I. Préambule A. Comment lire ce guide

Chaque partie de ce guide d'utilisation du logiciel SAS® Studio pour réaliser des analyses statistiques de base ne peut pas se lire avant d'avoir lu les parties précédentes. Ainsi, si par exemple vous souhaitez utiliser un modèle de Cox pour analyser vos données, vous devrez lire … l'intégralité de ce guide ! B. Objectif d'apprentissage général de ce guide Ce guide d'utilisation de SAS® Studio a pour objectif d'apprentissage général de vous apprendre à vous servir d'un logiciel de statistique reconnu et utilisé par de très nombreux chercheurs pour réaliser des analyses statistiques « simples », sur des données indépendantes (les individus sont considérés comme indépendants les uns des autres), et pour réaliser des modèles de régression univariés et multivariés. Les modèles de régression traités dans ce guide sont la régression linéaire, la régression logistique, et le modèle de Cox. Les analyses statistiques sur données non indépendantes (comme par exemple dans le cas de séries appariées ou bien dans le cas de recueil longitudinal de données pour un même individu) ne seront pas traitées dans ce guide.

C. Présentation rapide du logiciel SAS® Studio 1. Informations préliminaires SAS® Studio est la version en ligne du logiciel SAS® (pour Statistical Analysis System) dont la première version date de 1976. En tant que membre d'une université (en tant que membre du personnel ou en tant qu'étudiant), il est possible d'accéder gratuitement à SAS® Studio : SAS® OnDemand for Academics. Pour utiliser SAS® OnDemand for Academics, il faut créer un compte. Ensuite, tout se déroule sur Internet, à partir de n'importe quel navigateur Internet. Il n'y a donc aucun logiciel à télécharger puis à installer.

L'utilisation de SAS® nécessite de taper un langage de programmation. Dans SAS® Studio, il est aussi possible de cliquer sur des boutons pour générer automatiquement les lignes de programme correspondantes. J'ai cependant pris le parti, dans ce guide, de vous apprendre à utiliser SAS® en vous faisant taper le langage de programmation, car une fois que l'on sait où trouver dans ce guide les lignes de programme pour réaliser telle ou telle analyse statistique (par exemple, pour réaliser un test de Student), il suffit de le copier et le coller dans l'éditeur de programme en l'adaptant à la situation. Les lignes de programme pour réaliser des analyses statistiques dont je vais parler dans ce guide peuvent être modifiées pour y ajouter, ou retirer, des parties de programmes (qui correspondent entre autres à des options de calculs ou d'affichage). L'énorme avantage de réaliser ses analyses statistiques avec un logiciel comme SAS® (tout comme avec les logiciels R 1 et Stata® par exemple) est que vous écrivez vos analyses statistiques dans un éditeur de programme. Et comme à la fin de vos analyses de la journée vous allez (évidemment) enregistrer votre programme, vous saurez refaire quelques jours, semaines, ou mois après, les analyses faites quelque temps auparavant ! Attention, je vous recommande très fortement d'utiliser un autre navigateur que celui que vous utilisez habituellement, et de le paramétrer en langue anglaise (sauf si celui que vous utilisez habituellement est déjà paramétré en langue anglaise). En effet, si vous utilisez un navigateur Internet paramétré en français, SAS® Studio sera en français. Cela peut paraître plus facile d'accès mais (1) les traductions en français des résultats de SAS® ne sont parfois pas très pertinentes, et (2) quasiment tous les articles scientifiques à comité de lecture indépendant sont écrits en anglais et il sera ainsi plus facile de retrouver dans SAS® des termes statistiques déjà lus dans les articles. Toutes les copies d'écran de ce guide proviennent de l'utilisation de SAS® Studio que je fais tourner sur Chrome® paramétré en anglais.

Les deux grandes familles de programmes sous SAS®

Il y a deux grandes familles de programmes sous SAS® : les programmes pour créer ou modifier des bases de données (l'étape DATA) et les programmes pour exploiter ou analyser les données. Ces derniers utilisent très majoritairement des « procédures », dont le nom sera toujours précédé de « PROC » dans un programme SAS®. Par exemple, pour dresser un histogramme, on pourra utiliser la procédure « PROC UNIVARIATE ».

L'étape DATA sera succinctement présentée dans ce guide, notamment au moment où je parlerai de la modification dans SAS® d'un fichier de données. Je vais présenter beaucoup plus largement certaines procédures SAS® pour réaliser certaines analyses statistiques.

Je vais prendre le parti d'écrire chaque procédure d'une seule façon (sauf exceptions), avec les options que je juge pertinentes pour ce guide. Je ne vais en effet pas présenter l'exhaustivité des options de chaque procédure que je vais utiliser dans ce guide. De plus, je ne vais pas vous expliquer ce que veut dire chaque mot-clé SAS dans les lignes de programme des procédures que je vais vous présenter. Néanmoins, dans la partie « Liens Internet vers l'aide de SAS® pour les procédures utilisées dans ce guide » (page 90), je fournis le lien Internet vers l'aide de SAS® de chaque procédure décrite dans ce guide. Dans l'aide de SAS® d'une procédure, la procédure est exhaustivement décrite, avec toutes les options possibles, et bien entendu l'explication des mots-clés utilisés dans la procédure. Ainsi, lorsque vous commencerez à être un peu à l'aise avec SAS®, vous pourrez par vous-même explorer les options d'une procédure en particulier.

D. Environnement de travail sous SAS® pour ce guide et conventions utilisées 1. Environnement de travail

Pour ce guide, j'ai créé un dossier sous « Files (Home) » que j'ai intitulé « Pour Guide pratique SAS Studio » (cf. Figure 1.a) au sein duquel j'ai enregistré mon programme (cf. flèches (b) sur la Figure 1). Ce programme, pour l'instant vierge (cf. zone vide pointée par la flèche (c) sur la Figure 1) va, au fur et à mesure de ce guide, se remplir de lignes de programme. Cette zone pointée par la flèche (c) sur la Figure 1 s'appelle « l'éditeur de programme ». J'ai aussi modifié la mise en forme des résultats dans « Results » (cf. flèches (a) sur la Figure 3). 

Conventions utilisées pour ce guide

Lorsque je vais écrire dans le texte de ce guide les résultats statistiques que SAS® fournit, je vais arrondir à deux chiffres après la virgule si plus de deux chiffres après la virgule sont fournis par SAS®.

Par ailleurs, dans les lignes de programme que je vais écrire, les mots-clés de SAS® seront systématiquement écrits en majuscule et en gras.

E. Présentation du fichier de données fictif

Le fichier de données qui va être utilisé dans ce guide est un fichier de données Excel®, nommé « Données pour guide SAS v3.5.xlsx » (que je peux vous envoyer pour reproduire sous SAS® de votre côté tous les résultats présentés dans ce guide). Les données sont contenues dans l'onglet « Donnees » de ce fichier Excel®. Ce fichier de données, fictif, comprend 99 chiens adultes suivis au cours des années à partir d'une consultation chez un vétérinaire qui correspond à l'inclusion dans l'étude (J0). Tous les chiens de l'étude ont été suivis au moins 3 ans, sans aucun perdu de vue. Les 19 variables contenues dans ce fichier de données sont listées alphabétiquement ci-dessous. AGE : variable correspondant à l'âge du chien à J0, en années entières. AGE_4CL : variable codée en 0/1/2/3 à partir des quartiles de la variable AGE. Cette variable vaut « 0 » pour les chiens dont l'âge était < 7 ans, « 1 » pour les chiens dont l'âge était compris entre 7 et 9 ans (exclu), « 2 » pour les chiens dont l'âge était compris entre 9 et 11 ans (exclu), et « 3 » pour les chiens dont l'âge était supérieur ou égal à 11 ans.

ALAT : variable correspondant à la concentration en ALAT, en UI/L. AUTRE_RACE : variable codée en 0/1. Elle vaut « 0 » si le chien était de race Labrador, Golden, ou de race croisée Golden/Labrador, et « 1 » s'il était d'une autre race.

CHOLES_3CL : variable codée en 0/1/2. Elle vaut « 0 » pour les chiens qui présentaient une hypocholestérolémie, « 1 » pour une normocholestérolémie, et « 2 » pour une hypercholestérolémie.

CREAT : variable correspondant à la concentration en créatinine, en mg/L. CROISEE : variable codée en 0/1. Elle vaut « 0 » si le chien n'était pas de race croisée Golden/Labrador, « 1 » s'il l'était. DECES : variable codée en 0/1. Elle vaut « 0 » si le chien était toujours en vie à la fin de l'étude, « 1 » s'il était décédé au cours de l'étude.

DECES_3_ANS : variable codée en 0/1. Elle vaut « 0 » si le chien était toujours en vie 3 ans après l'inclusion dans l'étude, « 1 » s'il était décédé dans les 3 ans après J0. DEMARCHE_ANORMALE : variable codée en 0/1, « 0 » si le chien avait une démarche normale, « 1 » s'il avait une démarche anormale. FEMELLE : variable codée en 0/1, « 0 » si le chien était un mâle, « 1 » s'il était une femelle.

GOLDEN : variable codée en 0/1. Elle vaut « 0 » si le chien n'était pas de race Golden, « 1 » s'il l'était.

HYPER_CHOLES : variable codée en 0/1. Elle vaut « 0 » si le chien ne présentait pas d'hypercholestérolémie, et « 1 » s'il en présentait une.

LABRADOR : variable codée en 0/1. Elle vaut « 0 » si le chien n'était pas de race Labrador, « 1 » s'il l'était.

OBESE : variable codée en 0/1. Elle vaut « 0 » si le chien n'était pas obèse, « 1 » s'il l'était.

RACE_4CL : variable codée en 0/1/2/3. Elle vaut « 0 » pour les chiens de race Golden, « 1 » pour la race Labrador, « 2 » pour la race croisée Golden/Labrador, « 3 » pour une autre race. UREE : variable correspondant à la concentration en urée, en g/L.

UREE_4CL : variable codée en 0/1/2/3 à partir des quartiles de la variable UREE. Cette variable vaut « 0 » pour les chiens avec une concentration en urée < 0,24 g/L, « 1 » pour les chiens avec une concentration en urée comprise entre 0,24 g/L et 0,28 g/L (exclu), « 2 » pour les chiens avec une concentration en urée comprise entre 0,28 g/L et 0,33 g/L (exclu), et « 3 » pour les chiens avec une concentration en urée supérieure ou égale à 0,33 g/L. SURVIE : variable correspondant au délai entre la date du J0 et soit la date de fin d'étude pour les chiens toujours en vie à la fin de l'étude soit la date de décès pour les chiens décédés, exprimée en années (avec un chiffre après la virgule).

II. Points-clés avant de travailler avec SAS® A. Connaissances théoriques indispensables en biostatistique et en épidémiologie

Ce guide va vous apprendre à réaliser certaines analyses statistiques. Mais les tenants (pourquoi faire telle ou telle analyse statistique) et les aboutissants (ce que l'on peut inférer, ou non, à partir des résultats d'une analyse statistique) ne seront pas traités dans ce guide. C'est la raison pour laquelle il est indispensable d'avoir acquis les connaissances théoriques en biostatistique et en épidémiologie (analytique) avant de réaliser des analyses statistiques 2 . Vous pouvez lire notamment certains polycopiés de formation initiale que je dispense à l'EnvA, en fonction des analyses statistiques que vous souhaitez réaliser.

Pour les analyses statistiques des parties IV et V de ce guide, je vous suggère le polycopié de bases en biostatistique (disponible ici, sous « Bases en Biostatistique »).

Pour l'analyse de survie (parties VII et VIII.E), je vous suggère le polycopié d'introduction à l'analyse de survie (disponible ici, sous « Analyse de survie »).

Pour la réalisation de modèles de régression (partie VIII), je vous suggère le polycopié d'épidémiologie clinique (disponible ici, sous « Epidémiologie clinique »).

B. Définitions de « critère de jugement », d' « exposition », et de « variable » Le « critère de jugement » 3 (abrégé « CdJ » à partir de maintenant dans toute la suite de ce guide) est l'état de santé que l'on étudie seul (de façon descriptive), ou bien dont on étudie l'association avec une ou plusieurs « expositions ».

Une « exposition » est une caractéristique intrinsèque d'un animal (âge, sexe, race, concentration en urée, …), ou extrinsèque (environnement, traitements reçus, …), qui ne soit pas le CdJ étudié.

Une « variable » représente une caractéristique d'un individu dans le fichier de données. Par exemple, si l'on veut savoir si, parmi des chiens inclus dans une étude, une alimentation de type humide (versus sèche) est associée à la présence d'une obstruction urétérale, l' « exposition » est le type d'alimentation (humide versus sèche) et le « CdJ » est la présence (versus absence) d'une obstruction urétérale. Dans le fichier de données, l'exposition sera représentée, par exemple, par la variable NOURRITURE_HUMIDE, et le CdJ sera représenté, par exemple, par la variable OBSTRUC_URETERALE. Dans ce guide, par convention, j'écrirai en majuscule, sans guillemet, et en écriture normale (c'est-àdire ni en gras, ni en italique), le nom des variables utilisées. Dans toute la suite de ce guide, je ne vais quasiment plus parler que de « variable » (sauf exception), même si parfois, le terme « exposition » aurait été plus pertinent.

C. Structure d'un fichier de données pour analyses statistiques

Avant une analyse statistique, un fichier de données doit être structuré de façon rigoureuse pour ensuite conduire des analyses statistiques sur ces données. Pour vérifier cette structure, je vous recommande vivement de lire le document « Comment structurer un fichier de données Excel® avant analyses statistiques » en cliquant ici, dans la partie intitulée « Collecte des données d'une enquête épidémiologique et structure d'un fichier de données ». Vous y verrez notamment que le fichier de données doit comporter le nom des variables sur la première ligne, et les individus doivent être présentés en ligne. De plus, si une donnée est manquante pour une variable qui sera utilisée dans les analyses statistiques, il faut laisser la case vide (absolument vide, c'est-à-dire sans espace, ni quoi que ce soit d'autre) dans Excel®.

Pour être analysable statistiquement, je vous recommande fortement que la variable soit numérique. C'est-à-dire qu'elle doit être renseignée pour chaque individu sous forme d'un nombre. Ce nombre affecté à chaque individu varie selon le type de variable (par exemple, « 0 » ou « 1 » pour une variable binaire). SAS® peut quand même réaliser certaines analyses statistiques même si la variable est « alphanumérique » (c'est-à-dire que l'information, par individu, est renseignée en utilisant des lettres, comme par exemple « Oui » ou « Non »), mais encore une fois, je ne le recommande pas.

Le nettoyage d'un fichier de données que vous avez par ailleurs créé ou bien que l'on vous a transmis peut prendre des heures, littéralement parlant. (« Nettoyer » ici signifie « faire de telle sorte que le fichier de données vérifie tous les critères cités dans le document « Comment structurer un fichier de données Excel® avant analyses statistiques » cité ci-dessus.) D. Lien entre les termes « ligne », « observation », et « individu » Comme je l'ai écrit ci-dessus, un fichier de données doit contenir une ligne par « individu », avec le nom des variables sur la 1 ère ligne du fichier de données. Ainsi, si N est le nombre d'individus, le fichier Excel® contiendra N+1 lignes remplies. Attention, ce que j'entends par « individu » est « l'unité statistique » qui servira aux analyses statistiques. Par exemple, si le sang d'un animal est régulièrement prélevé au cours du temps, et si l'on souhaite modéliser l'évolution de la concentration d'un paramètre sanguin au cours du temps à partir de prélèvements sanguins de plusieurs animaux, l'unité statistique sera le prélèvement sanguin, et chaque ligne du fichier de données correspondra au prélèvement i d'un animal j.

Il se trouve que SAS®, en anglais, appelle « observation » l'unité statistique. S'il y a N+1 lignes dans le fichier de données qui sera importé dans SAS® avec le nom des variables sur la 1 ère ligne du fichier de données, SAS® importera N « observations ».

Dans ce guide, je ne vais pas traiter la situation où l'on collecte plusieurs fois au cours du temps des données sur un même animal. Notamment, dans le fichier de données fictif qui va être utilisé dans ce guide, toutes les informations sont collectées seulement à J0, auprès de 99 chiens. Ainsi, dans les résultats présentés dans ce guide, une « observation » SAS® correspondra à un chien.

Dans ce guide, j'utiliserai le terme d' « individu » pour parler du cas général (« individu » devra alors être interprété comme « unité statistique »), et j'utiliserai le terme de « chien » lorsque je parlerai des individus du fichier de données utilisé pour le guide. E. Quatre types de variables numériques 1. Variable « binaire » Une variable binaire est une variable à deux classes (ou « modalités »). On peut citer comme exemple la variable correspondant au sexe d'un animal (mâle ou femelle) ou celle correspondant à la présence (versus absence) d'une maladie. Par convention, il est recommandé de coder en 0/1 dans le fichier de données une variable binaire (et en l'occurrence, pour interpréter les résultats de SAS®, je vous recommande très fortement de coder les variables binaires en 0/1). Le nom d'une variable binaire devrait être le nom de la classe pour laquelle « 1 » a été attribué (c'est un conseil que je vous donne pour grandement faciliter l'interprétation des résultats fournis par SAS®). Par exemple, si pour le sexe de l'animal, dans le fichier de données, « 1 » a été attribué aux femelles et « 0 » aux mâles, la variable devrait être nommée « Femelle » dans le fichier de données. Dans le cas d'une exposition binaire, la catégorie « exposée » est celle pour laquelle « 1 » a été attribuée à la variable correspondante, et la catégorie « non exposée » est celle pour laquelle « 0 » a été attribuée à cette même variable. De même, dans le cas d'un CdJ binaire, je vous recommande d'attribuer la valeur de « 1 » à la variable correspondant au CdJ pour les individus ayant présenté le CdJ, et « 0 » pour ceux qui ne l'ont pas présenté.

Dans le fichier de données, les variables suivantes sont binaires : AUTRE_RACE, CROISEE, DECES, DECES_3_ANS, DEMARCHE_ANORMALE, FEMELLE, GOLDEN, HYPER_CHOLES, LABRADOR, et OBESE.

Variable « qualitative nominale »

Une variable qualitative nominale est une variable avec trois classes ou plus, chacune des classes n'étant a priori pas ordonnée les unes par rapport aux autres. Le codage d'une variable qualitative nominale peut être en 0/1/2/etc. ou bien en 1/2/3/etc. Dans le fichier de données, la variable RACE_4CL est une variable qualitative nominale.

Variable « qualitative ordinale »

Une variable qualitative ordinale est une variable avec trois classes ou plus, chacune des classes étant ordonnée les unes par rapport aux autres. Une variable qualitative ordinale peut être originellement qualitative nominale (par exemple, la variable correspondant aux réponses « jamais », « parfois », « souvent », « très souvent » à une question). Cela dit, le plus souvent, une variable qualitative ordinale provient d'une variable initialement quantitative (par exemple, la variable en quatre classes suivante, correspondant au temps passé par semaine à jouer avec son chien : 0-30 min, 30 min -2h, 2h -3h, et > 3h).

Dans le fichier de données, les variables suivantes sont qualitatives ordinales : AGE_4CL, CHOLES_3CL, et UREE_4CL.

Variable « quantitative »

Une variable quantitative est une variable continue avec (potentiellement) au moins un chiffre après la virgule (chiffre après la virgule existant, ou bien possible si l'instrument de mesure était idéalement très précis) ou bien une variable discrète représentant un dénombrement.

Dans le fichier de données, les variables suivantes sont quantitatives : AGE, ALAT, CREAT, UREE, et SURVIE. 

F. Obtenir les résultats statistiques avec SAS® et sauvegarde des résultats

Comme vous l'avez vu dans les vidéos à visionner avant de poursuivre ce guide, pour obtenir des résultats statistiques dans SAS®, vous devez faire tourner des lignes de programme tapées dans l'éditeur de programme. Dans cette fenêtre d'éditeur de programme, si vous ne sélectionnez pas les quelques lignes de programme que vous souhaitez faire tourner, et si vous cliquez sur le symbole du petit bonhomme qui court (cf. Figure 1.e, en grisé sur la Figure 1 parce qu'aucune ligne de programme n'a encore été tapée au moment de la copie d'écran), c'est l'ensemble du contenu de l'éditeur de programme qui va tourner, ce que je ne vous conseille pas (sauf si c'est cela précisément que vous souhaitez). Je vous recommande plutôt de sélectionner avec votre souris les lignes de programme que vous souhaitez faire tourner. Sur la Figure 4, j'ai choisi de ne faire tourner que les neuf lignes de programme sélectionnées (pointées par la flèche (a) sur la Figure 4). Ensuite, il suffit de cliquer sur le petit bonhomme qui court (cf. Comme vous l'avez vu dans l'une des vidéos à visionner avant de poursuivre ce guide, pour importer dans SAS® Studio un fichier de données Excel®, vous devez tout d'abord l'avoir « uploadé » dans votre dossier de travail (cf. Figure 6.a). Une fois cet « upload » réalisé, je vous recommande les lignes de programme génériques ci-dessous, et vous devez remplacer ce qui est écrit en italique ci-dessous (autrement dit, vous ne devez pas faire un copier-coller de ce qui est écrit ci-dessous sans modifier ensuite ce qui est écrit en italique). Le résultat des lignes de programme ci-dessus se trouve sur la Figure 9. Les variables a priori numériques doivent avoir « Num » dans la colonne « Type » (cf. Figure 9.a). Si « Char » est indiqué dans cette colonne « Type » pour une variable a priori numérique, c'est qu'un caractère alphanumérique (un espace, un accent, une lettre, un signe de ponctuation, ou toute autre chose qu'un chiffre ou qu'une case vide) s'est glissé quelque part sur une des lignes de la colonne correspondant à cette variable, dans le fichier Excel® que vous avez importé. Dans cette situation-là, vous devez ouvrir le fichier Excel® de vos données, corriger l'erreur, l'enregistrer puis le fermer, l' « uploader » à nouveau dans SAS®, et enfin l'importer à nouveau avec la procédure PROC IMPORT.

PROC IMPORT OUT

Lorsque vous faites tourner la procédure PROC IMPORT, SAS® va ouvrir spontanément la fenêtre « OUTPUT DATA (cf. Figure 10.a) qui est le fichier de données importé dans SAS®. Ainsi, une autre façon de vérifier vos données (mais qui ne doit pas se substituer à la réalisation de la procédure PROC CONTENTS, car plus rigoureuse) est de parcourir les variables du fichier de données dans la colonne « Columns » (cf. Figure 10.b), de cocher la case « Select all » si elle n'est pas déjà cochée, et de vérifier qu'il y a bien le symbole « 123 » cerclé de bleu à gauche du nom de chaque variable a priori numérique (cf. Figure 10.c pour la variable LABRADOR par exemple). C. Modification d'un fichier de données dans SAS® (création de variables)

Introduction

Dans la majorité des cas, vous pourriez modifier votre fichier de données Excel® sous Excel® (insertion de colonnes, utilisation de formules pour créer de nouvelles variables, etc.) avant de l'importer dans SAS®. L'inconvénient de faire cela est qu'il y a peu, voire parfois pas, de traçabilité de la façon dont vous avez modifié votre fichier de données. Ainsi, vous pourriez ne plus vous souvenir des modifications que vous avez faites quelques mois auparavant, ou bien de la façon dont vous avez créé une variable. Dans SAS®, la modification d'un fichier de données s'écrit dans l'éditeur de programme. Et vous pouvez même insérer des commentaires qui explicitent la raison pour laquelle vous avez tapé telle ou telle ligne de programme.

