]. In
comparison, we see that a tunable MAGO-like instru-
ment solely limited by irreducible vibrational noise
would be the most powerful tabletop-sized device across
a large frequency range.

A. Weber bars

We conclude this section with a more detailed compari-
son to signals at Weber bar and LC circuit experiments. As
mentioned above, the setup discussed throughout this work
is most similar in spirit to a Weber bar experiment. Indeed,
both instruments act as mechanical to EM transducers, as
modern-dayWeber bars have typically employed low-noise
LC circuits to capacitively read out small mechanical
displacements.9 Although the hollow cavity discussed for
MAGO is much less massive than a typical ton-scale
resonant antenna, the more important difference arises
from the fact that the EM thermal noise of LC circuits
(which dominates outside of the bandwidth of the mechani-
cal resonance) is parametrically larger than that of a
superconducting cavity.
To see this in detail, let us consider the equations of

motion governing the signal and readout of a Weber bar.
These are given by the coupled set of equations describ-
ing the displacement ub of the bar, the displacement ut of
the smaller mechanical transducer, and the charge q of
the circuit capacitor. In particular, the bar and transducer
are modeled as a mechanically coupled double oscillator
with masses Mb ≫ Mt and uncoupled resonant frequen-
cies ωb and ωt, respectively. This mechanical system
capacitively couples to the LC circuit, where the
position of the mechanical transducer modulates a free
plate of the circuit capacitor to which a bias static electric
field of EC ∼ 10 MV=m is applied. Hence, mechanical
displacements of the capacitor plate drive voltage
through the circuit, and in return the electric force on
the capacitor backreacts with a mechanical force on the
transducer and bar. The coupled equations of motion are
given by [41,51,79]

FIG. 6. The strain-equivalent noise Snoiseh , as discussed in
Sec. VI. The purple regions and contours correspond to such
strain noise for mechanical signals in a MAGO-like setup in the
same configurations as discussed in Fig. 5. The solid gray lines
correspond to measured strain noise of existing experiments, such
as LIGO-Virgo [72], AURIGA [41,67], MiniGRAIL [48], and the
holometer experiment [17]. In dashed or dotted gray are projec-
tions of strain noise in BAW resonators [18] and other proposals
including meter-sized levitated dielectric stacks [75] and LC
circuits (assuming parameters comparable to the upcoming
DMRadio-m3 axion dark matter experiment [76] and a special-
ized readout architecture [50]).

9An exception is the NIOBE detector which utilized a micro-
wave sapphire resonator transducer [78].
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Mbüb þ
Mbωb

Qb
u̇b þMbω

2
bub þ

Mtωt

Qt
ðu̇b − u̇tÞ

þMtω
2
t ðub − utÞ þ ECq ¼ Fb;

Mtüt þ
Mtωt

Qt
ðu̇t − u̇bÞ þMtω

2
t ðut − ubÞ − ECq ¼ Ft;

Lq̈þ LωLC

QLC
q̇þ q

C
þ ECðut − ubÞ ¼ VLC; ð30Þ

where Fb is the force coupled to the bar (including both the
GW and noise contributions), Ft is the force coupled to the
mechanical transducer (approximately just from noise), VLC
is the voltage associated with thermal noise fluctuations,
ωb;t;LC and Qb;t;LC ∼ 106 are the resonant frequency and the
quality factor of the bar, transducer, and circuit, respec-
tively, and L is the inductance of the circuit.
To proceed, we Fourier transform the above equations in

order to solve for the power delivered to the circuit by the
GW signal or noise, taking the transducer to be very light
Mt ≪ Mb. It is useful to compare the irreducible noise from
thermal occupation of EM modes of the circuit or mechani-
cal modes of the bar or transducer:

SðEMÞ
noise ðωÞ

SðmechÞ
noise ðωÞ

����
Weber

∼
QbMt

QLCE2
CC

ðω2 − ω2
bÞ2 þ ðωωb=QbÞ2
ωωLC

;

ð31Þ

where C ∼ 10 nF ∼ 1 km is the capacitance of the circuit
and we have taken ωb ∼ ωt and Qb ∼Qt. From Sec. IV, the
analogous ratio of noise PSDs derived for the MAGO-like
setup is

SðEMÞ
noise ðω1Þ

SðmechÞ
noise ðω1Þ

����
MAGO

∼
QpMcav

QintE2
0V

1=3
cav

ðΔω2
EM−ω2

pÞ2þðΔωEMωp=QpÞ2
ωpω0

; ð32Þ

where ΔωEM ≡ ω1 − ω0 is the EM mode splitting.
Equations (31) and (32) illustrate the relative size of
irreducible EM or mechanical noise in a Weber bar or
MAGO-like setup, respectively. In comparing the two
results, the largest difference arises from the fact that the
typical EM quality factor of superconducting cavities
Qint ≳ 1010 is parametrically larger than what has been
achieved in lumped element circuits QLC ∼ 106. In par-
ticular, the first factor in Eq. (32) is smaller than the
first factor of Eq. (31) by a factor of ∼10–103 for Qint ∼
1010–1012 and fixing the other experimental parameters
to those specified in Sec. V. As a result, EM noise is
greatly suppressed for superconducting cavities, enabling
mechanical-noise-limited sensitivity to GWs well outside
the mechanical resonance and drastically enhancing the

reach to GW frequencies ωg ≫ 10 kHz compared to tradi-
tional Weber bar experiments. Note, however, the smaller
mass and volume of superconducting cavities implies a
reduced sensitivity to GWs on resonance with a low-lying
mechanical mode, in which case the dominant source of
noise arises from mechanical vibrations.

