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Abstract. The spatial resolution of images of living samples obtained
by fluorescence microscopes is physically limited due to the diffraction
of visible light, which makes the study of entities of size less than the
diffraction barrier (around 200 nm in the x-y plane) very challenging.
To overcome this limitation, several deconvolution and super-resolution
techniques have been proposed. Within the framework of inverse prob-
lems, modern approaches in fluorescence microscopy reconstruct a super-
resolved image from a temporal stack of frames by carefully design-
ing suitable hand-crafted sparsity-promoting regularisers. Numerically,
such approaches are solved by proximal gradient-based iterative schemes.
Aiming at obtaining a reconstruction more adapted to sample geometries
(e.g. thin filaments), we adopt a plug-and-play denoising approach with
convergence guarantees and replace the proximity operator associated
with the explicit image regulariser with an image denoiser (i.e. a pre-
trained network) which, upon appropriate training, mimics the action of
an implicit prior. To account for the independence of the fluctuations be-
tween molecules, the model relies on second-order statistics. The denoiser
is then trained on covariance images coming from data representing se-
quences of fluctuating fluorescent molecules with filament structure. The
method is evaluated on both simulated and real fluorescence microscopy
images, showing its ability to correctly reconstruct filament structures
with high values of peak signal-to-noise ratio (PSNR).

Keywords: Fluorescence microscopy· Image deconvolution · Variational
regularisation · Proximal algorithms · Plug-and-Play regularisation.

1 Introduction

In optical microscopy, the highest achievable spatial resolution is governed by
some fundamental physical laws related to light propagation and is therefore
limited. According to Rayleigh’s criterion, the resolution of an optical micro-
scope is defined as the smallest resolvable distance, i.e. the smallest distance
between two point sources so that they can be distinguished in the image. For
conventional fluorescence microscopes, this distance is approximately equal to
200 nm in the lateral (x-y) plane. In order to resolve sub-cellular structures of
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size smaller than this barrier, several deconvolution and super-resolution tech-
niques have emerged in the literature. Originally developed in the applied fields of
chemistry, biology, and biophysics, such techniques can be naturally described in
more mathematical terms as regularisation approaches for solving the ill-posed
inverse problem considered. A big family of approaches achieving nanometric
resolution (around 20 nm of lateral resolution) is known as Single Molecule Lo-
calisation Microscopy (SMLM) techniques (see [24] for a review). These methods
rely on the use of sparse regularisation approaches for reconstructing frames of
a temporal sequence of acquisitions where only a few molecules are active at a
time. A more hardware-based super-resolution technique achieving a resolution
of approximately 60 − 100 nm, is the Stimulated Emission Depletion (STED)
microscopy approach [12] where the optical blur function (the microscope Point
Spread Function, PSF) is depleted by means of suitable devices. While effec-
tive, these techniques show several drawbacks: for example, SMLM has long
acquisition times while STED requires highly expensive commercial tools. Fur-
thermore, both approaches require special (and expensive) fluorescent molecules
able to support the high laser power required.

For overcoming such limitations, different types of approaches exploiting the
independent stochastic temporal fluctuations of distinct fluorescent emitters be-
came popular over the last decade. Such approaches rely on the use of both
standard microscopes and fluorescent molecules and represent therefore a pow-
erful class of approaches for applications. Some of these approaches are: the
Super-resolution Optical Fluctuation Imaging (SOFI) approach [5] where the
lack of correlation between distinct emitters is exploited by analyzing high-order
statistics, the Super-Resolution Radial Fluctuations (SRRF) [11] microscopy,
where super-resolution is achieved by calculating at each frame the degree of
local symmetry and, finally, the Sparsity-based Super-resolution Correlation Mi-
croscopy (SPARCOM) [25] which models the sparse distribution of the fluores-
cent molecules via the use of a convex ℓ1 regularisation applied on the emitters’
covariance matrix. To improve the performance of SPARCOM, the Covariance-
based ℓ0 super-resolution microscopy with intensity estimation (COL0RME)
method [27,29] has been proposed to estimate both molecule positions and in-
tensities, which is a valuable piece of information in several applications, such as,
e.g., 3D imaging [28], by means of a two-step procedure relying on hand-crafted
sparsity promoting regularisers. The approach further estimates noise statistics
and background terms (containing out-of-focus molecules). Both SPARCOM and
COL0RME rely on the minimization of non-smooth (and possibly non-convex)
functionals, for which tailored proximal optimization algorithms [19] based on
soft- and hard-thresholding rules have thus been considered.