Si vous ne prévoyez pas de modifier votre fichier de données (c'est-à-dire que toutes les variables que vous allez utiliser dans vos analyses statistiques sont déjà présentes dans le fichier de données), alors vous pouvez passer dès à présent à la partie IV « Statistique descriptive et association statistique entre deux variables ».

Si vous souhaitez modifier votre fichier de données, et avant de poursuivre, je vous recommande le visionnage d'une vidéo en cliquant ici. Je ne vais présenter dans ce guide que la création (de façon simple) de nouvelles variables à partir de variables existantes. Dans les lignes de programme ci-dessus, « nouveau_fichier » est le nom du nouveau fichier de données que vous allez créer (et vous choisissez le nom que vous voulez) à partir du fichier de données SAS® existant « fichier_de_depart », et qui se trouve dans la bibliothèque « Work ». Les « instructions » dans l'étape DATA sont des lignes de programme pour (entre autres) créer de nouvelles variables dans le fichier de données « nouveau_fichier ». Ainsi, le fichier de données « nouveau_fichier » contiendra par défaut toutes les variables déjà présentes dans le fichier de données « fichier_de_depart » plus toutes celles qui ont été créées dans l'étape DATA à l'aide des lignes de programme « instructions ».

Attention, je vous recommande vivement de ne pas nommer le nouveau fichier de données avec le même nom que le fichier de départ (sinon, vous écraserez votre fichier de départ).

Voici par exemple l'étape DATA toute simple ci-dessous. Cette étape DATA ci-dessus crée un nouveau fichier de données SAS® que l'on a choisi de nommer « donnees_modifiees », qui sera créé dans la bibliothèque « Work » (cf. Figure 7), à partir d'un fichier de données nommé « donnees_initiales » qui se trouve lui aussi dans la bibliothèque « Work ». Ce nouveau fichier de données « donnees_modifiees » contiendra toutes les variables déjà contenues dans le fichier de données « donnees_initiales », plus la nouvelle variable AGE_DIZAINE, créée dans cette étape DATA, et qui vaut pour chaque individu la valeur de la variable AGE (déjà présente dans le fichier de données « donnees_initiales ») divisée par 10.

b) Création de variables avec les opérateurs arithmétiques et les fonctions SAS®

Les quatre opérateurs arithmétiques (+, -,* ,/ ) et de nombreuses fonctions peuvent être utilisées pour créer des variables. En cliquant ici, vous avez la liste de l'ensemble des fonctions SAS®, classées par catégorie. Je vous recommande les catégories « Date and Time », « Mathematical », et « Rounding and Truncation ». La fonction puissance s'écrit « ** » sous SAS®.

Les lignes de programme ci-dessous créent un nouveau fichier de données SAS® que l'on a choisi de nommer « Donnees_pour_guide_v2 » à partir du fichier de Dès que vous avez exécuté une étape DATA, je vous recommande de cliquer sur la fenêtre « LOG » (cf. Figure 6.c) afin de vérifier qu'il n'y a pas d'erreur. Les erreurs les plus fréquentes dans la programmation SAS® sont les suivantes : l'oubli d'un « ; » à la fin de la ligne ou une faute de frappe (le nom d'une variable existant dans le fichier de données de départ mal orthographié).

Les noms des nouvelles variables que vous créez ne doivent contenir que les 26 lettres de l'alphabet, les 10 chiffres, et/ou le signe « _ ». Le nom d'une variable ne doit pas commencer par un chiffre, et ne doit pas dépasser 32 caractères en longueur. SAS® ne fait pas la distinction entre les majuscules et les minuscules (ainsi, « LOG10_CREAT_AU_CUBE » et « log10_creat_au_cube » représenteront pour SAS® la même variable).

Vous pouvez insérer un commentaire n'importe où dans l'éditeur de programme, et notamment dans une étape DATA. Un commentaire doit être précédé de « /* » et suivi de « */ » (cf. commentaire « concentration de l'urée en mg/L » sur la troisième du programme ci-dessus). Les espaces et les accents sont autorisés dans les commentaires.

c) Les instructions « IF » et « THEN » pour créer des variables

Lorsque l'affectation des valeurs d'une nouvelle variable dépend des valeurs d'une ou plusieurs variables existantes, vous devrez utiliser les instruction « IF » et « THEN ». L'instruction « ELSE » existe, mais je ne vous la recommande pas car on oublie souvent les alternatives à la condition qui suit l'instruction « IF », donc je ne l'utiliserai pas dans les exemples. Les instructions « AND » et « OR » sont à utiliser si plusieurs variables existantes sont impliquées dans la création de la nouvelle variable.

Les lignes de programme ci-dessous créent, dans un nouveau fichier de données nommé « Donnees_pour_guide_v3 » et à partir du fichier de données déjà existant « Donnees_pour_guide », la variable GOLDEN_FEMELLE à partir des variables GOLDEN et FEMELLE, qui vaudra 1 si le chien est une femelle de race Golden, et 0 sinon. Attention aux données manquantes sur une variable utilisée pour créer une nouvelle variable. A titre d'illustration, supposons les lignes de programme ci-dessous, dont l'objectif initial était de créer la variable ALAT_INF100 qui vaut 1 si le chien a une concentration en ALAT inférieure à 100 UI/L, et 0 si cette concentration est supérieure ou égale à 100 UI/L. Nous allons voir que la 3 ème ligne de programme ci-dessus est à éviter car elle peut conduire à des erreurs de codage. En effet, si un chien a une donnée manquante sur la concentration en ALAT, sa valeur pour la variable ALAT est le « . », ce qui vaut -. Ainsi, l'instruction ci-dessus « IF ALAT < 100 THEN ALAT_INF100 = 1; » va conduire au fait que la valeur de ALAT_INF100 pour un chien dont la donnée manque sur la concentration en ALAT sera 1, comme si ce chien avait une valeur de concentration en ALAT inférieure à 100 UI/L, alors que ce chien aurait dû avoir une donnée manquante pour cette nouvelle variable ALAT_INF100 : si sa concentration en ALAT manque, on ne peut pas savoir si elle est inférieure ou supérieure à 100. Les lignes de programme pour créer correctement la variable ALAT_INF100 sont celles ci-dessous. Ainsi, un chien dont la donnée manque sur la variable ALAT ne remplit aucune des deux conditions, et donc aura une donnée manquante pour la nouvelle variable ALAT_INF100, ce qui est bien ce que l'on souhaite.

d) Création de variables à partir de variables de date

Comme vous l'avez vu ci-dessus dans la partie II.E « Quatre types de variables numériques », la variable relative à une date quantifie le nombre de jours écoulés depuis le 1 er janvier 1960. Ainsi la différence entre deux dates SAS® est un délai, ou intervalle de temps, exprimé en nombre de jours.

Les lignes de programme ci-dessous créent la variable AGE_MOIS_CONSULTATION à partir des deux variables DATE_NAISSANCE et DATE_CONSULTATION existantes dans le fichier de données de départ.

DATA nouveau_fichier; SET fichier_de_depart; AGE_MOIS_CONSULTATION = (DATE_CONSULTATION -DATE_NAISSANCE) / 30.44; RUN;

A la troisième ligne de programme ci-dessus, j'ai divisé la différence des deux dates par 30,44 car, en moyenne, il y a 30,44 jours par mois. Pour information, si un individu a une donnée manquante sur la variable DATE_NAISSANCE ou sur la variable DATE_CONSULTATION, alors cet individu aura, à juste titre, une donnée manquante pour la variable AGE_MOIS_CONSULTATION.

D. Export d'un fichier de données SAS® vers Excel®

Si vous souhaitez exporter sous format Excel® un fichier de données qui a été créé sous SAS®, alors je vous recommande les lignes de programme génériques ci-dessous. Pour enregistrer ce fichier Excel® sur votre disque dur, vous ferez un clic droit sur ce fichier Excel® (cf. Le résultat des lignes de programme ci-dessus est présenté sur la Figure 13. On peut lire (cf. Figure 13.a) que les chiens de race Golden (RACE_4CL = 0) sont au nombre de 23 (colonne « Frequency »), ce qui représente 23,23% (colonne « Percent ») de l'échantillon des 99 chiens (dernière ligne dans la colonne « Cumulative Frequency »).

Notez que l'on peut demander à SAS® de décrire plusieurs variables binaires ou qualitatives à la fois. Pour cela, on liste les variables à étudier les unes à la suite des autres, séparées par un espace, dans l'instruction « TABLES ». Les lignes de programme ci-dessous demandent à SAS® de décrire d'un seul coup les variables RACE_4CL et OBESE. L'instruction « / MISSING » permet aussi de demander à SAS® de faire apparaître les données manquantes éventuelles.

PROC FREQ DATA = Donnees_pour_guide; TABLES RACE_4CL OBESE / MISSING; RUN;

Les résultats des lignes de programme ci-dessus sont présentés sur la Figure 14. On peut voir qu'il n'y a pas de donnée manquante pour la variable RACE_4CL (cf. Figure 14.a) mais qu'il y en a 3 pour la variable OBESE (cf. Figure 14.b).

Décrire une variable quantitative a) Description au sein de l'échantillon en entier

Pour vous montrer comment obtenir avec SAS® les différents indicateurs statistiques décrivant une variable quantitative, je vais prendre pour l'exemple la variable quantitative ALAT. Deux procédures peuvent être utilisées : PROC UNIVARIATE et PROC MEANS. (J'ai une préférence pour la PROC MEANS, qui ne fournit que ce qu'on lui demande.)

Je vais commencer par vous décrire les résultats produits par la procédure PROC UNIVARIATE, dont les lignes de programme sont ci-dessous. Le résultat des lignes de programme ci-dessus est présenté sur la Figure 16. Pour la concentration en ALAT, on lit que la moyenne vaut 57,64 UI/L, la SD vaut 69,60 UI/L, la médiane vaut 39,00 UI/L, la valeur minimale vaut 11,00 UI/L, la valeur maximale vaut 507,00 UI/L, les 1 er et 3 ème quartiles valent respectivement 32,00 UI/Let 53,00 UI/L. On peut y lire qu'il y a une donnée manquante sur la concentration en ALAT (« 1 » dans la colonne « N Miss »), et aucune donnée manquante pour la concentration en UREE. La colonne « N » indique le nombre de valeurs qui ont été utilisées pour calculer les indicateurs demandés ( nombre de données non manquantes). Notamment, puisqu'une donnée manque pour la concentration en ALAT, les indicateurs pour cette variable-là ont été calculés parmi les 98 chiens de l'échantillon pour lesquels la concentration en ALAT était renseignée.

b) Description selon les classes d'une variable binaire ou qualitative

Si l'on souhaite décrire une variable quantitative selon les classes d'une variable binaire ou qualitative, il suffit d'ajouter dans la procédure (PROC UNIVARIATE ou PROC MEANS) l'instruction « CLASS ». Je vous recommande là encore l'utilisation de la procédure PROC MEANS. Les lignes de programme cidessous permettent de décrire la variable ALAT (à l'aide de la moyenne, de la médiane, du minimum, du maximum, et des 1 er et 3 ème quartiles) selon les classes de la variable RACE_4CL. Le résultat des lignes de programme ci-dessus est présenté sur la Figure 17. Pour dresser un histogramme d'une variable quantitative sous SAS®, je vous suggère d'utiliser la procédure PROC UNIVARIATE. Les lignes de programme ci-dessous permettent de dresser l'histogramme de la variable ALAT en ajoutant comme option la représentation graphique de la loi normale de moyenne la moyenne de la variable ALAT dans l'échantillon, et de SD la SD de la variable ALAT dans l'échantillon (respectivement 57,64 et 69,60 ; cf. Figure 16). 

c) Le nuage de points

Le nuage de points est une méthode graphique pour explorer l'association entre deux variables quantitatives, et/ou pour identifier des valeurs aberrantes. La procédure PROC SGPLOT permet aussi de réaliser des nuages de points. Les lignes de programme ci-dessous permettent de dresser le nuage de points explorant l'association entre la concentration en créatinine (variable CREAT) et celle en urée (variable UREE), avec la concentration en créatinine sur l'axe des ordonnées et celle en urée sur l'axe des abscisses.

PROC SGPLOT DATA = Donnees_pour_guide; SCATTER X = UREE Y = CREAT; REG X = UREE Y = CREAT; RUN;
Le résultat des lignes de programme ci-dessus est présenté sur la Figure 22. (Si vous ne souhaitez pas que la droite de régression soit représentée, il ne faut pas taper la 3 ème ligne de programme ci-dessus.)

V. Tests statistiques pour tester l'association statistique entre deux variables A. Association entre deux variables binaires ou qualitatives

Introduction

Le croisement de deux variables binaires ou qualitatives permet d'étudier l'association entre ces deux variables. Je ne reviendrai pas dans ce guide sur la façon de correctement lire un tableau croisant deux variables binaires ou qualitatives. Notamment, je ne reviendrai pas sur le fait de savoir faire la distinction entre les « bons » et les « mauvais » pourcentages à citer au moment de dire que ces pourcentages sont, ou ne sont pas, significativement différents (cf. sous-partie « Connaissances théoriques indispensables en biostatistique et en épidémiologie », page 9).

Le croisement de deux variables binaires ou qualitatives s'effectue à l'aide de la procédure PROC FREQ, comme vous allons le voir ci-dessous. Ainsi, sur la ligne « 0 » et la colonne « 1 », on peut lire (cf. Figure 23.c) qu'il y a 16 chiens qui sont des mâles (puisque FEMELLE = 0) et qui sont décédés dans les 3 ans (puisque DECES_3_ANS = 1). Le nombre attendu sous H0 de chiens mâles décédés dans les 3 ans est égal à 15,15. Les 16 chiens mâles décédés dans les 3 ans représentent 16,16% de l'échantillon total des 99 chiens. Le pourcentage de chiens décédés dans les 3 ans parmi les 50 chiens mâles de l'échantillon est égal à 32,00% (16/50), et le pourcentage de chiens mâles parmi les 30 chiens décédés dans les 3 ans est égal à 53,33% (16/30).

Association entre deux variables binaires

Dans l'échantillon, le pourcentage de chiens décédés parmi les chiens femelles (28,57%, cf. Figure 23.d) était légèrement inférieur à celui parmi les chiens mâles (32,00%). La question est de savoir si ces deux pourcentages étaient significativement différents ou pas.

Dans la mesure où aucun des quatre effectifs attendus sous H0 n'est inférieur à 5 (la plus petite valeur étant 14,85, cf. Figure 23.e), c'est le test du Chi-2, et non pas le test de Fisher, qu'il faut utiliser.

La valeur du degré de signification du test du Chi-2 se trouve dans le tableau « Statistics for Table of FEMELLE by DECES_3_ANS », ligne « Chi-Square », colonne « Prob » (cf. Figure 23.f) : p = 0,71. Puisque ce degré de signification est supérieur à 0,05 (seuil de risque d'erreur de 1 ère espèce α, qui sera toujours fixé à 0,05 dans ce guide), les deux pourcentages cités ci-dessus (28,57% et 32,00%) n'étaient pas significativement différents. Si au moins l'un des quatre effectifs attendus sous H0 avait été inférieur à 5, il aurait fallu lire de degré de signification du test de Fisher dans le tableau « Fisher's Exact Test », à la ligne « Two-sided Pr <= P » (cf. Figure 23.g).

Association entre une variable binaire et une variable qualitative

Je vais prendre pour l'exemple les deux variables suivantes : RACE_4CL et DECES_3_ANS. Les lignes de programme pour croiser ces deux variables et pour savoir si ces deux variables étaient significativement associées dans l'échantillon (p ≤ 0,05) sont celles ci-dessous.

PROC FREQ DATA = Donnees_pour_guide; TABLES RACE_4CL * DECES_3_ANS / CHISQ EXPECTED FISHER; RUN;

Les résultats des lignes de programme ci-dessus se trouvent sur la Figure 24. 

Association entre deux variables qualitatives

Cette situation produisant un tableau à plus de deux lignes et plus de deux colonnes, elle conduit à des résultats ininterprétables : les pourcentages à comparer, qui seraient testés par le test statistique du Chi-2 ou de Fisher, ne peuvent pas s'exprimer de façon claire et intelligible. Je ne fournirai donc aucun exemple d'une telle situation, et je vous invite plus que fortement à rendre binaire (au moins) une des deux variables lorsque vous souhaitez étudier l'association entre deux variables qualitatives. Par exemple, si vous souhaitiez savoir s'il existe une association entre la race (variable RACE_4CL en quatre classes) et la cholestérolémie (variable CHOLES_3CL en trois classes), il aurait fallu soit recoder la variable RACE_4CL en une variable binaire, soit recoder la variable CHOLES_3CL en une variable binaire (soit bien entendu recoder de façon binaire ces deux variables !).

B. Association entre une variable binaire ou qualitative et une variable quantitative 1. Introduction

Dans cette situation-là, il faut soit comparer (puis tester) des moyennes (deux si la 1 ère variable est binaire, ou trois ou plus si la 1 ère variable est qualitative), soit comparer (puis tester) des médianes, selon la distribution de la variable quantitative.

Je vous rappelle les noms des tests statistiques dans les quatre situations suivantes (lorsque les individus sont indépendants) : Pour les exemples ci-dessous, je vais faire l'hypothèse que la distribution de la variable CREAT peut être considérée comme normale.

Comparaison de deux moyennes

Je vais prendre comme 1 er exemple les variables LABRADOR et CREAT. La procédure PROC TTEST est la procédure permettant de réaliser un test de Student pour séries non appariées. Il se trouve que la procédure PROC TTEST fournit aussi les moyennes qui sont comparées puis testées (ce qui évite de réaliser préalablement une procédure PROC MEANS).

Les lignes de programme ci-dessous permettent d'obtenir la moyenne de la concentration en créatinine parmi les chiens qui ne sont pas de race Labrador et celle parmi les chiens qui sont de race Labrador, puis de les tester statistiquement à l'aide du test de Student pour séries non appariées.

PROC TTEST DATA = Donnees_pour_guide; CLASS LABRADOR; VAR CREAT; RUN;

Les résultats des lignes de programme ci-dessus se trouvent sur la Figure 25. 

Comparaison de deux médianes

Je vais continuer d'utiliser les variables LABRADOR et CREAT. La procédure PROC NPAR1WAY est une procédure permettant de réaliser, entre autres, un test de Mann-Whitney / Wilcoxon pour séries non appariées. Il se trouve que la procédure PROC NPAR1WAY ne fournit pas les médianes qui sont comparées puis testées. Ainsi, la procédure PROC MEANS doit être préalablement utilisée pour fournir les deux médianes qui vont être ensuite testées.

Les lignes de programme ci-dessous permettent d'abord d'obtenir les deux médianes (à l'aide de la procédure PROC MEANS), puis ensuite de tester la différence entre les deux médianes (à l'aide de la procédure PROC NPAR1WAY). Les résultats des lignes de programme ci-dessus se trouvent sur la Figure 26. Les résultats des lignes de programme ci-dessus se trouvent sur la Figure 27. Les résultats des lignes de programme ci-dessus se trouvent sur la Figure 28. C. Association entre deux variables quantitatives

Introduction

Pour savoir si deux variables quantitatives sont associées, on peut calculer un coefficient de corrélation. Ce sera celui de Pearson si la distribution des deux variables quantitatives peut être considérée comme normale, ou le coefficient de Spearman si au moins l'une des deux distributions ne peut pas être considérée comme normale. La procédure PROC CORR est celle qui peut être utilisée pour calculer ces coefficients de corrélation. Elle fournit aussi le test statistique permettant de tester si le coefficient de corrélation estimé est, ou non, significativement différent de 0 (la valeur 0 pour un coefficient de corrélation représentant une absence de corrélation entre les deux variables quantitatives).

Avant de calculer un coefficient de corrélation, je ne peux que vous conseiller de représenter graphiquement l'association entre les deux variables quantitatives concernées à l'aide d'un nuage de points (cf. page 28). Les résultats des lignes de programme ci-dessus se trouvent sur la Figure 29. Le résultat des lignes de programme ci-dessus se trouve sur la Figure 30. Le résultat des lignes de programme ci-dessus se trouve sur la Figure 31.

Coefficient de corrélation

Figure 31

Attention, dès que vous utilisez l'instruction « TITLE », le titre sera placé lors de l'exécution de toutes les procédures suivantes ! Pour supprimer l'affichage d'un titre, il suffit de taper l'instruction « TITLE ; » dans l'éditeur de programme, de façon isolée, de la sélectionner, puis de l'exécuter.

C. Sélection des individus sur une variable qualitative

Supposons que l'on veuille estimer les médianes de la concentration en ALAT selon l'obésité des chiens (variable OBESE), seulement parmi les chiens de race croisée Golden/Labrador (RACE_4CL = 2). Les lignes de programme ci-dessous permettent de réaliser l'analyse souhaitée, avec l'ajout d'un titre. Supposons maintenant que l'on veuille estimer les médianes de la concentration en ALAT selon l'obésité des chiens (variable OBESE), parmi les chiens de race Golden (RACE_4CL = 0) ou de race croisée Golden/Labrador (RACE_4CL = 2). Pour cela, il faut utiliser l'instruction « IN () », en mettant entre parenthèses toutes les valeurs souhaitées pour la sélection, séparées par une virgule. Les lignes de programme ci-dessous permettent de réaliser l'analyse souhaitée. Supposons enfin que l'on veuille tester la différence de médianes de la concentration en ALAT entre seulement les races Golden (RACE_4CL = 0) et Labrador (RACE_4CL = 1) ; on souhaite donc exclure de la comparaison de médianes la race croisée Golden/Labrador (RACE_4CL = 2) et les autres races (RACE_4CL = 3). Les lignes de programme ci-dessous permettent de réaliser l'analyse souhaitée. Ainsi, en supposant que l'on veuille estimer la médiane de la concentration en urée des chiens dont la concentration en ALAT est inférieure à 50 UI/L, l'exécution des lignes de programme ci-dessous fournira la médiane de la concentration en urée parmi tous les chiens dont la concentration en ALAT est inférieure à 50 UI/L ainsi que parmi les chiens dont la donnée manque sur la concentration en ALAT 5(ce qui n'est pas du tout souhaité !). Le résultat des lignes de programme ci-dessus est présenté sur la Figure 33. Ainsi, parmi les 18 chiens dont la concentration en ALAT est inférieure ou égale à 50 UI/L (mais non manquante), mâles, et de race Golden ou de race croisée Golden/Labrador, la médiane de la concentration en urée était égale à 0,24 g/L.

VII. Analyse de survie à l'aide des courbes de Kaplan-Meier Pour dresser plusieurs courbes de Kaplan-Meier puis pour les tester avec le test du Log-rank, il faut utiliser l'instruction « STRATA » au sein de la procédure PROC LIFETEST.

