
HAL Id: hal-04038380
https://hal.science/hal-04038380v4

Submitted on 17 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpretable Machine Learning for DC Optimal Power
Flow with Feasibility Guarantees

Akylas Stratigakos, Salvador Pineda, Juan Miguel Morales, Georges
Kariniotakis

To cite this version:
Akylas Stratigakos, Salvador Pineda, Juan Miguel Morales, Georges Kariniotakis. Interpretable Ma-
chine Learning for DC Optimal Power Flow with Feasibility Guarantees. IEEE Transactions on Power
Systems, 2023, pp.1-12. �10.1109/TPWRS.2023.3333165�. �hal-04038380v4�

https://hal.science/hal-04038380v4
https://hal.archives-ouvertes.fr

1

Interpretable Machine Learning for DC Optimal
Power Flow with Feasibility Guarantees

Akylas Stratigakos, Member, IEEE, Salvador Pineda, Member, IEEE, Juan Miguel Morales, Senior Member, IEEE,
and Georges Kariniotakis, Senior Member, IEEE

Abstract—The increased uncertainty due to the integration of
stochastic renewable energy sources necessitates solving Opti-
mal Power Flow (OPF) problems repeatedly and with greater
granularity. Machine learning methods hold significant potential
to reduce the computing time for OPF problems by learning a
mapping from varying input loads to decisions, thus bypassing
the need for an optimization solver during inference. However,
current machine learning methods for OPF lack interpretability
and may produce infeasible decisions, which impedes their
adoption by industry stakeholders. To this end, we propose
a novel approach for interpretable learning of OPF solutions
with feasibility guarantees. Specifically, we develop prescriptive
decision trees that learn a piecewise affine mapping from input
data to the solutions of a constrained optimization problem, using
robust optimization to ensure that decisions are feasible. One
important contribution of our work is the development of a
tree-based learning method that utilizes non-orthogonal splits
informed by domain knowledge, including network congestion
and the merit order curve. By incorporating this information, we
enhance both the interpretability and performance of the model.
We further present a surrogate learning algorithm to handle
large-scale problems. The proposed approach is evaluated on
several test networks, up to 300 buses, under different types
of uncertainty and operating conditions, and is compared to
neural network-based models, which do not guarantee feasibility.
Notably, our results demonstrate that interpretable, shallow
prescriptive trees perform comparably to neural network-based
models, which are considered the current state of the art. To
the best of our knowledge, this work is the first to introduce
an interpretable machine learning approach for directly learning
OPF solutions.

Index Terms—Interpretable machine learning, DC Optimal
Power Flow, decision trees, prescriptive analytics, robust opti-
mization.

I. INTRODUCTION

THE optimal power flow (OPF) problem plays a crucial
role in power system operation, planning, and electricity

markets. It belongs to the class of network flow problems
and its objective is to minimize the overall cost of power
generation subject to power flow equations and operational

The work of A. Stratigakos and G. Kariniotakis was supported in part by
the Smart4RES Project (Grant No 864337) funded under the Horizon 2020
Framework Program. The work of S. Pineda and J. M. Morales was supported
in part by the European Research Council (ERC) funded under the Horizon
2020 Framework Program (Grant No 755705) and in part by the Spanish
Ministry of Science and Innovation (AEI/10.13039/501100011033) through
project PID2020-115460GB-I00.

A. Stratigakos and G. Kariniotakis are with Center for processes,
renewable energy and energy systems (PERSEE), Mines Paris,
PSL University, 06904 Sophia Antipolis, France: {akylas.stratigakos,
georges.kariniotakis}@minesparis.psl.eu. S. Pineda and J. M. Morales are
with the research group OASYS, University of Malaga, Malaga 29071,
Spain: spineda@uma.es; juan.morales@uma.es.

constraints, e.g., transmission line limits. In its original form,
the OPF problem is a non-convex problem that is difficult
to solve. In various important use cases, a linearized version
of the OPF that considers only active power, referred to
as DC-OPF [1], is utilized. In particular, the DC-OPF is
the cornerstone of deregulated electricity markets as it is
widely adopted to determine locational marginal prices which
are influenced by network congestion. The DC-OPF is also
important for risk assessment and ensuring a reliable operation
by considering variants that incorporate steady-state security
constraints, such as the Security Constrained DC-OPF. The
DC-OPF problem is especially appealing as it can be expressed
as a linear programming (LP) problem that can be solved
efficiently.

Although general-purpose optimization solvers have made
solving LP problems efficient, certain settings can present
computational challenges. To cope with the increased uncer-
tainty and variability due to the integration of renewable pro-
duction, future electricity markets are expected to move closer
to real-time, e.g., operating on a 5-minute ahead basis [2]. In
turn, this necessitates solving DC-OPF problems repeatedly
and at a higher speed and scale, while respecting stringent
time constraints, e.g., in less than 1 minute [3, Exhibit 2.1].
Even though state-of-the-art LP solvers are adequate most
of the time, they have a worst-case complexity that scales
polynomially with the size of the grid, which may create a
computational bottleneck in some instances. Hence, a fallback
solution is needed.

Machine learning (ML) has been rapidly evolving in re-
cent years, revolutionizing many industries, including power
systems [4]. ML-based methods can complement traditional
optimization solvers in various problems, such as the DC-
OPF, by shifting the computational cost from inference to
the offline training phase. For instance, system operators, like
Midcontinent Independent System Operator (MISO), perform
a scenario-based, real-time risk assessment considering a 5-
minute window, which corresponds to solving 288 LP prob-
lems. A state-of-the-art LP solver requires approximately 15
minutes to evaluate a single scenario, while an ML-based
proxy solver takes less than 5 seconds [5], thus allowing
for the evaluation of a much larger number of scenarios
and, ultimately, enabling a more reliable system operation.
However, power systems are critical infrastructure and stake-
holders are naturally risk averse, which presents obstacles to
the adoption of these tools [6]. Transparency, interpretability,
and performance guarantees are necessary for the practical
implementation of ML models for problems such as the DC-

2

OPF. For instance, European Union legislation establishes
the need for the so-called “right to explanation” [7], i.e.,
the requirement of automated systems to provide information
about their internal logic, which necessitates interpretable and
transparent methods. Furthermore, interpretability should not
compromise model performance but rather should be used to
guide domain-agnostic methods with domain knowledge.

A. Literature Review

Leveraging ML to accelerate the solution of the DC-OPF
problem has attracted significant attention in recent years.
This work can be divided into two main research directions.
The first focuses on end-to-end learning methods that directly
predict the DC-OPF decisions, effectively learning an opti-
mization proxy. The second direction explores methods to find
a reduced, and therefore easier to solve, DC-OPF problem.

The majority of research on end-to-end learning for DC-
OPF focuses on utilizing neural network (NN) models to map
uncertain load profiles to problem decisions [5], [8]–[12]. For
instance, [8] proposes an NN model with a constraint violation
penalty to predict the DC-OPF solutions; a similar model is
developed in [9] for Security Constrained DC-OPF. To ensure
the feasibility of decisions, both models require a post hoc
projection step. This projection onto the feasible set is itself
an optimization problem that needs to be solved, which might
be of the same complexity as the original problem, and may
potentially negate any computational benefits. In [10], worst-
case constraint violations and suboptimality gap are estimated
to verify the NN performance; a heuristic method to improve
these worst-case guarantees by reducing the input domain is
also proposed. In [11], physics-informed NNs demonstrate im-
proved guarantees over standard NNs. However, ensuring that
predicted decisions satisfy the problem constraints remains
a challenge for end-to-end learning methods as prediction
errors are inevitable. To address this issue, [12] develops
a preventive learning framework to systematically calibrate
inequality constraints to ensure feasibility; however, it relies
on estimating the worst-case NN prediction error, which could
be challenging. Additionally, [5] embeds a closed-form, repair
layer within an NN model, which ensures the feasibility of a
subset of problem constraints. Overall, NN-based models have
the modeling capacity to approximate the optimal function that
maps load profiles to problem decisions. Nevertheless, even
with feasible solutions guaranteed, NN models still lack the
interpretability of other ML methods, such as decision trees
[13], which is critical for adoption in real-world applications,
especially in critical infrastructure. Decision trees are inher-
ently interpretable and have been used in power systems for
decades—see, e.g., [14] for an early and [15] for a recent
contribution on decision trees for dynamic security assessment.

