MOVPE growth of buffer layers on 3C-SiC/Si(111) templates for AlGaN/GaN high electron mobility transistors with low RF losses - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2019

MOVPE growth of buffer layers on 3C-SiC/Si(111) templates for AlGaN/GaN high electron mobility transistors with low RF losses

Résumé

Herein, the interest of cubic silicon carbide as a template for the growth of AlGaN/ GaN high electron mobility transistor (HEMT) heterostructures on silicon substrates for high-frequency operation is shown. On the one hand, 0.6-0.8 μm-thick 3C-SiC grown by chemical vapor deposition on intrinsic silicon substrate having initial resistivity superior to 5 kΩ cm enables the metalorganic vapor phase epitaxy of GaN buffer layers with propagation losses below 0.4 dB mm À1 at 40 GHz and 0.5 dB mm À1 at 67 GHz. On the other hand, an HEMT heterostructure is grown on 1.5 μm-thick 3C-SiC on 4 off-axis silicon substrate having an initial resistivity superior to 200 Ω cm that allows to keep a sufficiently resistive epilayer stack limiting the loss up to 0.78 dB mm À1 at 40 GHz. Device process developed on a piece of the 100 mm diameter wafer leads to the demonstration of DC transistor operation with low leakage currents. Compared with direct growth on silicon, these templates enable reduced radio frequency (RF) propagation losses that are very interesting for high-frequency transistors and circuits operation.
Fichier non déposé

Dates et versions

hal-04038786 , version 1 (21-03-2023)

Identifiants

  • HAL Id : hal-04038786 , version 1

Citer

Eric Frayssinet, Luan Nguyen, Marie Lesecq, N. Defrance, Maxime Garcia Barros, et al.. MOVPE growth of buffer layers on 3C-SiC/Si(111) templates for AlGaN/GaN high electron mobility transistors with low RF losses. 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, WOCSDICE 2019, Jun 2019, Cabourg, France. ⟨hal-04038786⟩
18 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More