Situation d'une variable binaire

Supposons que l'on veuille savoir si la présence d'une démarche anormale observée à J0 (variable binaire DEMARCHE_ANORMALE) est associée à la survenue d'un décès chez les chiens de l'étude. Les lignes de programme ci-dessous permettent de réaliser l'analyse souhaitée. Les résultats (extrait) des lignes de programme ci-dessous sont présentés sur la Figure 36 et sur la Figure 37. 

Situation d'une variable qualitative

L'utilisation d'une variable qualitative dans l'instruction « STRATA » fournit exactement les mêmes informations que ce que je viens de présenter ci-dessus pour une variable binaire.

Supposons que l'on veuille savoir si l'âge du chien (en utilisant la variable AGE_4CL, variable qualitative ordinale en quatre classes) est associé à la survenue d'un décès chez les chiens de l'étude. Les lignes de programme ci-dessous permettent de réaliser l'analyse souhaitée.

PROC LIFETEST DATA = Donnees_pour_guide; TIME SURVIE * DECES(0); STRATA AGE_4CL; RUN;

Les courbes de Kaplan-Meier produites par les lignes de programme ci-dessus sont présentées sur la Figure 38.a. 

Situation d'une variable quantitative

Supposons que l'on veuille savoir si la concentration en créatinine est associée à la survenue d'un décès dans l'échantillon. Pour rendre binaire ou qualitative une variable quantitative, pour ensuite dresser les courbes de survies correspondant à chacune des classes de cette variable binaire ou qualitative, il faut préciser, entre parenthèses dans l'instruction « STRATA », le ou les seuils de la variable quantitative utilisés pour la rendre binaire ou qualitative.

Les lignes de programme ci-dessous permettent de dresser les courbes de Kaplan-Meier selon que la concentration en créatinine est supérieure ou inférieure à 11 mg/L (ainsi, deux courbes de Kaplan-Meier seront dressées). 

VIII. Modèles de régression A. Théorie des modèles de régression

Vous devez avoir acquis les connaissances de base en épidémiologie (analytique) (cf. page 9), et avoir lu et compris tout ce qui précède dans ce guide avant de poursuivre (sauf la partie précédente sur l'analyse de survie si vous ne comptez pas utiliser un modèle de Cox). , où « 𝐶𝑑𝐽 ̅̅̅̅̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 » est l'espérance de la valeur du CdJ quantitatif en fonction des valeurs des variables Ei incluses dans le modèle. De façon générale, βi quantifie l'association entre le CdJ (quantitatif) et Ei en tant différence moyenne de valeurs du CdJ quantitatif.

Si le CdJ est binaire, et non assorti d'un temps de survenue (par exemple, dans une étude cas-témoins ou transversale), alors le modèle de régression est la régression logistique. Le modèle de régression logistique s'écrit :

𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 ) = 𝐿𝑛 ( 𝑃 ̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 1-𝑃 ̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 ) = 𝛼 + ∑ 𝛽 𝑖 . 𝐸 𝑖 𝑁 𝑖=1
, où « 𝑃 ̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 » est l'espérance de la probabilité de présenter le CdJ en fonction des valeurs des variables Ei incluses dans le modèle. De façon générale, βi quantifie l'association entre la présence du CdJ (binaire) et Ei en tant que valeur du 𝐿𝑛(𝑂𝑅 𝐸 𝑖 ), où 𝑂𝑅 𝐸 𝑖 est l'Odds Ratio quantifiant l'association entre la présence du CdJ et la variable Ei.

Si le CdJ est binaire et assorti d'un temps de survenue (par exemple, dans une étude de cohorte), alors le modèle de régression est le modèle de Cox [START_REF] Cox | Regression models and life tables (with discussion)[END_REF]. Le modèle de Cox s'écrit : 𝐿𝑛(𝜆(𝑡) ̅̅̅̅̅̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 ) = 𝐿𝑛(𝜆 0 (𝑡)) + ∑ 𝛽 𝑖 . 𝐸 𝑖 𝑁 𝑖=1

, où « 𝜆(𝑡) ̅̅̅̅̅̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 » est l'espérance de l'incidence instantanée du CdJ en fonction de la valeur des variables Ei incluses dans le modèle. De façon générale, βi quantifie l'association entre la survenue du CdJ (binaire) et Ei en tant que valeur du 𝐿𝑛(𝐻𝑅 𝐸 𝑖 ), où 𝐻𝑅 𝐸 𝑖 est le Risque Relatif (« Hazard Ratio » pour un modèle de Cox, qui est un « rapport des incidences instantanées ») quantifiant l'association entre la survenue du CdJ et la variable Ei.

Test statistique des coefficients d'un modèle de régression

Chaque coefficient d'un modèle de régression peut être testé par un test statistique. Le test statistique de Wald est un des tests statistiques proposés par les logiciels de statistique pour tester un coefficient d'un modèle. Vous devez savoir que l'hypothèse nulle H0 d'un test statistique testant l'association entre une variable Ei et un CdJ est « il n'y a pas d'association entre Ei et le CdJ dans la population cible ». Or, s'il n'y a pas d'association entre Ei et le CdJ, cela signifie que βi = 0 dans la population cible. Ainsi, l'hypothèse nulle H0 du test statistique de Wald testant un coefficient βi est : « βi = 0 dans la population cible ». Si la valeur du degré de signification du test de Wald testant un coefficient βi est inférieure à 0,05, cela veut dire que le coefficient βi est significativement différent de 0, ce qui veut dire que, dans l'échantillon, il existait une association significative entre la variable Ei et le CdJ. Pour réaliser une régression linéaire sous SAS®, je vous suggère d'utiliser la procédure « PROC GLM ».

Problématique des données manquantes

Interprétation des résultats d'une régression linéaire univariée a) Cas général

Le modèle de régression linéaire univarié s'écrit : 𝑌 ̅ /𝐸 = 𝛼 + 𝛽. 𝐸, avec E une variable quelconque (binaire, qualitative, ou quantitative). Pour interpréter la valeur de β, je vais écrire ce modèle pour deux groupes d'animaux : un groupe au sein duquel les animaux ont une valeur égale à e1 pour E, et un second groupe au sein duquel les animaux ont une valeur égale à e2 pour E. Par conséquent, β s'interprète de la façon suivante dans un modèle de régression linéaire univarié : β est la différence moyenne, estimée à partir des données de l'échantillon, des valeurs de Y entre deux groupes d'animaux différant de +1 unité pour leur variable E, quelles que soient les valeurs de leur variable E.

𝑌 ̅ /𝐸=𝑒

Cette interprétation ci-dessus est fondamentale. Nous allons voir les conséquences d'une telle interprétation en fonction des différents types de variable (variable binaire, qualitative, et quantitative).

Par ailleurs, si β = 0, cela signifie que, en moyenne, il n'existe aucune différence de valeurs de Y entre deux groupes d'animaux différant de +1 unité pour leur variable E. Ainsi, β = 0 traduit bien une absence d'association entre le CdJ (quantifié par Y) et E. Si β ≤ 0,05, alors il existait une association significative entre le CdJ (quantifié par Y) et E dans l'échantillon.

b) Modèle de régression linéaire univarié avec une variable binaire

Supposons le modèle de régression linéaire suivant, incluant une seule variable binaire E : 𝑌 ̅ /𝐸 = 𝛼 + 𝛽. 𝐸 Je recommande fortement le codage d'une variable binaire dans le fichier de données de telle façon à ce que les animaux exposés à E aient une valeur pour E égale à 1, et à ce que les animaux non exposés à E aient une valeur pour E égale à 07 . Ainsi, β est la différence moyenne, estimée à partir des données de l'échantillon, des valeurs de Y entre les animaux exposés et les animaux non exposés (car avec le codage fortement recommandé, e2 -e1 = +1). Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 41. A partir des résultats présentés dans la colonne « Estimate » (cf. Figure 41.b), le modèle de régression linéaire estimé par SAS® reliant la concentration en créatinine au sexe des chiens s'écrit de la façon suivante :

𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸 = 10,87 -0,13. 𝐹𝐸𝑀𝐸𝐿𝐿𝐸 La valeur de β de « -0,13 » (en arrondissant) s'interprète de la façon suivante : la différence moyenne des valeurs de concentration en créatinine entre les chiens femelles (FEMELLE = 1) et les chiens mâles (FEMELLE = 0) vaut -0,13 g/L. Autrement dit, dans l'échantillon, les chiens femelles avaient, en moyenne, une concentration en créatinine inférieure de 0,13 g/L à celles des chiens mâles. Cette différence de -0,13 n'était pas significativement différente de 0 (p = 0,77 ; cf. Figure 41.c). Ainsi, il n'existait pas d'association significative dans l'échantillon entre la concentration en créatinine et le sexe des chiens. L'IC95% de cette différence moyenne estimée est pointé par la flèche (d) sur la Figure 41 : [-0,99 ; +0,73]95%. Cet IC95% comprenant « 0 », on retrouve le fait que la différence de -0,13 estimée n'était pas significativement différente de 0. N'oubliez pas que les résultats de cette régression linéaire ne sont valides que si la distribution de Y (ici, la concentration en créatinine) peut être considérée comme normale. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 42. 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐴𝐺𝐸 = 9,86 + 0,11. 𝐴𝐺𝐸 Cela signifie qu'à partir des données de l'échantillon, le modèle estime que la différence moyenne de concentration en créatinine entre deux groupes de chiens différant de +1 année d'âge est égale à +0,11 g/L. Pourquoi « différant de +1 année » et pas « différant de +1 mois » ou « différant de +1 jour » d'âge ? Parce que la variable AGE est exprimée en années (l'unité de la variable AGE est donc l'année), et non pas en mois ou en jour. Et souvenez-vous de l'interprétation générale du coefficient β : « β est la différence moyenne des valeurs de Y entre deux groupes d'animaux différant de +1 unité pour leur variable E, quelles que soient les valeurs de leur variable E. ». Ainsi, le modèle estime qu'en moyenne, et dans l'échantillon, la différence de concentration en créatinine entre des chiens de (par exemple) 5 ans et des chiens de 4 ans est égale à +0,11 g/L. Le modèle estime aussi que la différence de concentration en créatinine entre des chiens de (par exemple) 14 ans et des chiens de 13 ans est aussi de +0,11 g/L. Ce modèle fait donc l'hypothèse qu'une augmentation de +1 année d'âge, quelle que soit la valeur de l'âge, se traduit par la même différence moyenne sur la concentration en créatinine : c'est ce que l'on appelle l'hypothèse de la linéarité de l'association entre Y et E (ici entre la concentration en créatinine et l'âge). Si dans la population cible, la différence moyenne de concentration en créatinine n'est pas la même, pour une même augmentation +1 année d'âge, entre des valeurs faibles de l'âge et des valeurs de l'âge plus élevées, alors l'hypothèse de la linéarité de l'association n'est pas vérifiée, et le modèle fournira une estimation de β ininterprétable.

c) Modèle de régression linéaire univarié avec une variable quantitative

(Si ce que j'ai écrit ci-dessus est du charabia, relisez une seconde puis éventuellement une troisième fois. Si ce que j'ai écrit reste du charabia après ces trois (voire plus) relectures, alors je vous recommande fortement de n'utiliser que des variables binaires dans vos analyses, car les interprétations sont en effet beaucoup plus faciles. Utiliser des variables quantitatives dans un modèle de régression sans comprendre l'hypothèse d'une telle utilisation vous expose à dire de sacrées belles bêtises.) Cette hypothèse de la linéarité de l'association entre Y et E doit être vérifiée avant d'inclure une variable quantitative E dans un modèle de régression (linéaire) si l'on n'a pas de fortes raisons de penser qu'elle l'est dans la population cible. La vérification de cette hypothèse fait l'objet de la souspartie C de cette partie VIII. « Modèles de régression ».

Attention (mais je vais écrire, autrement, quelque chose que j'ai déjà écrit dans la sous-partie « Vérification d'hypothèses sur lesquelles repose un modèle de régression » ci-dessus, page 49), si le modèle estime une valeur de coefficient β qui est ininterprétable parce que le modèle est incorrect, ce n'est pas à cause du logiciel ou de la statistique, c'est à cause de celle ou celui qui a choisi de faire tourner un tel modèle ! C'est pour cela que conduire des analyses statistiques nécessite de savoir toutes les conditions ou hypothèses sur lesquelles reposent ces analyses. N'attendez pas qu'un logiciel vous dise « attention, vous ne devriez pas faire tourner ce modèle, car il repose sur une hypothèse qui n'a pas l'air de tenir la route, biologiquement ou physiopathologiquement parlant » !

d) Modèle de régression linéaire univarié avec une variable qualitative ordinale

Supposons le modèle de régression linéaire suivant, incluant une seule variable qualitative ordinale E : 𝑌 ̅ /𝐸 = 𝛼 + 𝛽. 𝐸 Vous allez voir ci-dessous que ce modèle, lui aussi, repose sur l'hypothèse de la linéarité de l'association entre le CdJ (quantifié par Y) et E. Là encore bien entendu, si cette hypothèse n'est pas vérifiée, alors ce modèle ne devra pas être utilisé, car l'estimation de β ne sera pas interprétable. Je vais illustrer cela à partir du modèle suivant que l'on va faire tourner à partir des données de l'échantillon :

𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿 = 𝛼 + 𝛽. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿
Les lignes de programme ci-dessous permettent de faire tourner ce modèle dans SAS®. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 43. De la même façon que pour une variable quantitative, inclure une variable qualitative ordinale fait l'hypothèse de la linéarité de l'association entre le CdJ et cette variable qualitative ordinale. Comme pour une variable quantitative, il faudra vérifier cette hypothèse avant d'inclure une variable qualitative ordinale dans un modèle de régression (linéaire) si l'on n'a pas de fortes raisons de penser que cette hypothèse est vérifiée dans la population cible.

e) Modèle de régression linéaire univarié avec une variable qualitative nominale (1) Problématique

Supposons le modèle de régression linéaire suivant, incluant une seule variable qualitative nominale E : 𝑌 ̅ /𝐸 = 𝛼 + 𝛽. 𝐸 Vous allez voir ci-dessous que ce modèle est tout simplement incorrect, car il fournit une estimation du coefficient β systématiquement ininterprétable. Je vais illustrer cela à partir du modèle suivant que l'on va faire tourner à partir des données de l'échantillon :

𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝑅𝐴𝐶𝐸_4𝐶𝐿 = 𝛼 + 𝛽. 𝑅𝐴𝐶𝐸_4𝐶𝐿
Les lignes de programme ci-dessous permettent de faire tourner ce modèle dans SAS®. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 44. Cela signifie qu'à partir des données de l'échantillon, le modèle estime que la différence moyenne de concentration en créatinine entre deux groupes d'animaux différant de +1 unité pour la variable RACE_4CL est égale à -0,05 g/L. Ainsi, le modèle estime que la différence moyenne de concentration en créatinine entre des chiens pour lesquels RACE_4CL = 3 ( autre race) et des chiens pour lesquels RACE_4CL = 2 ( race croisée Golden/Labrador), que la différence moyenne de concentration en créatinine entre des chiens pour lesquels RACE_4CL = 2 ( race croisée Golden/Labrador) et des chiens pour lesquels RACE_4CL = 1 ( race Labrador), et que la différence moyenne de concentration en créatinine entre des chiens pour lesquels RACE_4CL = 1 ( race Labrador) et des chiens pour lesquels RACE_4CL = 0 ( race Golden), valent toutes -0,05 g/L. Cette estimation de -0,05 g/L n'a aucun sens, car elle repose sur l'hypothèse, n'ayant aucun fondement biologique ou physiologique, d'une même différence moyenne de concentration en créatinine lorsque la variable RACE_4CL augmente de +1 unité.

Il est par conséquent interdit d'inclure telle quelle une variable qualitative nominale dans un modèle de régression (quel que soit le modèle de régression), car ce modèle reposerait sur le fait que l'augmentation de +1 unité de cette variable qualitative nominale a un sens, alors qu'il n'en a aucun. En effet, le choix du chiffre attribué à une classe d'une variable qualitative nominale est purement arbitraire, et n'est en aucun cas fondé sur un ordre quelconque (« 1 », plus petit que « 2 », lui-même plus petit que « 3 », etc.). 

VAR_IND1 VAR_IND2 … VAR_INDi … VAR_INDK 1 1 0 … 0 … 0 2 0 1 … 0 … 0 … … … … … … … i 0 0 … 1 … 0 … … … … … … … K 0 0 … 0 … 1
Reprenons l'exemple de la variable RACE_4CL. Dans la mesure où cette variable comprend quatre classes, il y aura quatre variables indicatrices, que je vais choisir de nommer : GOLDEN, LABRADOR, CROISEE, AUTRE_RACE (ces variables indicatrices ont été créées dans le fichier de données Excel®). L'attribution des valeurs 0 et 1 pour chacune de ces quatre variables est décrite ci-dessous.

RACE_4CL GOLDEN LABRADOR CROISEE AUTRE_RACE 0 1 0 0 0 1 0 1 0 0 2 0 0 1 0 3 0 0 0 1
Ainsi, un chien de race Labrador (RACE_4CL = 1) se verra attribuer les valeurs de 0, 1, 0, et 0, respectivement pour les variables binaires GOLDEN, LABRADOR, CROISEE, et AUTRE_RACE. Vous venez de voir que chacun des coefficients du modèle compare une classe de la variable RACE_4CL à la classe de référence qui correspond à la variable indicatrice qui n'a pas été incluse dans le modèle, à savoir ici la classe « Golden ». Si l'on avait choisi de ne pas inclure la variable indicatrice LABRADOR, alors chacun des trois coefficients du modèle aurait quantifié la différence moyenne de concentration en créatinine entre chacune des classes de la variable RACE_4CL et la classe de référence correspondant à la race Labrador.

(3) Mise en pratique avec SAS® Vous allez voir désormais comment inclure des variables indicatrices dans un modèle de régression (ici, linéaire, mais la démarche sera exactement la même pour la régression logistique et le modèle de Cox), pour étudier l'association entre un CdJ (ici quantitatif, la concentration en créatinine) et une variable qualitative nominale (ici la variable RACE_4CL en quatre classes correspondant à la race des chiens), avec SAS®.

Il se trouve que les K variables indicatrices peuvent être créées par SAS®, sans avoir besoin de les créer au préalable dans le fichier Excel®. Les résultats (extrait) des lignes de programme ci-dessus sont présentés sur la Figure 45. Ainsi, la valeur de β1 de -1,82 correspond à la différence moyenne de concentration en créatinine entre les chiens pour lesquels la variable RACE_4CL vaut 1 ( les chiens de race Labrador) et les chiens pour lesquels la variable RACE_4CL vaut 0 ( les chiens de race Golden, la classe de référence). Et comme il est indiqué « 1 » devant RACE_4CL (cf. Figure 45.c), c'est bien une comparaison des chiens de race Labrador par rapport aux chiens de race Golden et non les chiens de race Golden par rapport aux chiens de race Labrador. Cette différence étant négative, la concentration en créatinine était en moyenne moins élevée parmi les chiens de race Labrador que parmi les chiens de race Golden. Cette différence négative de -1,82 g/L était d'ailleurs significative : la valeur du degré de signification testant la différence moyenne de concentration en créatinine entre les deux races (Labrador versus Golden) était de 0,0011 (cf. Figure 45.d), donc inférieure à 0,05. Par conséquent, on peut aussi interpréter cette valeur de -1,82, significativement différente de 0, de la façon suivante : les chiens de race Labrador avaient, en moyenne, une concentration en créatinine significativement inférieure à celle des chiens de race Golden ( = -1,82 g/L ; p < 0,01).

De même, la valeur de β2 de -0,54 correspond à la différence moyenne de concentration en créatinine entre les chiens pour lesquels la variable RACE_4CL vaut 2 ( les chiens de race croisée Golden/Labrador) et les chiens pour lesquels la variable RACE_4CL vaut 0 ( les chiens de race Golden, la classe de référence). Cette différence étant là encore négative, mais non significative (p = 0,35), la concentration en créatinine était, en moyenne, moins élevée parmi les chiens de race croisée Golden/Labrador que parmi les chiens de race Golden ( = -0,59 g/L ; p = 0,35).

Enfin, la valeur de β3 de -0,68 correspond à la différence moyenne de concentration en créatinine entre les chiens pour lesquels la variable RACE_4CL vaut 3 (les chiens d'autre race) et les chiens pour lesquels la variable RACE_4CL vaut 0 (les chiens de race Golden, la classe de référence). Cette différence étant là encore négative et toujours non significative, la concentration en créatinine était, en moyenne, moins élevée parmi les chiens d'autre race que parmi les chiens de race Golden ( = -0,68 g/L ; p = 0,30).

Vous comprenez maintenant pourquoi la colonne « ESTIMATE » comprend la valeur 0,0000 sur la ligne « RACE_4CL 0 » (cf. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 47. Vous vous êtes normalement rendu compte que l'interprétation des résultats fournis par SAS® lorsqu'une variable qualitative nominale est incluse dans un modèle (sous forme de variables indicatrices) dépend totalement du choix de la classe de référence. Par exemple, si on avait voulu que ce soit les chiens de race croisée (RACE_4CL = 2) qui soient considérés comme « classe de référence », il aurait fallu faire tourner les lignes de programme ci-dessous. 

b) En pratique avec SAS®

Supposons que l'on veuille étudier l'association entre la concentration en créatinine et le sexe des chiens, ajustée sur l'âge et la race des chiens. Si l'on choisit la race Golden (RACE_4CL = 0) comme classe de référence, le modèle de régression linéaire multivarié correspondant est donc celui-ci :

𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸,𝐴𝐺𝐸, (𝑅𝐴𝐶𝐸_4𝐶𝐿) "0" 
= 𝛼 + 𝛽. 𝐹𝐸𝑀𝐸𝐿𝐿𝐸 + 𝛾. 𝐴𝐺𝐸 + 𝛿 1 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(1) + 𝛿 2 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(2)

+ 𝛿 3 . 𝑅𝐴𝐶𝐸_4𝐶𝐿 (3) 
Je rappelle vivement deux choses. Tout d'abord, dans le modèle ci-dessus, la variable qualitative RACE_4CL doit obligatoirement être incluse dans le modèle sous forme de variables indicatrices parce qu'elle est nominale. Ensuite, tous les coefficients du modèle ci-dessus (β, γ, δ1, δ2, et δ3) ne sont interprétables que si le modèle repose sur les deux hypothèses suivantes vérifiées dans la population cible : (1) la concentration en créatinine suit une loi normale, et (2) l'association entre l'âge et la concentration en créatinine est linéaire.