Predicting the set of problem constraints that are binding
at the optimal solution (active set) is generally simpler than
directly predicting the optimal solutions. Motivated by this
observation, the second research direction of leveraging ML
for DC-OPF focuses on identifying the most probable active
sets of constraints to find a reduced version of the original
problem [16]–[20]. Specifically, [16] and [17] utilize statistical

learning to identify the most probable critical regions, i.e.,
parameter regions where the active set of constraints remains
unchanged, which then inform an ensemble policy. In [18], the
problem of finding the active sets of constraints is formulated
as a multiclass classification task. A neural decoding strategy
is developed in [19] to first learn the active set of constraints,
mapping uncertain load to the problem objective value, and
then find solutions that satisfy the constraints. In the same
line of work, [20] proposes a two-step process that combines
the prediction of an active set of constraints with an iterative
method to recover feasible solutions. While approaches based
on learning the active sets of constraints are typically more
interpretable and, in many cases, guarantee feasibility, they
lack the inference speed of end-to-end methods. Nevertheless,
this line of research offers a key insight: while the total
number of active constraint sets is exponentially large, only
a small number of them are relevant in practice. For instance,
[17] finds that the number of critical regions observed for
various networks is less than 10 and that this number is not
correlated with the network size but rather depends on the load
distribution and other network characteristics.

In this work, we aim to reconcile these two research
directions by proposing an end-to-end learning approach
that combines the strengths of both methods and addresses
their limitations. Drawing inspiration from recent progress
in explainable prescriptive analytics [21], we leverage the
insight that only a small number of active constraint sets
are practically relevant to enhance both the performance and
interpretability of our method. As such, rather than seeking a
reduced DC-OPF problem, we develop an end-to-end learning
method that is simpler in complexity.

It is worth noting that multiparametric programming [22]
is another research area relevant to leveraging ML for DC-
OPF. Multiparametric programming aims to solve constrained
optimization problems as a function of uncertain parameters
by identifying critical regions and explicitly constructing a
parameter-dependent solution for the whole parameter space.
The key difference from our work is that we do not aim
to explore the whole parameter space but rather derive an
interpretable policy that encodes a few key rules selected in
a data-driven manner and ensures feasibility for the whole
(unobserved) parameter space.

B. Aim and contribution

In this paper, we present a novel method for affine pre-
scriptive trees, i.e., decision trees that learn a piecewise
affine mapping from varying input data to the solutions of
a constrained optimization problem, namely the DC-OPF
problem. We develop a novel, two-step learning algorithm that
combines axis-parallel and domain-informed, non-orthogonal
splits that encode network information, namely the merit order
curve and network congestion. We formulate the expectation
of network congestion, conditioned on load profiles, as a
classification task and model it with support vector machine
(SVM) classifiers. The separating hyperplanes derived from
the SVM models are then used as input in the tree-learning
algorithm, simultaneously improving model performance and

3

interpretability. We also use robust optimization to ensure the
feasibility of the predicted decisions for the whole parameter
space in a principled manner. A surrogate learning algorithm
is further developed to address the case of potentially pro-
hibitive training time for large-scale problem instances. We
provide comprehensive numerical experiments for several test
cases ranging from 5 to 300 bus systems, under different
assumptions for the distribution of uncertainty and operat-
ing conditions. The results show that our method achieves
similar performance with state-of-the-art end-to-end learning
approaches, namely neural network-based models, while also
maintaining interpretability and ensuring the feasibility of
decisions. To the best of our knowledge, our work is the first
to develop interpretable ML for the DC-OPF problem with
feasibility guarantees.

C. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II formulates the problem of learning DC-OPF solutions.
Section III develops the tree-based methodology. Section IV
illustrates the proposed methodology in a small test case.
Section V presents our numerical experiments. Section VI
concludes and provides directions for future work.

II. DC-OPF AND LEARNING PROBLEM FORMULATION

This section introduces the DC-OPF problem (Section II-A),
describes the proposed learning problem (Section II-B), and
illustrates how to reformulate it into a tractable problem
(Section II-C).

A. The DC-OPF Problem

This section formulates the DC-OPF problem. Throughout,
boldfaced lowercase letters denote vectors, boldfaced upper-
case letters denote matrices, calligraphic font denotes sets, and
| · | denotes the set cardinality. We consider a transmission
network where V is the set of buses, E is the set of lines, and
G is the set of generators.

The deterministic DC-OPF problem writes

min
p

c⊺p, (1a)

s.t. 1⊺p− 1⊺d = 0, (1b)

− f ≤M(Ap− d) ≤ f , (1c)
0 ≤ p ≤ p, (1d)

where p ∈ R|G| denotes the active power of dispatchable
generators, d ∈ R|V| is the stochastic net demand (load de-
mand minus renewable generation) at each bus, M ∈ R|E|×|V|

is the Power Transfer Distribution Factors (PTDF) matrix,
A ∈ R|G|×|V| is an incidence matrix mapping generators to
buses, and 1(0) is a vector of ones (zeros) with appropriate
size. Further, c,p, and f are known positive parameters that
define the generation cost, the generator capacity, and the line
capacity, respectively. The problem objective (1a) minimizes
the total generation cost, (1b) ensures balance of demand and
supply, while (1c) and (1d) denote the generation and trans-
mission line limits, respectively. Without loss of generality, we

assume a linear cost function in the objective; quadratic cost
functions can always be approximated by a piecewise linear
function.

Next, we present some assumptions that apply in this work
regarding the DC-OPF problem (1).

Assumption 1 (Bounded uncertainty): The net load d is
restricted in the polyhedron

U = {d ∈ R|V| |Hd ≤ h}. (2)

This is a standard assumption. In practice, the net load at
each bus may vary within a pre-specified range. Formally, this
is defined as

A = {d ∈ R|V| |d ≤ d ≤ d}, (3)

where d (d) denotes the minimum (maximum) values, with
renewable production being defined with negative values.
Observe that (3) is a special case of (2), where H = [I,−I]⊺
and h = [d,d]⊺, where I denotes an identity matrix of
appropriate size.

Assumption 2 (Feasibility): Problem (1) is feasible ∀d ∈ U .
Note that if the deterministic formulation of the DC-OPF

problem is infeasible, then slack variables need to be included
in (1). For simplicity, we assume that (1) is always feasible;
however, our proposed method can be straightforwardly ex-
tended to address the case when slack variables are required.

Assumption 3 (Uniqueness): Problem (1) admits a unique
solution ∀d ∈ U .

This is also a standard assumption, which holds almost
surely for appropriate cost vectors [23].

B. Data-driven Piecewise Affine Policy

This section presents the proposed data-driven piecewise
affine policy for end-to-end learning of the DC-OPF problem.

Instead of solving (1), our goal is to learn a function (policy)
that maps realizations of net load injections d to generator
setpoints p. From the theory of multiparametric programming
[22], we know that the optimal dispatch p∗ with respect to
(w.r.t.) d takes the form of a piecewise affine function defined
over a polyhedral partition of the feasible space. First, we
define a polyhedral partition of the feasible space U .

Definition 1 (Polyhedral partition [24]): A collection of L
polyhedra {Uℓ}Lℓ=1 is a polyhedral partition of a set U if U =
∪Lℓ=1Uℓ and (Ui \ ∂Ui) ∩ (Uj \ ∂Uj) = ∅, ∀i ̸= j, where ∂Ui
denotes the boundary of Ui and \ denotes the set difference
operator. In other words, the union of the individual polyhedra
Uℓ covers the feasible space of the net load, and the interiors
of the polyhedra do not overlap.

If the polyhedral partition {Uℓ}Lℓ=1 recovers the critical re-
gions of the parameter space, i.e., the regions where the active
set of constraints at the optimal solution remains constant, then
learning a piecewise affine function over {Uℓ}Lℓ=1 is optimal.
An explicit solution for finding the optimal piecewise policy
can be derived by recasting the problem as a multiparametric
LP problem, but it might be intractable as the number of crit-
ical regions grows exponentially with the number of problem
constraints in the worst case. In practice, however, only a small
number of critical regions are relevant [17].