B. LC resonators

Reference [50] demonstrated that LC circuit resonators,
similar to the ones being developed to search for axion
dark matter, can also search for high-frequency GWs. In
particular, Ref. [50] calculated the sensitivity to the GW
amplitude h0 for a particular set of assumptions regarding
scanning strategy, integration time, and GW coherence
time. We cannot compare directly our sensitivity to
Ref. [50] since they assumed GW waveforms of a
particular type and their adopted scan strategy is dictated
by the proposed DMRadio-GUT [80] search for QCD
axion dark matter, which results in longer integration
times for lower frequency signals. To avoid misrepresent-
ing the sensitivity of such an experiment, we estimate here
the irreducible capability of a future cubic meter LC
resonator, adopting a scan strategy employing a fixed
e-fold time te. As described in Sec. II C, an LC circuit
detector is sensitive to the EM signal generated by the
effective current jeff of Eq. (11), which is parametrically
of the form jeff ∼ h0BLCω

2
gV

1=3
LC , where VLC is the volume

of the circuit and BLC is the static magnetic field applied to
the setup. The effective current sources an oscillating
magnetic field Bh ∼ jeffV

1=3
LC e

iωgt, generating an oscillating

electromotive force Eh ∼ ηgLCωgBhNcoilV
2=3
LC through a

large pickup inductor employing Ncoil turns of super-
conducting wire, where ηgLC ≤ 1 is a dimensionless coef-
ficient that parametrizes the geometric coupling of the
GW to the pickup inductor [ηgLC ∼Oð1Þ is possible with a
specialized figure-8 pickup loop [50]]. The resulting
signal power driven into the circuit is described by
the PSD

SðLCÞsig ðωÞ ¼ ðωωLC=QLCÞ2
ðω2 − ω2

LCÞ2 þ ðωωLC=QLCÞ2
QLC

ωLCL
SEhðωÞ

¼ T LCShðωÞ; ð33Þ

where ωLC,QLC, and L are the resonant frequency, quality
factor, and inductance of the circuit, respectively, and we
have defined the transfer function

T LC∼
ðωωLC=QLCÞ2

ðω2−ω2
LCÞ2þðωωLC=QLCÞ2

QLC

ωLC
jηgLCj2ω6

gV
7=3
LCB

2
LC:

ð34Þ

Analogous to Eq. (20), the PSD for thermal noise in the
circuit is given by
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SðLCÞnoiseðωÞ ¼
4πTðωωLC=QLCÞ2

ðω2 − ω2
LCÞ2 þ ðωωLC=QLCÞ2

: ð35Þ

Dividing the above expression by the transfer function
T LC gives the effective noise strain of a thermal-noise-
limited LC circuit detector:

SðLC noiseÞ
h ðωgÞ ∼

4πT

jηgLCj2QLCω
5
gV

7=3
LCB

2
LC

; ð36Þ

where we have taken the circuit to be tuned to the GW
frequency, ωLC ≃ ωg. Comparing the above expression to
the corresponding sensitivity SEMnoise

h of a thermal EM-
noise-limited MAGO-like setup in Eq. (28),

SðLC noiseÞ
h ðωgÞ
SEMnoise
h ðωgÞ

∝
�

B0

BLC

�
2
�
Qint

QLC

��
ω0

ωg

�
5

; ð37Þ

we see that the smaller magnetic field in superconducting
cavitiesB0=BLC ∼ 10−2 is easily compensated by the larger
quality factorQint=QLC ∼ 104 and the optimized frequency
scaling in the quasistatic limit ωg ≪ ω0 ∼ V−1=3

cav . This is
evident in Fig. 6, which shows that when comparing
these two setups, the irreducible noise in a MAGO-like
instrument is parametrically smaller for ωg ≪ 1 GHz.
This discussion regarding the effective noise strain directly
implies that a thermal-noise-limited superconducting
heterodyne search would have greater sensitivity to spec-
trally broad GWs. We note, however, that this same
conclusion also applies to coherent GW signals. In par-
ticular, using the formalism presented previously in
Sec. II B, we find that a MAGO-like setup would
have enhanced sensitivity to coherent GWs with frequency
ωg ≲ 100 MHz.

VII. OUTLOOK

In this work, we have revisited heterodyne signals of
high-frequency GWs in superconducting cavities, which
operate analogously to modern-day Weber bars but with
parametrically reduced EM noise in the readout. This was
pursued by the MAGO Collaboration in the early 2000s,
which led to a prototype cavity and readout system. Our
analysis extends that of previous studies performed by the
MAGO Collaboration in a number of ways, which moti-
vates revisiting the experiment. For instance, we have
provided a more detailed analysis of the most relevant
noise sources as well as the EM and mechanical signals,
which demonstrates that a broadband run of this same
prototype is capable of exploring orders of magnitude of
new parameter space. More generally, our study provides
guidance to a future dedicated effort. In particular, if
further designs could significantly mitigate external sources
of vibrations and also allow for tunable EM mode

separations across a wider frequency range, an EM-reso-
nant experiment would have nearly frequency-independent
sensitivity to strains of h0 ∼ 10−22 for GW frequencies of
10 kHz–1 GHz.
This effort is quite timely both from an experimental

and theoretical perspective. Experimentally, there is a vast
ongoing effort on both sides of the Atlantic (e.g., at
Fermilab’s SQMS center, CERN’s Quantum Technology
Initiative and rf department, and DESY’s accelerator divi-
sion) aiming to improve all aspects of design, construction,
and operation of superconducting cavities. In regards to
theory, the first detection ofGWsby theLIGOCollaboration
has ushered in a series of predictions for new sources,
including at the higher frequencies that we consider in this
work [21–23,26,27,81]. Our improved analysis shows that
the potential sensitivity of MAGO to such signals is greater
than that envisaged at the time of its initial proposal, making
the physics case for reviving this experiment (and pursuing
related technology [82–86]) stronger than ever before.
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APPENDIX A: MECHANICAL MODES

Results for the mechanical resonant modes of hollow
spheres have been obtained in Ref. [87]. We summarize
these results here and, in so doing, correct a couple of
typographical errors. The equation of motion for displace-
ments in a material is given by [88]
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ρ∂2tU ¼ ðλþ μÞ∇ð∇ · UÞ þ μ∇2Uþ fext; ðA1Þ

where the material properties are the density ρ and the
Lamé coefficients λ and μ. We have also included the
possibility of an external force density fext coupling to
the displacement U. Setting this external force to zero, and
assuming solutions of the form Uðx; tÞ ¼ UðxÞeiωt, we can
then define the wave number k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2ρ=μ
p

such that the
equation of motion reads

∇2Uþ ð1þ λ=μÞ∇ð∇ · UÞ ¼ −k2U: ðA2Þ

We now follow Ref. [51] and decompose U ¼ UL þ UT ,
where the two vectors correspond to longitudinal (L) and
transverse (T) motion. These two vectors obey∇ × UL ¼ 0
and∇ · UT ¼ 0, respectively. This decomposition allows us
to write the equation of motion above as two separate
equations, one for each of the L and T modes:

∇2UL ¼ −
k2μ

λþ 2μ
UL; ðA3Þ

∇2UT ¼ −k2UT; ðA4Þ

from which we further define q2 ≡ k2μ=ðλþ 2μÞ.10
Since the longitudinal component has no curl, we can

write UL ¼ ∇ϕL. The transverse component has vanishing
divergence and can be decomposed into two independent
vectors UT1

¼ i∇ ×LϕT and UT2
¼ iLϕT , with the angu-

lar momentum operator defined as L≡ −ix ×∇. The T1

transverse component has radial and angular dependence,
while the T2 component is purely angular. The scalar
potentials ϕL and ϕT then satisfy the Helmholtz equation:

∇2ϕL ¼ −q2ϕL; ðA5Þ

∇2ϕT ¼ −k2ϕT: ðA6Þ

The solutions to these equations in a spherical geometry are
of the form

ϕL ¼ ðciLylðqnlrÞ þ coLjlðqnlrÞÞYlmðθ;φÞ; ðA7Þ

ϕT1
¼ ðciT1

ylðknlrÞ þ coT1
jlðknlrÞÞYlmðθ;φÞ; ðA8Þ

ϕT2
¼ ðciT2

ylðknlrÞ þ coT2
jlðknlrÞÞYlmðθ;φÞ: ðA9Þ

The functions jlðzÞ and ylðzÞ are spherical Bessel functions
of the first and second kind, respectively, while the
Ylmðθ;φÞ are spherical harmonics. The constants ci;oL;T1;T2

are determined by the inner (i) and outer (o) boundary

conditions as discussed below. This allows us to write the
mechanical modes as

Ulmn ¼ ∇ϕL þ i∇ ×LϕT1
þ iLϕT2

: ðA10Þ

As discussed in Appendix B, only spheroidal modes
(ci;oL ; ci;oT1

≠ 0; ci;oT2
¼ 0) couple to GWs. Therefore, in what

follows we will eventually set ci;oT2
¼ 0.

1. Boundary conditions and solutions

To solve for the wave number k of a given mechanical
mode, we need to find the standing wave solutions of
Eq. (A10) that satisfy the boundary conditions at the
inner (a) and outer (R) radii of the spherical shell. These
can be derived from the conservation of the stress-energy
tensor ∂μTμν ¼ 0. The stress tensor σij is the spatial part of
Tμν and is defined as

σij¼ 2μεijþλδij
X
k

εkk; εij¼
1

2

�
∂Ui

∂xj
þ∂Uj

∂xi

�
: ðA11Þ

Conservation of the stress-energy tensor implies ∂jσij ¼ 0

in equilibrium. Therefore, the relevant boundary conditions
for the mechanical modes are

σijjr¼R;r¼anj ¼ 0; ðA12Þ

where nj is the jth component of the unit vector n̂ normal to
the surface of the material. The boundary condition can be
written as

λð∇ · UÞr̂þ 2μðr̂ ·∇ÞUþ μr̂ × ð∇ × UÞ ¼ 0: ðA13Þ

Recalling the form of the normal mechanical modes in
Eq. (A10), we can write Eq. (A13) as a 6 × 6 matrix
multiplying the six unknown coefficients coL, c

o
T1
, ciL, c

i
T1
,

coT2
, and ciT2

. The rows correspond to taking the j ¼ 1; 2; 3
components of Eq. (A13) evaluated at r ¼ a, R. The
6 × 6 matrix can be brought into block-diagonal form,
with a 4 × 4 matrix M multiplying the vector C ¼
ðcoL; coT1

; ciL; c
i
T1
ÞT and a 2 × 2 matrix N multiplying the

vector D ¼ ðcoT2
; ciT2

ÞT. Since the vector D corresponds to
the coefficients of the toroidal modes, and these do not
couple to GWs, we will consider only the 4 × 4 submatrix
M in what follows. The elements of M are given by

10Note that Ref. [87] has a typographical error in their
definition of q below their Eq. (2.6).
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M11 ¼ q2ð2μj00l ðaqÞ − λjlðaqÞÞ;

M31 ¼
2μðaqj0lðaqÞ − jlðaqÞÞ

a2
;

M12 ¼
2lðlþ 1ÞμðjlðakÞ − akj0lðakÞÞ

a2
;

M32 ¼ −k2μj00l ðakÞ −
ðlðlþ 1Þ − 2ÞμjlðakÞ

a2
;

M13 ¼ M11jjl→yl ; M33 ¼ M31jjl→yl ;

M14 ¼ M12jjl→yl ; M34 ¼ M32jjl→yl ;

M2i ¼ M1ija→R; M4i ¼ M3ija→R: ðA14Þ

Comparing with Ref. [87], we find that our matrix is
identical to theirs up to an arbitrary rescaling, modulo a
typo in their Eq. (2.11), where their function β2ðzÞ should
be defined as β2ðzÞ ¼ j00l ðzÞ instead of β2ðzÞ ¼ j0lðzÞ as
stated in that work. The wave numbers klmn of the normal
modes Ulmn of the cavity are then found by solving
detM ¼ 0. The corresponding eigenfrequencies are

obtained through ωlmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2lmnμ=ρ

q
.

The resulting frequency spectrum of the spheroidal
modes with orbital and azimuthal indices l ¼ m ¼ 2, for
various choices of the radial index n, is shown in Fig. 7.
The mechanical parameters μ ¼ 37.5 GPa, λ ¼ 147.5 GPa,
and ρ ¼ 8.57 g=cm3 are taken for room temperature and
pressure niobium [89]. The first few mechanical resonances
are sparse in frequency space, but for n≳ 4, their spacing
slowly approaches a continuum where the nth and (nþ 1)
th frequencies have overlapping bandwidths. We have
shown the first n ≤ 100 modes, but it should be noted
that for n≳ 50, certain modes (marked with red open
circles in Fig. 7) are less than one bandwidth away from the

next mode. In this case, the response of the material to an
external force is no longer well modeled as the excitation of
a single cavity mode. Note that although m ¼ 2 is held
fixed in Fig. 7, the azimuthal index does not affect the
frequencies of the resonant modes. Indeed, examining
Eq. (A14), we see that the zeros of detM which fix the
wave numbers klmn depend on l and are n-fold degenerate
but have no m dependence. This is a well-known conse-
quence of spherical symmetry and does not hold for
elliptical cavities.

