N
N

N

HAL

open science

ANALYSIS OF SCHWARZ METHODS FOR
CONVECTED HELMHOLTZ LIKE EQUATIONS

Martin J. Gander, Antoine Tonnoir

» To cite this version:

Martin J. Gander, Antoine Tonnoir. ANALYSIS OF SCHWARZ METHODS FOR CONVECTED
HELMHOLTZ LIKE EQUATIONS. STAM Journal on Scientific Computing, 2024, 46 (1), pp.A1-A22.

10.1137/23M1560057 . hal-04038452

HAL Id: hal-04038452
https://hal.science/hal-04038452
Submitted on 20 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04038452
https://hal.archives-ouvertes.fr

Tt = W

NN N NN

S © 0w

31

ANALYSIS OF SCHWARZ METHODS FOR CONVECTED
HELMHOLTZ LIKE EQUATIONS

M.J. GANDER, AND A. TONNOIR

Abstract. We present and analyze Schwarz domain decomposition methods for a general diffu-
sion problem with complex advection. The complex advection term changes completely the nature
of the solution and makes it more Helmholtz like. We analyze in detail the influence of the outer
boundary conditions on the performance of the Schwarz algorithm, including PML conditions to
emulate free space problems, and optimized transmission conditions, also for multiple subdomains.
Our results show that the performance of Schwarz methods for such Helmholtz like problems is
much better on free space configurations than in waveguides or closed cavities. Equations with com-
plex advection appear in diverse applications, for example the convected Helmholtz equation, the
Gross-Pitaevskii equation, Schrédinger equations, and also as important component in the wave-ray
multigrid algorithm for Helmholtz problems. We show as an example the performance of our Schwarz
methods for a potential flow around a schematic submarine.

Key words. Complex advection, convected Helmholtz equation, Schwarz methods.

MSC codes. 65M55, 65N55, 65F10.

1. Introduction. We are interested in solving numerically a partial differential
equation (PDE) with a complex (!) advection term of the form

(1.1) —div(AVu) +a-Vu+pu=f in Q, 1:=v—1,

where () is a subset of R2, A is a 2 x 2 positive definite matrix function, p is a real
function and a is a vector function in R?. We will assume that the source term f is
compactly supported, and (1.1) must be equipped with appropriate boundary con-
ditions that we will specify later. Equation (1.1) is very different from a classical
advection diffusion equation with real advection term, and can have Helmholtz char-
acter even when p has the good sign, i.e. u > 0. Equation (1.1) appears in various
contexts:

e The convected Helmholtz equation: in this case, p = —w? with w the
pulsation of the wave, a = —2wv with v the underlying flow (with convention
e~ for the time variable), and the solution u represents a pressure field. If
the underlying flow is assumed to be incompressible, then we have

A=cd—-vvT,

with ¢g > 0 the sound speed, see e.g. [36, 3, 5]. Note that to ensure that
the matrix A is positive definite, the flow speed v must be small enough with
respect to the sound speed ¢y (under mach 1).

e The Gross-Pitaevskii equation: equation (1.1) also appears as an inter-
mediate problem for computing ground states of the Gross-Pitaevskii equa-
tion (which consists in solving a minimization problem), see [11, p.1107] or
[2]. Solving equation (1.1) is an essential ingredient to compute the Sobolev
gradient of the cost functional.

e The linearized Schrédinger equation: when looking for traveling wave
solutions of the form (¢, x) = u(x—at) to the linearized Schrédinger equation

1
W+ 589 =V =0,

see [7] or [10, p.198], equation (1.1) appears with A = %Id and p=1V.
1
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e The ray equation: equation (1.1) also appears as a fundamental ingredient
in the wave-ray multigrid method for solving the Helmholtz equation [9, 33,

34, 38],

—AG — w?

=0,
when seeking the ray component of the form @(x) = e***u, where k is a given
direction in R? satisfying the dispersion relation ||k||3 = w?. Then, u satisfies
equation (1.1) with A =1d, a= —2k and p = 0.
When equipped with classical Dirichlet, Neumann or Robin (impedance) boundary
conditions (BCs), one can show that problem (1.1) is of Fredholm type, since the
operator —div(AV-) 4 - is coercive. We deduce then that the problem is of type
coercive + compact, see [3, p.6], and therefore admits a unique solution, except for at
most a countable set of parameters.

Depending on the situation of interest from the list above, we will consider Dirich-
let, Neumann or Robin BCs. Furthermore, we will also consider the case where we
have Perfectly Matched Layers (PMLs) surrounding the domain of interest, which
is important for wave-like problems on unbounded domains. The derivation of the
PML formulation is not straightforward for equations of the type (1.1), see for in-
stance [5, 36] for the convected Helmholtz equation, and we will briefly recall the
PML construction hereafter.

