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Spatial Curvature from Super-Hubble Cosmological Fluctuations
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(Dated: December 6, 2023)

We revisit how super-Hubble cosmological fluctuations induce, at any time in the cosmic history,
a non-vanishing spatial curvature of the local background metric. The random nature of these
fluctuations promotes the curvature density parameter to a stochastic quantity for which we derive
novel non-perturbative expressions for its mean, variance, higher moments and full probability
distribution. For scale-invariant Gaussian perturbations, such as those favored by cosmological
observations, we find that the most probable value for the curvature density parameter ΩK today
is −10−9, and that its mean is +10−9, both being overwhelmed by a standard deviation of order of
10−5. We then discuss how these numbers would be affected by the presence of large super-Hubble
non-Gaussianities, or if inflation lasted for a very long time. In particular, we find that substantial
values of ΩK are obtained if inflation lasts for more than a billion e-folds.

PACS numbers: 98.80.Cq, 98.70.Vc

I. INTRODUCTION

Cosmic structures in the Universe are understood to
be seeded by some pre-existing super-Hubble cosmo-
logical fluctuations. Their gravitational collapse starts
when their size becomes smaller than the Hubble radius,
an inevitable outcome in any decelerating Friedmann-
Lemâıtre spacetime. Observational evidence of this
mechanism is present in the Cosmic Microwave Back-
ground (CMB) data by the correlation patterns asso-
ciated with the polarization and temperature angular
power spectra [1, 2], as well as in the statistics of the
large-scale structures observed at lower redshifts [3, 4].
Cosmic Inflation, an early era of accelerated cosmic ex-

pansion, is the prime candidate to explain the origin of
the super-Hubble fluctuations. They are of quantum ori-
gin, stretched to length scales much larger than the Hub-
ble radius during inflation [5–16]. At the same time, in-
flation smooths out any pre-existing inhomogeneity, and
one of the historical motivations for Cosmic Inflation is
that the spatial curvature of spacetime, ΩK, should be ex-
ponentially small at the end of inflation (at most e−60).
This prediction is compatible with the current bound
|ΩK0

| < 3 × 10−3 today, coming from the Planck CMB
data and Baryon Acoustic Oscillations (BAO) measure-
ments.
Intuitively, the existence, today, of Hubble-sized cur-

vature fluctuations suggests that these could be confused
with a small non-vanishing spatial curvature of the lo-
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cal background metric. In particular, these modes are
expected to induce a limitation on our ability to mea-
sure very small values of the curvature density parame-
ter [17–21]. More than being a nuisance, we will show
that super-Hubble (hence, “conserved”) fluctuations do
create spatial curvature.
In order to deal with fluctuations over a background

metric when both are intertwined, we can start from the
inhomogeneous metric proposed in Refs. [22–25]:

ds2 = −dτ2 + a2(τ)e2ζ(τ,x)δijdx
idxj . (1)

This metric is not fully general, as inhomogeneities are
all contained in one scalar function ζ. However, as dis-
cussed in Refs. [22–25], this is the most generic metric in
the absence of vector- and tensor-type inhomogeneities,
and in the gauge where fixed time slices have uniform
energy density and fixed spatial worldlines are comov-
ing with matter. At super-Hubble scales, this reduces to
the synchronous gauge supplemented by some additional
conditions that fix it uniquely. The quantity ζ(τ,x) can
be shown to be “conserved” at large distances. As such,
it provides a non-linear generalization of the constant-
energy-density curvature perturbation [26, 27].
Historically, this metric has been intensively dis-

cussed in the attempts to explain the acceleration of
the Universe by the backreaction of super-Hubble inho-
mogeneities [28, 29]. But, as realized soon after [30–
32], the effects of super-Hubble fluctuations onto the
background evolution are to modify the spatial curva-
ture. Let us notice that, on top of the background
evolution, other observable signatures are possible [33–
35]. To our knowledge, the only works having addressed
how super-Hubble modes affect the spatial curvature are
Refs. [32, 36, 37], based, however, on perturbative gradi-
ent expansions or linear perturbation theory only. When
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the non-perturbative terms of our derivation can be ne-
glected, we recover some of their results.
The paper is organized as follows. In Section II, we de-

rive an exact expression for the curvature density param-
eter ΩK in terms of the non-linear curvature perturbation
ζ. This promotes ΩK to a stochastic quantity, and in Sec-
tion III we calculate its moments as well as its probability
density function, assuming Gaussian statistics for ζ. Fi-
nally, we conclude by discussing how the statistics of the
curvature density parameter is modified in the presence
of non-Gaussian super-Hubble fluctuations or if inflation
lasted for a very long time.