4

Since it is established that a piecewise affine policy is opti-
mal, in this work, we propose learning a simpler, data-driven
piecewise affine policy, which retains good performance and
interpretability. We assume that a data set D = {(di,p

∗
i)}Ni=1

of N training observations is available, where di denotes the
net load and p∗

i denotes the vector of optimal decisions derived
from solving (1) for the i-th sample. In a data-driven setting, a
polyhedral partition {Uℓ}Lℓ=1 also implies a respective partition
of training data {Dℓ}Lℓ=1, i.e., subsets of data that fall in each
polyhedron. Formally, we define

Dℓ := {(di,p
∗
i), i ∈ [N] |di ∈ Uℓ} ⊆ D, (4)

where [N] is shorthand for {1, . . . , N}.
In the following, we present the proposed data-driven piece-

wise affine policy that maps net load observations to decisions.
First, we particularize Definition 1 to the current data-driven
setting.

Definition 2 (Nmin-admissible polyhedral partition): Con-
sider a scalar Nmin > 0, a polyhedral partition {Uℓ}Lℓ=1, and
a corresponding data partition {Dℓ}Lℓ=1. We say that {Uℓ}Lℓ=1

is Nmin-admissible, if |Dℓ| ≥ Nmin, ∀ℓ ∈ [L].
Therefore, Definition 2 only considers polyhedral partitions

where each polyhedron includes a minimum number of data
observations; here is also where our approach differentiates
from multiparametric programming [22]. As shown in previous
works [17], the number of critical regions populated with data
observations is small in practice. The tree-learning algorithm
developed in the next section effectively learns a partition of
the form of Definition 2 that is as close as possible to the
critical regions of the parameter space with data observations.
In that case, Nmin, which is a user-defined hyperparameter,
corresponds to the minimum number of observations per each
tree leaf and controls the complexity of the learned policy.

The proposed data-driven piecewise affine policy is defined
as follows.

Definition 3 (Data-driven piecewise affine policy): We con-
sider a data-driven piecewise affine policy f : U → R|G| that
maps net load d to generator setpoints p, given by f(d) =
Wℓd+ bℓ, d ∈ Uℓ, ℓ = 1, . . . , L, where Wℓ ∈ R|G|×|V| is a
matrix of linear decision rules , i.e., each row of Wℓ defines
a vector of coefficients that maps d to a specific generator,
bℓ is the intercept vector, and {Uℓ}Lℓ=1 is an Nmin-admissible
polyhedral partition of U , defined over a data set D.

Given an Nmin-admissible polyhedral partition {Uℓ}Lℓ=1,
the problem of finding the optimal decision rules, for each
ℓ ∈ [L], is given by

min
Wℓ,bℓ

1

|Dℓ|
∑
i∈Dℓ

c⊺(Wℓdi + bℓ), (5a)

s.t. W⊺
ℓ 1 = 1, (5b)

1⊺bℓ = 0, (5c)

− f ≤M(A(Wℓd+ bℓ)− d) ≤ f , ∀d ∈ Uℓ, (5d)
0 ≤Wℓd+ bℓ ≤ p, ∀d ∈ Uℓ, (5e)

where the decision vector p has been replaced by the affine
policy Wℓd+ bℓ. Problem (5) finds the affine decision rules
that minimize the in-sample dispatch cost (5a) for the given

partition. Constraints (5b) (i.e., the row-wise sum of Wℓ)
and (5c) ensure that total generation equals total demand
for all values of d, thus satisfying the balancing constraint
(1b)1. The robust constraints (5d), (5e) further ensure that,
for all realizations of the d within Uℓ, decisions satisfy the
inequality constraints (1c), (1d), respectively. Effectively, by
solving problem (5) for each Uℓ we learn the parameters of
the proposed data-driven policy, which is of the form of Def-
inition 3. At inference, for an out-of-sample observation d0,
we first locate the respective partition Uℓ it falls into, and then
derive the generator production from f(d0) = Wℓd0 + bℓ.

Formally, given an Nmin-admissible polyhedral partition
{Uℓ}Lℓ=1 that covers the whole feasible space U and robust
constraints (5b)− (5e) that ensure forecast decisions are feasi-
ble ∀d ∈ Uℓ, it follows that the forecast decisions will always
satisfy the constraints of (1) . Thus, we obtain guarantees about
the feasibility of decisions for any realization of d ∈ U .

Remark 1: If Assumption 2 does not hold, then (1) requires
additional slack variables. In this case, we introduce additional
rules in (5) that map realizations of d to each slack variable.

The objective (5a) minimizes the prescriptive cost, i.e., the
expected in-sample dispatch cost, and has the added benefit of
not requiring a set of solved instances {p∗

i }Ni=1 for training.
Alternatively, given {p∗

i }Ni=1, the mean squared error (MSE)
between optimal and forecast decisions can be minimized,
given by

1

|Dℓ|
∑
i∈Dℓ

∥Wℓdi + bℓ − p∗
i)∥22. (6)

As our primary focus is to minimize the total dispatch cost of
forecast decisions, rather than their predictive error, we focus
primarily on the prescriptive cost (5a).

C. Robust Constraint Reformulation

Problem (5) involves semi-infinite robust constraints. As we
deal with an LP problem and polyhedral uncertainty sets, we
apply techniques from robust optimization [25] to reformulate
(5) into a deterministic LP problem.

For illustration purposes, consider the upper generation limit
at the left-hand side (l.h.s.) of (5e). Considering that the
inequality holds ∀d ∈ Uℓ, i.e., the worst-case of d, we write
equivalently

max
d
{Wℓd |Hℓd ≤ hℓ} ≤ p− bℓ.

As the max problem is linear in d, it can be replaced by its
dual

min
λ
{h⊺

ℓλ |H
⊺
ℓλ = Wℓ,λ ≥ 0} ≤ p− bℓ,

where λ is a dual variable of appropriate size. Evidently, the
min operator becomes redundant. Hence, the upper generation
limit constraint in the l.h.s. of (5e) is replaced by the following
constraints

h⊺
ℓλ ≤ p− bℓ, H

⊺
ℓλ = Wℓ, λ ≥ 0.

1This follows by noting that 1⊺(Wℓd + bℓ) − 1⊺d = 0, ∀d ∈ Uℓ,
provided that (5b), (5c) hold.

5

Step 1: Create candidate splits (Section III-B)

Non-orthogonal splits
- Network congestion (SVMs)
- Merit order
Axis-parallel splits
- Net load observations

Step 2: Decision tree algorithm (Section III-A)

Affine policy (5)

: Uncertainty set Uℓ

: Data observation

TRUEFALSE
IF Condition

Fig. 1. Flowchart of the proposed two-step training process. Step 1 creates a
set of candidate node splits. Step 2 uses the candidate node splits as input to
grow a decision tree. The tree graph at the bottom visualizes a non-orthogonal
node split.

The rest of the constraints are reformulated in a similar
fashion, leading to a deterministic LP problem that can be
solved with off-the-shelf solvers.

III. TREE-BASED LEARNING METHODOLOGY

This section develops the proposed tree-based method to
learn an interpretable policy for the DC-OPF problem. First,
we describe the tree-learning algorithm (Section III-A). Next,
we detail the process of finding domain-informed splits (Sec-
tion III-B). Finally, we describe a surrogate learning method to
deal with large problem instances (Section III-C). The two-step
process to train the proposed tree-based model is illustrated in
Fig. 1.

A. Affine Prescriptive Trees

In this section, we present our decision tree algorithm for
learning a piecewise affine policy.

Decision trees use available data to partition the feature
space into L leaves by minimizing a predefined loss criterion,
e.g., minimizing the variance of each leaf. The resulting
partition also provides information about the joint distribution
of the target variable and associated features and, therefore,
can be used to predict instances of the target variable given
out-of-sample feature observations. Here, our primary goal is
to use a tree-based algorithm to learn a polyhedral partition
of the form of Definition 2 that is as close as possible to the
critical regions of the parameter space, using data set D.

Our proposed algorithm combines axis-parallel and non-
orthogonal splits during the tree-learning process. To clarify,
axis-parallel splits refer to splits that only consider a single
feature, while non-orthogonal splits refer to splits that consider
a linear combination of different features. Mathematically,
both axis-parallel and non-orthogonal splits are represented
as a set of hyperplanes. Using this combination of splits is a
departure from most state-of-the-art tree algorithms that focus
solely on binary trees with axis-parallel splits—see, e.g., [26]
for single trees and [27] for tree-based ensembles. Oblique
decision trees [28] allow for non-orthogonal splits and have
been shown to lead to significant performance improvements;
however, they can be computationally challenging and less
interpretable [13]. To address this challenge, we construct a set
of domain-informed non-orthogonal splits prior to the learning
phase; the process of identifying these splits is detailed in
Section III-B.

