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Since several decades, kinetic and experimental oxidation of n-alkanes in combustion systems (flow reactors, 

jet stirred-reactors, motored engine, and rapid compression machines) received much attention [5-20]
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Investigation of  the combustion and the cool flame oxidation of n-pentane is of interest for researchers [21-24]. 

Different analytical methods have been developed to identify low-temperature oxidation species, such as pentenyl-
hydroperoxides (ROOH), and pentenyl-ketohydroperoxides (KHPs) [25-29].
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• In this study, the oxidation of n-pentane was performed in a JSR. Low temperature oxidation products were characterized. 

• Hydroperoxides, ketohydroperoxides (KHPs), and highly oxygenated molecules (HOMs) resulting from multiple O2 addition 
of fuel’s radicals were tracked using ultra-high pressure liquid chromatography (UHPLC) coupled to atmospheric pressure 
chemical ionization (APCI) and high-resolution mass spectrometry (HRMS-Orbitrap Q-Exactive). 

• HRMS experimental results were compared to modeling datausing the model of Wang and Sarathy (WS model) [30].

[30] Z. D. Wang; S. M. Sarathy, Third O-2 addition reactions promote the low-temperature auto-ignition of n-alkanes, Combust. Flame 165  (2016) 364-372



2- Experimental

a. Jet stirred reactor 

● A fused silica jet-stirred reactor (JSR) (c.a. 42 cm3): 4 injectors (nozzles of 1 mm i.d.), 
located inside a regulated electrical oven of 1.5kW. 

● Flow rates of O2 (99.995% pure) and N2 regulated by thermal mass-flow controllers, 
and fuel by HPLC pump (Shimadzu® LC10 VP). 

● n-pentane (>99% pure from Sigma-Aldrich®)  and O2 are diluted by N2 , 
and injected separately, to avoid oxidation before reaching the injectors .

● Thermal homogeneity is checked using Pt/Pt-Rh10%, 0.1mm diam.

● Oxidation gases are bubbled in cooled acetonitrile (0°C, 25 ml, 75 min) after sonic probe 
sampling. Samples are stored in a freezer at -15 °C.
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located inside a regulated electrical oven of 1.5kW. 
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and fuel by HPLC pump (Shimadzu® LC10 VP). 

● n-pentane (>99% pure from Sigma-Aldrich®)  and O2 are diluted by N2 , 
and injected separately, to avoid oxidation before reaching the injectors .

● Thermal homogeneity is checked using Pt/Pt-Rh10%, 0.1mm diam.

● Oxidation gases are bubbled in cooled acetonitrile (0°C, 25 ml, 75 min) after sonic probe 
sampling. Samples are stored in a freezer at -15 °C.

Conditions:      2500 ppm of n-pentane, 4 % of O2 and 95.75 % of N2

Pressure: 10 atm
Temperature: 520-800 K
Equivalence ratio(φ): 0.5
Residence time: 1.5 s



b. Ultra-high pressure liquid chromatography (UHPLC) coupled to high resolution mass 
spectrometry HRMS (Orbitrap Q-Exactive)

Step 1: Chromatographic separation

C18 RP-UHPLC (Phenomenex Luna®, 100x2.1 mm, 1.6μm, 100 Å)

Mobile phase: H2O+ ACN (3 to 100% of ACN, flow rate 250 μl/min during 18 min)
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Step 1: Chromatographic separation

C18 RP-UHPLC (Phenomenex Luna®, 100x2.1 mm, 1.6μm, 100 Å)

Mobile phase: H2O+ ACN (3 to 100% of ACN, flow rate 250 μl/min during 18 min)

Step 2: Soft ionization

Atmospheric pressure chemical ionization (APCI)
in positive [M+H]+ and negative [M-H]- modes

Step 3: Mass identification

Orbitrap Q-Exactive mass spectrometer

Resolution 140,000
Mass accuracy < 1 ppm

Direction
of ions

UHPLC

APCI



Chemical characterization

OOH function Isotopic H/D exchange (using of D2O)

C=O function DNPH derivatization (2,4-dinitrophenylhydrazine)



3- Results

3.1. Hydroperoxides 

peroxidation of fuel’s radicals and H-atom abstraction by RO2
•

R• + O2 ⇄ RO2
•

RO2
• + R’H → ROOH + R’•

RO2
• + HO2

• → ROOH + O2
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3.1.1. Alkyl-hydroperoxides 

peroxidation of fuel’s radicals and H-atom abstraction by RO2
•

R• + O2 ⇄ RO2
•

RO2
• + R’H → ROOH + R’•

RO2
• + HO2

• → ROOH + O2

Alkyl-hydroperoxides C3H8O2, C4H10O2 and C5H12O2

• Are not formed at the same level (C5>C3>C4)