II. CURVATURE DENSITY PARAMETER

When spatial curvature is included, the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) line element reads

ds2 = −dτ2 + a2(τ)
δijdx

idxj

(

1 + K
4 δmnxmxn

)2 , (2)

where K is a constant, and its Ricci scalar is given by

R = 6
ȧ2

a2
+ 6

ä

a
+

6

a2
K. (3)

The metric (1) can be viewed as an inhomogeneous
generalization of a flat, i.e., K = 0, FLRW spacetime
having a space-dependent scale factor

b(τ,x) ≡ a(τ)eζ(τ,x), (4)

from which one can derive the Ricci scalar

R = 6
ḃ2

b2
+ 6

b̈

b
+ 2

(∇b)2

b4
− 4

∆b

b3
. (5)

We now split ζ(τ,x) = ξ(x) + ζs(τ,x) into a conserved
part ξ (super-Hubble) and time-dependent fluctuations
ζs (sub-Hubble). Expanding in the (presumably small)
short-length part, one has

b(τ,x) = a(τ)eξ(x) [1 + ζs(τ,x) + · · · ] , (6)

and upon defining

ã(τ,x) = a(τ)eξ(x) (7)

one is led to

R = 6
˙̃a2

ã2
+ 6

¨̃a

ã
+

6

ã2

[

−2

3
∆ξ − 1

3
(∇ξ)2

]

+ · · · . (8)

The omitted terms in this expression are the ones appear-
ing in the linear theory of cosmological perturbations, in
the synchronous gauge, completed by all possible non-
linear corrections involving powers of ζs(τ,x) and prod-
ucts with ã(τ,x) [38]. The mixed terms involving both
ã(τ,x) and powers of ζs(τ,x) were precisely the ones dis-
cussed in the early works on backreaction and are non-
observable [30–32]. As can be checked in Eq. (8), the

terms we have kept are invariant by a constant shift of
ξ(x), up to a redefinition of a(τ).
Since ξ(x) varies on super-Hubble length scales only,

so does ã(τ,x); hence, any observer will identify ã(τ,x)
as the FLRW scale factor of their local Hubble patch.
Let us notice that, in the gauge we work in, the Hubble
radius is the same for all observers, since [24, 39, 40]

H̃ ≡
˙̃a

ã
=

ȧ

a
= H, (9)

which does not depend on x. An important remark is
that Eqs. (3) and (8) coincide upon identifying

K = −2

3
∆ξ − 1

3
(∇ξ)

2
, (10)

which is indeed constant, since ξ is conserved, and whose
measurable curvature density parameter reads

ΩK = − K

ã2H̃2
= −Ke−2ξ

a2H2
. (11)

Let us stress that Eq. (10) is exact in the sense that all
the terms omitted involve ζs(τ,x); hence, they are time-
dependent and cannot be absorbed in K. Equation (10)
makes also explicit that only gradients of super-Hubble
inhomogeneities have a non-trivial effect.

III. STATISTICS

Current cosmological measurements [41] imply that ζ
has Gaussian statistics and can, thus, be treated as a
random Gaussian field, with vanishing mean and higher-
point correlation functions entirely determined by the
power spectrum

〈

ζ(k)ζ(k′)
〉

= (2π)
3
δ(k + k

′)Pζ(k). (12)

This is also in agreement with the most favored infla-
tionary scenarios, where the mean values are identified
with vacuum expectation values of quantum operators in
the Bunch-Davis vacuum. Later on, we will also use the
spherical power spectrum Pζ(k) defined by

