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Abstract. In this paper, we show how to estimate the normals of a
3D surface from a minimum of two views, assuming that the poses of
a calibrated camera are perfectly known. For each pair of image points,
the normal at the corresponding 3D point is expressed in function of the
local gradients of the grey level, whatever the type of image formation
(orthogonal or perspective projection). As an application, this allows us
to fully estimate the inter-image homography, which not only depends on
the relative pose between views, but also on the local orientation of the
surface. Hence, the photo-consistency between patches from two images,
which is the basis of the so-called “plane-sweeping” method, is improved.
Experiments on synthetic and real data validate our approach.

Keywords: Normal Estimation · Multi-view Stereo · Plane-sweeping.

1 Introduction

Image-based 3D reconstruction pipelines usually comprise three steps: 1) feature
extraction and matching across the images; 2) structure-from-motion to estimate
the camera poses and a sparse 3D point cloud; 3) multi-view stereo (MVS), which
reconstructs a dense 3D geometry. A common approach to MVS is to match the
pixels between the different views by maximizing the photo-consistency of a
specific image, called reference image, with the others, called control images. To
measure photo-consistency, the reference image is warped to the control images,
assuming known poses and making a guess on the depth.

Assuming the surface is locally flat, the plane-sweeping method allows for a
more robust comparison than pixel-to-pixel, as it allows for patch comparison.
The change of point of view implies a distortion of a patch from one image to
another, which takes the form of a homography depending on the normal to the
tangent plane of the surface. However, this dependency is usually ignored, due
to the difficulty of estimating this normal, which is considered to be collinear
with the optical axis of the reference camera (see Figure 1-a).

∗Lilian Calvet and Nicolas Maignan contributed equally to this work.
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(a) (b)

Fig. 1. (a) Standard plane-sweeping assumes that the scene is locally fronto-parallel
to the reference image. (b) We propose to estimate the surface normal from image
gradients and integrate this knowledge into a slanted plane-sweeping method.

In this paper, we present a new method for estimating the normal to a surface
from two images, using the gradients of the grey levels in a pair of conjugate
image points, which allows us to characterise the inter-image homography, and
thus to improve the comparison between conjugate patches (see Figure 1-b).
After a brief review of related approaches in Section 2, we present our method for
normal estimation in Section 3. Preliminary experiments on both synthetic and
real data are conducted in Section 4, which present the strengths and weaknesses
of our approach. Our work is eventually summarised in Section 5.

2 Related Work

MVS methods can be divided in three main approaches. The first one exploits
inter-image correspondences for multi-view 3D reconstruction [1, 8, 9, 25]. These
methods typically estimate depth maps, fuse them into point clouds and op-
tionally generate meshes [16]. The second one uses implicit representations and
leverages differentiable rendering to reconstruct 3D geometry with appearance
from image collections [15, 22, 24]. NeRF [22] and most of its follow-ups use volu-
metric representations and compute radiance by ray marching through a neurally
encoded 5D light field. The third approach uses explicit surface representations
and estimates an explicit 3D mesh from images [5, 6, 17, 19, 21, 26]. Most meth-
ods based on this approach assume a given, fixed mesh topology [5, 6, 21], but
this assumption has been relaxed recently [17, 23, 26].

In this work, we focus on the method based on the first approach using
inter-image correspondences. These methods commonly assume a fronto-parallel
scene structure (see Figure 1-a). Gallup et al. [10] observed the distortion of the
cost function caused by structures that deviate from this prior and combated it
by using multiple sweeping directions deduced from the sparse reconstruction.
Earlier approaches [3, 4, 28] similarly account for the surface normal in stereo
matching. Bleyer et al. [27] use PatchMatch to estimate per-pixel normals to
compensate for the distortion of the cost function. They initialize each pixel
with a random plane, hoping that at least one pixel of the region, supposedly
locally planar, carries a plane that is close to the correct one. The method has
no guarantee of converging to the correct normal estimate and, in practice, its
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success depends on the size of the regions that can be approximately modeled by
the same plane. In addition, the method uses spatial and temporal propagations
from “good” normal guesses, which is not desirable when aiming at reconstruct-
ing fine objects’ details and working without video sequence. Schönberger et
al. [25] follow the same approach while considering a variety of photometric and
geometric priors. More recently, Liu et al. [20] proposed to automatically detect
piecewise planar regions in the input images, and to compute the associated
planes’ parameters. They use a slanted plane-sweeping strategy. A set of three-
dimensional slanted plane hypotheses is generated over both normal and depth
values following uniform distributions of learned ranges.