APPENDIX B: GW-MECHANICAL
OVERLAP FACTORS

The full expression for mechanical normal modes of a
hollow sphere is given in Eq. (A10), where spheroidal
modes are those with ðci;oL ; ci;oT1

≠ 0; ci;oT2
¼ 0Þ, while toroi-

dal modes are their complement. The overlap factor
between GWs and mechanical modes is defined as in
Eq. (5), which we reproduce here for convenience:

ηgmech ¼
ĥTTij

V1=3
cavVshell

Z
Vshell

d3xU�i
p xj: ðB1Þ

We first show that GWs only couple to mechanical modes
with the correct angular momentum structure. The overlap
of Eq. (B1) is written in terms of the GW in the TT frame
ĥTTij which is symmetric and traceless. Any such matrix has
five independent components and can be decomposed into
a sum over “helicity” states:

ĥTTij ¼
X2
m¼−2

ĥmY2m
ij ; ðB2Þ

where the Y2m
ij are a decomposition of l ¼ 2 spherical

harmonics into an orthogonal basis,

Y2mðθ;φÞ¼Y2m
ij x̂ix̂j;

X
i;j

Y2m
ij ðY2m0

ij Þ� ¼ 15

8π
δmm0

; ðB3Þ

where x̂i are unit vectors. This allows us to write the
integral in the overlap factor of Eq. (B1) as

X2
m¼−2

Z
d3xĥmY2m

ij U
�i
p xj ¼

X2
m¼−2

Z
d3xĥmY2mx̂ix̂jU�i

p xj;

ðB4Þ

where we have used the definition of the spherical
harmonics of Eq. (B3).
Examining first the spheroidal modes, we can write the

displacement vector as

FIG. 7. The first 100 mechanical resonant frequencies as a
function of the radial index n, for l ¼ m ¼ 2, and with material
parameters μ ¼ 37.5 GPa, λ ¼ 147.5 GPa, and ρ ¼ 8.57 g=cm3.
Red open circles indicate that the corresponding mode is less than
one bandwidth ω22n=Q22n away from the (nþ 1)th mode.
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Ulmn¼ c0;ln½flnðrÞYlmðθ;φÞr̂− iglnðrÞr̂×LYlmðθ;φÞ�;
ðB5Þ

where flnðrÞ; glnðrÞ encode all radial dependence, includ-
ing derivatives. From the rhs of Eq. (B4), we can see that
Eq. (B5) will only give a nonzero integral if l ¼ 2, due to
the orthogonality of the spherical harmonics. Turning to the
toroidal modes, we can start from Eq. (B1) and write the
numerator as

ĥTTij

Z
d3xU�i

p xj ¼ ĥTTij

Z
d3xϵirsxjxr∂sðFlnðrÞYlmðθ;φÞÞ;

ðB6Þ

where FlnðrÞ encapsulates all radial dependence. The rhs
can be integrated by parts, yielding a surface integral term
which is zero, since ϵirsxrx̂s ¼ 0, and a volume term,

ĥTTij

Z
d3xϵijrxrðFlnðrÞYlmðθ;φÞÞ ¼ 0: ðB7Þ

The rhs holds since the Levi-Civita symbol is antisym-
metric in i ↔ j, while ĥTTij is symmetric. Thus, GWs do not
couple to toroidal modes.

APPENDIX C: CAVITY PERTURBATION
FORMALISM

In this appendix, we derive how EM modes mix under
the influence of quasistatic mechanical deformations of
the cavity, following the approach of Refs. [90–92]. We
consider a cavity volume V 0 that is a small perturbation of
the original volume V, i.e., V 0 ¼ V þ ΔV. In general, the
mode frequencies and profiles can be calculated numeri-
cally, but in the limit that the mechanical deformations are
small (ΔV=V ≪ 1), one can approximately analytically
solve for these in terms of the unperturbed quantities.
To do this, we begin by approximating the perturbed cavity
fields E and B in terms of the unperturbed eigenmodes
En and Bn:

Eðx; tÞ ≃
X
n

enðtÞEnðxÞ þ ΔEðx; tÞ;

Bðx; tÞ ≃
X
n

bnðtÞBnðxÞ þ ΔBðx; tÞ; ðC1Þ

where the dimensionless coefficients en and bn are solely
functions of time (their time dependence will be determined
below, which for a perturbed cavity is no longer that of a
simple harmonic oscillator). In the mode expansion above,
the sum over n includes solenoidal modes ∇ · En ¼ 0,
while ΔE is a small irrotational ∇ × ΔE ¼ 0 correction to
the electric field with corresponding magnetic component
ΔB (note that only solenoidal cavity modes can be
resonantly excited [93–95]). The unperturbed modes sat-
isfy orthogonality conditions when integrated over the
unperturbed volume V:

Z
V
d3xEn ·E�

m ¼
Z
V
d3xBn · B�

m ¼ δnmUn;Z
V
d3xΔE · E�

n ¼
Z
V
d3xΔB · B�

n ¼ 0; ðC2Þ

as well as Maxwell’s equations ∇ × En ¼ −iωnBn and
∇ ×Bn ¼ iωnEn, where we defined Un ≡

R
V d

3xjEnj2 ¼R
V d

3xjBnj2 and ωn are the resonance frequencies of the
unperturbed cavity.
The equations of motion for the coefficients en and bn

can be obtained by enforcing the conducting boundary
conditions, i.e., n̂ ×EjS0 ¼ 0 and n̂ × EnjS ¼ 0, where n̂ is
the unit vector normal to the perturbed S0 or unperturbed S
cavity surface. The boundary condition for the unperturbed
field En can be used to show that

0 ¼
Z
S
dA · ðE�

n × BÞ ¼
Z
V
d3x∇ · ðE�

n ×BÞ

¼
Z
V
d3x½ð∇ ×E�

nÞ ·B −E�
n · ð∇ ×BÞ�; ðC3Þ

where we used the divergence theorem and a vector
calculus identity. Applying Maxwell’s equations and
decomposing the fields as in Eq. (C1) then yields