The applicability of these approaches to more complex geometries is lim-
ited due to the hand-crafted sparsity they enforce which creates biases (i.e.,
punctuated structures) in the reconstruction. This is particularly limiting when
continuous curvilinear structures are desired, which is the case in several biolog-
ical applications. For that, suitable regularisers can indeed be defined [18], with
the major limitation of remaining tailored to particular shapes only. With the
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intent of developing a flexible regularisation approach suited to adapt to different
geometries, we present in the following a data-driven optimization-inspired tech-
nique relying on the use of the so-called Plug-and-Play (PnP) approaches [31],
which, over the last decade have been proved to represent an efficient frame-
work for solving inverse image restoration problems, see [15] for a review. In
this framework, the regulariser is parameterised by a deep neural network that
can be trained on simulated data implicitly characterised by desired structures
of interest, thus better capturing/promoting their shape after training. Our pri-
mary motivations behind using the PnP approach are three-fold: (i) Training the
denoiser is independent of the imaging forward operator, which makes the pre-
trained denoiser applicable even if the forward operator undergoes some changes,
without having to retrain the denoiser from scratch. (ii) The training problem
does not require pairs of measured and ground-truth images, unlike supervised
machine learning approaches. To train the denoiser, one only needs high-quality
ground-truth images and their noisy counterparts (with additive Gaussian noise).
(iii) The PnP approaches are rooted in proximal point algorithms, so their con-
vergence can be rigorously studied using results from fixed-point theory and/or
convex analysis. This leads to better interpretability of the reconstruction algo-
rithm and results in a principled way of combining knowledge about imaging
physics with the available training data.

Contributions: In this work, we leverage the framework of PnP approaches
with convergence guarantees [3,13,14] to show good empirical performance on
the inverse problem of fluctuation-based image deconvolution presented, e.g., in
[25,27,29]. In Section 2, we review the recent advances in the field of PnP ap-
proaches for inverse problems, pointing out the convergent scheme we employ. In
Section 3, we formulate the covariance-based deconvolution model and formulate
its PnP extension, which we called PnP-COL0RME in the following. In Section
4 we report several numerical results on both simulated and real data where the
advantages of using the PnP reconstruction model are shown in comparison to
its model-based counterpart.

2 Plug-and-Play approaches for inverse problems

A standard approach for solving ill-posed inverse problems in imaging consists
in solving the optimisation problem:

x̂ ∈ argmin
x∈Rn2

F(Ψx;y) + λR(x), λ > 0, (1)

where, for observed data y ∈ Rn2

(being the vectorisation of a 2D image of size
n × n) and model operator Ψ ∈ Rn2×n2

, F denotes a (smooth) data fidelity
term and R a regularisation term encoding prior knowledge on the solution
x̂ ∈ Rn2

. Depending on the available prior information (such as sparsity, gradient
smoothness, etc.), tailored hand-crafted functions R can be used. In most cases,
R is non-smooth, and proximal algorithms [19] can be used for solving (1). We
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recall that the proximity operator of parameter τ > 0 of a proper, convex and
non-smooth function R is defined by:

proxτR(z) = argmin
x∈Rn2

R(x) +
1

2τ
∥z− x∥22, z ∈ Rn2

. (2)

Solving (2) corresponds to solving the problem of denoising an image z ∈ Rn2

corrupted by an additive white Gaussian noise (AWGN) of constant variance
equal to τ . Within a proximal gradient algorithm, (2) can thus be interpreted
as a denoising step of the gradient descent iteration zk = xk − τ∇F(Ψxk;y) at
each iteration k ≥ 0. This observation inspired the authors of [31] to develop the
framework of PnP priors, whose main idea consists in replacing proxτR(·) with an
off-the-shelf image denoiser Dσ(·) depending on a parameter σ > 0 corresponding
to a regularisation functional R whose explicit definition is often not available. In
a Bayesian framework, it is indeed possible to explicitly relate Gaussian minimum
mean-squared error (MMSE) denoisers Dσ(·) with the (unknown) image prior
p(·) one would like to model [17] using the Tweedie’s identity: σ2∇ log pσ(x) =
Dσ(x) − x, where pσ is the convolution of p with a Gaussian smoothing kernel
of bandwith σ > 0, which makes pσ smoother (namely, Lipschitz differentiable)
than p under mild conditions. As observed in [20, Eq. 74-75], considering a
(Gaussian) denoiser residual is in fact a good approximation to the score of the
image prior. Along with their Bayesian interpretability, another advantage of
PnP approaches is that they allow the use of advanced image denoising models,
e.g. denoisers parameterised by convolutional neural networks (CNNs), within
the iterative scheme, with impressive representational capabilities. In most cases,
the CNN image denoiser D is trained to perform denoising on some pairs of clean-
noisy images and can be used afterward for more-general inverse problems (e.g.
deblurring, super-resolution, etc.), see [15] for a review. Some state-of-the-art
denoisers include image-dependent filtering algorithms such as Block-Matching
& 3D filtering (BM3D) [4], Denoising Convolutional Neural Networks (DnCNN)
[34] and Dilated-Residual U-Net (DRUNET) deep learning network [33].

