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ABSTRACT

The localization performance of a navigation system can be
improved by coupling different types of sensors. This paper fo-
cuses on INS-GPS integration. INS and GPS measurements al-
low to define a non-linear state space model, which is appropriate
to particle filtering. This model being conditionally linear Gaus-
sian, a Rao-Blackwellization procedure can be applied to reduce
the variance of the estimates.

1. INTRODUCTION

The science of positioning consists of using measurements of a
cluster of sensors to estimate the trajectory of a vehicle. Global Po-
sitioning System (GPS) and Inertial navigation systems (INS) are
among the most popular and reliable forms of navigation. How-
ever, both suffer from different deficiencies. The overall perfor-
mance (in terms of accuracy, cost, security, self-containment and
availability) can be improved by combining GPS and INS mea-
surements. Indeed, the long term accuracy of GPS can compensate
for the drift affecting INS fixes. Moreover, the INS is not subjected
to reception limitations and interferences as for GPS.

Section 2 briefly reviews the techniques of navigation con-
sidered in this paper, including their limitations. The state space
model associated to the GPS/INS integration architecture is also
detailed. Section 4 studies a Rao-Blackwellized Particle Filter,
which estimates the trajectory of a vehicule by combining GPS
and INS measurements. This method is validated by simulations
presented in section 5. Conclusions are reported in section 6.

2. GPS/INS INTEGRATION

2.1. The Global Positioning System

The GPS is a satellite-based navigation system which provides pre-
cise positioning and timing information to any user equipped with
a proper receiver. GPS is widely used in both military and civil
areas, due to its accuracy, global availability and low cost.

The user’s location is computed from the distances to satellites
with known positions. These distances called ranges are obtained
as the product of the light velocity and the transit time of satellite-
to-receiver signals. A minimum of four measurements is necessary
to determine the user’s position (in three dimensions) since the
receiver’s clock offset with respect to the GPS time is an additional
unknown.

The GPS signal carries useful information to determine the
receiver position. It is composed of a navigation message (which
provides the current state of the constellation) and a pseudo-random

code. Spread-spectrum techniques allow the receiver to compute
the propagation delay as the amount of shift between the trans-
mitted code and a local replica. It is interesting to note that the
GPS system has a global availability, due to a constellation of ��
satellites in six ��-hour orbit planes.

The GPS measurements are called pseudo-ranges (instead of
ranges) since the estimated time of transmission is corrupted by
different biases. The positioning equation for �� satellites in sight
can be defined as:

�� � �� � ��� � ��� � � � � �� (1)

where �� is the pseudo-range between the user and the �th satellite,
�� is measurement error, �� is the geometric range from the user to
the satellite, �� is the user’s clock offset relative to GPS time and
� is the light velocity. This paper assumes that the atmospheric
errors as well as the satellite clock offset can be corrected by using
data from the navigation message. This allows to incorporate the
residual delays in the additive noise ��.

Note that the signals coming from the satellites can experience
interferences and jamming, which is the main drawback of GPS.

2.2. Inertial navigation systems (INS)

Inertial navigation is self-relying and autonomous, contrary to satel-
lite-based systems. Based on measured forces and torques, it main-
tains an estimate of the kinematics of a vehicule by applying the
physical laws of motion.

The INS consists of two parts: an inertial measurement unit
with inertial sensors (accelerometers and gyrometers) and a com-
puter that provides the mobile with its position, velocity and at-
titude angles. Two classical types of INS systems are available
(strapdown and gimbaled systems). This paper focuses on strap-
down systems which are characterized by a sensor platform rigidly
attached to the vehicule. The accelerometers deliver a non gravi-
tational acceleration (also referred to as specific force ��) and the
gyrometers measure the rotation rate of the sensor cluster ��

�� in
order to keep track of the vehicule orientation. For convenience,
we use the following notations:

���� : rotation matrix from frame a to frame b,

�� : location of the vehicule in the frame b,

�
�
�� : rotation rate from frame a to frame b, resolved in frame b,

��� : velocity relative to frame a, resolved in frame b,

	��� : skew-symmetric matrix such that 	���
 � � � 
.