Pζ(k) =
k3

2π2
Pζ(k) ≃ P∗, (13)

where the last approximation holds for a scale-invariant
power spectrum.
From Eqs. (10) and (11), ΩK can, therefore, also be

seen as a stochastic quantity, though its non-linear de-
pendence on ξ, and, thus, on ζ, implies that it does not
feature Gaussian statistics. In particular, its expectation
value does not necessarily vanish.
Let us make the decomposition ζ(τ,x) = ξ(x)+ζs(τ,x)

explicit in Fourier space:

ζ(τ,x) =
1

(2π)3

∫

d3kΘ(kσ − k) ζ(k)eik·x

+
1

(2π)3

∫

d3kΘ(k − kσ) ζ(τ,k)e
ik·x,

(14)
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where we have introduced a wave number kσ below which
all Fourier modes ζ(τ, k < kσ) = ζ(k) can be approxi-
mated as time independent. Based on the theory of cos-
mological perturbations, and its generalizations [26, 27],
this wave number is at most of the order of the conformal
Hubble parameter at the observer’s time, say, τ0; namely,
kσ . ã(τ0)H̃(τ0). Let us remark the presence of ã(τ0,x),
instead of a(τ0), in this expression. A priori, this would
induce an extra dependence on x in Eq. (14), where one
should write kσ(x). In order to circumvent this issue,
we can, for now, simply choose the cutoff kσ to be suffi-
ciently small such that it encompasses all possible spatial
modulations of ã(τ0,x). In other words, we define

kσ ≡ σa0H0 , (15)

where, in principle, σ < eminx(ξ). As such, we can iden-
tify the conserved quantity with

ξ(x) =
1

(2π)
3

∫

d3kΘ(kσ − k) ζ(k)eik·x . (16)

Let us remark that σ also quantifies the possible ambi-
guities in separating the background, made of the time-
independent ξ(x), from the modes which contribute to
the perturbations, the time-dependent ζs(τ,x).

A. Mean value

The mean value of the curvature density parameter
reads

〈ΩK〉 = −
〈

Ke−2ξ
〉

a2H2
, (17)

where ξ is given by Eq. (16). The curvature scalar K,
given in Eq. (10), can be split into two terms K = K1 +
K2 with

K1 ≡ −2

3
∆ξ, K2 ≡ −1

3
(∇ξ)

2
. (18)

Therefore, one needs the Laplacian and the squared gra-
dient of ξ. They read, respectively,

∆ξ = −
∫

d3k

(2π)
3Θ(kσ − k) k2ζ(k)eik·x, (19)

and

(∇ξ)
2
= −

∫

d3pd3q

(2π)
6 Θ(kσ − p)Θ(kσ − q)

× p · q ζ(p)ζ(q)ei(p+q)·x,

(20)

from which one can immediately calculate

〈K〉 = 〈K2〉 = −1

3

∫

d3k

(2π)
3Θ(kσ − k) k2Pζ(k)

= −1

3

∫ kσ

0

dkkPζ(k) ≃ −1

6
k2σP∗,

(21)

the rightmost equality holding only for a scale-invariant
power spectrum.
The term e−2ξ appearing in Eq. (17) can be expressed

in terms of ζ(k) by using the series representation

e−2ξ =

+∞
∑

n=0

(−2)n

n!
ξn, (22)

with

ξn =

∫

d3k1 . . .d
3kn

(2π)
3n





n
∏

j=1

Θ(kσ − kj) ζ(kj)



 eix·
∑

j
kj .

(23)
As can be seen in Eq. (17), the mean value of the cur-
vature density parameter requires the explicit determi-
nation of an infinite number of terms, the non-vanishing
ones being of the form

〈

K1ξ
2p+1

〉

and
〈

K2ξ
2p
〉

. From
Eqs. (12), (18) and (23), one can make extensive use of
the Wick theorem to reduce all the expectation values
to a few two-point functions with the following diagram-
matic rules:

〈K1K1〉 ≡ =
〈

K2
1

〉

,

〈ξξ〉 ≡ =
〈

ξ2
〉

,

〈K1ξ〉 ≡ = −2 〈K〉 ,

〈K2〉 ≡ = 〈K〉 .