Les lignes de programme ci-dessous permettent de faire tourner le modèle ci-dessus. Les résultats (extrait) des lignes de programme ci-dessus sont présentés sur la Figure 47. 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸,𝐴𝐺𝐸,(𝑅𝐴𝐶𝐸_4𝐶𝐿) "0" = 11,00 -0,34. 𝐹𝐸𝑀𝐸𝐿𝐿𝐸 + 0,12. 𝐴𝐺𝐸 -1,96. 𝑅𝐴𝐶𝐸_4𝐶𝐿(1) -0,82. 𝑅𝐴𝐶𝐸_4𝐶𝐿(2) -0,87. 𝑅𝐴𝐶𝐸_4𝐶𝐿(3)

Je vais faire l'hypothèse que l'association entre l'âge et la concentration en créatinine est linéaire. Interprétons, maintenant que l'on peut le faire, chacun des coefficients associés aux variables incluses dans le modèle multivarié (cf. Figure 47.b). La valeur de -0,34 devant la variable binaire FEMELLE signifie qu'indépendamment de l'âge et de la race, dans l'échantillon, les chiens femelles avaient une concentration en créatinine en moyenne inférieure de 0,34 g/L à celle des chiens mâles. La valeur de 0,12 devant la variable quantitative AGE signifie qu'indépendamment du sexe et de la race, dans l'échantillon, une augmentation de +1 année d'âge est associée à une augmentation de la concentration en créatinine de, en moyenne, 0,12 g/L. La valeur de -1,95 devant la variable indicatrice RACE_4CL(1) signifie qu'indépendamment du sexe et de l'âge, dans l'échantillon, les chiens de race Labrador (RACE_4CL = 1) avaient une concentration en créatinine en moyenne inférieure de 1,95 g/L à celle des chiens de race Golden (RACE_4CL = 0, qui est la classe de référence ; cette différence de 1,95 g/L entre les deux races était d'ailleurs significative, cf. Figure 47.c). La valeur de -0,82 devant la variable indicatrice RACE_4CL(2) signifie qu'indépendamment du sexe et de l'âge, dans l'échantillon, les chiens de race croisée Golden/Labrador (RACE_4CL = 2) avaient une concentration en créatinine en moyenne inférieure de 0,82 g/L à celle des chiens de race Golden. La valeur de -0,87 devant la variable indicatrice RACE_4CL(3) signifie qu'indépendamment du sexe et de l'âge, dans l'échantillon, les chiens d'autre race (RACE_4CL = 3) avaient une concentration en créatinine en moyenne inférieure de 0,87 g/L à celle des chiens de race Golden.

Globalement, indépendamment du sexe et de l'âge, la race était significativement associée à la concentration en créatinine (p < 0,01 ; cf. C. Vérification de l'hypothèse de la linéarité de l'association

Introduction

La première question à se poser avant de vérifier l'hypothèse de la linéarité de l'association entre une variable qualitative ordinale ou quantitative et le CdJ (quel qu'en soit le type : quantitatif ou binaire, assorti ou non d'un temps de survie) est de savoir s'il y a des raisons biologiques ou physiopathologiques qui pourraient laisser penser que cette association n'est pas linéaire dans la population cible. Et il est fondamental de tenter de répondre à cette question avant la vérification de l'hypothèse de la linéarité de l'association. En effet, comme je l'ai déjà écrit dans la sous-partie « Vérification d'hypothèses sur lesquelles repose un modèle de régression » (page 49), il faut garder en tête que ce que l'on peut observer dans un échantillon peut être éloigné de ce qu'il se passe dans la population cible, entre autres à cause de la fluctuation d'échantillonnage. Par conséquent, il ne faut pas trop attendre des données de l'échantillon qu'elles nous disent si l'association est, ou n'est pas, linéaire dans la population cible.

La démarche de vérification de l'hypothèse de la linéarité de l'association entre l'état de santé Y et une variable qualitative ordinale ou quantitative peut être considérée comme fastidieuse. Elle est néanmoins indispensable à réaliser si l'on souhaite inclure dans un modèle de régression (quel qu'il soit) une telle variable. Inclure une variable qualitative ordinale ou quantitative dans un modèle et interpréter les résultats de ce modèle sans avoir vérifié au préalable cette hypothèse de la linéarité de l'association expose l'auteur.e de ce modèle à des interprétations fausses, et par conséquent à des erreurs de communication scientifique.

Si, après avoir lu ce qui suit, vous trouvez effectivement que la démarche est trop fastidieuse, alors vous n'avez plus qu'une seule solution : utiliser des variables uniquement binaires. Cela signifie que si vos variables d'intérêt et/ou vos facteurs de confusion ne sont pas des variables binaires, vous devrez les recoder en variables binaires, selon un seuil déjà décrit dans la littérature, ou bien selon un seuil qui a cliniquement du sens, ou enfin selon la médiane ou selon le premier ou troisième quartile. L'inconvénient de rendre binaire une variable initialement qualitative ordinale ou quantitative est entre autres décrit dans les articles suivants [START_REF] Altman | The cost of dichotomising continuous variables[END_REF][START_REF] Brenner | Controlling for continuous confounders in epidemiologic research[END_REF][START_REF] Royston | Dichotomizing continuous predictors in multiple regression: a bad idea[END_REF].

Je vais présenter ci-dessous une démarche pour vérifier l'hypothèse de la linéarité de l'association entre une exposition qualitative ordinale ou quantitative et un CdJ quantitatif, en utilisant la régression linéaire. Mais cette démarche est absolument identique quel que soit le modèle de régression (et donc avec un CdJ binaire, assorti ou non d'un temps de survenue).

Cas d'une variable qualitative ordinale a) Aspect théorique

Soit VAR_QUAL_K_CL une variable qualitative ordinale à K classes, codée 0, 1, …, K-1 dans le fichier de données. Pour vérifier que l'association entre le CdJ quantitatif (quantifié par Y) et la variable VAR_QUAL_K_CL est linéaire (c'est-à-dire, pour vérifier qu'une augmentation de +1 unité de VAR_QUAL_K_CL se traduit par une même augmentation sur Y, quelle que soit la valeur de VAR_QUAL_K_CL), je vous recommande de suivre la démarche suivante :

1) Inclure VAR_QUAL_K_CL sous forme de variables indicatrices en choisissant comme classe de référence la plus petite valeur de VAR_QUAL_K_CL ;

2) Noter les valeurs des coefficients βi, ainsi que la Standard Error de βi (SEβi) de chacune des K-1 variables indicatrices ;

3) Placer sur un graphique K-1 points, chacun ayant pour ordonnée la valeur du coefficient βi d'une variable indicatrice et pour abscisse la valeur représentant la classe concernée de la variable VAR_QUAL_K_CL, puis placez verticalement autour de chacun de ces points l'IC95% de βi ; 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿 = 𝛼 + 𝛽. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿

Comme vous l'avez vu ci-dessus (cf. Figure 43), l'estimation de β de valeur égale à -0,08 n'a de sens que si l'association entre la concentration en créatinine et la variable CHOLES_3CL est biologiquement ou physiopathologiquement linéaire : une augmentation de +1 unité pour la variable CHOLES_3CL se traduit a priori par une même augmentation de la concentration en créatinine. Autrement dit, et de façon plus médicale, cette hypothèse est celle d'une même augmentation de concentration en créatinine entre une hypocholestérolémie (CHOLES_3CL = 0) et une normocholestérolémie (CHOLES_3CL = 1), et entre une normocholestérolémie (CHOLES_3CL = 1) et une hypercholestérolémie (CHOLES_3CL = 2). Je vais désormais vérifier cette hypothèse de linéarité de l'association, en faisant tourner le modèle suivant dans SAS® :

𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /(𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿) "0" = 𝛼 + 𝛽 1 . 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(1) + 𝛽 2 . 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(2)

Les lignes de programme ci-dessous permettent de faire tourner le modèle ci-dessus. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 50. Si en revanche les coefficients du modèle et leur SE respective avaient été tels que le graphique eût été celui de la Figure 52, et s'il y avait des raisons de penser que l'association entre la concentration en créatinine et CHOLES_3CL n'était pas linéaire, physiopathologiquement parlant, alors l'hypothèse de la linéarité de l'association n'aurait pas pu être considérée comme vérifiée. 

Cas d'une variable quantitative a) Aspect théorique

Pour vérifier l'hypothèse de la linéarité de l'association avec une variable quantitative, deux étapes sont nécessaires : (1) créer une variable qualitative ordinale à partir de la variable quantitative, et (2) vérifier l'hypothèse de la linéarité de l'association entre le CdJ et cette variable qualitative ordinale créée (ce que l'on vient de faire ci-dessus).

Si l'hypothèse de la linéarité de l'association avec la variable qualitative ordinale créée pour l'occasion est vérifiée, alors on fera l'hypothèse que la linéarité de l'association est aussi vérifiée pour la variable quantitative en question. La linéarité de l'association avec une variable quantitative peut être montrée directement sur la variable quantitative, sans passer par la création de la variable qualitative ordinale, 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /(𝑈𝑅𝐸𝐸_4𝐶𝐿) "0" = 10,16 + 0,40. 𝑈𝑅𝐸𝐸_4𝐶𝐿(1) + 0,26. 𝑈𝑅𝐸𝐸_4𝐶𝐿(2) + 1,89. 𝑈𝑅𝐸𝐸_4𝐶𝐿(3)

Pour vérifier la linéarité de l'association entre la concentration en créatinine et la variable UREE_4CL, il faut dresser le graphique de la Figure 48 Le résultat des lignes de programme ci-dessus est présenté sur la Figure 54. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 56. Les lignes de programme ci-dessous permettent de faire tourner le modèle ci-dessus. Le résultat des lignes de programme ci-dessus est présenté sur la Figure 58. Les résultats (extrait) des lignes de programme ci-dessus sont présentés sur la Figure 60. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 61. Les résultats (extrait) des lignes de programme ci-dessus sont présentés sur la Figure 63. Les résultats (extrait) des lignes de programme ci-dessus sont présentés sur la Figure 65. Le décès à 3 ans était en revanche moins fréquent parmi les chiens de race croisée Golden/Labrador (RACE_4CL = 2) que parmi les chiens de race Golden : OR Race croisée versus Golden = 0,37 [0,04 ; 3,89]95%, p = 0,41 (cf. flèches (c) sur la Figure 65), sans que cette différence de fréquence ne soit significative.

Notez que l'association globale entre la présence d'un décès à 3 ans et la race était significative (p < 0,01 ; Figure 65.d).

Interprétation des résultats d'une régression logistique multivariée

Supposons que l'on souhaite étudier l'association entre la présence d'un décès à 3 ans et le sexe des chiens, ajustée sur l'âge, la race des chiens (en prenant la race Golden comme classe de référence ; RACE_4CL = 0), et la cholestérolémie sous forme de variables indicatrices en prenant comme classe de référence les chiens avec une normocholestérolémie (CHOLES_3CL = 1). Je vais donc faire tourner le modèle de régression logistique ci-dessous :

𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸,𝐴𝐺𝐸,(𝑅𝐴𝐶𝐸_4𝐶𝐿) "0" ,(𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿) " Les lignes de programme ci-dessous permettent de faire tourner le modèle ci-dessus. Les résultats (extrait) des lignes de programme ci-dessus sont présentés sur la Figure 66. Dans la mesure où j'ai fait l'hypothèse que l'association entre la survenue d'un décès et l'âge était linéaire (il s'agit de la seule variable non binaire incluse telle quelle dans le modèle), les estimations de tous les coefficients du modèle (β, γ, τ0, τ2, δ1, δ2, et δ3) seront interprétables.

Les lignes de programme ci-dessous permettent de faire tourner le modèle ci-dessus. L'HRP doit être vérifiée pour chaque variable incluse dans un modèle de Cox (surtout pour celles concernées par le message clinique délivré à l'issu des analyses statistiques), tout en gardant à l'esprit que ce qui peut être observé dans l'échantillon peut ne pas être le reflet de ce qu'il se passe dans la population cible à cause de la fluctuation d'échantillonnage (par exemple ici, une HRP qui serait vérifiée dans l'échantillon mais pas dans la population cible, ou bien une HRP non vérifiée dans l'échantillon mais qui serait vérifiée dans la population cible).

Il existe de nombreuses façons de vérifier l'HRP [START_REF] Hess | Graphical methods for assessing violations of the proportional hazards assumption in Cox regression[END_REF]. Je vais vous présenter une méthode graphique et une méthode statistique pour vérifier l'HRP. Je ne vais pas vous démontrer dans ce guide les raisons pour lesquelles les méthodes que je vais décrire permettent effectivement de savoir si l'HRP semble, ou pas, vérifiée.

b) Méthode graphique de vérification de l'HRP avec SAS®

Une méthode graphique simple est de modifier les axes des abscisses et des ordonnées d'un graphique de Kaplan-Meier, en mettant en ordonnée Ln(-Ln(S(t))) (au lieu de S(t) dans un graphique de Kaplan-Meier) et en abscisse Ln(t) (au lieu de t dans un graphique de Kaplan-Meier). Si, dans ce graphique, les courbes ont un écart relativement constant, alors l'HRP peut être acceptée.

Supposons que l'on veuille vérifier l'HRP pour la variable binaire DEMARCHE_ANORMALE. Les lignes de programme ci-dessous permettent de la vérifier. Le résultat graphique des lignes de programme ci-dessus est présenté sur la Figure 70. Notez que cette méthode graphique ne peut s'appliquer qu'à des variables binaires ou qualitatives. Ainsi, si l'on souhaite vérifier l'HRP pour une variable quantitative, il faut l'avoir recodée en variable qualitative, ou binaire, au préalable. Comme vous l'avez déjà vu dans la sous-partie « Situation d'une variable quantitative » (page 47), il est possible de créer une telle variable au sein de la procédure PROC LIFESTEST. Ainsi, les lignes de programme ci-dessous vous présente la vérification de l'HRP pour la variable UREE, en prenant comme seuil pour la rendre binaire pour la vérification de l'HRP la valeur de 0,28 g/L, qui correspond à la médiane de la concentration en urée dans l'échantillon (cf. Figure 16). Les résultats graphiques des lignes de programme ci-dessus sont présentés sur la Figure 71. 
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 1 Figure 1 Pour information, j'ai modifié quelques paramétrages sous SAS® Studio, en cliquant sur « More application options », puis « Preferences », Figure 1.d). Dans « Code and Log », j'ai désactivé la saisie semi-automatique (cf.Figure 2.a).

  Figure 2.a).
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  Figure 4.b) pour faire effectivement tourner ces lignes de programme.

Figure 4

 4 Figure 4 Les résultats sont spontanément affichés dans la fenêtre « Results » (car la case pointée par la flèche (b) de la Figure 3 est cochée -elle l'est par défaut). Notez que seuls les résultats obtenus après le clic sur le bonhomme qui court apparaissent dans la fenêtre « Results » : tous les résultats obtenus suite aux clics antérieurs sur ce bonhomme sont effacés de la fenêtre « Results ». La Figure 5 présente un extrait de ces résultats obtenus dans la fenêtre « Results » (cf. Figure 5.a). (Nous prendrons bien entendu le temps d'interpréter plus loin dans ce guide tous ces résultats !) Vous
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 51 Figure 5 Pour sauvegarder vos résultats obtenus sous format PDF, vous devez cliquer sur l'icône pointé par la flèche (b) de la Figure 5 (après vous être assuré que la case pointée par la flèche (c) sur la Figure 3 soit bien cochée). Un fichier PDF est alors créé et enregistré dans votre ordinateur. Pour sauvegarder vos résultats obtenus sous format RTF, vous devez cliquer sur l'icône pointé par la flèche (c) de la Figure 5 (après vous être assuré que la case pointée par la flèche (d) sur la Figure 3 soit bien cochée). La sauvegarde sous format RTF vous permet d'annoter ce fichier RTF avec nos notes, vos interprétations, et éventuellement en copiant et collant dans ce document RTF, juste au-dessus des résultats, les lignes de programme qui ont permis de générer ces résultats.Plusieurs formats de présentation des résultats dans le fichier PDF ou RTF sont disponibles. Pour cela, vous devez sélectionner celui que vous souhaitez dans les listes déroulantes pointées par la flèche (a) de la Figure3.

  = Nom_fichier_pour_SAS DATAFILE = "chemin pour accéder à votre fichier uploadé et nom du fichier Excel à importer.xlsx" DBMS = XLSX REPLACE; SHEET = "Nom de l'onglet contenant les données à importer"; GETNAMES = YES; RUN; Vous devez choisir le nom du fichier qui va être importé dans SAS® (« Nom_fichier_pour_SAS » cidessus) pour ensuite réaliser vos analyses statistiques. Et c'est ce nom de fichier SAS® que vous utiliserez ensuite dans toutes les procédures qui l'utiliseront pour réaliser les analyses statistiques. Votre fichier de données sous Excel® est localisé dans un onglet. Par défaut dans Excel®, l'onglet se nomme « Feuil1 », mais dans votre fichier de données Excel®, l'onglet a peut-être un nom différent. En tout cas, c'est ce nom d'onglet que vous devez taper à la place de « Nom de l'onglet contenant les données à importer » ci-dessus. La vidéo que je vous ai demandé de visionner et qui porte sur l'import de données vous montre comment trouver le « chemin pour accéder à votre fichier uploadé et nom du fichier Excel à importer.xlsx », que vous devez taper entre guillemets juste après l'instruction « DATAFILE » ci-dessus.

Figure 6

 6 Figure 6 Vous pouvez voir (cf. Figure 6.b sur la ligne « PROC IMPORT OUT = Donnees_pour_guide ») que j'ai choisi d'appeler « Donnees_pour_guide » le fichier de données SAS® qui va servir aux analyses statistiques sous SAS® de ce guide, importé à partir du fichier de données Excel® « Données pour Guide SAS v3.5.xlsx » que j'avais auparavant « uploadé » dans SAS® Studio. (Vous vous rendez compte que « uploader » un fichier Excel® ne correspond pas à « importer un fichier de données Excel® ».) Dans ce fichier Excel®, les données se trouvaient dans l'onglet « Donnees ». Le fichier de données SAS® qui vient d'être créé suite à l'import, et que j'ai choisi d'appeler « Donnees_pour_guide », a été créé dans une « bibliothèque » (jargon SAS®) que l'on appelle
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 7 Figure 7Attention, tous les fichiers de données SAS® qui se trouvent dans cette bibliothèque « Work » sont des fichiers de données temporaires. C'est-à-dire qu'ils seront supprimés une fois que vous vous déconnecterez de SAS® Studio.Une fois l'import réalisé à l'aide de la procédure PROC IMPORT, je vous recommande de cliquer sur la fenêtre LOG (cf. Figure 6.c), qui indique combien d'individus et combien de variables le fichier Excel® importé dans SAS® contient (cf. la Figure 8). Je vous recommande ainsi de vérifier que les nombres pointés par les deux flèches sur la Figure 8 correspondent bien au nombre d'individus présents dans le fichier de données et au nombre de variables du fichier de données (ici, respectivement 99 chiens et 19 variables).
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Figure 11

 11 Figure 11Ensuite, il se trouve que dans SAS®, une donnée manquante pour une variable numérique a … une valeur, et elle vaut -. Cette information est très importante notamment quand on souhaitera

2 .

 2 L'étape DATA pour modifier un fichier de données SAS® a) Présentation de l'étape DATA L'étape DATA doit se taper ainsi dans l'éditeur de programme : DATA nouveau_fichier; SET fichier_de_depart; Instructions; RUN;

  DATA Donnees_pour_guide_v3; SET Donnees_pour_guide; IF GOLDEN = 1 AND FEMELLE = 1 THEN GOLDEN_FEMELLE = 1; IF GOLDEN = 0 OR FEMELLE = 0 THEN GOLDEN_FEMELLE = 0; RUN;

  SET Donnees_pour_guide; IF ALAT < 100 THEN ALAT_INF100 = 1; IF ALAT >= 100 THEN ALAT_INF100 = 0; RUN;

  DATA Donnees_pour_guide_v4; SET Donnees_pour_guide; IF . < ALAT < 100 THEN ALAT_INF100 = 1; IF ALAT >= 100 THEN ALAT_INF100 = 0; RUN;

  Figure 12.a), puis « Download File » (cf. Figure 12.b).
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  Une sélection des nombreux résultats des lignes de programme ci-dessus se trouve sur la Figure15.Le bloc « Basic Statistical Measures » fournit entre autres la moyenne, la médiane, et la Standard Deviation (SD) de la variable quantitative ALAT (cf. Figure15.a). Le bloc « Quantiles (Definition 5) » fournit entre autres les valeurs minimales et maximales, et les 1 er et 3 ème quartiles (cf. Figure 15.b). Le bloc « Extreme Observations » fournit dans les colonnes « Value » les cinq valeurs les plus faibles (cf. Figure 15.c) et les cinq valeurs les plus élevées (cf. Figure 15.d). Le bloc « Missing Values » fournit le nombre de données manquantes (cf. Figure 15.e ; ici, une valeur de la concentration en ALAT manque dans le fichier de données).

Figure 15

 15 Figure 15 Comme pour la procédure PROC FREQ, il est possible de demander de décrire d'un seul coup plusieurs variables quantitatives à la fois, en listant les variables quantitatives à décrire séparées par un espace. Les lignes de programme ci-dessous demandent à SAS® de décrire d'un seul coup les variables ALAT et UREE. PROC UNIVARIATE DATA = Donnees_pour_guide; VAR ALAT UREE; RUN; La procédure PROC MEANS décrit une (ou plusieurs) variable(s) quantitative(s) avec les indicateurs souhaités (qu'il faut taper). Supposons que l'on veuille décrire les variables ALAT et UREE en fournissant leur moyenne, SD, médiane, valeurs minimales et maximales, 1 er et 3 ème quartiles, et les nombres de données manquantes et non manquantes pour chacune de ces deux variables. Les lignes de programme ci-dessous permettent de réaliser l'analyse souhaitée. PROC MEANS DATA = Donnees_pour_guide MEAN STD MEDIAN MIN MAX P25 P75 NMISS N; VAR ALAT UREE; RUN;
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  PROC MEANS DATA = Donnees_pour_guide MEAN MEDIAN MIN MAX P25 P75; CLASS RACE_4CL; VAR ALAT; RUN;

Figure 17 B

 17 Figure 17

  PROC UNIVARIATE DATA = Donnees_pour_guide NOPRINT; VAR ALAT; HISTOGRAM ALAT / NORMAL; RUN; La Figure 18 présente l'histogramme issu des lignes de programme ci-dessus. SAS® indique la moyenne et la SD de la loi normale représentée (cf. Figure 18.a).

Figure 18

 18 Figure 18 Il est possible de juxtaposer les histogrammes d'une variable quantitative selon les classes d'une variable binaire ou qualitative, là encore en utilisant l'instruction « CLASS ». Les lignes de programme ci-dessous permettent de dresser les histogrammes de la concentration en ALAT d'abord chez les chiens non obèses (OBESE = 0 ; Figure 19.a) puis chez les chiens obèses (OBESE = 1 ; Figure 19.b). PROC UNIVARIATE DATA = Donnees_pour_guide NOPRINT; CLASS OBESE; VAR ALAT; HISTOGRAM ALAT; RUN;
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 20 Figure 20Pour interpréter correctement ces boites à moustaches, il faut savoir à quoi font référence les différentes parties d'une boite à moustaches dans SAS®. Cette information se trouve ici, ainsi que sur la Figure21.
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 21 Figure 21 La petite différence entre la représentation graphique fournie par SAS® sur la Figure 20 et celle sur la Figure 21 concerne la représentation graphique de la moyenne : un losange dans SAS® Studio (Figure 20), un « + » sur la Figure 21. En somme, la Figure 20 est la représentation graphique des informations fournies sur la Figure 17 avec la PROC MEANS.