The subscripts and superscripts refer to the different coordinate
frames, i.e. �: inertial frame, �: earth centered earth fixed frame,
�: local geographic frame, : platform frame. The differential



equations relating the measured quantities to the dynamics are de-
fined as follows:
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where �� � and � are the latitude, longitude and height of the mo-
bile. These equations are integrated to obtain the velocity and the
position. However, this operation assumes that the rotation matrix
���� (from the platform frame to the local geographic frame) is
known. In practical situations, ���� is determined as the solution
of the differential equation:

����� � ����
��� � ����

�����������
�
���� (4)

It is important to note that the vector of attitude angles (roll, pitch,
and heading), denoted as � � ��� �� ��� , completely defines the
three rotations from the platform frame to the locally level frame.
Consequently, they can be computed directly from the elements of
����� via nonlinear relations (see [1, p. 37]).

Equations (2), (3) and (4) are known as the navigation equa-
tions. These equations take the form �� � ����� �, where 	
stands for the unknown kinematics (such as ��� ��� �� � and �) and

 for the INS sensor outputs (such as �� and ��

��). The double
integration entails a drift in the stand-alone INS estimates due to
a bias affecting the INS measurements. The bias terms �� and ��
satisfy the standard equations:

�
�
INS � �

� � �� ���� � (5)

�
�
��INS

� �
�
�� � �� ���� � (6)

where the subscript INS stands for the quantities measured by the
gyrometers and accelerometers and ���� � ��� � are additive ran-
dom errors. By replacing the specific force �� and the angular rate
�
�
�� in the navigation equations by the values effectively measured

by the sensors, we obtain the so-called mechanization equations:
��INS � ���INS��INS�.

The drift in the INS outputs can be reduced by coupling INS
and GPS systems, which is described in the next section.

2.3. Models for INS / GPS coupled units

Integrated INS-GPS is studied through tightly coupled architec-
tures, which are expected to yield better estimations than loosely
coupled units. They are more accurate in the sense that raw GPS
pseudo-ranges are used as inputs for the navigation filter instead
of GPS pre-processed data (position, velocity and time) associated
with artificial noises.

2.3.1. State model

The filters classically used in navigation applications directly pro-
vide an estimate of the dynamical quantities of interest (position,
velocity, attitude). However, the errors of the INS system form
a more relevant choice for GPS/INS integration. Indeed, they re-
quire a lower update rate (compared to filters constructed from po-
sition, velocity and attitude), hence less computations. Besides, if
GPS measurements go wrong, the integrated system can still rely
on INS outputs.

The errors of the INS system are defined as the difference be-
tween the actual and the INS computed values Æ� � � ��INS.
Their dynamic behavior is obtained by substracting the mechaniza-
tion equations from the navigation equations (and neglecting the
second-order terms), which produces:

Æ �� � ����� �� ��� INS�� INS�� (7)

These equations can be linearized about the inertial quantities, pro-
vided INS errors are small enough. In this case, straightforward
computations lead to (see [1] or [2] for more details):

Æ �� � �Æ�
�
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where  � ��� �� ��� is the vector of attitude angles linked to
���� (see (2)) and � � ��� �� ��� the geodetic position (see (3)).
In addition to these quantities, GPS errors such as the satellite
clock offset and its derivative are usually considered. This leads
to the following state vector:

Æ� � �Æ��� � Æ�� ��� �� � Æ�� Æ�� Æ�� �� ��� (11)

where � � ��	 denotes the GPS receiver clock offset in meters and
� its derivative. The dynamic model used in this paper for ��� �� is
defined by �� � � � �� and �� � �
, where �� and �
 are white
Gaussian noises (see [1, p. 153]).

The state vector will be denoted � instead of Æ� for brevity.
The discretization of the previous continuous-time state model takes
the form:

	��� � ��	� � ��� (12)

where the additive noise is referred to as �� and �� is the follow-
ing block diagonal matrix:
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The different elements of the matrix �� are detailed in many text-
books such as [1, p. 204 ].