Our goal is to analyze convergence properties of a Schwarz Domain Decompo-
sition Method (DDM) with overlap using classical Fourier analysis, see [23, 15]. In
particular, we wish to emphasize the impact of considering PML to truncate the com-
putational domain. There is an important body of literature dedicated to the study
of Schwarz methods for the Helmholtz equation, see [25, 27, 29, 24, 28, 23, 21, 22, 13]
and reference therein. However, only few results exist for the convected Helmholtz
equation; an exception is the recent paper [32], in which the authors study a non-
overlapping DDM for the convected Helmholtz equation. In fact, in the case of con-
stant parameters A, a and p, one can reformulate, as we explain hereafter, equation
(1.1) as a classical Helmholtz equation, using an appropriate change of variables. This
shows in particular that we will clearly face the same difficulties as in the Helmholtz
case [17] for solving (1.1), but we can also benefit from the results known for the
Helmholtz case.

The rest of our paper is organized as follows: First in section 2 we recall the
link between the classical Helmholtz equation and equation (1.1), and explain how we
can derive a stable PML formulation and first order Absorbing BCs (ABCs). Then,
in section 3 we present a Fourier analysis of a Schwarz DDM considering vertical
slicing and Robin transmission conditions. We study the impact of various outer
PML truncations on the performance of the method, and explain how to properly
take them into account in the implementation. Finally, in section 4 we give some
concluding remarks.

Remark 1.1. Schwarz methods have been intensively studied for a formally sim-
ilar equation, namely the advection-diffusion equation, see [1, 26, 16], but the math-
ematical character of this equation with real advection term is very different from
our equation (1.1). Also, the anisotropic aspect of diffusion was studied for Schwarz
methods in [20, 19], but again without the fundamentally character changing term of
the complex advection in (1.1).

2. Reformulation as a Helmholtz equation and related results. In this
section, as well as for the analysis in the next section, we will suppose that A, a and

2
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1 are constant parameters. Note that for the construction of ABCs and for the PML
formulation, a generalization to locally perturbed parameters is possible.

2.1. Link with the Helmholtz equation. For the convected Helmholtz equa-
tion, in the case of constant parameters, it is well-known that there exist coordi-
nate transformations that map the convected Helmholtz equation into the Helmholtz
equation, see [36, 30]. Let us explain a similar idea for (1.1), namely to consider
u(x) = v(x)e™* with k to be suitably chosen later. Then, we have

Vu = (Vv)e™* 4 ve™ Xk,
and
div(AVu) = div(AVv)e™ > + 204V - ke™ > — | |k[|% >,

where we denote by |/k||% := Ak - k. Introducing these results into (1.1), we get that
v satisfies

(2.1) — div(AVv) + Vo - (ia — 204k) + (u + |[k[|% —a-k)v = e > .
1
If we choose now k := 514_137 equation (2.1) simplifies to

a3

A v = et ATIEx g

(2.2) — div(AVv) + (i

2
Remark 2.1. Note that (2.2) is a classical Helmholtz problem if p — MTA’I <0,

2
so even for p > 0, (1.1) has a Helmholtz character if Ha”TA’l is large enough: the
complex convection term is the reason for this Helmholtz character of equation (1.1).

Now, from (2.2), using an appropriate linear coordinate transformation of the form
(2.3) x' = Sx,

we can rewrite the operator div(AV-) as a Laplace operator, because

(2.4) V- =81V, — div(AV.) =div/(SASTV'.),

and since A is symmetric positive definite, we can use the Cholesky decomposition
A = GGT and thus take S = G~! to simplify (2.4). Equation (2.2) then simplifies to

1 ~
(25) = A+ (= gl = 7

where v/(x') = v(x) and f/(x/) = e~*A 857 % f(5-1x)).

Remark 2.2. In our case, the change of variables (2.3) preserves the vertical
boundaries, because the matrix S = G~! is lower triangular, so that

{x=a} <+= {2/ =sna},

where s;; = [S]; ;. In contrast, horizontal boundaries are deformed into oblique
boundaries (if a2 # 0), in the same spirit as in [37].
3
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Fi1G. 1. Ezample of using the ABC (2.6) with a point source in the center of the domain.

2.2. Derivation of a simple Absorbing Boundary Condition. The refor-
mulation (2.5) as a Helmholtz equation is used in the literature for constructing ABCs
for the convected Helmholtz equation, see [4], or PMLs [5, 36], albeit using a different
change of variables (the choice is not unique). Suppose that' p — 1[la|%_, < 0, then
we can easily deduce the equivalent of the classical ABC for the Helmholtz equation
(taking the convention e~ for the time variable):

Vv -n' —wv' =0 < S TVe-n' — v =0,
— AVv- (G Tn') —@w =0,
——

(26) =n/||GTn]|

1 ~
<= AVu-n-— ;A nu— w||n||au =0,

where @ := y/—p + 1|lal|%_,, and n is the normal on a given boundary surrounding

the domain of computations. Note that this ABC for equation (1.1) is valid for any
straight boundary since the classical ABC for the Helmholtz equation is valid on any
straight line, no matter the orientation. If on the contrary we consider this condition
on a circular boundary for the Helmholtz equation, then the boundary for equation
(1.1) is no more a circle, see for instance [4, 35] for more details and higher order
ABCs.