  Je vais prendre pour l'exemple les deux variables binaires suivantes : FEMELLE et DECES_3_ANS. Les lignes de programme pour croiser ces deux variables et pour savoir si ces deux variables étaient significativement associées dans l'échantillon (p ≤ 0,05) sont celles ci-dessous. PROC FREQ DATA = Donnees_pour_guide; TABLES FEMELLE * DECES_3_ANS / CHISQ EXPECTED FISHER; RUN; Sur la 2 ème ligne de programme ci-dessus, le signe « * » permet de croiser deux variables. Les options « CHISQ », « EXPECTED », et « FISHER » permettent respectivement d'obtenir le résultat du test statistique du Chi-2, de faire apparaître les effectifs attendus sous H0, et de réaliser le test exact de Fisher. Les résultats des lignes de programme ci-dessus se trouvent sur la Figure 23.
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 24 Figure 24 Vous pouvez déjà observer qu'il y a beaucoup moins de résultats statistiques que sur la Figure 24 ! Les pourcentages qui doivent être comparés pour savoir s'il existe une association entre la race et la présence d'un décès dans les 3 ans sont les pourcentages (en ligne) suivants : le pourcentage de chiens décédés parmi les chiens de race Golden (3/23 = 13,04% ; Figure 24.a), le pourcentage de chiens décédés parmi les chiens de race Labrador (18/40 = 45,00% ; Figure 24.b), le pourcentage de chiens décédés parmi les chiens de race croisée Golden/Labrador (1/19 = 5,26% ; Figure 24.c), et le pourcentage de chiens décédés parmi les chiens d'autre race (8/17 = 47,06% ; Figure 24.d).Dans la mesure où aucun des huit effectifs attendus sous H0 n'est inférieur à 5 (la plus petite valeur étant 5,15 ; cf. Figure24.e), c'est le test du Chi-2 qu'il faut utiliser pour tester les quatre pourcentages cités ci-dessus. La valeur de son degré de signification est pointée par la flèche (f) sur la Figure24: p = 0,0016. (Si au moins l'un des huit effectifs attendus sous H0 avait été inférieur à 5, alors il aurait fallu réaliser le test statistique de Fisher, et lire la valeur du degré de signification pointée par la flèche (g) sur la Figure24.)

Figure 25

 25 Figure 25Ainsi, la moyenne de la concentration en créatinine parmi les chiens qui ne sont pas de race Labrador était égale à 10,52 mg/L, et celle parmi les chiens de race Labrador était égale à 12,14 mg/L (cf. Figure 25.a). Ensuite, pour savoir si ces deux moyennes étaient, ou n'étaient pas, significativement différentes, il faut savoir quel test de Student pour séries non appariées doit être réalisé : celui considérant que les variances sont voisines ou celui considérant que les variances ne sont pas voisines. La valeur du degré de signification pointée par la flèche (b) sur la Figure 25 provient d'un test statistique testant l'égalité des variances (p = 0,03). Il est inférieur à 0,05, donc la variance de la concentration en créatinine parmi les chiens de race Labrador ne peut pas être considérée comme voisine de celle parmi les chiens qui ne sont pas de race Labrador. Ainsi, le test de Student pour séries non appariées doit utiliser la méthode « Satterthwaite », et le degré de signification vaut, en arrondissant, 0,03 (cf. Figure 25.c). Ainsi, les deux moyennes de concentration en créatinine (10,52 mg/L et 12,14 mg/L) étaient significativement différentes. Si les deux variances avaient pu être considérées comme voisines (si la valeur du degré de signification pointée par la flèche (b) sur la Figure 25 avait été supérieure à 0,05), alors il aurait fallu utiliser la méthode « Pooled », et le degré de signification aurait été celui pointé par la flèche (d) sur la Figure 25 : p = 0,005 (en arrondissant).
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 26 Figure 26Ainsi, la médiane de la concentration en créatinine parmi les chiens qui ne sont pas de race Labrador était égale à 10,00 mg/L, et celle parmi les chiens de race Labrador était égale à 12,00 mg/L (cf. Figure26.a). La valeur du degré de signification du test de Mann-Whitney / Wilcoxon pour séries non appariées est celle pointée par la flèche (b) sur la Figure26: p = 0,006. Ainsi, les deux médianes de concentration en créatinine (10,00 mg/L et 12,00 mg/L) étaient significativement différentes.
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 27 Figure 27Ainsi, les valeurs des moyennes de la concentration en créatinine parmi chacune des quatre races étaient de 12,14, 9,49, 11,18, et 11,09 mg/L respectivement pour les races « 0 », « 1 », « 2 », et « 3 » (cf. Figure27.a). La valeur du degré de signification du test de l'ANOVA est celle pointée par la flèche (b) sur la Figure27: p = 0,006 (en arrondissant). Ainsi, les quatre moyennes de concentration en créatinine étaient significativement différentes.

Figure 28

 28 Figure 28Ainsi, les valeurs des médianes de la concentration en créatinine parmi chacune des quatre races étaient de 12,00, 10,00, 11,00, et 11,00 mg/L respectivement pour les races « 0 », « 1 », « 2 », et « 3 » (cf. Figure28.a). La valeur du degré de signification du test de Kruskal-Wallis est celle pointée par la flèche (b) sur la Figure28: p = 0,002 (en arrondissant). Ainsi, les quatre médianes de concentration en créatinine étaient significativement différentes.

  Je vais prendre comme exemple les variables UREE et CREAT. Les lignes de programme ci-dessous permettent d'obtenir les coefficients de corrélation de Pearson et de Spearman quantifiant la corrélation entre les variables UREE et CREAT (dont la représentation graphique de l'association est présentée sur la Figure22). PROC CORR DATA = Donnees_pour_guide PEARSON SPEARMAN; VAR UREE CREAT; RUN;
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 29 Figure 29 La flèche (a) sur la Figure 29 indique que parmi les 99 chiens de l'étude, 2 n'ont pas de données pour la variable CREAT (97 données dans l'échantillon des 99 chiens). Ainsi, les coefficients de corrélation ne seront calculés que parmi les 97 chiens qui ont des données pour les deux variables CREAT et UREE. Dans le tableau pointé par la flèche (b) sur la Figure 29, on peut lire l'ordre des informations qui sont fournies dans le tableau : d'abord que le coefficient de corrélation de Pearson (r = 0,39), ensuite la valeur du degré de signification (p < 0,01), et enfin le nombre d'observations utilisées pour le calcul (97 chiens). Dans le tableau pointé par la flèche (d) sur la Figure 29, on peut lire que le coefficient de Spearman est égal à 0,33, avec un degré de signification p < 0,01.
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 30 Figure 30Comme vous pouvez le voir sur la Figure30, rien n'indique que les médianes calculées ne l'ont été que parmi les chiens femelles de l'échantillon. Vous pouvez uniquement voir que la somme des deux nombres de chiens qui ont été utilisés (36 et 13 ; cf. Figure30.a) n'est pas égale à 99 chiens (la taille totale de l'échantillon).Pour faciliter l'interprétation d'un résultat SAS®, un titre peut être ajouté. Pour cela, il faut utiliser l'instruction « TITLE », que vous pouvez taper de façon isolée dans l'éditeur de programme (c'est-àdire, pas nécessairement au sein d'une procédure). La ligne de programme ci-dessous permet d'ajouter le titre que vous souhaitez, à mettre entre guillemets.TITLE "Le titre que vous souhaitez";Les lignes de programme ci-dessous permettent d'obtenir le résultat de la Figure30, mais avec le titre souhaité.

TITLE

  "Test de Mann-Whitney comparant les médianes de la concentration en ALAT entre les chiens de race Golden et ceux de race Labrador "; PROC NPAR1WAY DATA = Donnees_pour_guide WILCOXON; WHERE RACE_4CL IN (0,1); CLASS RACE_4CL; VAR ALAT; RUN;D. Sélection des individus sur une variable quantitativeDès que l'on souhaite sélectionner des individus selon les valeurs d'une variable quantitative, il faut faire très attention aux données manquantes de cette variable quantitative. Comme je l'ai écrit cidessus (page 17), dans SAS®, la donnée manquante est matérialisée par un « . » (cf. flèches (b) et (c) sur la Figure11) et elle vaut -.

  PROC MEANS DATA = Donnees_pour_guide MEDIAN N; WHERE ALAT < 50; VAR UREE; RUN; Le résultat des lignes de programme ci-dessus est présenté sur la Figure 32.a. De façon générale, pour exclure de la sélection les individus qui ont une donnée manquante sur la variable quantitative sur laquelle porte la sélection, et lorsque l'on souhaite sélectionner les individus selon une valeur inférieure à un seuil, il faut ajouter dans l'instruction « > . » (puisque le « . » pour une variable quantitative vaut -). Les lignes de programme ci-dessous permettent d'estimer la médiane de la concentration en urée des chiens dont la concentration en ALAT est non manquante et inférieure à 50 UI/L. PROC MEANS DATA = Donnees_pour_guide MEDIAN N; WHERE (. < ALAT < 50); VAR UREE; RUN; Le résultat des lignes de programme ci-dessus est présenté sur la Figure 32.b.

Figure 32

 32 Figure 32On peut remarquer que la différence du nombre de valeurs de concentration en urée utilisées pour calculer la médiane de la concentration en urée est bien de 1 (70 valeurs avec l'instruction « WHERE ALAT < 50; » qui inclut la donnée manquante sur la concentration en ALAT contre 69 avec l'instruction « WHERE (. < ALAT < 50); », cf. Figure 32.c et Figure 32.d, respectivement).Bien entendu, si l'on souhaite sélectionner les individus sur une variable quantitative à partir d'une valeur de cette variable, et non jusqu'à une valeur de cette variable, la présence de données manquantes n'est plus un problème. Les lignes de programme ci-dessous permettent d'estimer la
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 33 Figure 33

  PROC LIFETEST DATA = Donnees_pour_guide; TIME SURVIE * DECES(0); RUN; La variable qui suit « TIME » et qui précède le signe « * » correspond à la variable relative au temps de survie. La variable qui suit le signe « * » correspond à la variable relative à l'événement. Le chiffre entre parenthèses doit être celui correspondant aux individus censurés. Dans l'exemple, ce chiffre est « 0 » car il s'agit de la valeur qui a été attribuée aux chiens censurés dans l'étude (DECES = 0). Les résultats des lignes de programme ci-dessus sont présentés sur la Figure 34 et sur la Figure 35.

Figure 34

 34 Figure 34

Figure 35

 35 Figure 35 La flèche (a) sur la Figure 35 indique le temps de survie médian (ici, 4,2 ans) et son intervalle de confiance à 95% (IC95%), ici 3,4 -4,5 ans. La Figure 35.b représente la courbe de Kaplan-Meier, sur laquelle sont représentées les censures à l'aide d'un signe « + » (cf. Figure 35.c), comme par exemple les deux signes « + » pointés par la flèche (d) sur la Figure 35. Le tableau sous la courbe de Kaplan-Meier pointé par la flèche (e) sur la Figure 35 rappelle le nombre de chiens utilisés pour l'analyse de survie (ici, 99 chiens), le nombre d'événements survenus au cours du temps (ici, 76 décès), et le nombre de censures (ici 23 chiens censurés).

PROC

  LIFETEST DATA = Donnees_pour_guide; TIME SURVIE * DECES(0); STRATA DEMARCHE_ANORMALE; RUN;

Figure 36 La

 36 Figure 36La Figure36.a fournit les temps de survie et le temps de survie médian (entre autres) des chiens qui ne présentaient pas de démarche anormale (DEMARCHE_ANORMALE = 0). Notamment, le temps de survie médian de ces 57 chiens (cf. Figure 36.c) est égal à 4,3 ans (cf. Figure 36.d). La Figure 36.b fournit les temps de survie et le temps de survie médian (entre autres) des chiens qui présentaient une démarche anormale (DEMARCHE_ANORMALE = 1). Notamment, le temps de survie médian de ces 19 chiens (cf. Figure 36.e) est égal à 3,3 ans (cf. Figure 36.f).

Figure 37

 37 Figure 37Le degré de signification du test du Log-rank de valeur inférieure à 0,05 (cf. Figure37.a) permet de dire que les deux temps de survie médians cités ci-dessus (4,3 et 3,3 ans) étaient significativement différents. Sur la Figure37.b, on observe que les chiens avec une démarche anormale (courbe rouge, cf. légende de la figure) étaient décédés plus rapidement que les chiens sans démarche normale (courbe bleue, qui se trouve toujours au-dessus de la courbe rouge). Dans la mesure où le test du Logrank est significatif, on peut aussi dire que les deux courbes de Kaplan-Meier étaient significativement différentes.

Figure 38

 38 Figure 38On y observe que les chiens les plus jeunes (AGE_4CL = 0) décèdent moins rapidement que les chiens un peu plus vieux (AGE_4CL = 1), eux-mêmes décédant moins rapidement que les chiens encore un peu plus vieux (AGE_4CL = 2), eux-mêmes décédant moins rapidement que les chiens les plus vieux (AGE_4CL = 3). Lorsque la variable qualitative est ordinale (comme c'est le cas ici), attention à ne pas sur-interpréter le fait que le test du Log-rank soit significatif (cf. Figure 38.b). Bien que l'on observe une relation « dose-effet » avec l'âge (plus la classe d'âge augmente, et plus la survenue de décès était rapide), le test du log-rank ne teste pas de relation « dose-effet ». Ainsi, il n'est pas question de dire que la survenue de décès était significativement plus rapide lorsque l'âge du chien augmentait. Par exemple, si les courbes bleues (AGE_4CL = 0) et marron (AGE_4CL = 3) avaient été interverties, on n'aurait plus du tout observé de relation « dose-effet » avec l'âge, alors que la valeur du degré de signification issu du test du Log-rank eût été a priori identique.

  Les courbes de Kaplan-Meier produites par les lignes de programme ci-dessus sont présentées sur la Figure39.a.Les lignes de programme ci-dessous permettent de dresser les courbes de Kaplan-Meier selon que la concentration en créatinine est inférieure à 9, comprise entre 9 et 11 (exclus), comprise entre 11 et 12 (exclus), et supérieure ou égale à 12 mg/L (ainsi, quatre courbes de Kaplan-Meier seront dressées). PROC LIFETEST DATA = Donnees_pour_guide; TIME SURVIE * DECES(0); STRATA CREAT (9 11 12); RUN; Les courbes de Kaplan-Meier produites par les lignes de programme ci-dessus sont présentées sur la Figure 39.b.

Figure 39

 39 Figure 39 La légende de la Figure 39.b (cf. flèche (c) sur la Figure 39) correspond au centre « mathématique » des classes : la classe « 10 » correspond à la classe « entre 9 et 11 mg/L », et le chiffre de 10 correspond au milieu de l'intervalle 9-11. De même la classe « 11.5 » correspond à la classe « entre 11 et 12 mg/L », et le chiffre de 11,5 correspond au milieu de l'intervalle 11-12. Bien entendu, comme déjà écrit précédemment, le test du Log-rank pointé par la flèche (d) sur la Figure 39.b ne teste de pas de relation « dose-effet » entre la concentration en créatinine et la survenue d'un décès.

  Ce point est très important et il est souvent omis par les utilisateurs de modèles de régression. Les individus de l'échantillon qui sont utilisés pour estimer les coefficients du modèle 𝑌 ̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 = 𝛼 + ∑ 𝛽 𝑖 . 𝐸 𝑖 𝑁 𝑖=1 sont les individus de l'échantillon tels qu'aucune de leurs N variables Ei n'a de donnée manquante -et bien entendu, ces individus ne doivent pas non plus avoir de donnée manquante sur Y. La Figure 40 présente un exemple fictif d'un fichier de données de six individus, pour la variable Y correspondant au CdJ et pour les trois variables E1, E2, et E3. Dans ce fichier de données, l'individu #1 a une donnée manquante pour la variable E2, l'individu #2 a une donnée manquante pour la variable E3, l'individu #3 a une donnée manquante pour la variable Y, l'individu #4 a une donnée manquante pour la variable E1, et les individus #5 et #6 n'ont aucune donnée manquante pour les quatre variables.

Figure 40

 40 Figure 40 Le modèle de régression (A) 𝑌 ̅ /𝐸 1 ,𝐸 2 ,𝐸 3 = 𝛼 + 𝛽 1 . 𝐸 1 + 𝛽 2 . 𝐸 2 + 𝛽 3 . 𝐸 3 ne tournera que sur les individus #5 et #6, car ce sont uniquement ces deux individus pour lesquels aucune donnée ne manque sur les variables E1, E2, E3, et Y. Le modèle de régression (B) 𝑌 ̅ /𝐸 1 ,𝐸 2 = 𝛼 + 𝛾 1 . 𝐸 1 + 𝛾 2 . 𝐸 2 tournera quant à lui sur les individus #2, #5, et #6. Il y a deux conséquences de cela très importantes. La première, c'est qu'un modèle tourne parfois sur beaucoup moins d'individus qu'attendus, même si, individuellement, chaque individu a très peu de données manquantes. Parfois, il faudra admettre de ne pas inclure une variable dans un modèle si elle est manquante pour beaucoup d'individus (ce qui est très embêtant si cette variable est un facteur de confusion). La seconde est la suivante. En reprenant l'exemple des modèles (A) et (B) ci-dessus, si vous souhaitez comparer les valeurs de β2 et γ2 (notamment pour savoir si la variable E3 a joué un rôle de confusion dans l'étude de l'association entre E2 et le CdJ), ces valeurs de β2 et γ2 ne pourront être comparées que si les deux modèles (A) et (B) tournent sur les mêmes individus -ce qui n'est ici pas le

  1 = 𝛼 + 𝛽. 𝑒 1 𝑌 ̅ /𝐸=𝑒 2 = 𝛼 + 𝛽. 𝑒 2 Ainsi, le modèle estime que la valeur de Y chez les animaux dont E vaut e1 est α + β.e1, et que la valeur de Y chez les animaux dont E vaut e2 est α + β.e2. Maintenant, je fais la soustraction entre les deux estimations : 𝑌 ̅ /𝐸=𝑒 2 -𝑌 ̅ /𝐸=𝑒 1 = (𝛼 + 𝛽. 𝑒 2 ) -(𝛼 + 𝛽. 𝑒 1 ) = 𝛽. (𝑒 2 -𝑒 1 ) Ainsi, lorsque l'écart sur la valeur de la variable E entre deux groupes d'animaux vaut +1 ( e2 -e1 = +1), alors 𝑌 ̅ /𝐸=𝑒 2 -𝑌 ̅ /𝐸=𝑒 1 = 𝛽.

  Par exemple, je vais faire tourner le modèle suivant : 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸 = 𝛼 + 𝛽. 𝐹𝐸𝑀𝐸𝐿𝐿𝐸 Les lignes de programme ci-dessous permettent de faire tourner ce modèle dans SAS®. PROC GLM DATA = Donnees_pour_guide; MODEL CREAT = FEMELLE / SOLUTION CLPARM; RUN;

Figure 41

 41 Figure 41 La flèche (a) sur la Figure 41 indique que le modèle a tourné sur 97 chiens (en raison des données manquantes sur les variables CREAT et/ou FEMELLE).

  Supposons le modèle de régression linéaire suivant, incluant une seule variable quantitative E : 𝑌 ̅ /𝐸 = 𝛼 + 𝛽. 𝐸 Vous allez voir ci-dessous que ce modèle repose sur une hypothèse que l'on appelle « l'hypothèse de la linéarité de l'association entre le CdJ (quantifié par Y) et la variable E ». Si cette hypothèse est vérifiée, le modèle est valide, et l'interprétation du coefficient β est possible. Si cette hypothèse n'est pas vérifiée, alors ce modèle ne doit pas être utilisé, car l'estimation de β ne sera pas interprétable. Pour illustrer cette hypothèse de la linéarité de l'association entre Y et E, je vais faire tourner le modèle suivant à partir des données de l'échantillon : 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐴𝐺𝐸 = 𝛼 + 𝛽. 𝐴𝐺𝐸 Les lignes de programme ci-dessous permettent de faire tourner ce modèle dans SAS®. PROC GLM DATA = Donnees_pour_guide; MODEL CREAT = AGE / SOLUTION CLPARM; RUN;

Figure 42 A

 42 Figure 42 A partir du résultat de la régression linéaire présenté sur la Figure 42 (cf. Figure 42.a), le modèle de régression linéaire estimé par SAS® reliant la concentration en créatinine à l'âge des chiens s'écrit de la façon suivante :

  PROC GLM DATA = Donnees_pour_guide; MODEL CREAT = CHOLES_3CL / SOLUTION CLPARM; RUN;

Figure 43 A

 43 Figure 43 A partir du résultat de la régression linéaire présenté sur la Figure 43 (cf. Figure 43.a), le modèle de régression linéaire estimé par SAS® reliant la concentration en créatinine à la cholestérolémie (en trois classes) s'écrit de la façon suivante : 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿 = 10,88 -0,08. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿 Cela signifie qu'à partir des données de l'échantillon, le modèle estime que la différence moyenne de concentration en créatinine entre deux groupes d'animaux différant de +1 unité pour la variable CHOLES_3CL est égale à -0,08 UI/L. Ainsi, le modèle estime que la différence moyenne de concentration en créatinine entre des chiens pour lesquels CHOLES_3CL = 2 ( chiens avec une hypercholestérolémie) et des chiens pour lesquels CHOLES_3CL = 1 ( chiens avec une normocholestérolémie) est égale à -0,08 UI/L. Ce modèle estime de la même façon que la différence moyenne de concentration en créatinine entre des chiens pour lesquels CHOLES_3CL = 1 ( chiens avec une normocholestérolémie) et des chiens pour lesquels CHOLES_3CL = 0 ( chiens avec une hypocholestérolémie) est là encore de -0,08 UI/L. Notez que cette différence moyenne de la concentration en créatinine entre une classe de cholestérolémie et une autre consécutive n'est pas significative (p = 0,79 ; Figure 43.b).

  PROC GLM DATA = Donnees_pour_guide; MODEL CREAT = RACE_4CL / SOLUTION CLPARM; RUN;

Figure 44 A

 44 Figure 44 A partir du résultat de la régression linéaire présenté sur la Figure 44 (cf. Figure 44.a), le modèle de régression linéaire estimé par SAS® reliant la concentration en créatinine à la race (en quatre classes) s'écrit de la façon suivante : 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝑅𝐴𝐶𝐸_4𝐶𝐿 = 10,86 -0,05. 𝑅𝐴𝐶𝐸_4𝐶𝐿

( 2 )

 2 Création de « variables indicatrices » et interprétation théorique Pour étudier l'association entre un CdJ et une variable qualitative nominale à K classes à l'aide d'un modèle de régression (quel que soit le modèle de régression), il faut créer K variables binaires (appelées par la suite « variables indicatrices ») à partir des valeurs de la variable qualitative nominale, puis inclure K-1 de ces variables indicatrices dans le modèle. Ce que je viens d'écrire peut être écrit autrement : parmi les K variables indicatrices créées, il faut en exclure une du modèle et inclure toutes les autres. La variable indicatrice que l'on choisit de ne pas inclure dans le modèle est considérée comme la classe de référence de la variable qualitative nominale initiale. Le tableau ci-dessous présente la façon d'attribuer les valeurs 0 et 1 à ces variables indicatrices binaires, nommées VAR_INDi, à partir d'une variable qualitative nommée VAR_QUAL : les « 1 » sont sur la diagonale, et les « 0 » sont partout ailleurs.