In contrast to these approaches, we propose to estimate pixel-level normals
from image gradients given camera parameters. We integrate this knowledge into
a slanted plane-sweeping strategy (see Figure 1-b) in order to overcome distor-
tions induced by deviation of the surface to the fronto-parallel scene structure
assumption. The problem of surface normal estimation from image gradients
was also tackled by Lindeberg et al. in [11, 18]. Therein, it is shown that the
surface normal can be obtained from the transformation that relates the second
moment matrices (computed from image gradients), in a scale-space framework.
However, integrating this approach in a plane-sweeping strategy would require
either solving a difficult two-parameters optimization problem, or resorting to
a keypoint-based procedure which is not suitable when texture is lacking. On
the contrary, the proposed approach requires solving a simpler one-parameter
optimization problem, and it is suitable for poorly textured surfaces.

3 Slanted Plane-sweeping

3.1 Photo-consistency-based MVS

Let us first recall the principle of MVS, which estimates the depth map associated
with the reference camera by browsing, for each pixel, a set of possible depths.

Let us consider an opaque surface observed by n + 1 identical cameras pro-
viding a reference image I and n control images Ii, i ∈ {1, . . . , n}. The poses of
these cameras are assumed to be known and expressed in a world frame aligned
with the reference camera frame. Cameras intrinsics are also supposed known.
Let Q = [x, y, z]⊤ be a 3D point expressed in the reference camera frame. Since
the camera parameters are known, we can note q = π(Q) the projection of Q
in the reference image, whose coordinates q = [u, v]⊤ are expressed in the refer-
ence image frame. We define the same way {πi}i∈{1,...,n}, the projections from
3D points to pixels in the control cameras.

The central projection π is invertible if the depth function z is known. In this
case, there is a bijection between the visible 3D points of the scene and their
images, which is written π−1

z (u, v), where the subscript z is used to indicate that,
without knowledge of the function z, this writing would be ambiguous. Then, for
a 3D point Q on the surface which is visible from all cameras, the Lambertian
assumption gives:

Ii ◦ πi ◦ π−1
z (u, v) = I(u, v), i ∈ {1, . . . , n} (1)
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MVS searches for the depth function z corresponding to the reference image
that maximises its photo-consistency with the n control images. Equations
(1) are turned into a least squares problem, which has to be reformulated in
discrete form (we do not know the grey level functions, but only their values in
each pixel). The problem can then be solved separately in each pixel q = [u, v]⊤:

ẑ(u, v) = argmin
z ∈R

1

n

n∑
i=1

[
Ii ◦ πi ◦ π−1

z (u, v)− I(u, v)
]2 (2)

where Ii ◦ πi ◦ π−1
z (u, v) has to be computed by interpolation.

For now, photo-consistency is reduced to the least squares comparison of
two grey levels. In practice, photo-consistency is more complex [7, chapter 2].
The problem may then become nonlinear, non-smooth and non-convex, and the
optimization tedious. Therefore, minimization is usually carried out using brute-
force grid-search over the sampled depth space. This “winner-takes-all” strategy
was first advocated in [14]. Despite its simplicity, it is remarkably efficient, and
impressive depth map reconstructions of highly textured scenes have long been
demonstrated [12].