As a numerical illustration, we consider the convected Helmholtz problem

—div (AVu) — 2wv - Vu —w?u = § in Q=(0,4)2,

(2.7) AVu-n+wv-nu —w|nlfjau = 0 on 09,

where § is the Dirac source term, and A = Id — vv?. We show in Figure 1 the
solution u we obtain using the ABC (2.6) for the model problem (2.7) with problem
parameters

. cos(6) o 1 B
(2.8) v := Ma [sin(@)} , G—Z, Ma—ﬁ, w = 10.

2.3. Derivation of a Cartesian PML formulation. In this subsection, we
will also assume that A is a diagonal matrix so that the coordinate transformation

'n what follows, we will always assume that p — %||a||124,1 < 0, since otherwise, the problem is
coercive and has lost its difficult Helmholtz character.

4
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(2.3) preserves both horizontal and vertical boundaries, since the matrix S is diag-
onal, which simplifies the construction of a Cartesian PML. We refer to [12] for the
construction of a PML on a polygonal domain. We emphasize that the assumptions
that the parameters are constant and A is diagonal are necessary only in the PML
region.

Under these hypotheses, it is well-known that the PML formulation for the
Helmholtz equation in (2’,y') coordinates reads

1 -
(2:9) — div’ (D V'0') + sty — a3 -0’ = 7,
where
st /sh 0
Dy = [ y(/) ‘ s;//s;,} :

The complex valued functions s}, and s;, are defined by

e ’ ’ar gt
(2.10) o) :{ 1 if o' e (a"+0,0 1),

1410, otherwise,

and

1 if ye(d+0,d-1),
1+10, otherwise,

(2.11) )= {

where o, > 0 and o, > 0 are the strength of the PML in each direction, and ¢ > 0 is
the depth of the PML. In (z/,3’) coordinates, the computational domain would then
be the square (a’,b") x (¢, d’"). Returning to the (z,y) coordinates, we get

1 ~
— div' (Dpps , V'V') + 88y (1 — ZHaHZ—JU’ =1

(2.12) . -
— —div(ApmrVv) + szsy(p — 1||a||i,1)v = f,
where
Apypp = [ansg/sm QQQS(?C/SJ 7
and s (z) = s}, (2') and s, (y) = s, (y’). Recalling that v(x) = we™1TAT A% e get

1 _
APMLV’U = (APMLV’U, - Z’U,ZAPMLA_13.> e_’%A 1a~x’
and, observing that Apyr, depends on (z,y),
. . 1
le(APMLV’U) = le(APMLVu) — Z§apML -Vu
L. 1 2 —itA tax
—z§dlv (uapML) — ’u,4||a||ZPI$IL> e 2 ,
where

A-1 -1 -1 -1
APML =A APMLA s apML = APMLA a.
5
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F1G. 2. Solution obtained using (on the left) the classical PML and (on the right) the modified
PML.

Thus, inserting this expression into (2.12), we obtain the PML formulation for (1.1),
namely

1 1
—diV(APMLVU) + ZﬁapML . Vu+z§div(u apML)
(2.13) 1 ) 1 ,
+sa5y (1 — ;L||a||fr1 + Ksy”a”fﬁﬁu)u =f.

Note that the PDE remains unchanged from the initial one in (1.1) in the physical
region.

As a numerical illustration, let us consider once again problem (2.7), but this
time with the problem parameters

4
], 0:=0, M::E, w = 20.

o cos(8)
(2.14) vi=M [sin(ﬂ)
In Figure 2, we show the real part of the solution computed using a naive classical
PML (left), which is known to have instabilites in some configurations, as we can
clearly see here, and the PML formulation (2.13) (right), which works perfectly.

3. Fourier analysis of a classical Schwarz algorithm. We now present and
analyze Schwarz domain decomposition methods for (1.1) in a specific geometry: find
u € HY(Q) satisfying

(3.1) —div(AVu) +a-Vu+pu=f in Q= (a,b) x (c,d),

where A is a diagonal matrix, a < b and ¢ < d with {a,b, ¢, d} € R. For the boundary
conditions, we will consider four configurations:

e Dirichlet-Dirichlet: we impose homogeneous Dirichlet boundary conditions
on both vertical and horizontal boundaries,

e Dirichlet-PML: we impose also homogeneous Dirichlet boundary conditions
on the left and right but a PML on the bottom and top boundaries (which
terminates with a homogeneous Dirichlet boundary condition),

e PML-Dirichlet: the same idea but with PML on the vertical boundaries,

e PML-PML: imposing PML on all sides of the domain.