VAR_QUAL

  

  𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=0,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=0,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=0 = 𝛼 + 𝛽 𝐿𝐴𝐵 × 0 + 𝛽 𝐶𝑅𝑂𝐼𝑆𝐸𝐸 × 0 + 𝛽 𝐴𝑈𝑇𝑅𝐸_𝑅 × 0 = 𝛼 Pour les chiens de race Labrador, le modèle s'écrit :𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ 𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=1,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=0,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=0 = 𝛼 + 𝛽 𝐿𝐴𝐵 × 1 + 𝛽 𝐶𝑅𝑂𝐼𝑆𝐸𝐸 × 0 + 𝛽 𝐴𝑈𝑇𝑅𝐸_𝑅 × 0 = 𝛼 + 𝛽 𝐿𝐴𝐵 Pour les chiens de race croisée Golden/Labrador, le modèle s'écrit :𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ 𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=0,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=1,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=0 = 𝛼 + 𝛽 𝐿𝐴𝐵 × 0 + 𝛽 𝐶𝑅𝑂𝐼𝑆𝐸𝐸 × 1 + 𝛽 𝐴𝑈𝑇𝑅𝐸_𝑅 × 0 = 𝛼 + 𝛽 𝐶𝑅𝑂𝐼𝑆𝐸𝐸Pour les chiens d'autre race, le modèle s'écrit :𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ 𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=0,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=0,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=1 = 𝛼 + 𝛽 𝐿𝐴𝐵 × 0 + 𝛽 𝐶𝑅𝑂𝐼𝑆𝐸𝐸 × 0 + 𝛽 𝐴𝑈𝑇𝑅𝐸_𝑅 × 1 = 𝛼 + 𝛽 𝐴𝑈𝑇𝑅𝐸_𝑅Comme précédemment, je vais faire la soustraction de deux modèles pour interpréter chaque coefficient β.𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=1,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=0,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=0 -𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=0,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=0,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=0 = 𝛽 𝐿𝐴𝐵 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=0,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=1,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=0 -𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=0,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=0,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=0 = 𝛽 𝐶𝑅𝑂𝐼𝑆𝐸𝐸 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=0,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=0,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=1 -𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝐿𝐴𝐵𝑅𝐴𝐷𝑂𝑅=0,𝐶𝑅𝑂𝐼𝑆𝐸𝐸=0,𝐴𝑈𝑇𝑅𝐸_𝑅𝐴𝐶𝐸=0 = 𝛽 𝐴𝑈𝑇𝑅𝐸_𝑅 Ainsi, βLAB est la différence moyenne de concentration en créatinine entre les chiens de race Labrador et les chiens de race Golden, βCROISEE est la différence moyenne de concentration en créatinine entre les chiens de race croisée et les chiens de race Golden, et βAUTRE_R est la différence moyenne de concentration en créatinine entre les chiens d'autre race et les chiens de race Golden.

  Les lignes de programme ci-dessous permettent d'inclure la variable RACE_4CL sous forme de variables indicatrices, en choisissant la classe « 0 » pour RACE_4CL comme classe de référence, ce qui correspond à la race Golden. C'est-à-dire que SAS® va, en quelque sorte, créer les variables indicatrices équivalentes aux variables LABRADOR, CROISEE, et AUTRE_RACE que j'ai mentionnées ci-dessus. PROC GLM DATA = Donnees_pour_guide; CLASS RACE_4CL (REF = '0'); MODEL CREAT = RACE_4CL / SOLUTION CLPARM; RUN;

Figure 45

 45 Figure 45 Le message pointé par la flèche (a) sur la Figure 45 ne doit pas vous effrayer. Il sera toujours présent lorsque vous utiliserez la procédure PROC GLM et que vous inclurez dans le modèle de régression linéaire une variable qualitative sous forme de variables indicatrices en utilisant l'instruction « SOLUTION » sur la ligne « MODEL ». Ce n'est pas une erreur, et cela ne veut pas dire que les estimations des coefficients ne sont pas correctes.

  Figure 45.e) : la différence moyenne de concentration en créatinine entre les chiens pour lesquels la variable RACE_4CL vaut 0 et les chiens pour lesquels la variable RACE_4CL vaut 0 est évidemment nulle ! (Et c'est ce « 0,0000 » qui ne plait pas à SAS® et qui conduit au message pointé par la flèche (a) sur la Figure 45.) Pour information, les lignes de programme ci-dessous utilisent les variables indicatrices LABRADOR, CROISEE, et AUTRE_RACE qui avaient été (inutilement) créées dans le fichier Excel® pour étudier l'association entre la concentration en créatinine et la race des chiens. PROC GLM DATA = Donnees_pour_guide; MODEL CREAT = LABRADOR CROISEE AUTRE_RACE / SOLUTION CLPARM; RUN;

Figure 46

 46 Figure 46 On retrouve bien évidemment que les valeurs des coefficients du modèle pointés par la flèche (a) sur la Figure 47 sont identiques à celles pointées par la flèche (b) sur la Figure 45. Les tests statistiques testant individuellement chaque coefficient βi (par exemple celui pointé par la flèche (d) sur la Figure 45 pour le coefficient β1 associé à la variable indicatrice RACE_4CL(1)) ne permettent pas de savoir si, globalement, la race est, ou n'est pas, significativement associée à la concentration en créatinine. Pour cela, il faut lire la valeur du degré de signification pointée par la flèche (f) sur la Figure 45. Attention, il faut lire cette valeur de degré de signification dans le tableau qui comprend « Type III SS » sur la 1 ère ligne (cf. Figure 45.g).

PROC

  GLM DATA = Donnees_pour_guide; CLASS RACE_4CL (REF = '0'); MODEL CREAT = FEMELLE AGE RACE_4CL / SOLUTION CLPARM; RUN;

Figure 47 A

 47 Figure 47 A partir des résultats de la régression linéaire présentés sur la Figure 47, le modèle de régression linéaire estimé par SAS® à partir des 97 chiens pour lesquels aucune donnée ne manquait sur la concentration en créatinine et sur les trois variables incluses dans le modèle (cf. Figure 47.a), et reliant la concentration en créatinine au sexe, à l'âge, et à la race, s'écrit de la façon suivante (à partir de la colonne « Estimate », cf. Figure 47.b) :

  Figure 47.d). On peut d'ailleurs remarquer que les valeurs des deux degrés de signification pointés par la flèche (e) sur la Figure 47, fournis dans le tableau « Type III SS » (cf. Figure 47.f) pour les variables FEMELLE et AGE sont identiques à celles dans la colonne « Pr > |t| » (cf. Figure 47.g), ce qui est tout à fait attendu. En effet, lorsque la variable est incluse telle quelle dans un modèle de régression (c'est-à-dire sans que ce soit sous forme de variables indicatrices), il n'y a qu'un seul coefficient β pour la variable : le test global (cf. Figure 47.e) correspond au test local (cf. Figure 47.g).

4 )

 4 Placer en plus le point d'ordonnée 0 et d'abscisse la valeur représentant la 1 ère classe de variable VAR_QUAL_K_CL (la classe de référence) ; 5) Vérifier visuellement que tous les points du graphique (incluant le point d'ordonnée 0) sont relativement bien alignés sur une droite. Si l'association entre le CdJ (quantifié par Y) et VAR_QUAL_K_CL était parfaitement linéaire, la Figure 48 présente ce que l'on devrait obtenir comme valeurs des K-1 coefficients βi (i  {1, …, K-1}) : ils devraient être tous alignés sur une droite (en passant par le point d'abscisse la valeur de la 1 ère classe, ici 0, et d'ordonnée 0, comme l'étape 4 ci-dessus le demande).

Figure 48

 48 Figure 48 Je vais passer un peu de temps sur l'étape 5 ci-dessus. Tout d'abord, vous pouvez tout à fait vous aider des IC95% des coefficients βi qui donnent une indication de la précision avec laquelle ces coefficients βi ont été estimés. En effet, la fluctuation d'échantillonnage peut conduire à des estimations des coefficients βi éloignées des valeurs réelles, et ce d'autant plus que chaque classe de la variable qualitative ordinale est composée de peu d'individus. Ainsi, les coefficients βi peuvent ne pas être alignés non pas parce que l'association n'est réellement pas linéaire, mais tout simplement à cause d'une imprécision des estimations des coefficients βi à partir des données de l'échantillon. La Figure 49 présente deux situations, avec des valeurs des coefficients βi identiques, mais avec des SEβi (donc des IC95%, représentés sur la figure) différents.

Figure 49

 49 Figure 49La situation (a) de la Figure49est celle où l'on pourrait accepter l'hypothèse de la linéarité de l'association dans le cas de figure où l'on n'aurait aucune raison de penser qu'en vrai, l'association n'est pas linéaire. En effet, bien que les quatre points ne soient pas vraiment alignés, la largeur des IC95% laisse penser que ce non alignement semble davantage dû à une imprécision des trois estimations des coefficients qu'à une non linéarité réelle. La situation (b) laisse en revanche penser que l'association n'est pas linéaire dans la population cible.

PROC

  GLM DATA = Donnees_pour_guide; CLASS CHOLES_3CL (REF = '0'); MODEL CREAT = CHOLES_3CL / SOLUTION CLPARM; RUN;

Figure 50

 50 Figure 50Le modèle estimé par SAS® s'écrit donc de la façon suivante (à partir de la valeur des coefficients pointés par la flèche (a) sur la Figure50) :𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /(𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿) "0" = 10,87 -0,06. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(1) -0,16. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(2) Pour vérifier la linéarité de l'association entre la concentration en créatinine et la variable CHOLES_3CL, il faut dresser le graphique de la Figure48en plaçant trois points (car la variable CHOLES_3CL a trois classes) : le point d'ordonnée 0, le point d'ordonnée β1, et le point d'ordonnée β2 (les valeurs de β1 et β2 sont pointées par la flèche (a) sur la Figure 50). Les abscisses respectives sont les valeurs des trois classes de la variable CHOLES_3CL, à savoir 0, 1, et 2. De plus, comme indiqué dans la partie théorique ci-dessus, je vous recommande de placer les IC95% des coefficients β1 et β2 (cf. Figure 50.b). Pour ma part, j'utilise un fichier Excel® pour dresser le graphique souhaité (que je peux vous envoyer par email) en utilisant la SE des coefficients (pointée par la flèche (c) sur la Figure 50), cf. Figure 51.

Figure 51

 51 Figure 51Sur la Figure51, on peut voir que les trois points sont alignés. Ainsi, on peut considérer à partir des données de l'échantillon, que l'association entre la concentration en créatinine et la variable CHOLES_3CL semble linéaire (ou bien qu'il n'y a pas du tout d'association ces deux variables). Ainsi,

Figure 52

 52 Figure 52 Dans une telle situation, une première solution consiste à laisser la variable CHOLES_3CL sous forme de variables indicatrices dans le modèle, et maintenir les lignes de programme qui avaient permis d'obtenir les résultats présentés sur la Figure 50 ci-dessus. Une deuxième solution consiste à rendre binaire la variable CHOLES_3CL en regroupant de façon pertinente deux de ses trois classes. Par exemple, on aurait pu regrouper les classes « hypocholestérolémie » et « normocholestérolémie ». La variable HYPER_CHOLES du fichier de données correspond à ce regroupement. Les lignes de programme auraient été alors celles-ci-dessous. PROC GLM DATA = Donnees_pour_guide; MODEL CREAT = HYPER_CHOLES / SOLUTION CLPARM; RUN;

  en plaçant quatre points (car UREE_4CL a quatre classes) : le point d'ordonnée 0, le point d'ordonnée β1, le point d'ordonnée β2, et le point d'ordonnée β3. Dans cette situation où la variable qualitative ordinale a été créée à partir de variable quantitative dont on cherche à vérifier la linéarité de l'association, je vous recommande de placer ces quatre points avec comme abscisse la médiane de la variable quantitative (ici, la médiane de variable UREE) pour chacune des quatre classes de la variable UREE_4CL. Pour cela, il suffit de faire tourner les lignes de programme ci-dessous, qui font référence à ce que l'on a vu dans la sous-partie « Description selon les classes d'une variable binaire ou qualitative », page 25. PROC MEANS DATA = Donnees_pour_guide MEDIAN; CLASS UREE_4CL; VAR UREE; RUN;

Figure 54

 54 Figure 54Le centre des classes de la variable UREE_4CL que l'on va donc utiliser pour dresser le graphique de la Figure48sont donc de 0,20, 0,26, 0,29, et 0,36 respectivement pour les 1 ère , 2 ème , 3 ème , et 4 ème classes de la variable UREE_4CL. Le graphique théorique de la Figure48devient en pratique celui de la Figure55(en utilisant les valeurs des SE des coefficients pointées par la flèche (b) sur la Figure53).

Figure 55

 55 Figure 55 Si l'on n'a aucune raison de penser que l'association entre la concentration en urée et celle en créatinine n'est pas linéaire, alors la Figure 55 laisserait accepter l'hypothèse de la linéarité de l'association, et le modèle 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝑈𝑅𝐸𝐸 = 𝛼 + 𝛽. 𝑈𝑅𝐸𝐸 fournirait une valeur de β interprétable (cf. sous-partie « Modèle de régression linéaire univarié avec une variable quantitative », page 54). Dans le cas contraire, alors vous ne devez pas faire tourner le modèle 𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝑈𝑅𝐸𝐸 = 𝛼 + 𝛽. 𝑈𝑅𝐸𝐸, et vous devez inclure la variable UREE_4CL sous forme de variables indicatrices, ou bien inclure une variable

Figure 56

 56 Figure 56 La flèche (a) sur la Figure 56 indique que le modèle a tourné sur 99 chiens, dont 30 sont décédés dans les 3 ans et dont 60 ne sont pas décédés dans les 3 ans (cf. Figure 56.b). Sur la 2 ème ligne de programme ci-dessus, l'instruction « (DESC) » est indispensable pour que SAS® modélise l'espérance de la probabilité de présenter le CdJ en fonction des valeurs des variables incluses dans le modèle (sans « (DESC) » sur la 2 ème ligne de programme, SAS® modélise la probabilité de ne pas présenter le CdJ, ce qui change complètement les résultats). Ainsi, c'est bien la valeur « 1 » qui doit apparaître à l'endroit que pointe la flèche (c) sur la Figure 56. La colonne « Estimate » (cf. Figure 56.d) fait référence aux coefficients du modèle de régression logistique, comme dans la régression linéaire. Ainsi, le modèle s'écrit : 𝐿𝑜𝑔𝑖𝑡(𝑃(𝐷𝐸𝐶𝐸𝑆_3_𝐴𝑁𝑆 = 1) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸 ) = 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸 ) = -0,75 -0,16. 𝐹𝐸𝑀𝐸𝐿𝐿𝐸.

PROC

  LOGISTIC DATA = Donnees_pour_guide; CLASS DECES_3_ANS (DESC); CLASS AGE_4CL (REF = '0') / PARAM = GLM; MODEL DECES_3_ANS = AGE_4CL; RUN; Notez que dans les lignes de programme ci-dessus, il y a deux instructions « CLASS », une pour le CdJ, et une pour la variable qualitative que l'on inclut sous forme de variables indicatrices. Notez aussi qu'il est indispensable de taper l'instruction « / PARAM = GLM » sur la 3 ème ligne de programme. Je vous conseille de taper autant d'instructions « CLASS » (contenant entre autres « / PARAM = GLM » sur la ligne) que de variables qualitatives à inclure sous forme de variables indicatrices. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 57.

Figure 57

 57 Figure 57 Le modèle estimé par SAS® s'écrit donc de la façon suivante (à partir de la valeur des coefficients pointés par la flèche (a) sur la Figure 57) : 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /(𝐴𝐺𝐸_4𝐶𝐿) "0" ) = -2,83 + 1,63. 𝐴𝐺𝐸_4𝐶𝐿(1) + 2,30. 𝐴𝐺𝐸_4𝐶𝐿(2) + 2,69. 𝐴𝐺𝐸_4𝐶𝐿(3) Pour vérifier la linéarité de l'association entre la présence d'un décès à 3 ans et la variable AGE_4CL, il faut dresser le graphique de la Figure 48 en plaçant quatre points (car AGE_4CL a quatre classes) : le point d'ordonnée 0, le point d'ordonnée β1, le point d'ordonnée β2, et le point d'ordonnée β3. Comme indiqué dans la sous-partie « Cas d'une variable quantitative -Aspect théorique », page 68), je vous recommande de placer ces quatre points avec comme abscisse la médiane de la variable quantitative (ici, la médiane de la variable AGE) pour chacune des quatre classes de la variable AGE_4CL. Pour cela, je vais utiliser la procédure PROC MEANS, dont les lignes de programme sont ci-dessous. PROC MEANS DATA = Donnees_pour_guide MEDIAN; CLASS AGE_4CL; VAR AGE; RUN;

Figure 58

 58 Figure 58Le centre des classes de la variable AGE_4CL que je vais donc utiliser pour dresser le graphique de la Figure48sont donc de 5, 7, 10, et 12 ans respectivement pour les 1 ère , 2 ème , 3 ème , et 4 ème classes de la variable AGE_4CL. Le graphique théorique de la Figure48devient en pratique celui de la Figure59, en utilisant les valeurs des SE pointées par la flèche (b) sur la Figure57, et le fichier Excel® précédemment mentionné.

Figure 59 La

 59 Figure 59 La Figure 59 nous permet d'accepter la linéarité de l'association entre la présence d'un décès à 3 ans et la variable AGE_4CL. Ainsi, on peut aussi accepter la linéarité de l'association entre la présence d'un décès à 3 ans et la variable quantitative AGE. Ainsi, je peux faire tourner le modèle ci-dessous, et interpréter la valeur du coefficient β. 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐴𝐺𝐸 ) = 𝛼 + 𝛽. 𝐴𝐺𝐸 Les lignes de programme ci-dessous permettent de faire tourner le modèle ci-dessus. PROC LOGISTIC DATA = Donnees_pour_guide; CLASS DECES_3_ANS (DESC); MODEL DECES_3_ANS = AGE; RUN;

Figure 60

 60 Figure 60Le modèle estimé par SAS® s'écrit donc de la façon suivante (à partir de la valeur des coefficients pointés par la flèche (a) sur la Figure60) : 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐴𝐺𝐸 ) = -3,41 + 0,28. 𝐴𝐺𝐸 Ainsi, l'ORAGE = e 0,28 = 1,33 (cf. Figure 60.b), avec comme IC95% : [1,10 ; 1,60]95% (cf. Figure 60.c), significativement différent de 1 (cf. Figure 60.d). Vous avez vu précédemment que le coefficient β quantifie l'association entre la présence du CdJ (binaire) et E en tant que valeur du Ln(ORE), où ORE est l'Odds Ratio quantifiant l'association entre le CdJ et la variable E, pour une augmentation de +1 unité de E, quelles que soient les valeurs de leur variable E. Ainsi, l'ORAGE de valeur 1,33 s'interprète de la façon suivante : une augmentation de +1 année d'âge pour les chiens de l'échantillon, quel que soit l'âge des chiens, se traduisait par un OR [IC95%] de présenter un décès dans les 3 ans de 1,33 [1,10 ; 1,60]95%. Cet OR étant significativement différent de 1, il existait une association significative entre l'âge des chiens et le fait de présenter un décès dans les 3 ans. Ainsi, voici ce que l'on écrirait dans un article : « il existait une association significative entre l'âge et le fait de présenter un décès dans les 3 ans (OR [IC95%] pour une augmentation de +1 année d'âge de 1,33 [1,10 ; 1,60], p < 0,01) ».Puisque l'hypothèse de la linéarité de l'association avec l'âge est acceptée, le test statistique du coefficient β de la variable AGE (dont le degré de signification est inférieur à 0,01 ; cf. Figure60.d) teste la relation « dose-effet », dans sa partie linéaire, entre la présence d'un décès dans les 3 ans et l'âge. Ainsi, la fréquence d'un décès dans les 3 ans était significativement d'autant plus importante que l'âge des chiens augmentait.c) Modèle de régression logistique univarié avec une variable qualitative ordinaleSupposons que l'on veuille savoir s'il existe une association entre la présence d'un décès dans les 3 ans et la cholestérolémie des chiens (variable qualitative ordinale CHOLES_3CL en trois classes : hypocholestérolémie, normocholestérolémie, et hypercholestérolémie), à l'aide de la régression logistique. Le modèle ci-dessous pourrait permettre de réaliser l'analyse statistique souhaitée : 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿 ) = 𝛼 + 𝛽. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿 Mais je vous rappelle (encore et toujours) que faire tourner le modèle ci-dessus nécessite d'avoir vérifié que l'association entre la cholestérolémie (en trois classes) et la présence d'un décès à 3 ans est linéaire. C'est ce que je vais désormais vérifier, en faisant tourner le modèle ci-dessous : 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /(𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿) "0" ) = 𝛼 + 𝛽 1 . 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(1) + 𝛽 2 . 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(2)Les lignes de programme ci-dessous permettent de faire tourner le modèle ci-dessus.

Figure 61

 61 Figure 61Le modèle estimé par SAS® s'écrit donc de la façon suivante (à partir de la valeur des coefficients pointés par la flèche (a) sur la Figure61) : 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /(𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿) "0" ) = -0,87 -0,37. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(1) + 0,78. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(2)Pour vérifier la linéarité de l'association entre la présence d'un décès à 3 ans et la variable CHOLES_3CL, il faut dresser le graphique de la Figure48en plaçant trois points (car CHOLES_3CL a trois classes) : le point d'ordonnée 0, le point d'ordonnée β1, et le point d'ordonnée β2 (cf. valeurs pointées par la flèche (a) sur la Figure 61) et comme abscisse les valeurs de 0, 1, et 2 qui sont les valeurs des trois classes de CHOLES_3CL. A partir des valeurs des SE des coefficients βi (cf. Figure 61.b), et grâce au fichier Excel®, on dresse le graphique présenté sur la Figure 62.