∂ten ≃ iωnbn þ
( i

Un

P
m
bm

R
ΔV d

3xðωmEm ·E�
n − ωnBm ·B�

nÞ þOðΔV2Þ ðV 0 ⊂ VÞ;

OðΔV2Þ ðV ⊂ V 0Þ;
ðC4Þ
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where the first and second lines correspond to deformations
that either reduce (i.e., concave) or expand (i.e., convex) the
cavity volume, respectively (a general volume deformation
can be written as a linear combination of these two) and we

introduced the appropriate surface currents as dictated by
the conducting boundary conditions.11 The boundary con-
dition for the perturbed field E can be implemented in a
similar manner:

0 ¼
Z
S0
dA · ðE ×B�

nÞ ¼
Z
V 0
d3x∇ · ðE ×B�

nÞ ¼
Z
V 0
d3x½ð∇ × EÞ ·B�

n −E · ð∇ ×B�
nÞ�: ðC5Þ

In addition to using Maxwell’s equations and Eq. (C1), to simplify the above expression we partition the integral over V 0
into one over the unperturbed volume V and the deformation ΔV. This then gives

∂tbn ≃ iωnen þ

8>><
>>:

i
Un

P
m
em

R
ΔV d

3xðωnEm · E�
n − ωmBm ·B�

nÞ þOðΔV2Þ ðV 0 ⊂ VÞ;
2i
Un

P
m
em

R
ΔV d

3xðωnEm · E�
n − ωmBm ·B�

nÞ þOðΔV2Þ ðV ⊂ V 0Þ: ðC6Þ

Taking a time derivative of Eq. (C4) and using Eq. (C6) gives

ð∂2t þ ω2
nÞen ≃

2

Un

X
m

em

8>>><
>>>:

Z
ΔV

d3x

�
ωnωmBm · B�

n −
1

2
ðω2

n þ ω2
mÞEm · E�

n

�
þOðΔV2Þ ðV 0 ⊂ VÞ;Z

ΔV
d3x½ωnωmBm · B�

n − ω2
nEm ·E�

n� þOðΔV2Þ ðV ⊂ V 0Þ:
ðC7Þ

APPENDIX D: MECHANICAL-EM
OVERLAP FACTORS

Mechanical oscillations in the walls of a cavity induce
mixing between resonant EM modes of the unperturbed
cavity. Equation (C7) shows that the nth EM mode can be
driven by themth mode in the perturbed volumeΔV, where
ΔV is determined by the mechanical oscillationsUpðx; tÞ of
the cavity walls. Beginning from the results of Appendix C,
wewill quantify the mixing between the pumpmodeE0 and
the signal mode E1 via the mechanical mode Up.
Including dissipative effects (encapsulated by the signal

mode EM quality factorQ1), the equation of motion for the
mixing between the pump and signal mode follows directly
from Eq. (C7):

∂
2
t e1 þ

ω1

Q1

∂te1 þ ω2
1e1

≃
2ω2

1e0R
d3xjE1j2

Z
ΔV

d3xðB0 · B�
1 −E0 · E�

1Þ: ðD1Þ

where we took ω0 ≃ ω1. Furthermore, recasting the integral
over the perturbed volume as a surface integral over the
unperturbed surfaceweighted by the displacementUðx; tÞ¼P

pupðtÞUpðxÞ, Eq. (D1) simplifies to Eqs. (6) and (7).

1. Cavity setup

A system of two spherical cells each with radius a and
coupled via a circular aperture of radius d ≪ a is

employed, as sketched in Fig. 8. Here, we give a detailed
description of the resonant modes of the coupled cavity
system and discuss the optimal polarizations of the EM
modes in the two cells. As discussed in Sec. III, for two
nearly identical cells L and R, the pump and signal
modes, E0 and E1, of the coupled system are well
approximated by the symmetric and antisymmetric field
configurations of the single cell modes Ẽ: E0 ¼ RLẼ ⊗
RRẼ and E1 ¼ RLẼ ⊗ ð−RRẼÞ, where RL;R are rota-
tions acting on the polarization of the left or right cell
modes, respectively. The coupling induces a frequency
splitting ΔωEM ∝ ðd=aÞ3 between these two modes [59].
Since the GW wavelength is assumed to be large relative
to the size of the cavity, the two-cell setup is, to a good
approximation, not mechanically coupled for frequen-
cies ωg ≫ 1 kHz.
Introducing a second cell breaks the spherical symmetry

of the system and gives rise to an additional degree of
freedom: the relative polarization of the EM modes in the
two cells. Using Eq. (7), the coupling between the pump
and signal modes can be expressed as a sum of surface
integrals over the left and right cells. In general, the
expression depends on the relative orientations of the

11In the case that V 0 ⊂ V or V ⊂ V 0, a surface electric current
KEjS0 ¼ B × n̂jS0 on the perturbed surface or a fictitious mag-
netic current KMjS ¼ E × n̂jS on the unperturbed surface needs
to be introduced in order to satisfy the relevant boundary
conditions, respectively.
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EMmodes in the left and right cells and the orientation of the
mechanical mode. We specify the orientation of the modes
using roll-pitch-yaw matrices Rzyzðαi; βi; γiÞ, where the
subscript indicates that the first, second, and third arguments
rotate about the z, y, and z axes of the lab frame, respectively.
The lab frame is taken to be the preferred frame for
astronomical coordinates such that the x axis aligns with
RA ¼ 0°, dec ¼ 0°, the y axis aligns with RA ¼ 90°,
dec ¼ 0°, and the z axis aligns with dec ¼ 90°. The physical
interpretation of these matrices is described in Fig. 8. The
mechanical-EM coupling ηEMmech can be written as

ηEMmech ¼
V1=3
cavR

d3xjẼj2
�Z

S0L

dA · ðRpUpÞðjRLẼj2 − jRLB̃j2Þ

−
Z
S0R

dA · ðRpUpÞðjRRẼj2 − jRRB̃j2Þ
�
; ðD2Þ

where the relative sign difference between the integrals over
the left and right cell surfaces is due to the antisymmetric
field configuration of the signal mode. Above, we have also
defined