The first case models a bounded domain, the second and third cases a waveguide

with different orientation, and the last case a free space problem. We decompose

the domain  first into two overlapping subdomains Q; := (a, 8) X (¢,d) and Q5 :=

(a,b) x (¢,d) with a < 8, see Figure 3. We denote by I'1 o := {z = 5} x (0,1) the
6
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interface of 0y (within Qs) and I'y 1 := {z = a} x (0, 1) the interface of Qs (within Q4).
Then, a general iterative Schwarz algorithm computes for iteration index n =1,2, ...
the subdomain solutions

—div(AVu?) +a - Vul + pul = fi in Q,
’U,? =0 on 691 \FLQ,
(3.2) _ (@110, +p12 — 1% )uy = (@110, +p12 — Z%)Ug_l on Iy 9,
—div(AVuf) +a- Vui 4+ pul = fo in O,
’U,g =0 on 692 \ Fg’l,

(=110 +p21 + 1% )ul = (—a110, + P21 +20%5)uy on Ty,

where f? is the restriction of f to €, i € {1,2}, and p; 2, p21 are complex constants.
We emphasize that when using PML, the algorithm should be written with complex
stretched coordinates, or equivalently with the PML formulation as described in sub-
section 2.3. Also, note that we consider here a particular Robin type transmission
condition to get a condition similar to the ABC (2.6) at the interfaces. Moreover, in
the PML formulation it is interesting to note that the boundary term coming from
the integration by parts of div(uappsy) is canceled by this choice of transmission
condition, see Remark 3.3 for more details.

To study the convergence of the Schwarz algorithm (3.2) as n goes to infinity,
we consider the error v — ul|q,, ¢ € {1,2}, which amounts to consider the algorithm
(3.2) with zero source terms. Using the equivalence with the Helmholtz equation, the
iterative algorithm (3.2) for the error becomes

SN - = 0 in 0,
(W =0 on 9 N,
(3.3) (830/ p,1,2) ()7 = (69:’ +p/1,2) (U,)g_l on F,1,2’
' AW -2y = 0 in Q5,
W)y =0 on 9%, N,
(=0 +151) ()5 = (=0w +phy) ()7 onTh,,

where T 5 := {2/ = '} x (¢,d’) and T'y ; := {2’ = o/} x (c/,d’'), and

(3~4> P/2,1 — P21 and p/1,2 = ZE,

gu gu
and we recall that (g;;)i; are the coefficients of the lower triangular matrix G from the
Cholesky decomposition A = GGT. As a consequence, to study the convergence of
the Schwarz algorithm (3.2), we will study the convergence of the algorithm rewritten
for the Helmholtz equation (3.3). A similar idea of using an equivalent algorithm to
remove the anisotropy and advection term can be found in [18].

7
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Remark 3.1. The choice of a diagonal matrix A ensures that in the reformulation
(3.3) the domain € is still a square, which is important for the analytical solution we
use below.

Remark 3.2. From the reformulation (3.3) of the Schwarz algorithm (3.2), we can
obtain optimized transmission conditions, using the optimized parameters p} , and
Py, from [23] and relation (3.4).

Remark 3.3. For the implementation, in the PML context, the transmission con-
ditions on I'y 2 and I'z 1 should be equivalently rewritten as

s s ai s . s ay, ,_
Yy n Y n _ °Y n—1 Yy n—1
;allazul + ;(Pl,z - l?)% = ;alla:cug + ;(Pm - Z?)Ug on Iy,
xT xT xT xT
and
s s a; s s ay
Y n Y n __ Y n Y n
—2a110,ul + 2L (p21 +1—)uf = ——2La0,ut + L (p21 +1—=)uf on Tay,
Sz Sy 2 Sy Sz 2

to get natural variational conditions. This is different from implementing the Després
like transmission conditions

s ai s _ ay, ,_
Y n n _ °Y n—1 n—1
a1 0ul + (pr2 — 1= )ul = —andyuy + (P12 — 1= )us on TI'io,
Sy 2 Sy 2
and
S aq S ap
y _ Sy
—;auaxug + (p2.1 + z;)ug = —S—auazu? + (p21 + Zj)u? on Ty,
xT xT

which can lead to a divergent algorithm when algorithm (3.2) is convergent!

3.1. Computation of the convergence factor in the two subdomain case.

We show the computations for the PML-PML case, the other cases can be deduced
by simply taking o, = 0 or o, = 0, see equation (2.10) for the definition of o, and o,.
We introduce the complex stretched coordinates in the modified coordinate system
(x,7 y’)?

o+ —(a/+0)) if 2 e(d,d+7),
(3.5) )= a2 if o' e(d+0,0-1),

tao(x = =) if b —-20V),
and

y oy (y — (¢ +0)) if ye(d,d+70),
(3.6) v) =13 v if ye(d+0,d-10),

Yy +aoy(y —(d=0)) if ye(d-0.d).
Due to the rectangular geometry of the domain €', and since A is assumed to be

diagonal, we can use separation of variables to analytically obtain the errors in the
Schwarz algorithm (3.3),

(7)) =Y ey (AFR)eNRTE 4 B METE) e (1,2},
keN*

where A(&§;) = /w? — &2, The functions v, and the complex numbers & are the
eigenfunctions and eigenvalues of the eigenvalue problem

025 = &y for y' € (d,d),
Yr =0 on y e{c,d},
8
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and we have, up to normalization

(3.9) Y ocsin(ée(y’ — ) and & = % if o, =0,
and
(810)  wn ocsin(&(@ (W) ~F(0) and & = - i if o, > 0.