Algorithm 1 describes our decision tree algorithm in de-
tail. Consider a root node (equivalently, partition) U0 =
{d |H0d ≤ h0}, a corresponding data set D0, and a set of K
candidate hyperplanes to split on {(αk, βk)}, parameterized
by vectors αk and scalars βk. These hyperplanes model both
non-orthogonal and axis-parallel splits as a special case, e.g.,
if we want to split in value s of feature d1, then αk = [1,0]⊺,
and βk = s.

A node split partitions a parent node into two child nodes
U0 = Ul ∪ Ur, such that Ul = {d |α⊺

kd ≤ βk, d ∈ U0} and
Ur = {d |α⊺

kd > βk, d ∈ U0}. The training algorithm starts
at root node U0 and sets the current depth δ = 0. Next, it
iterates over the K candidate splits and solves (5) for each
child partition; note that, to deal with the strict inequality
induced by the node split, the right child node is evaluated
at its closure cl(Ur). Embedding (5) within the tree-learning
algorithm ensures that node splits are selected based on their
impact on the true decision cost of the DC-OPF problem.
Specifically, the split that minimizes the prescriptive cost of
the piecewise affine policy is selected and the corresponding
polyhedral partition is added to the tree, updating the tree
structure accordingly. For reference, Fig. (1) visualizes split-
ting a tree node using a non-orthogonal split. At each iteration,
the current tree leaves define an Nmin-admissible polyhedral
partition {Uℓ}Lℓ=1 and an equivalent data partition {Dℓ}Lℓ=1.
The process is repeated recursively in a top-down fashion until
a stopping criterion is met. Typical stopping criteria include
a minimum number of observations per leaf Nmin and the
maximum tree depth δmax.

The proposed tree-learning algorithm grows trees that min-
imize decision costs and map data to prescriptions. We take
an intermediate approach to split selection, avoiding the well-
known shortcoming of CART-like methods [26], which is
determining each split without considering the possible impact
on future splits2. Specifically, we apply a semi-greedy split
selection, which prioritizes non-orthogonal splits over axis-
parallel ones, as the former encode domain knowledge. To
implement the semi-greedy split selection, we use an auxiliary

2Note that globally optimal trees [13] address this shortcoming using a
mixed-integer LP formulation, at the expense, however, of increased compu-
tational cost.

6

function called ispar, which takes a vector αk as input
and returns a logical value of True if αk is parallel and
False otherwise. In the tree-learning algorithm, if the current
best split is non-orthogonal, we only evaluate the remaining
non-orthogonal splits. If the current best split is axis-parallel,
then we evaluate all the remaining splits, including the rest
of the axis-parallel ones. This is described in Steps 4-5 of
Algorithm 1, where ¬,∧ denote the logical negation and
conjunction (and) operators, and the continue statement in-
terrupts the current step of a loop and continues with the
next iteration. This approach prioritizes domain-informed non-
orthogonal splits while still allowing for data-driven axis-
parallel splits to be considered if the former are insufficient.

The hyperparameters of the decision tree include the mini-
mum number of observations Nmin per leaf and the maximum
tree depth δmax, both controlling the complexity of the learned
policy. Namely, Nmin controls the bias-variance trade-off,
with smaller values increasing the risk of overfitting, and
ensures that the final polyhedral partition is admissible as
per Definition 2. Conversely, larger values of δmax lead to
improved performance, but may also result in overfitting and
reduced interpretability. The maximum number of partitions
that can be recovered is 2δ

max

and is independent of the size
of the underlying network. For a sufficiently complex policy,
i.e., one with small Nmin and large δmax, we expect that
the number of partitions recovered scales with the number
of critical regions that are populated with data observations.
Thus, we avoid the shortcoming of multiparametric LP, where
the number of partitions scales exponentially with the problem
constraints. To promote interpretability and avoid potential
overfitting, we suggest using larger values of Nmin and smaller
values of δmax.

B. Domain-Informed, Non-Orthogonal Splits
This section describes how to identify the set of K candidate

splits.
Axis-parallel splits only check whether an entry of d

exceeds a threshold value; they are purely data-driven and the
standard approach to growing binary trees, e.g., CART. In this
work, the set of axis-parallel splits comprises a number of
equally spaced quantiles of the empirical net load distribution
over data set D; i.e., for each net load at each node, we
estimate a set of quantiles from its marginal distribution and
evaluate the splitting criterion there.

A key contribution of this work is proposing domain-
informed, non-orthogonal splits that are potentially more ef-
fective than data-driven axis-parallel splits. The proposed splits
are derived from hyperplanes that encode information about
the active set of constraints conditioned on the load profile,
namely the merit order curve and network congestion.

1) Merit order splits: For ease of discussion, further as-
sume the generators in G are ordered in ascending order based
on their cost, i.e., for i, j ∈ G, if i < j, then ci < cj . Hence,
for an optimal solution p∗, assuming no line congestion, we
have pi = pi whenever pj > 0. This means that generator
j will be dispatched only if the total net load is larger than
the aggregated production of the generators that rank lower in
terms of cost.

Algorithm 1 AffinePrescrTree

Input: current partition U0, current data set D0, current depth
δ, hyperparameters {Nmin, δ

max}, set of candidate splits
{(αk, βk)}Kk=1, auxiliary function ispar
Output: tree T

1: find v0 = min
d∈U0

(5), set vmin ← |D0|·v0, split←False,

k∗ ← empty
2: if δ < δmax and N0 ≥ 2Nmin then
3: for k = 1, . . . ,K do
4: if ¬ispar(αk∗) ∧ ispar(αk) == True then
5: continue
6: else
7: find left and right child nodes Ul,Ur, and corre-

sponding data partitions Dl,Dr

8: if |Dl| ≥ Nmin and |Dr| ≥ Nmin then
9: vk = |Dl| · min

d∈Ul

(5) + |Dr| · min
d∈cl(Ur)

(5)

10: if vk < vmin then
11: update vmin ← vk, split← True, k∗ ← k
12: end if
13: end if
14: end if
15: end for
16: if split == True then
17: append (αk∗ , βk∗) to H0,h0 for each new partition

Ul,Ur, find Dl,Dr

18: Tl = AffinePrescrTree(Ul,Dl, δ + 1)
19: Tr = AffinePrescrTree(Ur,Dr, δ + 1)
20: update tree structure T
21: end if
22: end if
23: return T

To encode this information, we construct a set of hy-
perplanes {1⊺d ≥

∑j
i=1 pi} for j ∈ G. That is, each

hyperplane corresponds to a supply curve that renders the
respective generator as the marginal one, and checks whether
the aggregated demand exceeds the total generation capacity.

2) Network congestion splits: Here, we propose non-
orthogonal splits that encode information about expected net-
work congestion conditioned on input net load profiles. To this
end, we train a set of classifiers, namely SVMs [29] with a
linear kernel, to predict whether a line gets congested. How-
ever, we do not use the SVMs for out-of-sample prediction;
instead, we retrieve the maximum margin hyperplane learned
for each SVM and use it as a candidate split in the tree learning
process.

The process of creating non-orthogonal splits that model
network congestion is described as follows. First, we inspect
the full training data set D for line congestions. For each
congested line, we formulate a binary classification problem
with the line status as the target variable and the net load
observations di as features. We then train an SVM model with
a linear kernel for each classification task, which effectively
learns a separating hyperplane, parameterized by linear coef-
ficients w and the intercept b. These separating hyperplanes
are subsequently used as candidate splits during the decision

7

tree learning process, as shown in Fig. 1 and detailed in
Algorithm 1.

C. Dealing with Large-scale Problems
Training the proposed affine prescriptive trees requires solv-

ing (5) repeatedly during training. Specifically, for a tree of
depth δ, assuming K candidate splits at the root node, problem
(5) need to be solved up to

∑δmax

δ=0 2δ(K − δ) times during
the offline training phase. However, the training process might
become computationally prohibitive for larger networks. To
mitigate this issue, we explore two directions to reduce the
offline computational cost, namely, to speed up the solution
of (5) and to reduce the time to find the polyhedral partition.