(24)

Let us notice that, due to the inner product structure
of Eq. (20), the K2 vertices have two “legs” that can
connect only to other K2 vertices. From Eq. (19), one
has

〈

K2
1

〉

=
4

9

∫ kσ

0

dkk3Pζ(k) ≃
1

9
k4σP∗, (25)

which allows us to express the second moment of the
curvature scalar as

〈

K2
〉

=
〈

K2
1

〉

+
5

3
〈K〉2 ≃ 1

9
k4σP∗

(

1 +
5

12
P∗

)

. (26)

In Eq. (24), we also need the variance of the conserved
quantity ξ. It can be determined from Eq. (16) and reads

〈

ξ2
〉

=

∫ kσ

kε

dk
Pζ(k)

k
≃ P∗ ln

(

kσ
kε

)

≃ P∗Ninf , (27)

where we have introduced an expected infrared cutoff
kε. Indeed, in the context of Cosmic Inflation, the ratio
between the largest and shortest lengths being ampli-
fied is precisely given by the total amount of stretching
generated by the accelerated expansion, the so-called to-
tal number of e-folds Ninf . For the measured value of
P∗ = 2.1× 10−9 [42], and a not too long inflationary era
Ninf ≪ 109,

〈

ξ2
〉

is a small quantity.
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Denoting by W2p = (2p)!/(p!2p) the number of Wick
contractions between p pairs, one obtains

〈

K1ξ
2p+1

〉

= (2p+ 1)

( )

×W2p

( )p

= − (2p+ 1)!

p! 2p−1
〈K〉

〈

ξ2
〉p

,

(28)
and

〈

K2ξ
2p
〉

= ×W2p

( )p

=
(2p)!

p! 2p
〈K〉

〈

ξ2
〉p

.

(29)

The infinite series obtained by combining Eqs. (22), (28)
and (29) can be resummed and one gets the exact ex-
pression

〈ΩK〉 = − 5

a2H2
〈K〉 e2〈ξ2〉. (30)

Making use of Eqs. (21) and (27), for a scale-invariant
power spectrum, Eq. (30) simplifies to

〈ΩK0
〉 ≃ 5

6

k2σ
a20H

2
0

P∗e
2P∗Ninf ≃ 5

6
σ2P∗, (31)

which saturates for σ = 1 at 〈ΩK0
〉 ≃ 1.7×10−9, a barely

open universe were we to interpret this number within a
FLRW metric with trivial topology.

B. Variance

There is little hope to measure such a small value of
〈ΩK〉, but, ΩK being a stochastic variable, its realizations
are also dictated by the higher moments, the second one
being given by

〈

Ω2
K

〉

=

〈

K2e−4ξ
〉

a4H4
=

〈(

K2
1 + 2K1K2 +K2

2

)

e−4ξ
〉

a4H4
.

(32)
Using again a series representation for the exponential,
Eq. (32) can be expanded in an infinite sum requiring
the calculation of the non-vanishing terms

〈

K2
1ξ

2p+2
〉

,
〈

K1K2ξ
2p+1

〉

, and
〈

K2
2ξ

2p
〉

, with p ≥ 0. Using the dia-
grammatic rules of Eq. (24), one gets

〈

K2
1ξ

2p+2
〉

= ×W2p+2

( )p+1

+ (2p+ 1)

( )

× 2p

( )

×W2p

( )p

=
(2p+ 1)!

p! 2p
〈

K2
1

〉 〈

ξ2
〉p+1

+ 4
(2p+ 2)!

p! 2p
〈K〉2

〈

ξ2
〉p

,

(33)

together with

〈

K1K2ξ
2p+1

〉

= × (2p+ 1)

( )

×W2p

( )p

= −2
(2p+ 1)!

p! 2p
〈K〉2

〈

ξ2
〉p

,

(34)

and

〈

K2
2ξ

2p
〉

=

[

( )2

+ 2

( )

]

×W2p

( )p

=
5

3

(2p)!

p! 2p
〈K〉2

〈

ξ2
〉p

.