! —c +2iloy,

Remark 3.4. If there is no horizontal PML (o, = 0), then the family (¢3)s is an
orthonormal basis of L?((¢/,d’)). This does not hold any more when considering PML
(oy > 0). In fact, although one can show that the family is a complete basis [31], it
is neither an orthonormal basis nor a Riesz basis. A consequence of this result is that
the decomposition (3.7) is still justified, but cannot be computed in practice given an
arbitrary Robin data on I'y o or I'z 5.

In the expressions (3.7), the amplitudes A?(k) and B?(k) should be chosen to satisfy
the vertical BCs, namely

eonlj={z'=d}x(d,d)and 'y for i =1,

e andon I, = {z/ =¥} x (¢,d") and 'y ; for i =2,
the horizontal BCs on (a’,b’) x {¢/,d'} being already satisfied. To ensure these BCs,
we must impose

By (k) = — A} (k)X (@ =ieat) and - BY(k) = — Ap (k)e* N e P Hiowl),

Now, the BC on I'} 5 (on 2’ = ) implies

At (k) {z)\(fk) (em(fk)ﬁ/ + 62”‘(51@)(a’_loxe,)e—l)\(fk)ﬁ’)

s (em(gk)ﬁ' _ ezz,\(gk)(a/—wme')e—m(gk)ﬁ’>]

= AT (k) [Z/\(ﬁk) (em(gk)[y +em<€k><b’+zaze')em<5k)5/>
_|_p/1 ) (ezk(ﬁk)ﬁ’ B eQM(E’“)(b,"'“fxe,)e—z)\(gk)g/)] |
so that
AT (k) = pi(k) Ay~ (),

with the first convergence factor component

(:A(Gk) + P} o) + e MENEHl25) (1A () — pf )

/
3.11 k) = ‘ L2L
S ) T )+ ST (&) )

In the same way, we get using the BC on I'y ; (on 2’ = o) that

AR(R) [—A(©) (X0 4 AEW 10 miAiEDe)
. (em(swa’ _ ezm(m(b'ﬂm')efwawa')]
= A} (k) [_2)\<§k) (eM(ﬁk)O/ +621A(£k)(a/_lo'ze/)e_”\(fk)a/>

+p12’1 (eu(fk)a/ - 621}\(&“)(a/_w’”e/)e_ﬂ(fk)a/>:| )

9
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FIG. 4. Convergence factor pPP (on the left) with pPP (1) ~ 1.11 (in blue), pPP(2) ~ 0.463 (in
orange) and pPP(3) ~ 0.202 (in green). Error evolution versus iterations (on the right) initializing
the error system with mode 1,2 and 3 (curves in blue, orange and green respectively).

so that
Ay (k) = pa(k)AT (K),

with the second convergence factor component

(—0AR) + phy) — e MEE@ 0D (1A (&) + ), )

3.12 k)= .
12 P2 = DM€ + 1) — PR ET T (1A (&) + 1)

Thus, the convergence factor of the Schwarz method is p(k) = p1(k)p2(k). Let us
emphasize once again that the convergence factor depends on the case considered
(D-D, D-PML, PML-D or PML-PML) through o, but also through the eigenvalue
problem (3.8).

As a numerical illustration, let us consider the wave-ray equation,

—Au+ia-Vu = 0 inQ=(0,1)?,

(3.13) u = 0 on 09,

with a := (10,0). To solve this problem, we implemented algorithm (3.2) (not its
equivalent Helmholtz formulation (3.3)) with the parameters

(3.14) pi2 = —wgin and  p21 = —wgi1,

which corresponds to pjy = ph; = —w@w (and to the ABC (2.6)). We took a = 0.45
and 8 = 0.55 so that the overlap is of size 0.1. In the D-D case, the convergence
factor is shown in Figure 4 (where the variable k is “continuified” in the abscissa).
Since we have p(—k) = p(k), we show the convergence factor only for k¥ > 0. The
vertical dotted lines correspond to integer values of k. We see that the algorithm
is not convergent, since for the first (non-zero) mode, we have p?P(1) ~ 1.115. In
the same Figure, we also show the error evolution versus the iterations initializing
the error equations with mode k = 1,2 and 3. We see that for modes 2 and 3, the
algorithm is convergent (as expected from the convergence factor) up to a point where
the round-off error makes the first mode appear, like in power iterations. Computing
the slopes of the three lines on the right gives the convergence factors pP? (1) ~ 1.115,
pPP(2) ~ 0.463 and pPP(3) ~ 0.202, matching well the theoretical prediction on the
left.

For the same example, we show the convergence factors pPP, pPPML = ,PMLD
and pPMLPML in Figure 5. For the PML parameters, we took o, = oy = 10 and
10
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FIG. 5. Convergence factor pPP (top left), pPTML (top right), pPMLD (bottom left) and
pPMLPML  (hottom right).