2.3.2. Measurement model

The observations are the GPS pseudo-ranges, which depend on
the GPS clock offset � and the current position of the vehicule
��� �� ��� (in the rectangular coordinate system WGS-�� [1]). The
observation equation associated to the ith satellite is given by:

� �
�

�	� � ��� � ��� � ��� � ��� � ��� � �� ��� (13)

where �	�� ��� ���
� is the position of the �th satellite. However,

these observations have to be expressed as functions of the state
vector components to make the filtering problem tractable. The
transformation from the geodetic to the rectangular coordinate sys-
tem is:

� � �� � �� Æ�� ����� Æ�� ����� Æ�� (14)

� � �� � �� Æ�� ����� Æ�� ������ Æ�� (15)

� � �� � �� Æ�� ������ Æ��� (16)



where � � ��
���� ���� �

. The parameters a and e denote the

semi-major axis length and the eccentricity of the earth’s ellip-
soid. These expressions have to be substituted in (13) to obtain the
highly non-linear measurement equations.

3. PARTICLE FILTER

Sequential Monte Carlo methods SMC (also known as particle fil-
tering methods) have recently received much attention in the sig-
nal processing litterature (see [3]). These methods allow to esti-
mate the state of non linear possibly non-Gaussian dynamical sys-
tems. They have proved interesting alternatives to the extended
Kalman filter in the case of highly non-linear systems. Indeed,
the linearization around the latest estimate can lead to coarse ap-
proximations. On the contrary, SMC algorithms are expected to
perform more efficiently since they take into account the salient
structure of the model. Besides, these methods estimate the whole
posterior probability density function (pdf) of the state given the
observations, instead simple point estimates such as the minimum
mean square error estimate. All inference on the unknown param-
eters can then be derived from the estimated posteriors within the
Bayesian setting.

Particle filtering methods construct a point mass representa-
tion of a distribution, from a set of random samples (called par-
ticles) that explore the state-space. The principle of these meth-
ods is briefly recalled below. For convenience, the state space
model is presented in a probabilistic form. The unobserved process
����� � �� is completely described by its initial distribution
����� and the transition pdfs ������������. The observations
�� ��� � �

�� are assumed to be conditionally independent given
the process ����� � �� with distribution ��� �������� ������.
The standard notations ���� � ���� � � � ���� and � ��� �
�� �� � � � �� �� are used for the state and observation sequences
(up to time �).

If we were able to draw� i.i.d. samples ���
���� � � �� � � � � ��

from the unknown posterior distribution, the following empirical
approximation:
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���� (17)

would have good convergence properties because of the strong law
of large numbers. Unfortunately, it is usually impossible to sample
from the sequence of distribution and alternative methods need to
be used. The key idea of Importance Sampling (IS) is to represent
the posterior distribution as a non-uniform discrete distribution de-
fined by weighted particles through:
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. The weights quantify the relevance of the particles with re-
spect to the distribution of interest. Based on these comments, IS
simulates samples according to an arbitrary proposal distribution
�������� ���� (called importance distribution) whose support in-
cludes the support of �������� ����. The weights are computed
as follows:
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An appropriate importance function (avoiding to store the past tra-
jectories) allows to evaluate recursively the weights according to
the following procedure:
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More details regarding this classical operation can be found in [3].
A classical choice for the proposal distribution is ������������.
The inefficiency and degeneracy of IS has been observed in many
applications. Indeed, after a few time steps, all but one particle
have weights close to �. Thus, the last step of SMC filtering con-
sists of resampling the particles, i.e. multiplying (resp. discarding)
particles with high (resp. low) weights. In this paper, we use the
stratified resampling procedure proposed by Kitagawa [4].

4. RAO BLACKWELLIZATION

Rao-Blackwellized filters (RBFs) have been proposed to reduce
the variance of the state estimates [5]. The main idea of these fil-
ters is to integrate out some components of the state vector, thus
reducing the dimension of the state-space to explore. The algo-
rithm usually increases the efficiency of the estimation by making
the most of the analytical structure of the model.