Rp ¼ Rzyzðαp; βp; γpÞ; RL ¼ RzyzðαL; βL; γLÞ;
RR ¼ RzyzðαR; βR; γRÞ ðD3Þ

to account for the orientation of the mechanical modes, the
EM modes in the left cell, and the EM modes in the right
cell relative to the lab coordinate system, respectively. In
practice, the EM mode orientation is induced by the way in
which the cavity is pumped (e.g., by the placement of an
antenna), while the mechanical mode orientation is dictated
by the direction of the incoming GW. Importantly, although
the coupling ηEMmech is apparently dependent on the polariza-
tion of the incoming GW, in practice a superposition of GW
polarizations will drive a superposition of mechanical
modes with an azimuthal offset of π=4. In this case, the
couplings for the two polarizations [which are identical
since Eq. (D2) integrates over the entire cavity surface] will
simply add in quadrature, yielding the same result as that
for a completely polarized GW. Therefore, to be sensitive to
as many incoming GW directions as possible, for a given
relative EM polarization between the left and right cells, the
coupling ηEMmech should be optimized for an Oð1Þ fraction of

FIG. 8. A depiction of the coordinate systems for the mechanical and electromagnetic modes of each cavity cell and the lab frame. The
lab frame is defined relative to astronomical coordinates such that the x axis aligns with RA ¼ 0°, dec ¼ 0°, the y axis aligns with
RA ¼ 90°, dec ¼ 0°, and the z axis aligns with dec ¼ 90°. Top left: the orientation of the mechanical mode (red axes) is determined by
rotating the lab frame (blue axes) with the yaw-pitch-roll matrixRzyzðαp; βp; γpÞ. Since mechanical oscillations are excited by the GW,
the yaw-pitch-roll angles can be interpreted in terms of GW parameters. The angle αP is the angle of the x axis of a plus-polarized GW
relative to the blue lab frame, where the plus polarization is defined by convention to stretch along the x and y mechanical mode axes.
The angles βP and γP are related to the declination and right ascension of the GW source via RA ¼ γp and dec ¼ π=2 − βp. Top right:
orientation of the electromagnetic mode (red axes), obtained by rotating the lab frame (blue axes) by the yaw-pitch-roll matrices
RzyzðαL; βL; γLÞ and RzyzðαR; βR; γRÞ for the left and right cells, respectively. For simplicity, only rotations by βL and βR about the
laboratory y axis are shown. Physically, the electromagnetic axes are determined by the orientations of the antennas exciting the pump
mode. As shown in Fig. 9 below, the mechanical-electromagnetic coupling ηEMmech is maximized when jβL − βRj ¼ π=2. Bottom left: a
cartoon depiction of a GW corresponding to the mechanical mode orientation shown in the top left. Bottom right: two-cell pump and
signal EM modes with orientations corresponding to the axes shown in the top right.
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all mechanical mode orientations. It is clear from Eq. (D2)
that if the EM polarizations of the two cells are aligned (i.e.,
ifRL ¼ RR), then the coupling ηEMmech vanishes. The optimal
EM polarization can be determined numerically by comput-
ing ηEMmech as a function of the relative EM polarization for all
possible mechanical mode polarizations. We find that the
optimal EM polarization, as shown in Fig. 9, is achieved for
a relative orientation of �π=2. In particular, as shown in
Fig. 4, for a relative polarization offset fixed to π=2, Oð1Þ
couplings are achieved for judiciously chosen mechanical
and EM modes.

2. Form factor scaling with mechanical modes

In Appendix A, we discussed how the frequency of
mechanical modes ðl ¼ 2; n ≥ 0; m ¼ 2Þ scales with n.
Since the noise and signal PSDs at high frequencies
are dependent on the mechanical-EM couplings of high-
n mechanical modes, the scaling of ηEMmech with n is of
interest. As shown in Eq. (D2), ηEMmech scales with the radial
displacement at the unperturbed surface S which, from
Eq. (B5), is observed to have an angular dependence that is
independent of n. Thus, form factors differing only by
mechanical radial index n will differ only by the ratio of
radial displacements at the surface of the unperturbed
cavity. Since the radial displacement at the surface does
not generically fall off with increasing n, we take the
EM-mechanical form factor to be independent of n.

APPENDIX E: MECHANICAL SIGNAL
AND NOISE PSDs

We present here the derivation of the mechanical
signal and noise PSDs. The mechanical modes admit a

decomposition into spatial- and time-dependent parts, i.e.,
Uðx; tÞ ¼ upðtÞUpðxÞ, allowing us to write an equation of
motion for the variation of the time-component subject to a
force density f:

∂
2
t upðtÞ þ

ωp

Qp
∂tupðtÞ þ ω2

pupðtÞ

¼ 1

Mcav

Z
V
d3xfðx; tÞ · UpðxÞ≡ Fp

Mcav
: ðE1Þ

This equation can be solved in Fourier space to find the
PSD of the displacement:

SupðωÞ ¼
SFp

ðωÞ
M2

cav

1

ðω2 − ω2
pÞ2 þ ðωωp=QpÞ2

: ðE2Þ

As shown in Eq. (C7), such displacements mix EM modes.
Solving these equations in Fourier space, we arrive at the
PSD for the time component e1 of the signal EM mode:

Se1ðωÞ ¼ 4jηEMmechj2V−2=3
cav

ω4
0

ðω2 − ω2
1Þ2 þ ðωω1=Q1Þ2

×
Z

dω0

ð2πÞ2 Supðω − ω0ÞSe0ðω0Þ: ðE3Þ

The PSD of the pump mode Se0ðωÞ is determined by the
external oscillator used to drive the cavity, which we model
as nearly monochromatic, centered near ω0, such that the
pump field is e0ðtÞ ≃ e0 cosω0t. In order to incorporate the
width of the external oscillator, Δωosc ≲ ω0=Qint, the PSD
of the pump field is approximate as

FIG. 9. Left: spherical plot showing the magnitude of the mechanical-electromagnetic couplings ηEMmech in the radial direction, for a
mechanical mode with angular coordinates given by βp ∈ ½0; π� and γp ∈ ½0; πÞ. Values are shown for relative electromagnetic
polarizations jβL − βRj∈ fπ