¢ = 0.1. We see that the convergence factor is highly influenced by using a PML on
the outer boundary. In particular, the more we open the domain by adding PMLs,
the better the convergence factor becomes. This can be understood for wave like
problems in the sense that when the domain is open, error components can leave the
domain to infinity, or equivalently they are damped by the PML which emulates the
unbounded domain. Other boundary conditions reflect these error components and
inject them back into the iteration, leading to worse convergence, or even divergence.

A second remark we can make for waveguide problems, corresponding to the D-
PML and PML-D cases, is that cutting the waveguide in the infinite direction or in
the transverse direction is very different. Indeed, in the PML-D case, the convergence
factor is good for small k, whereas in the the D-PML case, the convergence factor is
better for larger k,

A last remark is the fact that computing the convergence factor in a vertical
waveguide Q' = (a/,b") x R using a Fourier transform in the y’-direction would lead
exactly to the same convergence factor as in the D-D case, since the only change
is the continuous summation with eigenfunctions e*¥ which replaces the discrete
summation, but the computed solution and performance of the Schwarz method is
very different in an open wave guide or a closed cavity. In contrast, using a horizontal
PML as in the D-PML case leads to a very different convergence factor, whereas the
computed Schwarz iterates in the physical domain correspond to the solution in the
unbounded domain! This shows that the two-subdomain analysis is very different if
we consider the PML or not.

Remark 3.5. Note that if the PML parameters o, and o, are too large, then the
convergence factor deteriorates. In particular, if o, = 0, = 0 — 400, we do not
recover the convergence factor one would get in the full space R?, as in [23]. However,

11
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we recover this convergence factor if the length of the PML tends to +oo.

3.2. Generalization to more subdomains. The Fourier analysis above can
be generalized to more subdomains if we still consider vertical slicing of the domain
to allow us to use separation of variables. Let us consider Ny subdomains ; =
(i, Bi) % (¢,d), i € {1,--- , Ng}, where

a:Ol1<062<B1<042<~”<05NS<ﬂNS,1<ﬂNS:b.

In that case, for simplicity we will consider the parallel version of algorithm (3.2),
which gives for its equivalent Helmholtz formulation the error equations

AW =@ = 0 in Q,
(3.15) W)y =0 on 09, N,
' (Opr + pz z+1)(v/):Z = (Op +piit1)(v )?—&-11 on Pz i1
(=0 +pii—1) ()7 = (=0 +pii—1) (V)] ' on Ihiots
where I'} ; | := {2’ = i} x (¢,d') and I'} ;,; := {2’ = B} x (¢,d'). Then, with
separation of variables, we still have as in (3 7), for all i € {1,---, Ny}

(316) ()7 = 3 dnly)) (AN (e T 4 Br(R)emNETE),

keN*

Here again, the horizontal BCs are satisfied by definition of ;. For each mode, the
BC on {2/ =d'} x (¢/,d") imposes that

(3.17) B (k) = _A?(k-)ew')‘(gk)(a,*igzy),
whereas the BC on {2’ =} x (¢/,d') imposes that
(3.18) BN (k) = — AN (|) 2 AER) (b Fiowl)
The transmission conditions on I’} ,,, give

AP (k) (1A (k) +p;,i+1) A ER)T (i)

+ B (k) (—1A\(&k) + Piig1) e MEIT ()

= AP (E) (WA (&) + D) itq) M EDF (Bi)
+ Bz+1 (k) (_Z/\(gk) +p;,i+1) e_lA(gk)z/(ﬁi),
and similarly the transmission conditions on I ; ; give
Ai (k) (—2/\(&) +p;,i—1) e ER)F ()
+ B} (k) (M(fk) +p;,i—1) e M ER)F (@)
= A?:ll(k) (—2)\(51@) + p;,ifl) e ER)F ()
+ B! (k) (1M (&) + Pisq) e~ MET (o)
Combining these relations, we get for the mode k the iteration relation

c"(k) = I(k)c" Y (k), where I(k)=D ' (k)K(k),
12
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358 where ¢ (k) := [AT(k) Bp(k) --- ANem(k) BN-"‘*"(/{)]T. The matrix D is block
359 diagonal

D, 0 .o .. 0
0 Dy :
360 D=|: . - . Sl
: . . 0
|0 s 0 Dy, |

361  where the matrices D; are 2 X 2 matrices s.t. for alli € {2,--- , N, — 1}

362 D, =

(—2A (&) +P;,i—1)e2l>‘(£k)f/(ai) IA(Ek) + i
(1A (&) + pg,iﬂ)em’\(&k)”'(ﬁi) —M (&) +p;7¢+1

363 and, to take into account the Dirichlet BCs (3.17) and (3.18), we have

20 (€)' (1) 1
364 Dy, = / 20 (Ex)2’ (B1) A
(IA(Ek) 71 3)e XD —A(E6) + iz
365 and -
N e (—IA (&) +pi\TS,NSil)e27)\(€k)m,(aN5) \(&x) +pi\157N571
: N, 2INEDT By, ) 1 '