(35)
Summing all the terms coming from the expansion of
Eq. (32) gives the exact expression

〈

Ω2
K

〉

=
1

a4H4

(

〈

K2
〉

+ 80 〈K〉2
)

e8〈ξ2〉. (36)

For a scale-invariant power spectrum, using Eqs. (21),
(26) and (27), one obtains

〈

Ω2
K0

〉

≃ 1

9

k4σ
a40H

4
0

P∗

(

1 +
245

12
P∗

)

e8P∗Ninf ≃ 1

9
σ4P∗.

(37)
Using Eq. (31) for σ = 1, the standard deviation of ΩK0

is given by

√

〈

Ω2
K0

〉

− 〈ΩK0
〉2 ≃ σ2

3

√

P∗ ≃ 1.5× 10−5. (38)

In summary, Eqs. (30) and (36) show that, in a Uni-
verse filled with cosmological fluctuations stretched over
super-Hubble scales, the curvature density parameter is
not vanishingly small but is promoted to a stochastic
variable. At any time in the cosmic history, we therefore
expect an observer to measure a realization of ΩK domi-
nated by its standard deviation, i.e., at about 1.5×10−5.
However, Eq. (10) makes explicit that K is a non-linear
functional of ξ. As such, even if ξ is of Gaussian statis-
tics, the probability distribution of ΩK is, a priori, non-
Gaussian. The rarity of extreme values of ΩK could,
therefore, be affected by the higher moments, and we
now turn to their calculation.

C. Higher moments

All the higher moments 〈Ωn
K〉 with n > 2 can be

explicitly calculated with the same method as the one
employed for the mean value and the variance. Ex-
panding the exponential in series and using the bino-
mial expansion of (K1 + K2)

n shows that one has to
determine the mean value of combinations of the form
〈Kp

1K
q
2ξ

m〉 = 〈Kq
2〉 〈Kp

1 ξ
m〉. Those can all be expressed
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in terms of powers of
〈

ξ2
〉

, 〈K〉, and
〈

K2
〉

by using the
diagrammatic rules of Eq. (24).
The only new subtlety consists in evaluating the terms

in 〈Kq
2〉 that need to be decomposed into “self-cycles”.

For instance, the third moment requires one to evaluate

〈

K3
2

〉

= 222!

( )

+ 2

( )

× 3

( )

+

( )3

,

(39)
and one obtains

〈

Ω3
K

〉

= − 〈K〉
a6H6

(

39
〈

K2
〉

+
19430

9
〈K〉2

)

e18〈ξ2〉.
(40)

Similarly, the fourth moment is given by

〈

Ω4
K

〉

=
1

a8H8

(

3
〈

K2
〉2

+ 1728
〈

K2
〉

〈K〉2

+
736682

9
〈K〉4

)

e32〈ξ2〉,
(41)

and so on and so forth. These expressions are not par-
ticularly illuminating, but the leading-order terms of all
the moments are diagrammatically tractable, and one can
show that, for a scale-invariant power spectrum, the stan-
dardized moments µ̃n (the moments divided by the nth

power of the standard deviation) verify

µ̃n=2p ≃ Wn e(2n
2−4n)〈ξ2〉,

µ̃n=2p+1 ≃ nWn−1 (1 + 4n)

√
P∗

2
e(2n

2−4n)〈ξ2〉.
(42)

All odd standardized moments are suppressed by the fac-
tor

√
P∗ with respect to the even ones. Moreover, pro-

vided the exponential terms in Eq. (42) are close to unity,
i.e., for n2

〈

ξ2
〉

≪ 1, the even moments exactly match
the ones associated with a Gaussian probability distri-
bution. As such, 〈Ωn

K〉 shows significant deviations com-
pared to the Gaussian expectations only for large values
of n2 & 1/

〈

ξ2
〉

. To better assess the effect of these higher
moments, we next turn our attention to the functional
form of the ΩK’s probability distribution.