6
; π
3
; π
2
g. All other rotation angles are set to zero: αp ¼ αL ¼ γL ¼ αR ¼ γR ¼ 0. Right: contour plot of ηEMmech

for electromagnetic polarization of the right cavity electromagnetic mode relative to the left cavity electromagnetic mode, βR ∈ ½−3π
4
; 3π
4
�,

and mechanical polarization relative to the left cavity electromagnetic mode, fðβp; γpÞ∈ ½0; πÞ. The largest couplings for all GW
directions are achieved by setting the relative electromagnetic polarization to π

2
.
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Se0ðωÞ ≃ π2e20

�
ΘðΔωosc=2 − jω − ω0jÞ

Δωosc

�
: ðE4Þ

Using this in Eq. (E3) as well as accounting for the
readout coupling Qcpl [53], we obtain the signal power
PSD

SðmechÞ
sig ¼ 4Pin

Qint

Qcpl
jηEMmechj2V−2=3

cav
ω4
0

ðω2 − ω2
1Þ2 þ ðωω1=Q1Þ2

×
Z

dω0

4
Supðω − ω0ÞΘðΔωosc=2 − jω0 − ω0jÞ

Δωosc
;

ðE5Þ

where we have defined the input power as Pin ¼
ω0

Qint
e20

R
d3xjE0ðxÞj2. This expression applies for both the

displacements induced by the signal or noise.
As discussed in Sec. II B, an incoming GW acts with a

force density of fi ≃ −Ri0j0xjρcav, which couples solely to
spheroidal mechanical modes (see Appendixes A and B) as
encapsulated by the coupling coefficient in Eq. (B1). The
force PSD due to a monochromatic GW is given by

SgFp
ðωÞ¼π2

4
ω4
gM2

cavV
2=3
cavh20jηgmechj2ðδðω−ωgÞþδðωþωgÞÞ;

ðE6Þ
which yields a signal power PSD of

Smech
sig ðωÞ≃π2

4
Pin

Qint

Qcpl
h20ω

4
gjηgmechj2jηEMmechj2

ω4
0

ðω2−ω2
1Þ2þðωω1=Q1Þ2

1

ðω2
g−ω2

pÞ2þðωgωp=QpÞ2
ΘðΔωosc=2− jω0−ω0jÞ

Δωosc
:

ðE7Þ

In Sec. VI, we presented the transfer function in the case of a spectrally broad GW PSD, ShðωÞ. This can be obtained from
Eq. (E5) with

SgFp
ðωÞ ¼ 1

4
ω4
gM2

cavV
2=3
cav jηgmechj2ShðωÞ; ðE8Þ

which yields

Smech
sig ðωÞ ≃ 1

4
Pin

Qint

Qcpl

ω4
0jηEMmechj2

ðω2 − ω2
1Þ2 þ ðωω1=Q1Þ2

ω4
gjηgmechj2

ððω − ω0Þ2 − ω2
pÞ2 þ ððω − ω0Þωp=QpÞ2

Shðω − ω0Þ: ðE9Þ

The transfer function T ¼ Smech
sig ðω0 þ ωgÞ=ShðωgÞ is then

easily obtained and is given in Eq. (26).
The calculation for the mechanical noise PSD is obtained

from Eq. (E3) in a nearly identical manner. The result is
given in Eq. (17) for the two force PSD benchmarks
discussed in Sec. IV.

APPENDIX F: SOURCES

In this appendix we discuss possible GW sources in the
kilohertz to gigahertz frequency regime. In particular, we
focus on GW sources that are, to a good approximation,
monochromatic and have a preferred direction. Since our
setup has limited sensitivity to primordial stochastic GW
backgrounds, these are not discussed here [49]. Instead, we
discuss two possible sources of monochromatic GWs:
superradiance and primordial black hole inspirals (see also,
e.g., Ref. [23] for an alternative source of high-frequency
signals).

1. Black hole superradiance

Gravitational wave signals at high frequencies can
arise from black hole superradiance of a new light boson

φ [29–31,74,96–101]. In this scenario, the amplitude of φ is
amplified upon scattering off of a spinning black hole,
extracting angular momentum from the black hole in the
process. This bosonic cloud is continuously depleted
through annihilation into GWs, resulting in a monochro-
matic GW signal at a frequency tied to the mass of the
host black hole.12 Superradiance occurs if the boson mass
mφ is less than the angular frequency of the black hole.
Ignoring Oð1Þ dependence on the orbital mode l of
the boson cloud, the process requires α ≲ a�=2

1þ
ffiffiffiffiffiffiffiffi
1−a2�

p , where

0 ≤ a� ≤ 1 is the dimensionless spin parameter of the black
hole and α≡GMbmφ ∼ 0.2ðMb=M⊙Þðmφ=10−11 eVÞ,
where G is the gravitational constant and Mb is the black
hole mass. For a black hole a distanceD away, the expected
strain of the produced GWs is [75]

h ∼ 10−23
�
Δa�
0.1

��
1 kpc
D

��
Mb

1M⊙

��
α

0.2

�
7

; ðF1Þ

12Additional GW signals arise from decays between energy
levels of the black hole “atom,” and from bosenovas, but these
typically lead to subdominant or short-lived signals [31].
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where Δa� is the parameter quantifying the difference
between the initial and final black hole spin. The super-
radiance condition implies a relation between the mass of
the black hole hosting the boson cloud and the mass of the
boson, mφ ∼ 10−10 eV × ðM⊙=MbÞ, such that Eq. (F1) can
be recast as a function of mφ. Since the signal arises from
annihilation of nonrelativistic particles, the frequency of the
GWs is ωg ≃ 2mφ, such that both the expected strain and
frequency are directly tied to the mass of the light boson.
We show the possible amplitude of GWs from annihila-

tion of superradiant bosons bound to a black hole 1 kpc away
in Fig. 5. In doing so, we have assumed that α is constant
and that mφ and Mb are therefore dialed accordingly as a
function of mφ. We have also normalized Δa� such that the
resulting strain matches the careful treatment of the l ¼ 1
orbital signal shown in Ref. [75]. Note that superradiant
production of GWs with frequency ωg ≫ 1 MHz requires
Mb ≪ 1M⊙, and thus such black holes must be of primor-
dial origin. Such GWs are typically very coherent. If self-
interactions of φ are negligible, the GW frequency drift
rate is ω̇g¼ 7×10−15 Hzs−1× ðα=0.1Þ17ðωg=kHzÞ2 [102].
The effective quality factor of the signal is the number
of oscillations it takes for this drift to result in an Oð1Þ
phase, i.e.,Qg∼ωg=

ffiffiffiffiffiffi
ω̇g

p
∼1010×ð0.1=αÞ17=2. Equivalently,

for α ¼ 0.1, ω0 ∼ 1 GHz and Q1 ∼ 105, the GW signal
remains in the cavity bandwidth for a time of
t ∼ 105 yr × ðMHz=ωgÞ2, such that the signal is coherent
over timescales much longer than the typical experimental
integration time.