Figure 62 A

 62 Figure 62A partir d'un tel graphique, tout dépend des hypothèses a priori de la forme de l'association entre la cholestérolémie et le décès à 3 ans. S'il n'y a pas de fortes raisons de penser que, dans la population, l'association n'est pas linéaire, alors le graphique de la Figure62permet d'accepter l'hypothèse de la linéarité de l'association (les IC95% sont suffisamment larges pour le faire). Le modèle correspondant serait alors celui-ci-dessous.𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿 ) = 𝛼 + 𝛽. 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿

Figure 63

 63 Figure 63La valeur du coefficient β est égale à 0,40 (cf. Figure63.a), ce qui conduit à un OR de valeur de 1,50 (cf. Figure 63.b), avec un IC95% de [0,81 ; 2,77]95% (cf. Figure 63.c). Cet OR n'est pas significativement différent de 1 (p = 0,20 ; cf. Figure 63.d). Dans la mesure où la linéarité de l'association entre la présence d'un décès à 3 ans et la cholestérolémie a été acceptée, l'OR de valeur 1,50 est interprétable, et son interprétation est la suivante : une augmentation d'une classe de la variable relative à la cholestérolémie (c'est-à-dire, le passage d'une hypocholestérolémie à une normocholestérolémie, ou bien le passage d'une normocholestérolémie à une hypercholestérolémie) pour les chiens de l'échantillon se traduisait par un OR [IC95%] de présenter un décès dans les 3 ans de 1,50 [0,81 ; 2,77]95%.Vous vous rendez compte que l'interprétation d'un OR pour une variable qualitative ordinale dont la linéarité de l'association est vérifiée est quand même un peu ardue… ! Notez que ce n'est pas parce que l'hypothèse de la linéarité d'une association avec une variable qualitative ordinale est vérifiée qu'il est obligatoire de l'inclure telle quelle dans le modèle ! Si l'interprétation telle que celle ci-dessus est un peu trop « ardue », alors incluez la variable qualitative ordinale sous forme de variables indicatrices d'emblée, sans chercher à vérifier l'hypothèse de la linéarité de l'association avec le CdJ.Si maintenant il y a des raisons de penser que, dans la population, l'association entre la présence d'un décès à 3 ans et la cholestérolémie n'est pas linéaire, alors le graphique de la Figure62semble confirmer cette hypothèse. (Vous vous rendez compte qu'il est fondamental d'avoir des idées ou des hypothèses a priori, et ne pas attendre que les données de l'échantillon vous disent ce qu'il se passe dans la population !) Dans cette situation de non acceptation de la linéarité de l'association entre la présence d'un décès à 3 ans et la cholestérolémie, alors il y a deux possibilités (comme on l'a vu pour la régression linéaire) : inclure la variable CHOLES_3CL sous forme de variables indicatrices, ou bien recoder cette variable de façon binaire (par exemple « hypocholestérolémie en oui/non », ou bien « hypercholestérolémie en oui/non »). Si l'on ne souhaite pas regrouper deux classes de cholestérolémie parce que cela n'est pas cliniquement pertinent, alors incluons cette variable sous forme de variables indicatrices. Mais pour cette variable CHOLES_3CL, il semble que la classe de référence la plus pertinente d'un point de vue clinique serait la classe correspondant à une normocholestérolémie (CHOLES_3CL = 1). Je vais donc faire tourner le modèle ci-dessous :

Figure 65

 65 Figure 65Ainsi, le décès à 3 ans était significativement plus fréquent parmi les chiens de race Labrador (RACE_4CL = 1) que parmi les chiens de race Golden (RACE_4CL = 0) : OR Labrador versus Golden = 5,45 [1,39 ; 21,34]95%, p = 0,01 (cf. flèches (a) sur la Figure65). Le décès à 3 ans était aussi significativement plus fréquent parmi les chiens d'autre race (RACE_4CL = 3) que parmi les chiens de race Golden : OR Autre race versus Golden = 5,29 [1,27 ; 27,71]95%, p = 0,02 (cf. flèches (b) sur la Figure 65).

PROC

  LOGISTIC DATA = Donnees_pour_guide; CLASS DECES_3_ANS (DESC); CLASS CHOLES_3CL (REF = '1') / PARAM = GLM; CLASS RACE_4CL (REF = '0') / PARAM = GLM; MODEL DECES_3_ANS = FEMELLE AGE CHOLES_3CL RACE_4CL; RUN;

Figure 66

 66 Figure 66 La flèche (a) sur la Figure 66 indique que le modèle multivarié a tourné sur 99 chiens (la totalité de l'échantillon). En reprenant les résultats précédents (cf. Figure 56.e et Figure 56.f pour la variable FEMELLE, Figure 60.b, Figure 60.c, et Figure 60.d pour la variable AGE, Figure 64.b, Figure 64.c, et Figure 64.e pour la variable CHOLES_3CL, Figure 65.a, Figure 65.b, et Figure 65.c pour la variable RACE_4CL), on peut remplir les colonnes du tableau ci-dessous sous « Crude association ». Et à partir des résultats présentés sur la Figure 66 (cf. Figure 66.b et Figure 66.c), on peut remplir les colonnes du tableau cidessous sous « Adjusted association ». Le tableau ci-dessous présente ainsi les OR bruts et ajustés quantifiant les association brutes et ajustées entre les variables du tableau et la présence d'un décès dans les 3 ans, tel que l'on pourrait le présenter dans un article. Des « 1 » sans chiffre après la virgule doivent être mis dans les colonnes « OR » et « aOR » pour mettre en évidence la classe de référence choisie, et donc celle par rapport à laquelle les autres classes sont comparées dans la présence du CdJ.

  Je vais choisir comme classe de référence la race Golden pour la race (RACE_4CL = 0) et la classe « normocholestérolémie » pour la cholestérolémie (CHOLES_3CL = 1). Je vais donc faire tourner le modèle de Cox multivarié ci-dessous : 𝐿𝑛(𝜆(𝑡) ̅̅̅̅̅̅ /𝐷𝐸𝑀𝐴𝑅𝐶𝐻𝐸_𝐴𝑁𝑂𝑅𝑀𝐴𝐿𝐸,𝐴𝐺𝐸,(𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿) "1" ,(𝑅𝐴𝐶𝐸_4𝐶𝐿) "0" ) = 𝐿𝑛(𝜆 0 (𝑡)) + 𝛽. 𝐷𝐸𝑀𝐴𝑅𝐶𝐻𝐸_𝐴𝑁𝑂𝑅𝑀𝐴𝐿𝐸 + 𝛾. 𝐴𝐺𝐸 + 𝜏 0 . 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(0) + 𝜏 2 . 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(2) + 𝛿 1 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(1) + 𝛿 2 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(2) + 𝛿 3 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(3) 

PROC

  PHREG DATA = Donnees_pour_guide; CLASS CHOLES_3CL (REF = '1') / PARAM = GLM; CLASS RACE_4CL (REF = '0') / PARAM = GLM; MODEL SURVIE * DECES(0) = DEMARCHE_ANORMALE AGE CHOLES_3CL RACE_4CL / RL; RUN; Les résultats (extrait) des lignes de programme ci-dessus sont présentés sur la Figure 67 et sur la Figure 68. Comme cela été déjà le cas dans la procédure PROC LIFETEST, le chiffre « 0 » entre parenthèses dans la 4 ème ligne de programme ci-dessus indique à SAS® la valeur qui a été attribuée aux individus censurés pour la variable relative au CdJ (DECES).

Figure 67

 67 Figure 67 La flèche (a) sur la Figure 67 indique que le modèle multivarié de Cox a tourné sur 99 chiens (la totalité de l'échantillon). Les informations pointées par la flèche (b) sur la Figure 67 permettent de voir que parmi les 99 chiens qui ont participé à l'analyse de survie, 76 ont présenté l'événement au cours du suivi (le décès) et 23 ont été censurés au cours du suivi.

Figure 68 AFigure 69

 6869 Figure 68 A partir des résultats pointés par les flèches (a) (les HR ajustés avec leur IC95%) et (b) (les degrés de signification) sur la Figure 68, on peut dresser le tableau ci-dessous. Adjusted association

PROC

  LIFETEST DATA = Donnees_pour_guide PLOTS = (LLS); TIME SURVIE * DECES(0); STRATA DEMARCHE_ANORMALE; RUN;

Figure 70

 70 Figure 70 Vous pouvez voir sur la Figure 70 que l'axe des ordonnées est bien Ln(-Ln(S(t))) et que l'axe des abscisses est Ln(t) avec ici t représentée par la variable SURVIE (le temps écoulé depuis J0). Les courbes rouge et bleue (cf. Figure 70.a) représentent respectivement les chiens avec démarche anormale (DEMARCHE_ANORMALE = 1) et les chiens avec démarche normale (DEMARCHE_ANORMALE = 0). On peut voir que l'écart entre les deux courbes est relativement constant au cours du temps (les flèches violettes représentent l'écart entre les deux courbes, cf. Figure 70.b). Ainsi, l'HRP semble vérifiée pour la variable DEMARCHE_ANORMALE. Veuillez noter que si l'écart est tout le temps faible entre les deux courbes ( faible association statistique entre la survenue du CdJ et la variable étudiée), il est attendu que les deux courbes se croisent à une ou plusieurs reprises. Une telle situation n'indique pas que l'HRP n'est pas vérifiée.

PROC

  LIFETEST DATA = Donnees_pour_guide PLOTS = (LLS); TIME SURVIE * DECES(0); STRATA UREE(0.28); RUN;

Figure 71

 71 Figure 71On peut remarquer sur la Figure71.a que les deux courbes de Kaplan-Meier indiquent que dans l'échantillon, les chiens avec une concentration en urée inférieure à 0,28 g/L (courbe bleue, cf. légende de la Figure71.a) décédaient moins rapidement que ceux dont la concentration en urée était supérieure ou égale à 0,28 g/L (courbe rouge) dans les premiers temps de suivi seulement (jusqu'à 4 ans de suivi environ), mais qu'ensuite, les chiens avec une concentration en urée inférieure à 0,28 g/L décédaient plus rapidement que ceux dont la concentration en urée était supérieure ou égale à 0,28 g/L (la courbe bleue commençant à rejoindre la courbe rouge à partir de 4 ans après J0). C'est le phénomène de non proportionnalité des risques. La Figure 71.b met plus facilement en évidence le fait que l'HRP n'est pas vérifiée pour la variable UREE prise de façon binaire : l'écart entre les deux courbes est loin d'être constant au cours du temps ! Vous pouvez remarquer que l'axe des abscisses sur la Figure 71.b est moins facile à interpréter que celui sur la Figure 71.a, car il s'agit de Ln(t). D'ailleurs, Ln(4 ans) = 1,4 (cf. ligne verticale en pointillé d'abscisse 1,4), et on remarque que l'inversion de l'évolution de l'écart entre les deux courbes sur la Figure 71.b est effectivement à partir de 1,4 (soit 4 ans) sur l'axe des abscisses. Cela dit, bien que cet axe des abscisses soit moins facile à interpréter, la vérification de l'HRP est plus simple : il « suffit » d'évaluer la constance de l'écart entre les deux courbes. Dans la mesure où l'axe des abscisses est exprimée sur l'échelle logarithmique du temps, attention à ne pas prendre en compte avec trop d'importance la partie de gauche de la Figure 71.b pour savoir si l'HRP semble, ou pas, vérifiée : la partie de la courbe repérée par la flèche (c) sur la Figure 71 jusqu'à l'abscisse 0 représente quasiment la moitié de l'axe des abscisses de la Figure 71.b, mais seulement 1/8 ème du suivi total dans l'étude (e 0 = 1 an, cf. flèche (d) sur la Figure 71).c) Méthode statistique de vérification de l'HRP avec SAS®Une méthode statistique simple de vérification de l'HRP, mais qui a malgré fait ses preuves (Ng'andu, 1997), consiste à introduire un terme d'interaction entre la variable dont on cherche à vérifier l'HRP et le temps. Cette méthode est simple pour la vérification de l'HRP pour une variable binaire. Elle est aussi utilisable et reste simple pour une variable qualitative ordinale ou quantitative lorsque l'hypothèse de la linéarité de l'association est vérifiée (et donc, lorsque cette variable peut être incluse telle quelle dans le modèle). La méthode est en revanche plus compliquée pour une variable qualitative nominale, ou qualitative ordinale dont l'association avec la survenue du CdJ ne peut pas être considérée comme linéaire. Dans cette situation-là, je vous suggère la méthode graphique qui a été présentée ci-dessus.Je vais d'abord vous présenter un exemple de vérification de l'HRP utilisant la méthode statistique avec une variable binaire (variable DEMARCHE_ANORMALE). Les lignes de programme ci-dessous

  

  

  

  

  

  Attention, une variable correspondant à une date est une variable quantitative, et dans SAS®, elle quantifie le nombre de jours écoulés depuis le 1 er janvier 1960. Les individus dont la date est antérieure au 1 er janvier 1960 auront une valeur négative pour la variable de date.

DBMS=XLSX REPLACE; SHEET="Export SAS"; NEWFILE=YES; RUN;

  Pour trouver le « chemin pour accéder au dossier dans lequel sera exporté le fichier Excel », vous devez faire un clic droit sur le dossier d'export (par exemple, un clic droit sur le dossier « Pour Guide pratique SAS Studio », cf. Figure6.a), puis « Properties », puis copier le chemin du dossier qui se trouve devant « Location », puis le coller dans les guillemets juste après l'instruction « OUTFILE ».Les lignes de programme ci-dessous sont un exemple d'export sous format Excel® dans le dossier « Pour Guide pratique SAS Studio » du fichier SAS® « Donnees_pour_guide_v2 » qui se trouve dans la bibliothèque « Work ». J'ai choisi comme nom de fichier Excel® « Données du Guide SAS Studio v2.xlsx » (ce nom de fichier peut, lui, contenir des espaces et des accents), et comme nom d'onglet de ce fichier Excel® qui sera créé « Export SAS ».

	PROC EXPORT DATA = Nom_du_fichier_SAS_a_exporter
	OUTFILE = "chemin pour accéder au dossier dans lequel sera exporté le fichier Excel
	/nom du fichier Excel souhaité.xlsx" DBMS=XLSX REPLACE;
	SHEET="Nom souhaité de l'onglet contenant les données exportées";
	NEWFILE=YES;
	RUN;
	PROC EXPORT DATA = Donnees_pour_guide_v2
	OUTFILE= "/home/u48568717/Pour Guide pratique SAS Studio/Données du Guide SAS Studio
	v2.xlsx"

•

  Comparaison de deux moyennes (lorsque la distribution de la variable quantitative peut être considérée comme normale) → test de Student pour séries non appariées • Comparaison de deux médianes (quelle que soit la distribution de la variable quantitative) → test de Mann-Whitney / Wilcoxon pour séries non appariées • Comparaison de trois moyennes ou plus (lorsque la distribution de la variable quantitative peut être considérée comme normale) → test de l'ANOVA • Comparaison de trois médianes ou plus (quelle que soit la distribution de la variable

quantitative) → test de Kruskal-Wallis Je vous incite fortement à calculer (grâce à SAS® bien sûr) les moyennes ou les médianes que par la suite vous aller tester. Il se trouve que trois des quatre procédures SAS® que nous allons voir ne fournissent pas les moyennes ou les médianes. Ainsi, la procédure PROC MEANS (cf. page 24) devra être utilisée préalablement.

  4. Comparaison de trois moyennes ou plusJe vais prendre comme 2 ème exemple les variables RACE_4CL et CREAT. La procédure PROC ANOVA est une des procédures permettant de réaliser un test de l'ANOVA. Il se trouve que la procédure PROC ANOVA ne fournit pas les moyennes qui sont comparées puis testées. Ainsi, la procédure PROC MEANS doit être préalablement utilisée pour fournir les moyennes qui vont être ensuite testées.Les lignes de programme ci-dessous permettent d'obtenir puis de tester les moyennes de la concentration en créatinine au sein de chacune des quatre races de chiens.

PROC MEANS DATA = Donnees_pour_guide MEAN; CLASS RACE_4CL; VAR CREAT; RUN; PROC ANOVA DATA = Donnees_pour_guide; CLASS RACE_4CL; MODEL CREAT = RACE_4CL; RUN;

  La procédure PROC NPAR1WAY est une procédure permettant de réaliser un test de Kruskal-Wallis. Comme vous l'avez vu avec la comparaison de deux médianes, la procédure PROC NAPR1WAY ne fournit pas les médianes qui sont comparées puis testées. Ainsi, la procédure PROC MEANS doit être préalablement utilisée pour fournir les médianes qui vont être ensuite testées.Les lignes de programme ci-dessous permettent d'obtenir puis de tester les médianes de la concentration en créatinine au sein de chacune des quatre races de chiens.

5. Comparaison de trois médianes ou plus

Je vais continuer d'utiliser les variables RACE_4CL et CREAT. PROC MEANS DATA = Donnees_pour_guide MEDIAN; CLASS RACE_4CL; VAR CREAT; RUN; PROC NPAR1WAY DATA = Donnees_pour_guide WILCOXON; CLASS RACE_4CL; VAR CREAT; RUN;

  VI. Réaliser des tests statistiques dans un sous échantillon A. IntroductionIl peut être parfois intéressant de réaliser des analyses statistiques sur un sous-échantillon de l'échantillon initial, en réalisant la sélection des individus de ce sous-échantillon sur la valeur d'une ou de plusieurs variables, qu'elles soient binaires, qualitatives, ou bien quantitatives. Pour cela, il faut utiliser, dans n'importe quelle procédure, l'instruction « WHERE ». L'instruction « AND » permettra de sélectionner des individus selon les valeurs de plusieurs variables. Vous allez voir ci-dessous les lignes de programme SAS® selon le type de la variable, puis vous verrez la situation d'une sélection d'individus selon les valeurs de plusieurs variables.

B. Sélection des individus sur une variable binaire

Supposons que l'on veuille estimer les médianes de la concentration en ALAT selon la race des chiens (Labradors versus autre race -utilisation de la variable LABRADOR), seulement parmi les chiens femelles de l'échantillon. Les lignes de programme ci-dessous permettent de réaliser l'analyse souhaitée. PROC MEANS DATA = Donnees_pour_guide MEDIAN; WHERE FEMELLE = 1; CLASS LABRADOR; VAR ALAT; RUN;

  IntroductionVous devez avoir acquis les connaissances de base en analyse de survie (cf. page 9), et avoir lu et compris tout ce qui précède dans ce guide avant de poursuivre.Pour dresser une ou plusieurs courbes de Kaplan-Meier, je vous suggère d'utiliser la procédure PROC LIFETEST. Dans tous les exemples qui vont suivre dans cette partie « Analyse de survie à l'aide des courbes de Kaplan-Meier », je vais utiliser comme événement d'intérêt la survenue d'un décès au cours du temps (variable DECES, qui vaut « 1 » pour les chiens décédés au cours de l'étude, et « 0 » pour les chiens censurés). Le temps de survie a été créé dans le fichier de données Excel®, et la variable correspondante est SURVIE.

A.

B. Réalisation d'une seule courbe de Kaplan-Meier dans l'ensemble de l'échantillon Supposons que l'on veuille dresser la courbe de Kaplan-Meier représentant l'incidence globale d'un décès parmi les 99 chiens de l'échantillon. Les lignes de programme ci-dessous permettent de dresser une telle courbe.

1 .

 1 Vérification d'hypothèses sur lesquelles repose un modèle de régressionUn modèle de régression, utilisé sur des données médicales, repose très souvent sur une ou plusieurs hypothèses. Ces hypothèses doivent être acceptables d'un point de vue biologique ou physiopathologique. Ce n'est pas la statistique qui dit ce qu'il se passe d'un point de vue biologique ou physiopathologique. C'est la clinique ou la médecine qui dicte d'abord sa loi, et le modèle de régression, lui, s'exécute. Il s'exécutera mal si les hypothèses sur lesquelles repose le modèle ne sont pas correctes biologiquement ou physiopathologiquement parlant. De plus, je parle d'hypothèses biologiques ou physiopathologiques au sein de la population cible, dans « la vraie vie ». Certes, nous n'avons toujours que les données d'un échantillon pour vérifier des hypothèses, mais vous devez toujours avoir conscience que la fluctuation d'échantillonnage pourra conduire à observer des données dans l'échantillon éloignées de celles de la population. Par conséquent, ce n'est pas parce qu'une Bref, tout ça pour dire que les données de l'échantillon donnent uniquement une indication sur le fait qu'une hypothèse est, ou n'est pas, vérifiée dans la population cible, mais la réflexion et les connaissances médicales restent le « Gold Standard ». 𝑌 ̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 » se lit « la valeur de l'espérance de Y sachant les valeurs des variables E1, E2, …, EN ». Le mot « espérance », qui est un terme mathématique 6 , peut être compris comme « la valeur estimée de Y à partir des données de l'échantillon pour des valeurs fixées de chacune des variables incluses dans le modèle ».Par exemple, soit E1 la variable OBESE et E2 la variable AGE. Supposons que l'on fasse tourner le modèle suivant à partir des données de l'échantillon : Y = α + β1.OBESE + β2.AGE. Supposons que SAS® estime, à partir des données de l'échantillon, que α = 6, β1 = 2, et β2 = -0,5. Le modèle s'écrit alors : Y = 6 + 2.OBESE -0,5.AGE. Par conséquent, le logiciel SAS® estime que la valeur de Y pour un chien obèse (OBESE = 1) âgé de 8 ans (AGE = 8) est égale à : 6 + 2x1 -0,5x8 = 4.Un modèle de régression permet par conséquent d'estimer la valeur de Y en fonction des valeurs des différentes variables incluses dans le modèle. Néanmoins, un modèle de régression est rarement utilisé à cette fin en recherche clinique (l'étude de Darnis et al. utilise, pour le coup, des modèles de régression à cette fin-là[START_REF] Darnis | Establishment of reference values of the caudal vena cava by fast-ultrasonography through different views in healthy dogs[END_REF]). Il est bien davantage utilisé pour quantifier puis tester l'association entre une des expositions Ei incluses dans le modèle et Y. Et c'est ce sur quoi je vais me focaliser dans la suite de cette partie sur les modèles de régression.Si N = 1, on dira que le modèle de régression est « univarié » (il ne contient qu'une seule variable), et si N ≥ 2, alors on dira que le modèle de régression est multivarié. Dans le modèle, α et les βi (i  {1, …, N}) sont appelés « coefficients » du modèle.

hypothèse est vérifiée dans l'échantillon qu'elle l'est dans la population cible, et ce n'est pas parce qu'elle ne l'est pas dans l'échantillon qu'elle ne l'est pas non plus dans la population cible. Notamment, si la vérification d'une hypothèse se base sur la valeur d'un degré de signification (qui proviendra forcément d'un test statistique dont l'hypothèse nulle H0 est « l'hypothèse que l'on souhaite vérifier est vraie dans la population cible »), ayez en tête qu'un degré de signification supérieur à 0,05 (acceptation de H0) ne veut pas dire que H0 est vraie (donc cela ne veut pas dire que l'hypothèse à vérifier est vraie dans la population cible). Cela indique simplement que l'on n'a pas de preuves fortes qu'elle est fausse. De plus, lorsqu'un degré de signification est inférieur à 0,05, on a d'autant moins de preuves que H0 est fausse que (1) la taille de l'échantillon est faible et que (2) il y a a priori peu de chances que H0 soit fausse

[START_REF] Desquilbet | Enhancing Clinical Decision-Making: Challenges of making decisions on the basis of significant statistical associations[END_REF]

. Ainsi, lorsque l'on a de bonnes raisons (médicales, physiologiques, etc.) de penser qu'une hypothèse est vérifiée dans la population cible, une valeur de degré de signification, issu d'un test statistique testant l'hypothèse à vérifier, inférieure à 0,05 n'apporte pas de preuves fortes qu'elle n'est pas vérifiée dans la population cible (ces preuves seront « légères »). Par conséquent, dans certaines situations, il pourra ne pas être nécessaire de vérifier une hypothèse à partir des données de l'échantillon si l'on a de fortes raisons de penser que cette hypothèse est vérifiée dans la population cible.