367 Similarly, the matrix K is given by

0 Ko 0 . 0
Kyiv 0 Koz
368 K=o : ,
: . Ky 1N,
L0 o KN.N.-1 0 |
369  where i _
370 Kii1= (—2A(&k) + Pé,i—l)e%\(g’“)x/(ai) WA\ (Ek) + Diia
7 i 0 0
371 and
- . 0 0 ]
372 il = ~ }
v (1A (&) +p§,i+1)62z>\(gk)x B —an(&) + Piit1

373 Thus the convergence factor is the spectral radius of the matrix I(k),

374 (3.19) p(k) = p(1(k)).
375
376 Remark 3.6. In the two subdomain case, Ny = 2, if we eliminate B}(k) and
377 B (k) using the outer Dirichlet BCs, the iteration matrix becomes

0 p1(k)
378

I [Pz(/f) 0
13
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FIG. 6. Convergence factor pPP (top left), pPTML (top right), pPMLD (bottom left) and

pPMLPML  (hottom right) in the case of 5 subdomains.

where p; (k) and p2(k) are defined in (3.11) and (3.12). In particular, the convergence
factor is in that case the square root of the convergence factor defined in the previous
section. Note that this is simply linked to the fact that in this section, we have
considered the parallel version of the Schwarz algorithm, whereas before we studied
the alternating version for two subdomains.

Remark 3.7. Let us also note that the matrix D(k) is not invertible if (and only
if) p ;1 = —pii1 = T2A(€k), which corresponds to the case where the subproblem in
Q; is not well-posed: the mode k is a non zero solution of the homogeneous problem.
Moreover, if p} ;1 = p; ;11 = —1A(§k), then D(k) is diagonal and one can show that
p(k) — 0 as the length ¢ of the PML tends to +oo.

As a numerical illustration, let us consider again example (3.13) of the previous
section with the same parameters, except that this time the domain is split into 5
subdomains. The subdomains are defined by

(3.20) a1 =0, « =02(:i—-1)—0.05 for ie{2,---,5},

’ Bs =1, B; =0.2¢i+0.05 for ie{1,---,4}.
For the parameters p; ;1 and p;; 1, we chose them s.t. p},., = p};, | = —w, as
before. In Figure 6, we show the convergence factor p(k) for the D-D, D-PML, PML-
D and PML-PML configurations. As one could expect, the convergence factor is less
good than for the two subdomain case, but the remarks for the two subdomain case
still hold. In particular, the more we open up the domain with PML outer boundary
conditions, the better the convergence becomes.

3.3. Optimized transmission conditions. Now that we have obtained the
convergence factor, we can look for optimized parameters p;’i 41 and p;’ifl, and deduce

14
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FIG. 7. Convergence factor pPP (top left), pPTML (top right), pPMLD (bottom left) and

pPMLPML (bottom right) in the case of 5 subdomains for the Helmholtz equation.

Comparison

between the classical transmission conditions —w (in blue) and optimized parameters (in red).

Pii+1 and p;y1, from equation (3.4). More precisely, we have to solve the classical

401

min-max problem

402

max |p(k)|.

Py, n._1)ECNs  keN+

min
,1,271’5,171)/2,3"”

(»

(3.21)

103

In particular, the optimized parameters will be different depending on the outer BCs.
Also, in contrast to the usual convergence factor in free space, see [23] for instance, here

This is

w.

due to the fact that we consider a bounded domain for the analysis. As a consequence,

off frequency &

the convergence factor can be smaller than 1 at the cut-

where the equation contained damping.

I,

8

asin |
Finally, note that solving analytically this min-max problem is difficult, so we use a

)

the optimization can be done for all k

For first

simple optimization process and the function fmin of scipy.optimize.

410

411

results on a many subdomain optimization for a diffusive problem, see [14].

As a first numerical example, we consider the case of the Helmholtz equation, so

that u = v/,

412
413

0 in Q=(0,1)2.

u

2

—Au —w

(3.22)

414

We split the domain into 5 subdomains defined as before in equation (3.20). Taking

w = 50, we show in Figure 7 the convergence factor with p;

115

416

417

Dii—1 = —w and

for the PML cases, we take £ = 0.02

il =

with optimized parameters in the different cases

and 0, = oy

(

10). In particular for the PML-D case, one can see that optimized

parameters allow us to get a convergent algorithm.

418
419

In Figure 8, we show the error evolution versus the iterations using either the
Schwarz algorithm as iterative solver, or as preconditioner for GMRES. As we can

420
421

15
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F1G. 8. Relative residual versus iterations in the D-D case (top left), D-PML case (top right),
PML-D (bottom left) and in the PML-PML case (bottom right).

see, in each case the optimized parameters improve the convergence for the Schwarz
algorithm. Yet, this is no more true for GMRES. This can be explained since the
optimization problem (3.21) optimizes the convergence of the iterative Schwarz algo-
rithm. Therefore, when using it as a preconditioner for GMRES, a priori, we are not
ensured that the optimized parameters are optimized parameters for GMRES.