Firstly, we use an iterative algorithm to speed up the solution
of (5). Section II-C uses duality theory to reformulate (5) as a
deterministic optimization problem. Depending on the problem
instance, however, iterative cutting-plane methods may be
faster [30]. Here, we propose an intermediate approach that
leverages the fact that only a small number of line constraints
are binding. We initialize our master problem by reformulating
(5e) using duality, ignoring all line constraints (5d). Next, we
solve the master problem and retrieve W∗

ℓ ,b
∗
ℓ . We then fix

the affine decision rules, iterate over all the lines, and estimate
the worst-case constraint violation, which is a maximization
problem over d. The line that leads to the highest violation
is selected, and the respective row of (5d) is reformulated
via duality and added to the master problem. The algorithm
terminates when there is no violation. The training data set
D can also inform us of which lines might lead to violations;
thus, we can warm-start the iterative algorithm by adding these
lines to the initial master problem. In this case, the algorithm
typically terminates after a small number of iterations.

Secondly, we propose a surrogate tree-learning algorithm
that “relaxes” the training process, thus reducing the time to
find the polyhedral partition. Instead of training the tree in
a fully prescriptive fashion as detailed in Algorithm 1, we
take a sequential approach. First, we grow a decision tree
minimizing the MSE (6) criterion with no constraints, for
which a closed-form solution exists, and maintain the semi-
greedy split selection. The computational cost in this step is
similar to training a standard CART-like tree. After retrieving
an Nmin-admissible polyhedral partition, we iterate over each
leaf and estimate the affine decision rules that minimize the
within-leaf dispatch cost by solving (5). Note that the original
algorithm jointly estimates the polyhedral partition and the
affine decision rules, in a semi-greedy, top-down fashion.
The “relaxed” version, on the other hand, takes a sequential
approach: first, we find the polyhedral partition, then we learn
the affine decision rules. The surrogate learning algorithm
could also be utilized with more computationally demanding
variants of the DC-OPF problem.

These approaches significantly reduce the offline computa-
tional cost, making the proposed tree-based method computa-
tionally tractable for larger networks.

IV. ILLUSTRATIVE EXAMPLE

We illustrate the most salient features of our approach
using the 3-bus system from the PGLib-OPF library [31],

d3

1 2

3

d2d1 p2p1

Gen. Cost ($/MWh) p (MW) Line From Bus To Bus X f (MW)

p1 5 1000 1 1 3 0.62 9000
p2 1.2 270 2 3 2 0.75 90

3 1 2 0.9 9000

Fig. 2. Modified 3-bus system.

60

70

80

90

d 3
 (M

W
)

1

2

3

4

60

70

80

90

d 3
 (M

W
)

1

24

3

90 95 100 105 110
d2 (MW)

60

70

80

90

d 3
 (M

W
)

1 2

4

3

di split

Fig. 3. Top: Tree with axis-parallel splits. Middle: Tree with non-orthogonal
splits. Bottom: Tree with non-orthogonal splits, trained with the surrogate
method. Colored subregions indicate critical regions and red points indicate
training observations. Solid lines show the load domain, Ui represents the i-th
leaf.

which we modify by setting the maximum capacity of the
cheapest generator at p2 = 270MW, and the capacity of the
line connecting buses 2 and 3 at f2 = 90MW—see Fig. 2
for details. If neither of these limits is reached, then at the
optimal solution p∗1 = 0 and p∗2 = 1⊺d; else, p∗1 > 0. We
further assume that d1 = 110MW and that d2, d3 follow a
multivariate normal distribution N(µ,Σ), where

µ = (99, 81)MW, Σ =

[
30.25 15.75
15.75 22.65

]
MW2,

8

Congestion at line 2

d3 > 75.05 (high net demand at node 3)

p1 = d2 − 0.2d3 − 72.1
p2 = 1.2d3 + 182.1

p1 = d2 + d3 − 160
p2 = 270

FALSE

...

TRUE

Fig. 4. Visualization of piecewise affine policy.

are the mean vector and covariance matrix, respectively, and
lie within intervals d2 ∈ [88, 110]MW and d3 ∈ [57, 95]MW.

We generate 1 000 random observations and apply a 50/50
training/test split to examine the performance of prescriptive
trees w.r.t. non-orthogonal splits, setting δmax = 2 and
Nmin = 25. Performance is evaluated by estimating the mean
increase in decision cost over the test set compared to an LP
solver. Three models are trained: one using only axis-parallel
splits, one using both axis-parallel and non-orthogonal splits,
and one using both types of splits but trained with the surrogate
method developed in Section III-C. For axis-parallel splits,
we examine 9 equally spaced quantiles estimated from the
training observations. For non-orthogonal splits, we consider a
merit order split that checks whether 1⊺d ≥ p2 and a network
congestion split derived from an SVM that predicts when line
2 gets congested.

Fig. 3 plots the tree splits as a function of d2, d3, where the
colored subregions indicate the load profiles for which the set
of active constraints does not change. Specifically, the green
subregion indicates that line 2 is congested, the blue subregion
indicates that the maximum capacity of the cheapest generator
is reached (p∗2 = p2), and the white subregion indicates that
no upper limit is reached (p∗1 = 0, p∗2 = 1⊺d). Evidently, the
optimal policy is piecewise linear w.r.t. each subregion, and a
tree that recovers this partition would yield an optimal policy.

Considering only axis-parallel splits cannot recover a near-
optimal partition and leads to an out-of-sample mean cost
increase of 3.19%—see top of Fig. 3. Conversely, non-
orthogonal splits lead to significantly better decisions with an
out-of-sample mean cost increase of 0.37%, as the root node is
split at the hyperplane provided by the SVM—see the middle
of Fig. 3. A small decision error persists as the critical regions
are not recovered exactly by the polyhedral partition; thus,
leaves that extend to more than one subregion, i.e., U3,U1, lead
to slightly suboptimal decisions. Specifically, perfectly sepa-
rating between instances of line congestion (green subregion)
and the rest requires a piecewise affine function. The hyper-
plane learned from the SVM model cannot provide a perfect
separation. Nonetheless, its combination with the subsequent
axis-parallel splits leads to a very good approximation of the
optimal solution. The surrogate method leads to a mean cost
increase of 1.72%, which ranks in between the other models.
Compared to the fully prescriptive method, the increased cost
of the surrogate algorithm is attributed to the selection of axis-
parallel splits. First, the split on d2 > 100.36 creates two

partitions that extend over two critical regions—see U1,U2 in
the bottom of Fig. 3. Second, the split that separates U3,U4
(d3 > 81.78) leads to a similar number of observations at
each leaf. Conversely, the respective split at the middle of
Fig. 3 (d3 > 75.75) explicitly maximizes the coverage of each
critical region, i.e., maximizes the area of U4. Interestingly, the
merit order split is not selected in either case. Even though it
perfectly separates the white from the blue subregion, there
are too few observations within the white region to merit
splitting a node there. If d2 and d3 were, in contrast, uniformly
distributed within their respective intervals, the merit order
split would become highly prescriptive and, thus, selected by
Algorithm 1.

Fig. 4 provides a visualization of the piecewise affine policy
of the prescriptive tree with non-orthogonal splits (middle of
Fig. 3), focusing on U1,U2. The tree leaves effectively consti-
tute a set of affine policies. The selection of the appropriate
policy is communicated to stakeholders in an intuitive manner
as it depends on expected line congestion and the net load
values at specific nodes, which lead to different generators
becoming marginal. For each leaf, we can also infer the impact
of a change in the net load in a specific bus on the generation
output by checking the linear coefficients. For instance, the
root node in Fig. 4 examines if congestion in line 2 is expected;
if not, then we evaluate d3, which checks whether p2 reaches
its maximum capacity. If d3 > 75.05, i.e., we reach U2,
then p2 = p2 and p1 covers the excess demand (recall that
d1 = 110MW). Conversely, when d3 <= 75.05, we reach U1,
which extends to the white and blue subregions; here, both
p1, p2 linearly depend on the varying demands.

V. NUMERICAL EXPERIMENTS

In this section, we describe our experimental setup (Sec-
tion V-A), present our main results (Section V-B), and provide
additional results under challenging operating conditions (Sec-
tion V-C). The code to reproduce the results is made available
in [32].

A. Experimental Setup

1) Test Cases: The proposed methodology is demonstrated
on a range of PGLib-OPF networks v21.07 [31] of up to 300
buses.

2) Load Data: The net load domain is defined as U =
{d − 0.4|d| ≤ d ≤ d}, where d denotes the nominal load
values from the base case specified in [31]. Thus, positive
loads vary within 60% and 100% of their nominal value. Two
settings w.r.t. uncertainty are considered. First, each net load
is independently and uniformly distributed within U . Second,
the net loads follow a multivariate normal distribution. For
each net load dj , the mean value is set at µj = 0.8dj and
its standard deviation at σj = 0.05dj . We further sample
correlations across net loads uniformly from [0, 1] and use
it to create the covariance matrix. In both cases, we generate
20 000 samples, and apply a 50/50 training/test split.