3.2 Plane-sweeping

In practice, comparing pixel signals over a single pixel value, as shown in Equa-
tion (2), works very poorly due to the lack of information. To overcome this
limitation, the photo-consistency is minimised over an image patch, namely over
v(u, v) representing the pixel intensities in the vicinity of a pixel q = [u, v]⊤.
Considering the i-th control camera, i ∈ {1, . . . , n}, the photo-consistency then
measures the difference between vectors Ii ◦vi ◦ πi ◦ π−1

z (u, v) and I ◦v(u, v), in
the sense of a function ρ. Problem (2) then becomes:

ẑ(u, v) = argmin
z ∈R

1

n

n∑
i=1

ρ
(
Ii ◦ vi ◦ πi ◦ π−1

z (u, v), I ◦ v(u, v)
)

(3)

As far as the reference camera is concerned, it seems natural to use the
pixel grid to define a neighbourhood, and thus the v function. Now, we need to
define the patch used in the control images. To do this, we are interested in the
homography transforming v(u, v) into vi ◦ πi ◦ π−1

z (u, v).
To go further, we need to explicit the coordinates [ui, vi, 1]

⊤ of the projection
on image plane i of a 3D point Q = [x, y, z]⊤. Since the cameras are supposed to
be identical, the calibration matrix K is independent of index i. The projection
formula gives us:

[ui, vi, 1]
⊤ =

1

zi
K (R0→i Q+ t0→i) (4)

where the rotation matrix R0→i and the translation vector t0→i charaterize the
pose of camera i. Denoting Ci = −R−1

0→i t0→i the location of the optical center
of camera i, (4) becomes:

[ui, vi, 1]
⊤ =

1

zi
KR0→i (Q−Ci) (5)
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which provides us with the following expression for the coordinates of the 3D
point Q:

Q = zi R
−1
0→i K

−1[ui, vi, 1]
⊤ +Ci (6)

Putting (5) and (6) together, the movement of a point from camera i to
camera j can be written:

[uj , vj , 1]
⊤ =

1

zj
KR0→j

(
zi R

−1
0→i K

−1 [ui, vi, 1]
⊤ +Ci −Cj

)
which can be condensed in the following equation:

[uj , vj , 1]
⊤ =

zi
zj

(
H∞

i,j [ui, vi, 1]
⊤ +

ei,j
zi

)
(7)

where H∞
i,j = KRi→j K

−1 is the homography which maps points at infinity
from image i to image j, and ei,j = KR0→j (Ci−Cj) is the epipole in image j.

The plane-sweeping method consists in assuming the surface to be locally flat
during the exhaustive search for the depth z. The homography is then supported
by the tangent plane to the surface, characterized by a unit-length normal n and
located at a distance di from the optical centre of camera i, whose Cartesian
equation is written:

n⊤Q = di (8)

Plugging the expression (6) of Q in (8), we obtain:

1

zi
=

n⊤R−1
0→i K

−1 [ui, vi, 1]
⊤

di − n⊤Ci
(9)

and finally, combining (7) and (9):

[uj , vj , 1]
⊤ =

zi
zj

(
H∞

i,j +
ei,j n

⊤R−1
0→i K

−1

di − n⊤Ci

)
[ui, vi, 1]

⊤ (10)

Thus, the inter-image homography depends not only on the camera movement
between two poses, but also on the normal vector n of the tangent plane. Facing
the difficulty of estimating the normal, it is usual to assume that this plane is
fronto-parallel to the image plane of the first camera i.e., to arbitrarily impose n
colinear to its optical axis. In the next subsection, we show how to estimate this
normal from the depth and the gradients of the grey level of a pair of images,
which will allow us to use the inter-image homography expressed in (10).

