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Abstract. We conduct a discussion on the problem of 3D-reconstruction
by calibrated photometric stereo, when the surface of interest is embed-
ded in a refractive medium. We explore the changes refraction induces
on the problem geometry (surface and normal parameterization), and we
put forward a complete image formation model accounting for refracted
lighting directions, change of light density and Fresnel coefficients. We
further show that as long as the camera is orthographic, lighting is di-
rectional and the interface is planar, it is easy to adapt classic methods
to take into account the geometric and photometric changes induced by
refraction. Moreover, we show on both simulated and real-world experi-
ments that incorporating these modifications of PS methods drastically
improves the accuracy of the 3D-reconstruction.

1 Introduction

Photometric stereo (PS) is a 3D computer vision technique which was pioneered
by Woodham in the late 70s [27]. It aims at inferring the shape of an opaque
surface from a series of images captured under the same viewing angle, but vary-
ing illumination. Compared to other 3D-reconstruction techniques, PS excels at
recovering the thinnest geometric variations (high-frequency information given
by surface normals), and it is the only photographic 3D-reconstruction method
which is also able to infer the reflectance of the surface. Such properties are
essential in applications such as relighting or cultural heritage artifacts digitiza-
tion.

However, a fundamental assumption in PS is that the light sources, the cam-
era and the pictured surface all lie in the same homogeneous medium – usually
the air. In the present paper, we revisit PS in the presence of a refractive in-
terface i.e., when the camera and the light sources both lie in one homogeneous
medium, while the surface is immersed in another homogoneous medium with
a different index of refraction (pure water, glass, alcohol, etc.). This particular
setting finds applications, for instance, in underwater imaging (Fig. 1a) or in the
digitization of natural historic museal objects preserved in amber or alcohol.
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Fig. 1. We discuss the problem of recovering through photometric stereo the 3D-shape
and the albedo of a surface immersed in a refractive medium, as in (a) where a white
sphere is immersed in an aquarium filled with pure water. In particular, we show how to
adapt classic PS methods when the lighting is directional, the camera is orthographic
and the interface is planar, as illustrated in the sketch (b) which summarizes our
notations. Therein, given a plane D with normal a, Snell’s law (2.3) gives the relation
between an incident ray i in medium M, and the refracted one o in medium M. Even
if the camera is orthographic, a point x on the surface projects non-orthogonally onto
the image plane C: a pixel (u, v) first deprojects onto D along the viewing direction e3,
and then travels the distance z(u, v) along the refracted viewing direction r. Besides,
the effective lighting direction s differs from the direction s which is calibrated outside
the refractive medium.

The difference with classic PS lies in the presence of an interface between
the two media, which have different indices of refraction. Refraction will have
profound consequences in 3D shape recovery techniques, as it modifies the ge-
ometry of image acquisition, and light direction and density will be changed as
well (this is, after all, the principle behind a lot of lensing effects). While these
points are well-understood by designers of optical systems, either to use them
or for limiting some of their undesirable consequences, they have seldom been
investigated from the photometric shape recovery side.

Assumptions and contributions We address the PS problem, in the pres-
ence of a Lambertian surface (specularities are viewed as outliers) embedded in
a homogeneous refractive medium with known geometry, imaged in the visible
spectrum. After reviewing related works in Sect. 2, we explore the impact of a
planar (but not necessarily fronto-parallel) refractive interface on the geometry
of PS under orthographic projection in Sect. 3. In Sect. 4, we derive a complete
image formation model for this case, under directional lighting calibrated outside
the refractive medium. This model accounts for refraction of lighting directions,
attenuation of lighting densities, and Fresnel coefficients. Then, we discuss in
Sect. 5 the inversion of this model by adapting classic PS algorithms. Even-
tually, in Sect. 6 we draw our conclusions, and mention possible extensions of
our work to more complicated setups (pinhole camera, non-directional lighting,
non-planar interface, and light absorption).
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2 Background