Remark 3.8. Let us emphasize that for the mesh discretization, one must consider
a sufficiently fine mesh to get accurate results that match the theoretical convergence
properties. In particular, if the mesh in the PML is too coarse, then the Schwarz
algorithm can be divergent even if the continuous convergence factor is less than one.

As a second, more realistic example, let us consider the case of the convected
Helmholtz equation

—div (AVu) — 2wv - Vu —w?u = ¢ inQ=(0,1)2\0,

(3.23) AVu-n 0 on 012,

where the obstacle O has the rough shape of a submarine, see Figure 9. We consider
a potential flow v = V¢ coming from the left, which we compute solving the Laplace
problem

—Ap = 0 in{,
Veon = 0 ondOU(0,1)x{0,1},
Vo-n = -1 on {0} x(0,1),
Ve-n = 1 on{l}x(0,1),

with the same mesh. Note that to get a well-posed problem, we simply impose a value
of ¢ inside 2. We compute the gradient of ¢ inside each cell of the mesh to get v.

16
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Fia. 9. Potential flow around a submarine on the left (the background color corresponds to the
norm of v/||v||eo ). Diffracted field from a Dirac point source on the right.

Then, the velocity is normalized

~ A%
v=Ma——, where [[v[= sup [v(z,y)l2,
V]l oo (z,y)€Q

where Ma is the mach number, i.e. the ratio between the velocity of the fluid and the
sound speed in the medium. Thus, the matrix A in (3.23) is given by

A=1d -7,

For this example, we took? Ma = 0.7 and w = 200. For the PML, we took £ = 0.02
and o, = 0y = 15. Also, we assume the flow to be constant and horizontal in the
PML region Vv = (Uezt,0)7, although this is not exact: the flow is almost horizontal
and constant. The domain is decomposed into 5 subdomains defined by

o1 =0, a;=02(i—1)—0015 for ic{2,---,5},

(3.24) Bs =1, B;=0.2i+0.015 for i€ {l,---.4},

which corresponds to an overlap of size 0.03. The mesh we use is unstructured, so that
the interfaces between the subdomains are not perfectly straight any more. Moreover,
since a is no more constant in the physical domain, a natural generalization of the
transmission conditions, similar to the ABC (2.6), is

1
ApyrVu-n— 15apML 1 + Diit1U.

In particular, we compare in this example the following choices of the parameters
JSRESE
e First, a classical ABC condition as in (2.6),

. - 1
(ABC) Piit1 = —w|nlla where ©=1/—p+ Z||a||?4,1.

Note that @ and ||n||4 are variable.

2This value is in fact not realistic since in water the sound speed is much larger than in air. As
far as we know, the fastest speed one can reach in water is around mach 0.075 with supercavitation.
Nevertheless, this very high speed is only obtained close to corners of the submarine, where the
velocity increases a lot. In the rest of the domain, the speed is more realistic.

17

This manuscript is for review purposes only.



460
461

462

463
464

465

166
467
468
469
470
471

N

AR R A
gl W N

476
477
478
479
480
481
482
483
484
485

—e— GMRES ABC
—e— GMRES ABC_PML
—e— GMRES OPT

log1o(Residual)

Iteration

Fic. 10. GMRES residual versus iterations for the three types of transmission conditions
(ABC), (ABC PML) and (OPT).

e Second, a similar one but taking the PML approximately into account, see
Remark 3.3,

Sy ~ - 1
(ABC PML) Dijit1 = —isznHA where W =1/—p+ 1||a||§1,1,

where we recall that s, and s, are the PML parameters.
e Third, a condition that takes the PML into account,

S
(OPT) Pijit1 = f%‘,iilv
xr

where ¢; ;41 are (numerical) solutions of the min-max problem (3.21) consid-
ering the medium with no obstacle and with a = —2w(Uey, O)T constant.
In Figure 10, we show the evolution of the residual considering these three transmission
conditions. The best results are obtained with the condition ABC PML and OPT.
We see that clearly, taking into account the PML coefficient in the parameter is very
important, as already mentioned in Remark 3.3.

4. Concluding remarks. We studied Schwarz domain decomposition methods
for a general diffusion problem with complex advection, which appears in several im-
portant applications. The complex advection term changes fundamentally the nature
of the diffusion problem and makes it Helmholtz like. We have shown that for such
problems the outer boundary conditions imposed on the global domain have a strong
influence on the convergence of the Schwarz method, and on how one should choose
optimized parameters. Not taking into account the PML coefficients in the trans-
mission conditions deteriorates the convergence of the Schwarz algorithm, both when
used as iterative solver and as preconditioner for GMRES. Our analysis covers both
two subdomain and many subdomain situations for decompositions into strips, and
allowed us to formulate the min-max problem one has to solve to compute optimized
parameters, which turns out to be difficult to treat theoretically. Furthermore, com-
puting optimized parameters for GMRES is currently out of reach, for a special case
in a splitting method, see [6].
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