These denoisers are typically used in iterative proximal schemes (see, e.g., [16]
for a FISTA-type PnP scheme), although they can be flexibly used in other al-
gorithms such as, e.g., the Alternate Directions Method of Multipliers (ADMM)
[2], the Douglas-Rachford Splitting (DRS) [6] and the Half-Quadratic Splitting
(HQS) [8]. For all these algorithms, a corresponding PnP version can indeed sim-
ply be obtained as described above. PnP versions of proximal algorithms have
been used to solve image restoration problems such as for example PnP-PGD in
[30], PnP-ADMM and PnP-DRS in [21,22] and PnP-HQS in [34,33,3].

In [21] an explicit regularisation by denoising (RED) strategy was designed
in terms of an explicit function R(·) defined, for generic image denoiser D, by:

R(x) :=
1

2
xT (x−D(x)).

Under conditions of local homogeneity, non-expansiveness, and Jacobian sym-
metry, D was shown to be indeed equivalent to a gradient step on R [20], that is,
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D(x) = x−∇R(x). However, as shown in [20], such requirements are unrealistic
on the widely-used denoisers mentioned above, as they do not have symmetric
Jacobians. In order to overcome this limitation, in [3,13,14], the authors proposed
to formulate, similar to RED, a gradient step denoiser of the form:

Dσ(x) = x−∇Rσ(x), (3)

where Rσ : Rn2 → R is a scalar function parameterised by a neural network
Nσ : Rn2 → Rn2

. Interestingly, under mild structural assumption on Dσ, the
authors are able to prove sound convergence guarantees for the underlying non-
convex optimisation problem defined in terms of a non-trivial (but explicit) regu-
larisation function R(·). In the following section we specify the particular prob-
lem we are interested in and discuss its PnP extension based on the strategy
discussed above.

3 Deconvolution via sparse auto-covariance analysis

We consider the following image formation model considered, e.g., in [25,29,27]
to describe, for t = 1, . . . , T, T > 0, a video of temporal acquisitions yt ∈ Rn2

by standard fluorescent microscopes of true images xt ∈ Rn2

:

yt = Ψxt + b+ nt. (4)

In (4), Ψ ∈ Rn2×n2

is a (known) convolution operator associated with the system
point spread function (PSF), b ∈ Rn2

is a background term and nt ∈ Rn2

is
the realisation at time t of an i.i.d. Gausian noise random vector with unknown
variance s ≥ 0, i.e. n ∼ N (0, s Id). We look for a deconvolved image x ∈ Rn2

,
defined as x = 1

T

∑T
t=1 xt. In [25,27], a reformulation of the model (4) was

done in the covariance domain in order to exploit temporal information. In the
following, we proceed similarly but consider a simplified modeling where only
auto-covariance vectors are taken into account, thus neglecting cross-terms.

Considering the frames {yt}Tt=1 as T realisations of a random variable y, the
sample auto-covariance (variance) vector r̃y ∈ Rn2

of y can be estimated by:

r̃y ≈ 1

T − 1

T∑
t=1

(yt − y)2, (5)

where y = 1
T

∑T
t=1 yt denotes the empirical mean. From (4) and (5), the follow-

ing model thus holds between the auto-covariance vectors:

r̃y = Ψ2rx + r̃n, (6)

where rx ∈ Rn2

and r̃n ∈ Rn2

are the auto-covariance vectors associated to
the samples {xt}Tt=1 and {nt}Tt=1, respectively, and where by Ψ2 ∈ Rn2×n2

we
denote the matrix Ψ ⊙Ψ where ⊙ denotes the point-wise Hadamard product.
Finally, note that by assumption r̃n = s1, where 1 = (1, . . . , 1) ∈ Rn2