D. Probability distribution

The probability density function of ΩK can be deter-
mined by noticing that Eqs. (10) and (11) imply that ΩK

can be seen as a non-linear functional over five stochas-
tic Gaussian variables, Ξ ≡ (ξ,∆ξ,∇ξ). As such, defin-
ing Ω̄K ≡ (a2H2/k2σ)ΩK and marginalizing over the five-
dimensional space associated with Ξ, one has

P (Ω̄K) =

∫

d5Ξ

(2π)
5/2

δ

(

Ω̄K +
K

k2σ
e−2ξ

)

e−
1

2
Ξ

T
Σ

−1
Ξ

√
detΣ

,

(43)

−4 −2 0 2 4

Ω̄K/
(

Σω/k
2
σ

)

0

10

20

30

40

P
(Ω̄

K
)

Ninf = 100

P∗ = 1× 10−3

FIG. 1: Probability distribution function for Ω̄K =
(aH/kσ)

2ΩK (red curve) for unrealistically large values of
P∗ = 10−3 (and Ninf = 100), compared to a Gaussian of
same mean and variance (black curve). Notice that the most
probable value of Ω̄K is slightly negative whereas the mean
value remains slightly positive.

where the five-dimensional covariance matrix Σ is com-
pletely determined by the diagrammatic rules of Eq. (24).
All but one integral appearing in Eq. (43) can be analyt-
ically reduced, and, after some algebra, one obtains

P (Ω̄K) =
k2σ
4π

√

27
√
2Σω

〈ξ2〉 |〈K〉|3
∫ +∞

−∞

dx e
− x2

2〈ξ2〉
+2x

× e−
1

2
ω̄2(Ω̄K,x)H− 3

2

[

3Σω√
8|〈K〉|

− ω̄(Ω̄K, x)√
2

]

,

(44)
where we have defined

Σ2
ω ≡

〈

K2
1

〉

− 4
〈K〉2
〈ξ2〉 ,

ω̄(Ω̄K, x) ≡ e2x
Ω̄K

(Σω/k2σ)
+

2|〈K〉|
〈ξ2〉Σω

x.

(45)

In Eq. (44), Hν(x) stands for the generalized Hermite
polynomial of fractional order, defined from the parabolic

cylinder functions [43] as Hν(x) ≡ 2ν/2ex
2/2Dν(

√
2x).

This distribution shows that, for
〈

ξ2
〉

≃ P∗Ninf ≪ 1,
one can use the approximation

e
− x2

2〈ξ2〉
+2x ≃

√

2π 〈ξ2〉e2〈ξ2〉δ
(

x− 2
〈

ξ2
〉)

, (46)

to simplify the integral over x in Eq. (44). Remarking
that, in this limit, the argument of the Hermite function
is dominated by the first term, which is a constant scal-
ing as 1/

√
P∗, P (Ω̄K) is, therefore, close to a Gaussian

distribution over the quantity ω̄(Ω̄K, 2
〈

ξ2
〉

). In other

words, for
〈

ξ2
〉

≪ 1, the distribution of Ω̄K is almost
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FIG. 2: Probability distribution function for Ω̄K =
(aH/kσ)

2ΩK (red curve) for the currently favored value of
P∗ = 2.1× 10−9 and for a large number of e-folds Ninf = 108.
The variance

〈

ξ2
〉

is no longer a small quantity and the distri-
bution acquires heavy tails. Even though the width at half-
maximum is O

(√
P∗

)

, substantial values of |Ω̄K| are not rare
anymore. For comparison, the black curve shows a Gaussian
of same mean and variance.

Gaussian, with a width given by Σω/k
2
σ ≃

√
P∗/3 and a

peak located at a very small negative value:

Ω̄K

∣

∣

max
≃ 4

k2σ
〈K〉 e−4〈ξ2〉 ≃ −2

3
P∗. (47)

For the curvature parameter today, one would get the
most probable value at ΩK0

|max ≃ −1.4× 10−9, a barely
closed universe were we to interpret this number within
a FLRW metric with trivial topology. Let us notice the
different sign than the mean value of Eq. (31); the distri-
bution is indeed slightly skewed by the Hermite function.
This can be seen in Fig. 1, where we have plotted P (Ω̄K)
for an unrealistically large value of P∗ = 10−3. These dis-
tortions are also apparent in the odd moments of Eq. (42)
which are, as already noted, all proportional to

√
P∗.