3.3 Surface Normal Estimation

In this subsection, we establish the expression of the normal as a function of
the depth and the gradients of the grey levels from two views of known poses.
Whatever the type of camera projection, the normal is written, in the world
frame:

n(Q) =
1√

|∇z|2 + 1

[
∇z
−1

]
(11)
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Thus, estimating the gradient ∇z = [ ∂z∂x ,
∂z
∂y ]

⊤ suffices to characterize the surface
normal. By derivation of (1) along the axes of the world frame, and introducing
the notation Ii(ui, vi) = Ii ◦ πi ◦ π−1

z (u, v), we get:

∇x,yIi(ui, vi) = ∇x,yI(u, v), i ∈ {1, . . . , n} (12)

According to the chain rule:

∇x,yIi(ui, vi) = J⊤
i ∇Ii(ui, vi) (13)

where:

J⊤
i =

[∂ui

∂x
∂vi

∂x
∂ui

∂y
∂vi

∂y

]
(14)

On the other hand, since the reference camera is aligned with the world reference
frame, and denoting α the number of pixels per meter, we have:

∇x,yI(u, v) = α∇I(u, v) (15)

From (12), (13) and (15), we get:

J⊤
i ∇Ii(ui, vi) = α∇I(u, v) (16)

As we shall see next, the depth gradient can be deduced from this equation,
for both orthogonal and perspective projections.

Case of Orthogonal Projection – The change of coordinates of a 3D point Q
from the world frame to the camera frame Ri writes:

[xi, yi, zi]
⊤ = R0→i Q+ t0→i (17)

where, as already said, R0→i and t0→i characterize the pose of camera i.
Under the assumption of orthogonal projection, it is easy to deduce from (17):ui = α

[
r1,1i x+ r1,2i y + r1,3i z + t1i

]
+ u0

i

vi = α
[
r2,1i x+ r2,2i y + r2,3i z + t2i

]
+ v0i

(18)

where rj,ki , (j, k) ∈ {1, 2, 3}2, and tji , j ∈ {1, 2, 3}, designate the current elements
of matrix R0→i and of vector t0→i, respectively, and [u0

i , v
0
i ]

⊤ are the coordinates
of the principal point in image i. By derivation of (18), we get:

J⊤
i = α

[
r1,1i + r1,3i

∂z
∂x r2,1i + r2,3i

∂z
∂x

r1,2i + r1,3i
∂z
∂y r2,2i + r2,3i

∂z
∂y

]
(19)

From (16) and (19), we finally obtain:{[
r1,1i r2,1i

r1,2i r2,2i

]
+

[ ∂z
∂x
∂z
∂y

] [
r1,3i r2,3i

]}
∇Ii(ui, vi) = ∇I(u, v) (20)
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From this equation, we deduce the following expression for the depth gradient
∇z = [ ∂z∂x ,

∂z
∂y ]

⊤:

∇z =

∇I(u, v)−
[
r1,1i r2,1i

r1,2i r2,2i

]
∇Ii(ui, vi)[

r1,3i r2,3i

]
∇Ii(ui, vi)

(21)

Eq. (21) provides us with a closed-form expression for depth gradient, and
hence the surface normal, at every point where the denominator does not vanish.
This can happen in the following three cases:

• The vector
[
r1,3i r2,3i

]
is null in the case of a pure rotation around the optical

axis of the camera. In this case, the normal cannot be evaluated in any point
on the surface. However, this type of camera movement is to be avoided in
the context of multi-view stereo.

• The gradient ∇Ii(ui, vi) may be null at certain points in control image i,
particularly if the surface is not sufficiently textured. This will happen in
the case of a flat, untextured surface that is uniformly illuminated.

• Finally, it is possible that none of these vectors is null, but that this is the
case for their scalar product. However, if we have several control images, it
is very unlikely that this scalar product cancels for all of them.