.
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Algorithm 1 Model-based and PnP support estimation

Require: r̃y, rx
0 ∈ Rn2

and parameters (τ, λ > 0 for model-based, σ for PnP)
repeat

sk+1 = 1T (r̃y −Ψ2rx
k)

zk+1 = rx
k − τλ(Ψ2)T (r̃y −Ψ2rx

k − sk+11)

rx
k+1 =

{
proxτλR(z

k+1) % model-based (7)
rx

k+1 = Dσ(z
k+1) % PnP

until convergence
return Ω := {i : (r̂x)i ̸= 0} , ŝ

Remark 1. Note that, upon reshaping, r̃y ∈ Rn2

is in fact the second-order SOFI
image associated to the stack {yt}Tt=1, which, thanks to the ‘squaring’ of the
underlying point spread function, enjoys better spatial resolution in comparison,
e.g., to ȳ, see [5] for details.

Remark 2. In comparison to the covariance-based modelling in SPARCOM [25]
and COL0RME [27], model (6) is indeed a simplification. In those papers, the
whole sample-covariance matrix Ry ∈ Rn2×n2

with main diagonal r̃y was com-
puted. Such a matrix is not diagonal, due to the correlation induced by the PSF.
In order to deal with a simplified model and benefit from faster calculations, we
consider in the following the relation (6) involving only auto-covariance terms
and leave a complete modelling involving also cross terms for future work. The
resulting observation model 6 is thus less rich but exact (not approximated).

Based on (6), we are now interested in finding the fluorescent molecule loca-
tions and estimate noise information. Namely, we are interested in finding the
support of rx, Ω := {i : (rx)i ̸= 0} and the unknown noise variance s ≥ 0. We
do so by considering the following minimisation problem:

(r̂x, ŝ) ∈ argmin
rx≥0, s≥0

λ

2
∥r̃y −Ψ2rx − s1∥22 +R(rx), (7)

where λ > 0 is a regularization parameter and R(·) is a regularisation term to
be defined to enforce desirable properties (sparsity, for instance) of the solution.
Problem (7) can be solved by Algorithm 1, where, to improve convergence speed,
a global minimisation on s is performed followed by a proximal-gradient step on
rx. An analogous (a priori, slower) algorithm benefiting from theoretical conver-
gence guarantees is the Proximal Alternating Linearized Minimisation (PALM)
algorithm whose convergence is studied in [1].

Once Ω and ŝ have been computed, following [29,27] a second algorithmic
step can be performed to estimate image intensities only in correspondence with
the support points in Ω, i.e. by solving:

(x̂, b̂) ∈ argmin
x∈R|Ω|

+ , b∈Rn2
+

1

2
∥ΨΩx− (y − b)∥22 +

µ

2
∥∇Ωx∥22 +

β

2
∥∇b∥22, (8)
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where the data term models the presence of Gaussian noise, y =
∑T

t=1 yt and
µ, β > 0 are regularisation parameters. Moreover, ΨΩ ∈ Rn2×|Ω| is a matrix
whose i-th column is extracted from Ψ for all indexes i ∈ Ω and ∇Ω denotes
the discrete gradient operator restricted to points in the support Ω.

A hand-crafted regularisation model R in (7) introduces reconstruction bi-
ases. For example, using the ℓ1 norm [25] or the continuous exact relaxation of
the ℓ0 pseudo-norm [26]) enforces sparsity by promoting point reconstruction.
Solutions thus appear dotted as reconstructed points have a given inter-distance
which cannot be decreased [7]. For reconstructing filaments, a solution is to use
a regularising term promoting curves. Such method is proposed, e.g., in [18] in
an off-the-grid setting, but the numerical aspects are difficult and still under
development. To overcome this limitation, in the following section, we propose
a Plug-and-Play extension of the approach above where the proximal step is re-
placed by a denoiser Dσ trained on an appropriate dataset of covariance images
representing the geometrical structures of interest.