2. Mergers of compact objects

High-frequency GWs may also arise from the inspiral of
two sub-solar-mass compact objects [51]. The GW fre-
quency increases during the inspiral and is largest close to
the merger of the two objects. The signal coherence time τb
can be defined as the duration the GW frequency stays
within the cavity bandwidth:

τb ∼ 10−3 s

�
105

Q

��
10−11M⊙

Mb

�
5=3

�
1 GHz
ωg

�
8=3

; ðF2Þ

where we assumed that both inspiraling objects have the
samemassMb. To fully ring up the cavitywe require that the
time it takes to sweep over the cavity bandwidth is longer
than the ring-up time, which is tring ∼ GHz=Q1 for GW
frequencies much greater than the lowest-lying mechanical
resonance (ωg ≫ 10 kHz). This leads to the requirement

Mb < 5 × 10−11M⊙

�
105

Q1

�
6=5�1 GHz

ωg

�
8=5

: ðF3Þ

Thus, compact objects with Mb ≲ 10−10M⊙ generically
fully ring up the cavity for ωg ∼ 10 kHz–1 GHz. For larger

masses of Mb ∼ 10−8M⊙ or Mb ∼ 10−4M⊙, the cavity is
only fully rung up for frequencies ωg ≲ 30 MHz and
ωg ≲ 100 kHz, respectively. The expected strain from
inspirals a distance D away is roughly [51]

h0 ∼ 10−29 ×

�
1 pc
D

��
Mb

10−11M⊙

�
5=3

�
ωg

1 GHz

�
2=3

: ðF4Þ

APPENDIX G: OPTIMIZATION OF SENSITIVITY

As discussed in Sec. V, the sensitivity to GWs can be
improved by overcoupling to the signal mode, lowering the
loaded quality factor Q1 ≤ Qint. The result of a numerical
optimization requiring that 105 ≤ Q1 ≤ 1010 is shown in
Fig. 10, assuming the scanning strategy discussed in Sec. V.
The integration time at each frequency step is given by
tint ∼ te minðω1=ðQ1ωgÞ; 1Þ for a fixed e-fold time of
te ¼ 1 yr. The blue line in Fig. 10 shows the optimal
Q1 assuming that mechanical noise is attenuated to its
irreducible thermal value, corresponding to the “scanning
(thermal)” curve in Figs. 5 and 6. In orange, we have shown
the optimal Q1 assuming instead vibrational noise as
inferred by recent measurements of cavity microphonics
at Fermilab [60,61], corresponding to the “scanning”
curves in Figs. 5 and 6. At high frequencies,
ωg ≳ 108 Hz, EM thermal noise dominates for both cases,
and the optimal loaded quality factor is approximately
Q1 ∼Qintðω1=TÞ ∼ 108 [52,103]. At low frequencies
ωg ≲ 105 Hz, the optimization of Q1 requires balancing
mechanical and amplifier noise, leading to the scaling of
Q1 ∝ 1=ωg as shown in Fig. 10. More generally, the
preferred value of Q1 depends on the dominant noise

FIG. 10. The optimal loaded quality factor of the signal mode,
Q1ðωgÞ, calculated numerically for a scanning strategy. The blue
line corresponds to the optimal Q1 when mechanical mixing
noise comes from thermal vibrations, while the orange assumes a
flat force PSD giving a 1 Hz fluctuation of the EM resonant
frequencies [104]. Features are explained in Appendix G. The
intrinsic cavity quality factor is Qint ¼ 1010 and is shown with a
dashed line. For the broadband strategy, the optimal Q1 ¼ 105.
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source. In a mechanical-noise-limited setup, overcoupling
as much as possible is beneficial as long as doing so does
not lead to another noise source dominating. This is seen
most clearly along the orange curve in Fig. 10, where
mechanical noise is dominant for GW frequencies of
105 Hz≲ ωg ≲ 108 Hz and Q1 ∼ 105 is preferred.
Instead, along the blue curve, mechanical noise dominates
over EM thermal noise in the same frequency range
only near individual mechanical resonances (see the left
panel of Fig. 3). As a result, we observe that near
mechanical resonancesQ1 ∼ 105 and away from mechani-
cal resonances Q1 ∼Qintω1=T ∼ 108. The exact optimal
value of Q1 near mechanical resonances is not always
shown due to the coarse-graining of the numerical
optimization procedure.
For a broadband setup corresponding to the “nonscan-

ning (thermal)” curves in Figs. 5 and 6, the reach is

optimized for Q1 ¼ 105. Since no scanning is involved,
the experimental integration time is independent of Q1,
allowing us to understand the Q1 scaling of the GW
sensitivity entirely from the ratio of signal and noise
PSDs. We can therefore examine the noise-equivalent
strain Snoiseh , which is a proxy for this ratio, to understand
the scaling. In a broadband setup employing a fixed EM
frequency splitting, mechanical noise dominates for GW
frequencies ωg ≲ ω1 − ω0 ∼ 10 kHz. From Eq. (27), Snoiseh
and therefore the sensitivity are independent ofQ1. Instead,
for ωg ≳ ω1 − ω0 ∼ 10 kHz, amplifier noise dominates.
Since amplifier noise is external to the cavity, it is
independent of Q1, such that the Q1 dependence of
Snoiseh is entirely due to the transfer function T [see
Eq. (29)]. As a result, it is optimal to overcouple as much
as possible, i.e., Q1 ≃ 105.
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