9

3) Benchmarks: The following models are examined:
• APT: an affine prescriptive tree using only axis-parallel

splits.
• APTH: an affine prescriptive tree using both axis-parallel

and non-orthogonal splits.
• APTH-rlx: an affine prescriptive tree using both axis-

parallel and non-orthogonal splits and trained with the
surrogate algorithm of Section III-C.

• NN-prj: an NN-based end-to-end learning model, cou-
pled with an additional projection step.

For the tree-based models, namely APT, APTH, APTH-rlx,
we set Nmin = 25 and δmax = 3, which are values that enable
interpretability and avoid overfitting. Axis-parallel splits are
evaluated at 19 equally spaced quantiles estimated from the
training observations. We further consider a hard time-limit
constraint of 10 000 seconds; that is, if the time limit is
reached, we stop growing the tree and each node becomes
a leaf. For the larger networks, i.e., case118, case300, we use
the iterative algorithm described in Section III-C to solve (5).
For NN-prj, we consider a multi-layer feed-forward structure
with 4 hidden layers and 100 nodes per layer, using the MSE
loss and the ReLU activation function in the hidden layers.
Following [8], [9], [12], we apply a sigmoid activation function
in the output layer, thus ensuring that the predicted decisions
satisfy the generation capacity constraints. We further add a
regularization term in the objective that penalizes excessive
line flows, following [9]. The rest of the hyperparameters are
also set according to [9] and the NN model is trained with
early stopping to avoid overfitting. An ℓ1-projection step is
applied post hoc to ensure feasible decisions. For the ground
truth solution of the DC-OPF problem, we use the Gurobi
solver [33] with default settings. All experiments are run on a
standard PC featuring an Intel Core i7 CPU with a clock rate
of 2.7 GHz and 16GB of RAM.

4) Perfomance Metrics: For performance evaluation, we
measure the suboptimality of predicted decisions by estimating
the percentage of mean cost increase (MCI) over a test set of
Ntest observations, given by

100 · 1

Ntest

∑
i∈[Ntest]

c⊺(p̂i − p∗
i)

c⊺p∗
i

,

where p∗
i is the optimal solution derived from Gurobi and

p̂i the predicted solution for the i-th test sample. Evidently,
MCI is non-negative.

B. Results

Table I summarizes the results of the SVM classifiers,
namely the number of lines that face congestion at least once,
the number of SVM classifiers trained, and the average and
minimum classifier accuracy (%) per test case. Note that to
train an SVM classifier we require at least Nmin observations
per class label; that is, if a line is almost always or almost
never congested, we do not train a model—see, e.g., case39,
case118, and case300. Overall, the SVM classifiers, even
though they only utilize a linear kernel, provide very good
out-of-sample performance. For the small and medium-sized
cases, the SVM models provide almost perfect separation with

TABLE I
NUMBER OF CONGESTED LINES, NUMBER OF SVM MODELS TRAINED,

AND CLASSIFIER ACCURACY (%).

Uniform Normal

No. lines/models mean/min acc. (%) No. lines/models mean/min acc. (%)

case5 1 / 1 99.97 1 / 1 99.99
case30 1 / 1 99.79 1 / 1 99.91
case39 2 / 1 99.83 2 / 1 99.60
case57 0 / 0 - 0 / 0 -
case118 5 / 3 93.10 / 80.96 5 / 4 95.72 / 84.60
case300 13 / 8 97.59 / 93.36 17 / 8 96.83 / 89.92

TABLE II
PERCENTAGE (%) OF MCI, δmax = 3. PARENTHESES SHOW THE RATE OF

INFEASIBILITY (%) BEFORE PROJECTION.

Uniform Normal

APT APTH APTH-rlx NN-prj APT APTH APTH-rlx NN-prj
case5 1.62 0.40 0.46 0.96 (5.35) 0.30 0.33 1.39 0.86 (1.61)
case30 4.20 0.76 0.85 0.52 (5.12) 1.88 1.19 1.58 0.60 (14.18)
case39 2.07 0.22 0.23 0.21 (3.37) 1.54 0.16 0.48 0.35 (1.17)
case57 0.00 0.00 0.00 0.18 (0.11) 0.00 0.00 0.00 0.18 (0.27)
case118 1.17 0.42 0.28 0.19 (7.73) 1.17 1.14 0.37 0.16 (21.85)
case300 3.10 2.81 2.44 1.80 (43.29) 3.12 3.12 2.43 1.20 (59.48)

close to 100% accuracy. For the larger cases, i.e., case118
and case300, the average accuracy still exceeds 93% for
both uniform and normal distribution. However, there is an
increased variability in individual models, as indicated by the
worst-case performance. This is more pronounced for case118,
where the worst-case performance is below 85% for both types
of uncertainty distribution.

Table II presents the out-of-sample MCI for the examined
test cases. For NN-prj, we also report the percentage of in-
feasible solutions, i.e., the percentage of solutions that require
a post hoc projection step to recover a feasible solution for the
DC-OPF problem (1). Clearly, tree-based solutions are feasible
by design and their infeasibility rate is always zero, thus we
omit it from Table II. In almost all cases, the lowest MCI is
smaller than 1%, which is on par with previous works and
illustrates that ML methods do a very good job at forecasting
solutions to the DC-OPF problem. The worst performance is
observed for case300, which is probably attributed to the large
number of lines facing congestion.

Overall, considering non-orthogonal splits significantly im-
proves the prescriptive performance of the tree-based method.
Specifically, the average (maximum) improvement of APTH
compared to APT is 53% (89%) for uniform distribution and
20% (90%) for normal distribution, respectively. The only
exception is for case5 and normal distribution, where APT is
10% better than APTH. Evidently, the effect of non-orthogonal
splits using hyperplanes is more pronounced when net loads
are uniformly distributed, as we observe that APT performs, on
average, much better under a normal distribution. This could
be attributed to the training data extending to a smaller number
of critical regions when loads are normally distributed, which,
in turn, nullifies the impact of a number of candidate splits.

We further observe that prescriptive trees perform com-
petitively with NN-prj in terms of decision performance,
resulting in a lower MCI in 5/12 cases examined. However, a
significant percentage of NN-prj solutions may be infeasible
and require a projection step. The rate of infeasibility seems
to be increasing with the size of the network, with the worst-

10

1

2

M
C

I (
%

)

case5

0.6

0.8

1.0

M
C

I (
%

)

case30

1 3 5 7
max

0.5

1.0

1.5

M
C

I (
%

)

case39

APTH APTH rlx NN prj

Fig. 5. MCI versus maximum tree depth δmax (uniform uncertainty).

case5 case30 case39 case57 case118 case300

10 4

10 3

10 2

M
ea

n
C

PU
 ti

m
e

(s
ec

) Gurobi
APTH rlx

NN
NN prj

Fig. 6. Mean CPU time to solve a single problem instance. NN denotes the
inference time of the NN-based model without projection. The y-axis is in
logarithmic scale.

case being observed for case118 and case300, for both types
of uncertainty.

We now discuss the efficacy of the surrogate learning algo-
rithm proposed in Section III-C. When APTH is fully grown,
i.e., the algorithm terminates before the imposed time limit
is reached, it outperforms APTH-rlx, with the differences
being small in general, except for case57, where both are
optimal. For case188 and case300, the time limit is reached
before APTH is fully grown, which leads to APTH-rlx out-
performing APTH. Moreover, APTH-rlx outperforms APT,
which considers only axis-parallel splits, in all cases but one,
and is on par with NN-prj. Notably, APTH-rlx reduces
the training time by over 95% in all cases compared to
APTH; thus, APTH-rlx achieves a good trade-off between
computational efficiency and prescriptive performance.

The results presented in Table II concern shallow trees
(δmax = 3). Evidently, increasing the tree depth is expected
to improve decision performance. We investigate this claim
by evaluating the sensitivity of decision quality w.r.t. the
maximum tree depth δmax. Fig. 5 plots the out-of-sample

TABLE III
NUMBER OF CONGESTED LINES, NUMBER OF SVM MODELS TRAINED,

AND CLASSIFIER ACCURACY (%), API TEST CASES.