3.1 Plug-and-play extension

The proximal step naturally appearing when solving problem (7) by proximal
gradient algorithms, can be replaced by an off-the-shelf denoiser. To do so, we
make use of a proximal gradient step denoiser as proposed by Hurault et al. in
[14]. In their paper, the authors showed that this choice corresponds indeed to
the proximal operator associated to a non-convex smooth function which allows
the authors to derive convergence guarantees of the resulting proximal gradient
scheme [14, Theorem 4.1]. Note, that differently to the setting proposed in [14],
our algorithm processes auto-covariance images due to the model (6) and, along
with r̂x, it provides an estimate ŝ of the noise variance by alternate minimisation.
We report the iterative scheme in Algorithm 1 and refer in the following to PnP-
COL0RME to the case when a PnP regulariser is employed.

In [14] the authors considered a denoiser Dσ in the form of a gradient step (3)
of a functional Rσ : Rn2 → R with specific properties, e.g., bounded from below,
and parameterised by a deep neural network Nσ. Recalling the characterisation
of proximity operators [10] introduced by Gribonval & Nikolova, the authors
proved in fact that Dσ can be written as proximal operator of a function ϕσ

defined by:

ϕσ(w) := Rσ(D
−1
σ (w))− 1

2
∥D−1

σ (w)−w∥22, w ∈ Rn2

.

The function minimised when employing PnP COL0RME reads: Fσ(rx, s) :=
1
2∥ry −Ψ2rx − s1∥22 + ϕσ(rx), which, after recalling that rk = Dσ(z

k) at each
k, can be written as:

Fσ(rx
k, sk) =

1

2
∥ry −Ψ2rx

k − sk1∥22 +Rσ(z
k)− 1

2
∥zk − rx

k∥22. (9)

In [14, Theorem 4.1] the authors show that thanks to the structure of Fσ, the
PnP proximal gradient scheme converges indeed to a stationary point of Fσ,
whose decay can be indeed assessed throughout the iterations.
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Note that, the regularisation parameter λ > 0 appearing in (1) to regulate the
strength of the regularisation term R has been replaced by the hyperparameter
σ in (9). Intuitively, the value of σ should correspond to the variance of AWGN
appearing in the gradient steps of the proximal gradient algorithm 1, hence its
tuning is not straightforward. As discussed in [32], a possible remedy for avoiding
a time-consuming parameter tuning consists in introducing a rescaling parameter
whose setting is easier than σ.

4 Numerical results

We now present some results obtained by using PnP-COL0RME on temporal se-
quences of blurred and noisy data. A natural extension to the actual problem of
super-resolution where Ψ = MqH ∈ Rm2×n2

with H ∈ Rn2×n2

is PSF convolu-
tion matrix and Mq ∈ Rm2×n2

is a downsampling operator with n = qm, q > 1,
is left for future work.

To train the denoiser Dσ we created a dataset composed of clean and noisy
image pairs. The geometrical features of the images in this dataset should be the
same as the one of the images to restore. Differently from other methods, the
proposed algorithm works with a model formulated in the covariance domain,
so that the denoiser takes as an input noisy sample auto-covariance matrices of
a fluctuating temporal sequence of images. Hence, to create the dataset we first
started by creating different spatial patterns (thin filaments) shown in Figure 1
where the emitters have different positions in the continuous grid. Such patterns
are the superposition, after rotations with different angles, of the ground truth
spatial pattern provided in the MT0 microtubule training dataset uploaded for
SMLM 2016 challenge 3. Then, we used the fluctuation model discussed in [9] to
simulate temporal fluctuations and create a temporal stack of T = 500 frames for
each spatial pattern. Two exemplar frames of one temporal stack of images are
reported in Figures 2a and 2b. For each temporal stack of images, we could there-
fore calculate the temporal auto-covariance image (see Figure 2c) corresponding
to one instance of the clean images rGT

x in our dataset. To create now its noisy
version we added Gaussian noise η with constant variance σ2, η ∼ N (0, σ2Id),
with σ following a uniform distribution, σ ∼ U(σ1, σ2). We remark that since
the noise in the covariance data comes from additive Gaussian noise on the in-
dividual frames, its actual distribution is indeed χ2. However, since the number
of the degrees of freedom is high (as T = 500), the distribution can be approx-
imated by a Gaussian distribution. In our experiments, after normalising rGT

x

with maximum value equal to 1, we select σ1 = ϵ << 1 and σ2 = 50/255.
Training was performed following the procedure in [14] and using the code

available on the authors’ GitHub repository 4. For the neural network Nσ(·)
used to parameterise the denoiser (see (3)), we used DRUNet, a CNN proposed
in [33]. For training, we used 500 pairs of clean-noise auto-covariance images