2. Ecriture d'un modèle de régression

Un modèle de régression met en relation le CdJ, quantifié par Y, et une ou plusieurs variables ( expositions) Ei. Tout d'abord, il est fortement recommandé que chacune des variables incluses dans un modèle soit une variable numérique (cf. page 9). Ainsi, un modèle de régression comprenant N variables Ei (i {1, …, N}) s'écrit de façon générale : 𝑌 ̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 = 𝛼 + ∑ 𝛽 𝑖 . 𝐸 𝑖 𝑁 𝑖=1 En français, ce « 3. Choix d'un modèle de régression et écriture mathématique du modèle Ce qui guide le choix d'un modèle de régression est le type de la variable relative au CdJ. Si le CdJ est quantitatif (par exemple, la concentration en ALAT), le modèle de régression est la régression linéaire et Y est directement la variable relative au CdJ. Notez que pour utiliser un modèle de régression linéaire, le CdJ quantitatif Y doit suivre à peu près une loi normale. Si tel n'est pas le cas, je vous recommande alors de transformer la variable quantitative correspondant au CdJ en une variable binaire, en utilisant un seuil qui a un sens clinique (et vous utiliserez alors un modèle de régression logistique -cf. ci-dessous). Le modèle de régression linéaire s'écrit : 𝐶𝑑𝐽 ̅̅̅̅̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 = 𝛼 + ∑ 𝛽 𝑖 . 𝐸 𝑖 𝑁 𝑖=1

  Pour la suite de ce guide, et dans la mesure où je vais souvent inclure dans un modèle de régression une variable qualitative (nominale ou ordinale) sous forme de variables indicatrices, voici ci-dessous comment je vais choisir d'écrire le modèle qui correspond aux lignes de programme ci-dessus (je mets entre parenthèses la variable qualitative incluse dans le modèle sous forme de variables indicatrices, en mettant en indice et entre guillemets la classe de référence choisie) :Là, il va être fondamental de bien comprendre ces résultats. Car sinon, vous pourriez vraiment dire de belles bêtises à partir des degrés de signification présentés sur la Figure45. Notamment, il faut comprendre ces « 1 », « 2 », et « 3 » à droite de « RACE_4CL » (cf. Figure45.c).

	𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /(𝑅𝐴𝐶𝐸_4𝐶𝐿) "0" = 𝛼 + 𝛽 1 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(1) + 𝛽 2 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(2) + 𝛽 3 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(3)
	A partir des résultats présentés dans la colonne « Estimate » (cf. Figure 45.b), le modèle de régression
	linéaire estimé par SAS® reliant la concentration en créatinine à la race des chiens s'écrit de la façon
	suivante (j'ai mis les chiffres « 1 », « 2 », et « 3 » entre parenthèses ci-dessous, pour davantage de
	clarté -dans SAS®, ces parenthèses ne sont pas présentes, cf. Figure 45.c) :
	𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /(𝑅𝐴𝐶𝐸_4𝐶𝐿) "0" = 11,77 -1,82. 𝑅𝐴𝐶𝐸_4𝐶𝐿(1) -0,59. 𝑅𝐴𝐶𝐸_4𝐶𝐿(2) -0,68. 𝑅𝐴𝐶𝐸_4𝐶𝐿(3)

Dans la mesure où la variable qualitative nominale RACE_4CL a été incluse sous forme de variables indicatrices (et c'est obligatoire de faire cela car il s'agit d'une variable qualitative nominale), chaque coefficient βi du modèle (ici, i  {1,2,3}) quantifie la différence moyenne de concentration en créatinine entre une des classes de la variable qualitative et la classe de référence. La classe de référence choisie est celle correspondant à la valeur « 0 » pour la variable RACE_4CL (instruction « CLASS RACE_4CL (REF = '0') » dans la ligne de programme ci-dessus).

  indépendamment de E2 » ou « après avoir pris en compte E2 ». Je ne vais pas faire, dans ce guide, la démonstration qui prouve que le fait d'inclure la variable E2 dans le modèle conduit à ce que β1 quantifie l'association entre E1 et Y ajustée sur E2.Si, enfin, le modèle inclut N variables E1, E2, …, EN, il devient alors :𝑌 ̅ /𝐸 1 ,𝐸 2 ,…,𝐸 𝑁 = 𝛼 + ∑ 𝛽 𝑖 . 𝐸 𝑖 𝑁 𝑖=1L'interprétation de βi devient : « βi est la différence moyenne ajustée sur toutes les autres variables incluses dans le modèle, estimée à partir des données de l'échantillon, des valeurs de Y entre deux groupes d'animaux différant de +1 unité pour leur variable Ei, quelles que soient les valeurs de leur variable Ei. » L'ordre des variables incluses dans un modèle multivarié n'a aucune importance. Ainsi, que l'on souhaite étudier l'association entre Y et E1, ajustée sur E2 et E3, ou bien que l'on souhaite étudier l'association entre Y et E2, ajustée sur E1 et E3, dans les deux cas le modèle de régression (linéaire) sera celui-ci : 𝑌 ̅ /𝐸 1 ,𝐸 2 ,𝐸 3 = 𝛼 + 𝛽 1 . 𝐸 1 + 𝛽 2 . 𝐸 2 + 𝛽 3 . 𝐸 3

	PROC GLM DATA = Donnees_pour_guide;
	CLASS RACE_4CL (REF = '2');
	MODEL CREAT = RACE_4CL / SOLUTION CLPARM;
	RUN;
	3. Interprétation des résultats d'une régression linéaire multivariée

a) Interprétation générale

Si, maintenant, le modèle inclut deux variables E1 et E2, il devient alors :

𝑌 ̅ /𝐸 1 ,𝐸 2 = 𝛼 + 𝛽 1 . 𝐸 1 + 𝛽 2 . 𝐸 2

L'interprétation de β1 est la suivante : « β1 est la différence moyenne ajustée sur E2, estimée à partir des données de l'échantillon, des valeurs de Y entre deux groupes d'animaux différant de +1 unité pour leur variable E1, quelles que soient les valeurs de leur variable E1. » L'expression « ajustée sur E2 » est équivalente à «

  Si l'hypothèse de la linéarité de l'association est vérifiée pour VAR_QUAL_K_CL, alors il est possible de faire tourner le modèle de régression (linéaire) incluant cette variable telle quelle : le coefficient β (unique) associé à VAR_QUAL_K_CL sera interprétable.Si l'hypothèse de la linéarité de l'association n'est pas vérifiée, alors il faut soit inclure la variable VAR_QUAL_K_CL sous forme de variables indicatrices, soit rendre binaire la variable VAR_QUAL_K_CL, en regroupant les classes entre elles. Ce regroupement doit d'abord être guidé par la « clinique ». Ce regroupement doit en effet, et avant tout, être cliniquement pertinent. S'il est guidé par la représentation graphique des points, c'est dangereux. En effet, recoder des variables doit se faire a priori, et non pas après avoir vu les résultats. La démonstration serait trop longue ici, et sort de toute façon du cadre de ce guide.Sur la Figure48, j'ai utilisé comme abscisses des points les valeurs des classes de VAR_QUAL_K_CL. Dans le cas où VAR_QUAL_K_CL a été codée à partir d'une variable quantitative (comme c'est le cas pour la variable UREE_4CL du fichier de données), vous verrez plus loin dans ce guide qu'au lieu d'utiliser les valeurs des classes de VAR_QUAL_K_CL, je vous recommande d'utiliser le « centre » des classes de VAR_QUAL_K_CL. Ce « centre » d'une classe i de la variable VAR_QUAL_K_CL pourra être la médiane de la variable quantitative (dont est issue VAR_QUAL_K_CL) calculée parmi tous les individus pour lesquels VAR_QUAL_K_CL = i.

	b) En pratique avec SAS®
	Prenons l'exemple de l'association entre la concentration en créatinine et la cholestérolémie (variable
	qualitative ordinale CHOLES_3CL en trois classes : hypocholestérolémie, normocholestérolémie, et
	hypercholestérolémie). En incluant la variable CHOLES_3CL telle quelle dans le modèle, celui-ci s'écrit
	ainsi :

  𝐶𝑅𝐸𝐴𝑇 ̅̅̅̅̅̅̅̅̅ /𝑈𝑅𝐸𝐸 = 𝛼 + 𝛽. 𝑈𝑅𝐸𝐸, et vous devez inclure la variable UREE_4CL sous forme de variables indicatrices, ou bien inclure une variable binaire créée à partir de la variable UREE (selon un seuil clinique pertinent, la médiane, ou l'un des quartiles).Je vous rappelle qu'une régression logistique s'utilise lorsque le CdJ est binaire et non assorti d'un temps de survenue (par exemple, dans une étude cas-témoins ou transversale). Je vous recommande fortement de coder votre CdJ de la façon suivante : « 0 » pour les individus n'ayant pas présenté le CdJ, et « 1 » ceux qui l'ont présenté. Toutes les lignes de programme qui vont être présentées dans cette partie sur la régression logistique reposent sur le fait que le CdJ est codé selon la recommandation ci-dessus.Dans la suite de ce guide, toutes les interprétations des coefficients issus d'un modèle de régression logistique vont s'appuyer sur celles des coefficients issus du modèle de régression linéaire vus précédemment, avec comme seule différence la suivante : tandis que β représentait la différence moyenne des valeurs du CdJ entre deux groupes d'animaux différant de +1 unité pour leur variable E, quelles que soient les valeurs de leur variable E, dans une régression logistique, β représente Ln(ORE) où l'ORE quantifie l'association entre E et la présence du CdJ binaire en comparant des individus différant de +1 unité sur E, quelles que soient les valeurs de leur variable E. Par conséquent, vous ne pouvez pas lire la suite de ce guide si vous n'avez pas lu tout ce qui précède sur la régression linéaire ! Pour l'ensemble des exemples ci-dessous, je vais utiliser comme variable relative au CdJ la variable binaire DECES_3_ANS, valant « 0 » si le chien était toujours en vie 3 ans après J0, et « 1 » s'il était décédé dans les 3 ans après J0 (je rappelle que tous les chiens avaient été suivis au moins 3 ans, sauf s'ils décédaient avant, et il n'y avait aucun perdu de vue dans l'étude).Supposons que l'on veuille savoir s'il existe une association entre la présence d'un décès dans les 3 ans (variable binaire DECES_3_ANS) et le sexe des chiens (variable binaire FEMELLE). Pour répondre à la question, je vais faire tourner un modèle de régression logistique, qui s'écrit de la façon suivante : 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸 ) = 𝛼 + 𝛽. 𝐹𝐸𝑀𝐸𝐿𝐿𝐸, avec 𝑃 ̅ /𝐹𝐸𝑀𝐸𝐿𝐿𝐸 l'espérance de la probabilité d'être décédé dans les 3 ans selon que le chien est un mâle ou une femelle.Les lignes de programme ci-dessous permettent de faire tourner dans SAS® le modèle ci-dessus.

	D. La régression logistique
	1. Introduction
	2. Interprétation des résultats d'une régression logistique univariée
	a) Modèle de régression logistique avec une variable binaire
	PROC LOGISTIC DATA = Donnees_pour_guide;
	CLASS DECES_3_ANS (DESC);
	MODEL DECES_3_ANS = FEMELLE;
	RUN;

  Comme indiqué ci-dessus dans l'introduction, le coefficient β d'une régression logistique quantifie l'association entre la présence du CdJ (binaire) et E en tant que valeur du Ln(ORE) où ORE est l'Odds Ratio quantifiant l'association entre le CdJ et la variable E, pour une augmentation de +1 unité de E, quelles que soient les valeurs de leur variable E. Ici, la variable FEMELLE est binaire, et elle est codée en 0/1, avec « 1 » pour les chiens femelles et « 0 » pour les chiens mâles. Puisque Ln(ORFEMELLE) = 0,16, alors l'OR Femelles versus mâles = e -0,16 = 0,85, valeur que l'on retrouve dans la sortie SAS® (cf. Figure56.e). Dans la mesure où cet OR est < 1, on peut donc dire que, dans l'échantillon, le décès dans les 3 ans était survenu moins fréquemment parmi les chiens femelles que parmi les chiens mâles. L'IC95% de cet OR est [0,36 ; 2,01]95% (cf. Figure56.e). Cet IC95% comprend la valeur « 1 », donc il n'est pas significativement différent de 1, ce que l'on retrouve avec le degré de signification de β, de valeur 0,71 (cf. Figure56.f), supérieur à 0,05. Ainsi, dans l'échantillon, il n'existait pas d'association significative entre le fait de décéder dans les 3 ans et le sexe des chiens.b) Modèle de régression logistique univarié avec une variable quantitativeSupposons que l'on veuille savoir s'il existe une association entre la présence d'un décès dans les 3 ans et l'âge des chiens (variable quantitative AGE, exprimée en années), à l'aide de la régression logistique.Je vous rappelle (vivement) que faire tourner le modèle ci-dessus nécessite d'avoir vérifié que le faire pour vérifier la linéarité d'une association). Je vais donc faire tourner le modèle ci-dessous : 𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /(𝐴𝐺𝐸_4𝐶𝐿) "0" ) = 𝛼 + 𝛽 1 . 𝐴𝐺𝐸_4𝐶𝐿(1) + 𝛽 2 . 𝐴𝐺𝐸_4𝐶𝐿(2) + 𝛽 3 . 𝐴𝐺𝐸_4𝐶𝐿(3) 

	Pour répondre à la question, je vais faire tourner un modèle de régression logistique, qui s'écrit de la
	façon suivante :
	𝐿𝑜𝑔𝑖𝑡(𝑃 ̅ /𝐴𝐺𝐸 ) = 𝛼 + 𝛽. 𝐴𝐺𝐸

l'association entre l'âge et la présence d'un décès à 3 ans est linéaire. Vous devez vous souvenir que pour vérifier la linéarité de l'association avec une variable quantitative (comme ici, la variable AGE), il faut créer une variable qualitative ordinale à partir de la variable quantitative. Il se trouve que pour la variable AGE, cette variable qualitative ordinale est déjà présente dans le fichier de données : c'est la variable AGE_4CL, dont les classes correspondent aux quartiles de la variable AGE (comme je vous recommande de

  Je rappelle (encore et encore) que tous les coefficients du modèle (β, γ, τ0, τ2, δ1, δ2, et δ3), et pas seulement l'interprétation du coefficient γ, ne sont interprétables que si l'hypothèse de la linéarité de l'association entre l'âge et la présence d'un décès à 3 ans est linéaire. Cela dit, nous avons vu que, de

	1" )
	= 𝛼 + 𝛽. 𝐹𝐸𝑀𝐸𝐿𝐿𝐸 + 𝛾. 𝐴𝐺𝐸 + 𝜏 0 . 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(0) + 𝜏 2 . 𝐶𝐻𝑂𝐿𝐸𝑆_3𝐶𝐿(2)
	+ 𝛿 1 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(1) + 𝛿 2 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(2) + 𝛿 3 . 𝑅𝐴𝐶𝐸_4𝐶𝐿(3)

façon brute (c'est-à-dire, non ajustée), l'association entre l'âge et la présence d'un décès à 3 ans pouvait être considérée comme linéaire (cf. Figure

59

). Même s'il est toujours possible qu'un biais de confusion puisse modifier la forme de l'association entre une variable quantitative et le CdJ, on pourrait considérer que si l'association brute peut être considérée comme linéaire entre le CdJ et la variable quantitative, alors elle le restera après ajustement sur d'autres variables dans un modèle de régression multivarié. Donc, les estimations des coefficients β, γ, δ1, δ2, δ3, τ0, et τ2 du modèle ci-dessus seront interprétables.

  Odds Ratio; aOR, Odds Ratio adjusted for all the exposures listed in the table; CI, confidence interval. Il est par ailleurs normal que les degrés de signification des variables FEMELLE et AGE dans les tableaux « Type 3 Analysis of Effects » (cf. Figure 66.d) et « Analysis of Maximum Likelihood Estimates » (cf. Figure 66.c) soient identiques car comme je l'ai écrit plus haut (à la toute fin de la sous-partie « Interprétation des résultats d'une régression linéaire multivariée -En pratique avec SAS® », page 62), lorsque la variable est incluse telle quelle dans un modèle, le test statistique local de son coefficient (cf. Figure 66.c) correspond au test statistique global de ce coefficient (cf. Figure 66.d).E. Le modèle (à risques proportionnels) de Cox1. IntroductionVous devez avoir acquis les connaissances de base en analyse de survie et en épidémiologie (analytique) (cf. page 9), et avoir lu et compris tout ce qui précède dans ce guide avant de poursuivre.Je vous rappelle qu'un modèle de Cox s'utilise lorsque le CdJ est binaire et assorti d'un temps de survenue (par exemple, dans une étude de cohorte). Je vous recommande fortement de coder votre variable relative au CdJ (c'est-à-dire la variable relative au fait que l'événement étudié est, ou n'est pas, survenu au cours du temps) de la façon suivante : « 0 » pour les individus censurés, et « 1 » pour les individus ayant présenté le CdJ au cours du temps. Toutes les lignes de programme qui vont être présentées dans cette partie sur le modèle de Cox reposent sur le fait que le CdJ est codé selon la recommandation ci-dessus.A part le fait que le modèle de Cox fournit un (ou plusieurs) HR alors que la régression logistique fournit un (ou plusieurs) OR, et à part le fait que le modèle de Cox repose sur une hypothèse qui s'appelle l'hypothèse des risques proportionnels, dont je parlerai plus loin dans ce guide, tout ce que j'ai écrit pour la régression logistique est valable pour le modèle de Cox. Ainsi, je vais passer beaucoup moins de temps sur le modèle de Cox que je n'en ai passé sur la régression logistique. Je vais par conséquent directement vous montrer comment faire tourner un modèle de Cox multivarié et interpréter les sorties SAS®.Pour l'ensemble des exemples ci-dessous, je vais utiliser les mêmes deux variables que celles utilisées dans la partie « Analyse de survie à l'aide des courbes de Kaplan-Meier » : les variables SURVIE et DECES.2. Interprétation des résultats d'un modèle de Cox multivariéSupposons que l'on souhaite étudier l'association entre la survenue d'un décès et la démarche des chiens (variable binaire DEMARCHE_ANORMALE), ajustée sur l'âge (variable quantitative AGE), la cholestérolémie (variable qualitative ordinale CHOLES_3CL en trois classes : hypocholestérolémie, normocholestérolémie, et hypercholestérolémie), et la race des chiens (variable qualitative nominale RACE_4CL en quatre classes). Je vais de plus faire l'hypothèse que l'association entre l'âge est la survenue d'un décès est linéaire, mais que cette hypothèse n'est pas vérifiée pour la cholestérolémie.

			Crude association			Adjusted association	
	Exposure	OR	95% CI	P-value	aOR	95% CI	P-value
	Female (versus male)	0.85	(0.36-2.01)	0.71	0.85	(0.30-2.37)	0.75
	Age (x 1-year increase)	1.33	(1.10-1.60)	< 0.01	1.42	(1.13-1.78)	< 0.01
	Cholesterolemia						
	Hypocholesterolemia	1.46	(0.50-4.22)	0.49	1.60	(0.43-5.93)	0.48
	Normocholesterolemia	1			1		
	Hypercholesterolemia	3.17	(1.10-9.12)	0.03	1.40	(0.38-5.08)	0.62
	Breed						
	Golden	1			1		
	Labrador	5.46	(1.39-21.34)	0.01	5.41	(1.06-27.64)	0.04
	Golden-Labrador	0.37	(0.04-3.89)	0.41	0.20	(0.02-2.44)	0.20
	Other breed	5.93	(1.27-27.71)	0.02	4.59	(0.88-24.03)	0.07
	OR,						

Pour information, indépendamment du sexe, de l'âge, et de la race, la cholestérolémie n'était globalement pas significativement associée à la présence d'un décès à 3 ans (p = 0,74 ; cf. Figure 66.d). Mais indépendamment du sexe, de l'âge, et de la cholestérolémie, la race était quant à elle globalement significativement associée à la présence d'un décès à 3 ans (p = 0,01 ; cf. Figure 66.d).

https://www.r-project.org/

De la même façon mais dans un autre contexte, ce n'est pas tout d'avoir les clés d'une voiture qui est en face de vous prête à être conduite, il vous faut auparavant avoir votre permis de conduire. Conduire des analyses statistiques nécessite un « permis de conduire des analyses statistiques », ce qui correspond à l'acquisition des connaissances théoriques en biostatistique et en épidémiologie.

« outcome » en anglais

Mais cette sauvegarde n'est pas du tout une obligation !

Il se trouve que dans le fichier de données utilisé pour ce guide, il n'y a qu'un seul chien pour lequel la donnée manque sur la concentration en créatinine.

https://fr.wikipedia.org/wiki/Esp%C3%A9rance_math%C3%A9matique

Le choix des catégories « exposé » et « non exposé » vous revient totalement. C'est un choix dicté par la clinique, et non pas par la statistique.

mais cela demande plus de travail. Ce travail peut être réalisé sous SAS® à l'aide d'une macro SAS® [START_REF] Desquilbet | Dose-response analyses using restricted cubic spline functions in public health research[END_REF].

Si l'hypothèse de la linéarité de l'association avec la variable qualitative ordinale créée pour l'occasion n'est pas vérifiée, alors on fera l'hypothèse que cette linéarité de l'association n'est pas non plus vérifiée pour la variable quantitative. Dans ce cas-là, il faudra inclure dans le modèle la variable quantitative sous forme de variables indicatrices, ou bien après l'avoir rendue binaire.

Pour vérifier l'hypothèse de la linéarité de l'association avec une variable quantitative, je vous recommande de créer la variable qualitative ordinale à partir des quartiles de la variable quantitative : Les lignes de programme ci-dessous permettent de faire tourner le modèle ci-dessus. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 53. Les résultats (extrait) des lignes de programme ci-dessus sont présentés sur la Figure 64. Sur la 3 ème ligne de programme ci-dessus, c'est à vous de choisir le nom de la variable d'interaction qui a été créée au sein de la procédure PROC PHREG. J'ai choisi de la nommer « INTER ».

Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 72. Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 73. Souvenez-vous que la variable UREE, sous forme binaire (< ou ≥ 0,28 g/L), ne semblait pas vérifier l'HRP (cf. Figure 71). Nous allons voir si cette HRP semble ne pas être non plus vérifiée en utilisant la méthode statistique. Les lignes de programme ci-dessous permettent de vérifier l'HRP de façon statistique pour la variable UREE sous forme binaire (< ou ≥ 0,28 g/L). Dans les lignes de programme ci-dessus, vous pouvez vous rendre compte qu'il est possible de créer une variable (ici, les variables UREE_BIN et INTER) au sein de la procédure PROC PHREG -alors que ce n'est pas possible pour de nombreuses autres procédures, comme la PROC GLM ou la PROC LOGISTIC. Vous remarquerez aussi que lorsque l'on crée une nouvelle variable à partir des valeurs d'une variable quantitative, il ne faut surtout pas oublier l'impact de données manquantes ! En effet, si j'avais écrit « IF UREE < 0.28 THEN UREE_BIN = 0; » sur la 4 ème ligne de programme, les chiens avec une concentration en urée manquante auraient été considérés comme des chiens avec une concentration en urée inférieure à 0,28 g/L (ce qui aurait été une belle erreur).

Le résultat (extrait) des lignes de programme ci-dessus est présenté sur la Figure 74.