Uniform Normal

No. lines/models mean/min acc. (%) No. lines/models mean/min acc. (%)

case5 api 3/3 99.83/99.59 2/1 99.95
case30 api 0/0 - 0/0 -
case39 api 10/4 97.59/92.92 7/4 99.46/98.81
case57 api 0/0 - 0/0 -
case118 api 16/11 95.52/85.54 15/12 94.56/78.81
case300 api 16/10 94.47/72.07 14/13 95.11/65.66

TABLE IV
PERCENTAGE (%) OF MCI, δmax = 3, API TEST CASES. PARENTHESES

SHOW THE RATE OF INFEASIBILITY (%) BEFORE PROJECTION.

Uniform Normal

APT APTH APTH-rlx NN-prj APT APTH APTH-rlx NN-prj
case5 api 0.05 0.01 0.02 0.85 (0.68) 0.02 0.01 0.13 0.71 (0.71)
case30 api 0.00 0.00 0.00 0.73 (3.03) 0.00 0.00 0.00 0.49 (3.01)
case39 api 0.93 0.65 0.75 0.47 (13.11) 0.57 0.52 0.40 0.68 (17.19)
case57 api 0.49 0.00 0.00 0.05 (0.03) 0.34 0.00 0.00 0.03 (0.02)
case118 api 22.07 17.65 16.04 3.19 (86.91) 19.27 18.74 18.36 4.03 (93.08)
case300 api 3.36 2.68 1.87 1.52 (71.95) 3.43 2.67 2.08 1.75 (74.15)

MCI of APTH and APTH-rlx as a function of δmax for
three test cases and uniform uncertainty; the performance of
NN-prj is also plotted for reference. In all examined cases,
increasing δmax leads to significant gains in performance
for APTH and APTH-rlx, with the relative improvement
being more pronounced for smaller values of δmax. Moreover,
APTH converges to better performance than NN-prj as δmax

increases, with a relatively small depth of δmax = 5 being
sufficient for adequate performance.

We further investigate whether end-to-end learning im-
proves over Gurobi in terms of inference speed. Fig. 6 plots
the mean CPU time to solve or predict a single problem
instance for a selection of models for uniform uncertainty
(y-axis is in logarithmic scale). We denote NN as the NN-
based model prior to projection. For NN-prj, we sum the
inference time of NN and the time to solve the projection step,
weighted by the probability of infeasibility. For Gurobi, we
only consider CPU time to solve the problem and not the
time to formulate it. As all tree-based models exhibit similar
inference time, we only plot APTH-rlx.

Overall, APTH-rlx consistently leads to smaller CPU
time compared to both Gurobi and NN-prj, and even
outperforms NN. As expected, the mean CPU time of Gurobi
increases with the size of the network. The NN-prj per-
formance varies with its out-of-sample infeasibility rate. For
medium to large-sized cases, when the infeasibility rate of
NN-prj is below 10% and a post hoc projection is rarely
required, e.g., case30 through case118, the inference time
of NN-prj is smaller than that of Gurobi. However, in
case300, when the infeasibility rate of NN-prj reaches over
40%, the required projection step to recover a feasible solution
negates any improvement in inference speed and leads to
higher CPU time than Gurobi. Thus a high infeasibility
rate may nullify the intended purpose of applying end-to-end
learning in the first place.

11

C. Results for More Challenging Test Cases

To evaluate the sensitivity w.r.t. number of lines that face
congestion, we repeat the previous experiment on more chal-
lenging test cases. Specifically, we examine performance on
the active power increase (api) test cases [31], where the
nominal d is increased.

Table III presents the performance of the SVM classifiers
on the more challenging test cases. Compared to Table I,
it is evident that the api test cases face congestion more
frequently. For the smaller cases, the SVMs still perform quite
well, with an average accuracy of over 97%. For case188 api
and case300 api, the average accuracy remains around 95%
for both types of uncertainty. However, we observe large
variability based on the worst-case SVM performance, which
is more pronounced for case300 api, where the worst-case
performance is approximately 72% and 66% for uniform and
normal distributions, respectively.

Table IV presents the out-of-sample MCI under the more
challenging operating conditions, alongside the infeasibility
rate for NN-prj. Compared to Table II, we observe an
increase in MCI for larger networks, which is attributed to
the more challenging nature of the underlying problems. This
is especially pronounced for case118 api where the number of
lines that face congestion is three times larger than case118.
Furthermore, the infeasibility rate of NN-prj increases signif-
icantly for the larger cases, with an average infeasibility rate of
approximately 90% for case118 api and 74% for case300 api,
indicating the difficulty in predicting feasible decisions.

In terms of relative performance, the results are consistent
with the previous experiments. Specifically, APTH consistently
outperforms APT, while APTH-rlx performs similarly to
APTH and outperforms APT. Interestingly, APTH-rlx even
outperforms APTH for case39 api and normally distributed net
loads. When comparing the tree-based models with NN-prj,
we observe that NN-prj performs better only when its infea-
sibility rate is high. Notably, NN-prj leads to significantly
lower MCI for case118 api and case300 api for both types
of uncertainty but has a high infeasibility rate in both cases.
However, as previously shown in Fig. 6, a high infeasibility
rate negates the respective gains of end-to-end learning over
the traditional LP solver in terms of inference speed, making
the choice of NN-prj counterproductive.

VI. CONCLUSIONS

This work presented an interpretable approach for end-to-
end learning of DC-OPF solutions with feasibility guarantees.
We developed prescriptive decision trees that learn a piecewise
affine mapping from varying load data to DC-OPF solutions,
using robust optimization to ensure the feasibility of decisions.
We proposed domain-informed, non-orthogonal splits, using a
set of hyperplanes to model the merit order curve and network
congestion; for the latter, we utilized SVM classifiers that
model expected line congestion as a function of varying load
data. A comprehensive evaluation was conducted considering a
number of test cases, different types of uncertainty, and various
operating conditions. The results highlighted the efficacy of the
proposed domain-informed, non-orthogonal splits, which led

to an average performance increase of 36% compared to tree
models using only axis-parallel splits. Further, shallow pre-
scriptive trees with non-orthogonal splits of maximum depth
of 3 outperformed NN-based benchmarks in approximately
46% of the experiments; a sensitivity analysis w.r.t. model
complexity illustrated that the performance of prescriptive
trees further improved as their depth increased. The proposed
approach was also significantly faster than a state-of-the-art
LP solver. Additional experiments under challenging operating
conditions further validated the efficacy of the proposed ap-
proach. Overall, this study highlighted the benefits of encoding
domain knowledge during model development, which not only
achieves comparable performance to black box, state-of-the-art
benchmarks but also enables interpretability.

Future work may explore mapping contextual information,
e.g., calendar variables or temperature forecasts, to OPF
decisions and using non-linear classifiers that also retain the
computational tractability of the proposed policy, e.g., SVMs
with a piecewise linear feature mapping. Another interesting
direction to explore is considering an online setting and
adapting a trained decision tree to deal with changes in grid
configuration or a shift in the distribution of net load, e.g., due
to increased net load uncertainty. Finally, we aim to extend the
proposed method to other variations of the DC-OPF problem,
e.g., Security Constrained DC-OPF, as well as other linearized
power flow formulations that also consider reactive power and
voltage constraints.

REFERENCES

[1] B. Stott, J. Jardim, and O. Alsac, “DC power flow revisited,” IEEE
Transactions on Power Systems, vol. 24, no. 3, pp. 1290–1300, 2009.

[2] ENTSO-E, “Options for the design of european
electricity markets in 2030.” [Online]. Available: https:
//eepublicdownloads.entsoe.eu/clean-documents/Publications/Market%
20Committee%20publications/210331 Market design%202030.pdf

[3] MISO, “Attachment D Real-time energy and operating reserve market
software formulations and business logic,” in Business Practices Manual
Energy and Operating Reserve Markets, 2022.

[4] L. Duchesne, E. Karangelos, and L. Wehenkel, “Recent developments
in machine learning for energy systems reliability management,” Pro-
ceedings of the IEEE, vol. 108, no. 9, pp. 1656–1676, 2020.

[5] W. Chen, M. Tanneau, and P. V. Hentenryck, “End-to-end feasible opti-
mization proxies for large-scale economic dispatch,” IEEE Transactions
on Power Systems, pp. 1–12, 2023.

[6] S. Chatzivasileiadis, A. Venzke, J. Stiasny, and G. Misyris, “Machine
learning in power systems: Is it time to trust it?” IEEE Power and Energy
Magazine, vol. 20, no. 3, pp. 32–41, 2022.