Case of Perspective Projection – For the vast majority of real images, the pro-
jection onto the camera is no longer orthogonal but perspective. Extending the
previous rationale to perspective projection is not difficult, however we skip the
proof for space limitation reasons. We therefore content ourselves with giving
the new expressions of ∂z

∂x and ∂z
∂y , which still involve ∇I(u, v) = [ ∂I∂u ,

∂I
∂v ]

⊤ and
∇Ii(ui, vi) = [ ∂Ii∂ui

, ∂Ii
∂vi

]⊤, but also z and zi:

∂z

∂x
=

z2i z
∂I
∂u + z2

(
w2,1

i
∂Ii
∂ui

− w1,1
i

∂Ii
∂vi

)
z2

(
−w2,3

i
∂Ii
∂ui

+ w1,3
i

∂Ii
∂vi

)
+ z2i

(
x ∂I

∂u + y ∂I
∂v

)
∂z

∂y
=

z2i z
∂I
∂v + z2

(
w2,2

i
∂Ii
∂ui

− w1,2
i

∂Ii
∂vi

)
z2

(
−w2,3

i
∂Ii
∂ui

+ w1,3
i

∂Ii
∂vi

)
+ z2i

(
x ∂I

∂u + y ∂I
∂v

)
(22)

In these expressions, the coefficients w1,k
i , w2,k

i and w3,k
i , k ∈ {1, 2, 3}, are defined

by the following cross products, where (xi, yi, zi) are already defined in (17):w1,k
i

w2,k
i

w3,k
i

 =

r1,ki

r2,ki

r3,ki

 ∧

xi

yi
zi

 =

zi r2,ki − yi r
3,k
i

xi r
3,k
i − zi r

1,k
i

yi r
1,k
i − xi r

2,k
i
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4 Experiments

We conducted experiments with synthetic and real images to quantify the per-
formance of the proposed method.

4.1 Implementation Details

In the following experiments, the size of the patch used for photo-consistency
computation is fixed empirically to 9× 9 pixels and the number of control views
to four. As shown in Section 3, the surface normal can be computed from two
views. In practice, we use the median of the set of normals estimated over all
the pairs between the reference view and one of the four control views, which is
the normal that minimizes the sum of the geodesic distances to these normals.

4.2 Synthetic Data

A synthetic sphere cap of radius 1, whose center is located at (0, 0, 0), cut at the
height

√
1− 0.72, is viewed from five poses of the same camera with focal length

equal to 1000. In each pose, the camera points towards the cap summit, at a
distance equal to 4. In Figure 2-a, the reference camera is displayed in blue, while
the four control cameras are displayed in red. The reference view and the four
control views, which are generated using a uniform directional lighting parallel
to the z-axis, are displayed in Figures 2-b and 2-c.

1

2

3

4

5

z

2

y

0 1-2

x
0-1-2-3

(a) (b) (c)

Fig. 2. (a) Synthetic dataset comprising one reference camera (in blue) and four control
cameras (in red). The scene is a sphere cap illuminated by a uniform directional lighting
parallel to the z-axis. (b) Reference view, whose depth is to be reconstructed. (c) Four
control views.

The method described in Section 3 is applied to estimate the surface normal
in each pixel of the reference view (see Figure 3-a). The angular errors are shown
in Figure 3-b. The normal estimation method shows to perform well, except at
the edge of the cap, where the grey level gradient may become infinite.
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The slanted plane-sweeping algorithm, which makes use of the estimated
normal, is applied to estimate the depth map. The depth errors of plane-sweeping
under the fronto-parallel assumption, and of the slanted plane-sweeping method,
are shown in Figures 3-c and 3-d. The proposed method is globally more accurate,
but this highly depends on the local orientation of the surface.

(a) (b)

(c) (d)

Fig. 3. (a) Reference view. (b) Angular error (in degrees) between the normal estimated
according to the method described in Section 3 and the ground truth. (c) Depth error
resulting from standard plane-sweeping, using a fronto-parallel patch. (d) Depth error
resulting from the proposed slanted plane-sweeping, using a patch oriented according
to the estimated normal. The proposed method is globally more accurate.