• Do not peak at the same temperature 
600 K for C5H12O2, 620 K for C4H10O2 , and 580 K for C3H8O2

• A slight underestimation of the temperature at which maximum 
formation of C5H12O2 occurs (WS model [30]: ~585 K vs. 600 K in 
experiments

No modeling data for C3 and C4 alkyl-hydroperoxides[30] Z. D. Wang; S. M. Sarathy, Third O-2 addition reactions promote the low-temperature auto-ignition of n-alkanes, Combust. Flame 165  (2016) 364-372



3.1.2. Alkenyl-hydroperoxides 

Decomposition of C5H12O2 hydroperoxides Alkenylhydroperoxides: C2H4O2, C3H6O2, C4H8O2, and C5H10O2



No modeling results

Are not formed at the same level (C3>C2>C5 >C4)

Do not peak at the same temperature: 
600 K for C5H10O2 , C4H8O2 and C3H6O2, and 580 K for C2H4O2 



3.2 Ketohydroperoxides (KHPs) 

KHPs are produced from two O2 additions on fuel’s radical: Fuel + X• (•OH, H•, O•, HO2
•, O2 etc.) → R• + XH;

R• + O2 → RO2
• → •QOOH (H-shift); •QOOH + O2 → •OOQOOH → HOOQ’=O + •OH
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Signals corresponding to C5H10O3 KHPs, were detected using UHPLC-HRMS/ APCI +/- (C5H11O3
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negative (C5H9O3
- m/z 117.0556)

H/D exchange: m/z 120.0761 corresponding to C5H10D1O3
+

DNPH derivatization: m/z 297.0840 corresponding to C11H13O6N4
- derivative (C5H10O3+DNPH)

Underestimation of the temperature at which maximum formation of 
C5H10O3 is observed (WS model [30]: ~580 K vs. measurements: 600 K)

[30] Z. D. Wang; S. M. Sarathy, Third O-2 addition reactions promote the low-temperature auto-ignition of n-alkanes, Combust. Flame 165  (2016) 364-372



Decomposition of C5H10O3 hydroperoxides

Lower mass KHPs: C4H8O3, and C3H6O3



Decomposition of C5H10O3 hydroperoxides

Lower mass KHPs: C4H8O3, and C3H6O3

Underestimation of the temperature at which maximum formation of C3H6O3 and C4H8O3 

occurs (WS model [30]: ~580 and 575 K, respectively, vs. 600K in experiments.

[30] Z. D. Wang; S. M. Sarathy, Third O-2 addition reactions promote the low-temperature auto-ignition of n-alkanes, Combust. Flame 165  (2016) 364-372



3.3 Highly oxygenated molecules (HOMs) 

Highly oxygenated molecules result from the addition of multiple molecules of O2 on n-pentyl radicals.

Dihydroperoxides (C5H12O4), olefinic dihydroperoxides (C5H10O4), and  diketo-hydroperoxides (C5H8O4) were detected 

using negative APCI HRMS (C5H11O4
- , m/z 135.0663, C5H9O4

- , m/z 133.0506, C5H7O4
- , m/z 131.0350).



3.3 Highly oxygenated molecules (HOMs) 

Highly oxygenated molecules result from the addition of multiply molecules of O2 on n-pentyl radicals.

Dihydroperoxides (C5H12O4), olefinic dihydroperoxides (C5H10O4), and  diketo-hydroperoxides (C5H8O4) were detected 

using negative APCI HRMS (C5H11O4
- , m/z 135.0663, C5H9O4

- , m/z 133.0506, C5H7O4
- , m/z 131.0350).

No modeling data for C5H12O4

Underestimation of the temperature at which the maximum formation of C5H8O4 and C5H10O4 is observed (WS model 
[30] : ~555 K and 560 K, respectively, vs. 600 K in experiments)

[30] Z. D. Wang; S. M. Sarathy, Third O-2 addition reactions promote the low-temperature auto-ignition of n-alkanes, Combust. Flame 165  (2016) 364-372



4- Conclusion and perspectives

This work highlighted the presence of n-pentane low-temperature oxidation intermediates never or rarely
reported before (C3-C5 alkyl-hydroperoxides, C2-C5 alkenyl-hydroperoxides, C3-C5 keto-hydroperoxides, and 
HOMs (C5H8O4, C5H12O4, C5H10O4).

Other oxidation products (2-Me-THF, 2- and 3-pentanone, 2,4-pentanedione, 3-penten-2-one, 2-butanone, 2,5-
DHF, MVK etc.) were detected using UHPLC-HRMS analyses 

Further investigations of n-pentane oxidation using other laboratory experiments, e.g., piston engines or rapid 
compression machines (RCM)
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