3 https://srm.epfl.ch/Challenge/ChallengeSimulatedData
4 https://github.com/samuro95/Prox-PnP

https://srm.epfl.ch/Challenge/ChallengeSimulatedData
https://github.com/samuro95/Prox-PnP
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Fig. 1: Simulated spatial patterns

(a) (b) (c)

Fig. 2: (a-b) Two different frames of a simulated fluctuating stack made from the
first spatial pattern from Figure 1, (c) The auto-covariance image rGT

x estimated
from the whole temporal sequence.

and 100 for validation. The network was trained using 1215 epochs via ADAM
optimization and batch size equal to 16. In the following experiments, the choice
τ = 1 and λ = 0.99 in Algorithm 1 was performed to guarantee convergence, see
[14, Section 4.1] for details.

4.1 Simulated data

We first apply PnP COL0RME to simulated data presented in Figure 3. The
PSF used to generate the data has a FWHM equal to 176.6 nm, the pixel size
is equal to 25 nm and the images have a size of 256× 256 pixels.

Thanks to its training, we observe that the proposed approach is able to
capture the filaments’ geometry fairly well. We observe that in comparison to
the ground truth support in Fig. 3c, the reconstruction in Fig. 3g is rather
accurate. For the evaluation of the localization precision the Jaccard Index (JI)
has been used. It is a quantity in [0, 1] computed as the ratio between correct
detections (CD) and the total (correct, false negatives false positive) decetions,
i.e. JI := CD/(CD+ FN + FP ), up to a tolerance δ > 0, measured in nm (see,
e.g., [23]). For the reconstruction in Fig. 3g, the tolerance precision was chosen
δ = 40 nm. Moreover, by solving (8), intensities can also be estimated with
high precision, see Fig. 3h. However, for the challenging dataset in Figure 3, the
appearance of small artefacts (e.g. incorrect duplication of filaments) due to the
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(a) y (b) y1 (c) ΩGT (d) xGT

(e) (f) (g) Ω̂ (JI=0.67) (h) x̂ (PSNR=26.01)

Fig. 3: (a) Mean of the acquired temporal sequence, (b) First frame (c) The
ground truth support (d) The ground truth intensity image (e) Evolution of cost
function Fσ in (9) (f) the evolution of min

i≤k
∥rxi+1− rx

i∥2/∥rx0∥2, in logarithmic

scale, (g) Reconstructed support (h) Reconstructed intensity image.

training dataset we built are observed. They could be potentially removed by
retraining the model with more heterogeneous data.

4.2 Real data

We then applied the proposed approach to high-density SMLM acquisitions using
a publicly available dataset created for the 2013 SMLM challenge 5, see Figure 4.
Although in SMLM the molecules do not have a blinking behaviour, but rather
an on-to-off transition, we can consider as blinking the temporal behaviour of
one pixel in high-density videos due to the presence of many molecules per pixel.
The dataset contains T = 500 images, the PSF of the microscope used to acquire
these data has a FWHM of 351.8 nm and the pixel size is equal to 100 nm. The
support Ω̂ computed by the model-based COL0RME approach in [29,27] based
on the use of a relaxation of the ℓ0 pseudo-norm is compared to the one PnP-
COL0RME variant of Algorithm 1. Since no ground truth is available for these
data, no quantitative assessment can be computed, however better continuation
properties than COL0RME [27] are observed.

5 https://srm.epfl.ch/Challenge/Challenge2013

https://srm.epfl.ch/Challenge/Challenge2013
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(a) y (b) y1

(c) Ω̂ by [27] (d) Ω̂ by PnP Algo. 1 (e) x̂

Fig. 4: HD-SMLM data: (first row) The temporal mean and the first frame of
the acquired temporal sequence (second row) Support (ℓ0-based [27] VS. PnP)
and intensity reconstruction, σ = 10/255.

5 Conclusions

We presented a PnP model for support localisation for the deconvolution of
imaging data in fluorescence microscopy. PnP approaches rely on the use of off-
the-shelf denoisers to model implicit prior regularisation functionals. They can
be effectively used to replace proximal steps in proximal gradient algorithms.
Following [14], we choose a denoiser with a particular structure to benefit from
convergence guarantees. Our results show that the geometry of specific structures
(thin filaments) can be captured by suitable training. Future work should take
into account the presence of a downsampling operator in the image formation
model and a more accurate modelling making use of also cross terms in the
covariance data.
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