[7] M. E. Kaminski, “The right to explanation, explained,” Berkeley Tech-
nology Law Journal, vol. 34, no. 1, pp. 189–218, 2019.

[8] X. Pan, T. Zhao, and M. Chen, “DeepOPF: Deep neural network for
DC optimal power flow,” in 2019 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), 2019, pp. 1–6.

[9] X. Pan, T. Zhao, M. Chen, and S. Zhang, “DeepOPF: A deep neural
network approach for security-constrained DC optimal power flow,”
IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 1725–1735,
2021.

[10] A. Venzke, G. Qu, S. Low, and S. Chatzivasileiadis, “Learning optimal
power flow: Worst-case guarantees for neural networks,” in 2020 IEEE
International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 2020, pp. 1–7.

[11] R. Nellikkath and S. Chatzivasileiadis, “Physics-informed neural net-
works for minimising worst-case violations in DC optimal power flow,”
in 2021 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm), 2021,
pp. 419–424.

https://eepublicdownloads.entsoe.eu/clean-documents/Publications/Market%20Committee%20publications/210331_Market_design%202030.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/Publications/Market%20Committee%20publications/210331_Market_design%202030.pdf
https://eepublicdownloads.entsoe.eu/clean-documents/Publications/Market%20Committee%20publications/210331_Market_design%202030.pdf

12

[12] T. Zhao, X. Pan, M. Chen, and S. H. Low, “Ensuring DNN solution
feasibility for optimization problems with convex constraints and its
application to DC optimal power flow problems,” arXiv:2112.08091,
2021.

[13] J. W. Dunn, “Optimal trees for prediction and prescription,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2018.

[14] L. Wehenkel, T. Van Cutsem, and M. Ribbens-Pavella, “An artificial
intelligence framework for online transient stability assessment of power
systems,” IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 789–
800, 1989.

[15] J. L. Cremer, I. Konstantelos, and G. Strbac, “From optimization-based
machine learning to interpretable security rules for operation,” IEEE
Transactions on Power Systems, vol. 34, no. 5, pp. 3826–3836, 2019.

[16] Y. Ng, S. Misra, L. A. Roald, and S. Backhaus, “Statistical learning
for DC optimal power flow,” in 2018 Power Systems Computation
Conference (PSCC), 2018, pp. 1–7.

[17] S. Misra, L. Roald, and Y. Ng, “Learning for constrained optimization:
Identifying optimal active constraint sets,” INFORMS Journal on Com-
puting, vol. 34, no. 1, p. 463–480, 2022.

[18] D. Deka and S. Misra, “Learning for DC-OPF: Classifying active sets
using neural nets,” in 2019 IEEE Milan PowerTech, 2019, pp. 1–6.

[19] Y. Chen and B. Zhang, “Learning to solve network flow problems via
neural decoding,” arXiv:2002.04091, 2020.

[20] A. Robson, M. Jamei, C. Ududec, and L. Mones, “Learning an
optimally reduced formulation of OPF through meta-optimization,”
arXiv:1911.06784, 2019.

[21] L. Chen, M. Sim, X. Zhang, and M. Zhou, “Robust explainable
prescriptive analytics,” Available at SSRN 4106222, 2022.

[22] I. Pappas, D. Kenefake, B. Burnak, S. Avraamidou, H. S. Ganesh,
J. Katz, N. A. Diangelakis, and E. N. Pistikopoulos, “Multiparametric
programming in process systems engineering: Recent developments and
path forward,” Frontiers in Chemical Engineering, vol. 2, p. 620168,
2021.

[23] F. Zhou, J. Anderson, and S. H. Low, “The optimal power flow operator:
Theory and computation,” IEEE Transactions on Control of Network
Systems, vol. 8, no. 2, pp. 1010–1022, 2020.

[24] E. T. Maddalena, R. K. H. Galvão, and R. J. M. Afonso, “Robust region
elimination for piecewise affine control laws,” Automatica, vol. 99, pp.
333–337, 2019.

[25] D. Bertsimas and D. den Hertog, Robust and adaptive optimization.
Dynamic Ideas LLC, 2020, vol. 958.

[26] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[27] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[28] S. K. Murthy, S. Kasif, S. Salzberg, and R. Beigel, “OC1: A randomized
algorithm for building oblique decision trees,” in Proceedings of AAAI,
vol. 93. Citeseer, 1993, pp. 322–327.

[29] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, pp. 273–297, 1995.

[30] D. Bertsimas, I. Dunning, and M. Lubin, “Reformulation versus cutting-
planes for robust optimization: A computational study,” Computational
Management Science, vol. 13, pp. 195–217, 2016.

[31] S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin,
C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang
et al., “The power grid library for benchmarking AC optimal power flow
algorithms,” arXiv:1908.02788, 2019.

[32] https://git.persee.mines-paristech.fr/akylas.stratigakos/
interpretable-learning-dcopf.

[33] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

Akylas Stratigakos (Member, IEEE) received a
Diploma degree in electrical and computer engineer-
ing from the University of Patras, Greece, in 2016
and a Ph.D. degree from Mines Paris, PSL Univer-
sity, Paris, France in 2023. He is currently a postdoc-
toral researcher at the Department of Electrical and
Electronic Engineering at Imperial College London,
London, U.K. His research interests include energy
forecasting, decision-making under uncertainty, and
machine learning applications in power systems.

Salvador Pineda (S’07-M’11-SM’22) received the
Ingeniero Industrial degree from the University of
Málaga, Spain, in 2006, and a Ph.D. degree in Elec-
trical Engineering from the University of Castilla-
La Mancha, Spain, in 2011. He is currently an
associate professor in the Department of Electrical
Engineering at the University of Málaga in Spain.
His research interests are in the fields of power sys-
tem operation and planning, decision-making under
uncertainty, bilevel programming, machine learning,
and statistics.

Juan M. Morales (S’07-M’11-SM’16) received the
Ingeniero Industrial degree from the University of
Málaga, Málaga, Spain, in 2006, and a Ph.D. degree
in Electrical Engineering from the University of
Castilla-La Mancha, Ciudad Real, Spain, in 2010.
He is currently an associate professor in the Depart-
ment of Statistics and Operations Research at the
University of Málaga in Spain. His research interests
are in the fields of Data Science and Optimization;
decision-making under uncertainty; machine learn-
ing, and power systems economics, operations, and

planning.

Georges Kariniotakis (Senior Member, IEEE) was
born in Athens, Greece. He received the engineering
and M.Sc. degrees from Greece, in 1990 and 1992,
respectively, and the Ph.D. degree from Ecole des
Mines de Paris, Paris, France, in 1996. He is cur-
rently a Professor at Mines Paris, PSL University.
He is the head of the Renewable Energies and Smart
Grids Group at PERSEE Centre. He has authored
more than 310 scientific publications in journals and
conferences. He has been involved as a participant or
coordinator in more than 50 research projects in the

fields of renewable energies integration and power systems management and
planning. Among them, he was the coordinator of some major EU projects in
the field of wind power forecasting, such as Anemos (FP5), Anemos.plus
(FP6), and SafeWind (FP7) projects. He is currently the coordinator of
the H2020 Smart4RES project on short-term renewable energy forecasting
and applications. His scientific interests include, among others, timeseries
forecasting, decision-making under uncertainty, modeling, management, and
planning of power systems.

https://git.persee.mines-paristech.fr/akylas.stratigakos/interpretable-learning-dcopf
https://git.persee.mines-paristech.fr/akylas.stratigakos/interpretable-learning-dcopf
https://www.gurobi.com

	Introduction
	Literature Review
	Aim and contribution
	Paper Organization

	DC-OPF and Learning Problem Formulation
	The DC-OPF Problem
	Data-driven Piecewise Affine Policy
	Robust Constraint Reformulation

	Tree-based Learning Methodology
	Affine Prescriptive Trees
	Domain-Informed, Non-Orthogonal Splits
	Merit order splits
	Network congestion splits

	Dealing with Large-scale Problems

	Illustrative Example
	Numerical Experiments
	Experimental Setup
	Test Cases
	Load Data
	Benchmarks
	Perfomance Metrics

	Results
	Results for More Challenging Test Cases

	Conclusions
	References
	Biographies
	Akylas Stratigakos
	Salvador Pineda
	Juan M. Morales
	Georges Kariniotakis