The spherical cap is then segmented into five regions, based on the angle
between the surface normal and the optical axis of the reference camera, which
are highlighted in color in Figure 4-a. The mean and median depth errors per
region are shown in Figure 4-b, in the absence of noise in the images, and in
Figure 4-c (resp. 4-d), by adding a uniform noise in the range [−3, 3] (resp.
[−6, 6]) to the images, whose grey level values are between 0 and 255. Depth
errors shown by the proposed slanted plane-sweeping are overall lower than the
ones obtained under the fronto-parallel assumption, but this is particularly true
for areas nearby the cap edge, associated to the highest out-of-plane rotations
of the tangent plane, strongly violating the fronto-parallel patch assumption.
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Fig. 4. (a) Segmentation of the reference view in five regions, based on the orientation
of the surface normal. Histograms of the average error and of the median error on the
estimated depth, using standard or slanted plane-sweeping methods: (b) in the absence
of noise in the images; (c) adding to the images a uniform noise in the range [−3, 3];
(d) adding to the images a uniform noise in the range [−6, 6].

4.3 Real Data

Then, the method has been evaluated on a real dataset, which is a set of five
views of a plane. ArUco markers have been glued on the plane, in order to
obtain its 3D reconstruction, along with the camera poses, using the structure-
from-motion pipeline AliceVision Meshroom [13]. The normals of the plane are
obtained by standard plane fitting from the marker locations, and used as ground
truth. The input views are shown in Figures 5-a and 5-b, while the results of
structure-from-motion are shown in Figure 5-c.

The angular errors, which are shown in Figure 6-a, show a mean of 13.9o

and a standard deviation of 6.75o. In this real scenario, the errors obtained on
the estimated normals are too large to be exploited by the proposed slanted
plane-sweeping. This may partly be explained by a gradient computation very
sensitive to noise or by inaccuracies in camera pose estimation.
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Fig. 5. (a) Reference view. (b) Four control views. The depth errors will be evaluated
within the white frame shown in (a). (c) Real camera and marker positions, computed
using a standard structure-from-motion technique [13]. The reference camera is shown
in blue, the control ones in red.
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Fig. 6. (a) Image area over which normal estimation is performed (highlighted in white
in Figure 5-a). (b) Angular errors on the estimated normals, which show a mean and
standard deviation of 13.9o and 6.75o, respectively, computed over 1296 pixels.

5 Conclusion and Perspectives

In this paper, we show how to estimate the normals of a surface from two views,
provided that the poses of the camera, assumed calibrated, are perfectly known.
For a pair of homologous points, we show that the normal at the correspond-
ing 3D point can be computed unambiguously, as a function of the grey level
gradient at each of these points, mentioning three cases for which this estima-
tion is impossible. We detail the estimation method in the case of an orthogonal
projection, and give its generalization to the perspective case.

Among the various applications of this new method of normal estimation, it
makes it possible to estimate the inter-image homography of a surface portion,
assumed to be locally planar, which depends not only on the change of pose,
but also on the local orientation of the plane. This is therefore of interest for
plane-sweeping matching, which is usually based on an approximate estimate of
the inter-image homography. The tests carried out on synthetic images validate
the theoretical part of our approach, and show that it is indeed worthwhile to
take into account the local orientation of the surface in the criterion of photo-
consistency. The tests on real data are less convincing, as the estimation of the
normal by our approach gives too high angular errors, of the order of 10o, to be
able to claim an improvement of plane-sweeping matching.
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Among the follow-ups to this work, we should first make the normal esti-
mation method more robust. In addition to a possible inaccurate estimation of
the camera poses (we used only five images in the real dataset), it is likely that
the computation of the grey level gradients, as we did it, is grossly lacking in
robustness. Moreover, a purely local estimate of the normal may be inherently
too sensitive to noise. Another perspective is therefore to estimate the normals
for a set of neighboring points, assumed to belong to a common tangent plane.
It will then be appropriate to make the link with the work by Bartoli et al. on
the estimation of normals from the deformations of a template [2].
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