When
〈

ξ2
〉

≃ P∗Ninf increases, Eq. (46) is no longer
accurate, and all the terms of Eq. (44) are relevant.
The distribution now acquires heavy tails, kicking in
at increasingly smaller values of

∣

∣Ω̄K

∣

∣ and erasing the

Gaussian profile in the neighborhood of Ω̄K

∣

∣

max
. In

Fig. 2, we have plotted P (Ω̄K), in logarithmic scales,
for P∗ = 2.1 × 10−9 and for a large number of e-folds
Ninf = 108. These heavy tails imply that large values
of |ΩK0

| are (much) more likely than what a Gaussian
profile would imply. Their existence is also manifest in
the moments of Eq. (42) through the exponential coef-
ficients involving

〈

ξ2
〉

. Such an effect is reminiscent of
the non-linear mapping of vacuum quantum fluctuations
encountered in the context of stochastic inflation [44, 45].
Finally, let us mention that numerical computations

of 〈ΩK〉 and
〈

Ω2
K

〉

based on using the distribution of

Eq. (44) do match the values we can get from Eqs. (30)
and (36).

IV. DISCUSSION

If inflation lasts for a long period, then substan-
tial values of ΩK0

might be produced. Indeed, letting

σ2 ≃ e−〈ξ2〉 to implement the condition stated below

Eq. (15), Eq. (37) becomes
〈

Ω2
K0

〉1/2 ≃
√
P∗e

3P∗Ninf/3.
For this value not to exceed the current observational
bound |ΩK0

| < 3× 10−3, with P∗ = 2.1× 10−9 this leads
to Ninf < 7 × 108. On the one hand, this suggests that
scenarios leading to phases of inflation lasting for more
than a billion e-folds might be disfavored by current cos-
mological data. On the other hand, future cosmological
surveys, such as the ones using the neutral hydrogen line
at 21 cm, may possibly detect a non-vanishing curva-
ture if inflation actually lasted slightly less than a billion
e-folds [46]. Notice that the aforementioned bound be-
comes more stringent if one accounts for the slightly red
observed spectral index.

Let us note, however, that when the above bound on
Ninf is saturated,

〈

ξ2
〉

≃ 1.5. A priori, our non-linear

formulas do not require
〈

ξ2
〉

to be small; hence, they can
still be used in that case. In particular, although one
can see that all the moments are becoming exponentially
large with

〈

ξ2
〉

, Eq. (44) shows that P (Ω̄K) remains well
defined. Nonetheless, the fact that the scale kσ must be
set in a way that accommodates potentially large values
of ζ suggests that our formalism may not be best suited in
that case, and the upper bound we have obtained on Ninf

must be taken with care. Moreover, for large
〈

ξ2
〉

, possi-
ble backreaction effects on super-Hubble scales could also
induce deviations from Gaussianity.

If inflation lasts even longer, ΩK gets even larger, and
our formalism needs to be extended in at least two ways.
First, when |ΩK| becomes of the order unity, or more, the
metric associated with Eq. (1) is not acceptable anymore.
For instance, a large negative curvature density parame-
ter would imply a compact manifold, and this demands
another coordinate system than the one in Eq. (1). Sec-
ond, when |ΩK| becomes sizable, it opens up a channel
of backreaction of the curvature perturbation onto the
background dynamics, which, in turn, alters the inflation-
ary amplification of the curvature perturbations them-
selves [47, 48]. This mechanism might be tractable in an
extended stochastic-inflation formalism [49–53], which we
plan to develop in a future work.

Finally, let us insist that our derivation of the statis-
tics of ΩK is not rooted in any perturbative expansion
of metric coefficients. The assumptions made are that ζ
is of Gaussian statistics and conserved on super-Hubble
scales. As such, our results would be modified if curva-
ture perturbations are non-Gaussian at non-observably
large scales. This is, strictly speaking, not excluded, al-
though it would require very specific early-universe mod-
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els for which curvature perturbations are Gaussian at
observable scales today (in order to satisfy the tight con-
straints on non-Gaussianities [41]) and non-Gaussian at
larger scales. Another hypothesis that could be broken
is that ξ is conserved by adiabaticity. The presence of
entropic modes today could invalidate this assumption,
but, as for non-Gaussianities, their presence during infla-
tion is also disfavored by current data.
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