The INS-GPS state-space model is well suited to Rao Black-
wellization. Indeed, the state vector can be partitioned so that some
components can be marginalized analytically. Let us rewrite the
state space equations to emphasize this interesting structure:
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equation does not depend on ��
�. Moreover, the observations

depend non-linearly on ��
� and linearly on �	

�. Consequently,
��

��� and �	
��� satisfy a linear Gaussian model conditionally to

��
��� and � ���. In other words, the posterior distribution of the

state can be factorised as follows:
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The distributions ����
������

���� and ���	
������ �����

�
���� are

clearly Gaussian. Thus, their means and variances, denoted re-
spectively ������������	� ������ and �����	, can be computed
by standard recursions associated to the following Kalman state-
space models:
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The posterior distribution of the state��
� (non linearly related to

the observations) can be estimated by a SMC method:

����
�������

������ �
��
���

�

��
� Æ���

� �����
� �� (26)



It should be noticed that the Kalman filters provide both the impor-
tance distribution ����

���
�

������ and the likelihood �������
����.

The pdfs ����
��������
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������ and ����

������
�
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nally approximated by a mixture of Gaussian distributions:
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5. SIMULATION RESULTS

Many simulations have been conducted to illustrate the perfor-
mance of the RBF. A GPS-INS simulation can be divided into
three parts:

� Trajectory: the vehicule dynamics is simulated accord-
ing to position-velocity-acceleration model, which assumes
that the acceleration is a random-walk.

� INS data: the sensor outputs are calculated from the tra-
jectory via the navigation equations. They are corrupted
by bias and additive noise according to (5) and (7). The
efficiency of the algorithm is investigated for low cost in-
ertial sensors whose biases have been modeled as random
walks with initial values ��� � ����� (accelerometers) and
��� � �	�
��
 (gyrometers). The mechanization equations
allow to compute the corresponding INS estimates (in posi-
tion, velocity and attitude),

� GPS data: the pseudo-ranges corresponding to the satel-
lites visible from the vehicule are evaluated (the variance of
the measurement noise is ���

� � � ��� meters). Before-
hand, the satellite positions in their orbits have been calcu-
lated all along the trajectory.

This paper assumes that the drifts in altitude and vertical ve-
locity have already been estimated thanks to an external source (a
barometric altimeter for instance)as in [2]. Consequently, they are
removed from the state vector.

The performance of the RBF (section �) is studied for the es-
timation of latitude and longitude drifts. We have noted that the
particles tend to explore regions of low posterior probability be-
cause the prior distribution does not overlap significantly with the
likelihood. This is due to the small variance of the additive noise
�� appearing in the state model (12). This degeneracy increases
with the resampling procedure that leads to sample impoverish-
ment. Indeed, the particles with high weights are selected many
times which precludes sample diversity. Regularization techniques
are classically used to overcome this problem. One possible strat-
egy consists of adding artificial noise to maintain enough samples
with a high likelihood [6]. An alternative referred to as auxiliary
particle filter [7] (APF) takes into account the value of the ac-
tual measurement instead of a blind exploration of the state-space.
Both methods have provided similar results when applied to INS-
GPS integration.

Figs 1 and 2 show the estimated INS drifts in latitude and
longitude (obtained with APF regularization), computed from ���
Monte Carlo runs. Note that the INS drifts reach about a couple of
kilometers for a simulation duration of 	���. These figures (ob-
tained with a reasonable number of samples � � ����) show the
good tracking performance of the RBF: the average error between
the actual and estimated trajectories drops below � meters.
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Fig. 1. Estimation of the latitude drift.
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Fig. 2. Estimation of the longitude drift.

6. CONCLUSIONS

This paper has addressed the problem of INS-GPS integration by
using a Rao-Blackwellized filter. This filter has shown interesting
results for the proposed application. An importance function mak-
ing use of the measurement might improve the results. A compari-
son with other estimation strategies (such as the extended Kalman
filter) is currently under investigation. Different scenarios will be
considered including loss of GPS measurements and/or multipath
effects on GPS pseudo-ranges.
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