Photometric stereo In the traditional PS setup, the pictured surface S is
assumed Lambertian i.e., it reflects light diffusively, as the reflectance at x ∈ S
is characterized by the albedo ρ(x) ∈ [0, 1]. Let us consider a surface lit by a
single, known point light source at infinity (calibrated directional lighting) rep-
resented by unit direction s ∈ R3 and density φ > 0, and denote n(x) ∈ R3 the
unit outward normal to the surface at x. Then, the measured brightness at pixel
(u, v) = p(x), which is the projection of the surface point x onto the camera
image plane, is I(p) ∝ φmax{0, ρ(x)n(x)⊤s}, with the proportionality constant
independent of x. Omitting the max{} operator, which models self-shadows (they
are usually dealt with robust estimators), integrating the proportionality coef-
ficient into the albedo (which can be normalized a posteriori), and considering
k ≥ 3 light sources yields the following image formation model:

Ii(p) = φi ρ(x)n(x)
⊤si, i ∈ {1, . . . , k}. (2.1)

This model can be inverted as long as the light directions si are non-coplanar,
so as to compute the Lambertian reflectance ρ(x) and the surface normal n(x)
for each p. This approach can also be extended to non-Lambertian reflectance
and uncalibrated lighting, for instance by resorting to deep neural networks [7].

Surface parameterization The surface S is parameterized as (u, v) 7→ x(u, v) =
S(u, v) and its normal at x is written as

n(x) = ± Su × Sv
|Su × Sv|

, (2.2)

where Su and Sv are the partial derivatives of S, and where the ± ambiguity is
resolved by taking arbitrarily the normal oriented towards the camera. Once the
normal field n(x) is estimated, retrieving S then comes down to a 2D integration
problem, for which various solutions exist [20]. The parameterization S is a right-
inverse to the projection: p(S(u, v)) = (u, v). It is constrained by the form that
p takes (orthographic projection, perspective projection, etc.), and this has of
course important consequences on the integration process.

Refraction The index of refraction (IoR) n of a material is the ratio c/v of the
speed of light in vacuum and the velocity in the medium. Snell’s laws assert that
1) the normal a to the interface, the incident light direction i and the refracted
light direction o are coplanar; and 2) the refracted and incident angles satisfy
the relation n sin θi = n sin θo, with n the IoR of the first medium, n the IoR of
the second one, θi the angle between i and a, and θo the angle between a and o
(see Fig. 1b). In vectorial form [14], defining µ = n/n:

o = Snellaµ(i) = µ i+

(√
1− µ2 (1− (i⊤a)2)− µ (i⊤a)

)
a. (2.3)
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Refractive 3D-vision Snell’s law (2.3) of refraction has been considered in
few 3D-vision contexts. For instance, the epipolar geometry theory has been ex-
tended to the case where the camera and the surface are separated by a refractive
plane [5]. This constitutes the basis for the development of refractive structure-
from-motion algorithms [4,13]. Multi-view stereo in the presence of a refractive
interface has also been recently explored [3,6,11]. In the photometric stereo con-
text, underwater imaging has attracted some attention [25,17,26,10,16]. These
works focus mostly on light absorption, which occurs when scattering is involved
(inhomogeneous medium such as murky water) or in near-infrared imaging. Yet,
other refraction effects (e.g., change of incident light direction and density, and
of surface parameterization) are neglected. For instance, it is usually assumed
that all the sources have the same relative intensity, and that their directions
can be obtained using a calibration target immersed in the medium. Yet, even
if all the sources outside the refractive medium have exactly the same intensity,
the refractive interface will induce luminous fluxes with different densities (see
Sect. 4). Therefore, it would be more convenient to calibrate light directions and
densities outside the refractive medium, and account for refraction within the
image formation model. This has been achieved in [18] but only for a fronto-
parallel interface and with a somehow naive numerical solution, and in [9] but
by relying on laser triangulation. Instead, the present paper aims at modeling
and evaluating the effects of a refractive interface with arbitrary orientation on
shape recovery by pure PS, and at providing an efficient numerical solution by
adapting state-of-the-art algorithms.

3 Geometry of Refractive PS

Notations As illustrated in Fig. 1b, we work in R3 with its canonical frame
(O, e1, e2, e3), where O is the camera’s principal point, e3 is the optical axis
direction and C := e⊥3 is the image plane. A generic point in R3 is denoted
by x, while p(x) = (u, v)⊤ denote the 2D coordinates of its conjugate pixel
in the frame (O, e1, e2). The projection from R3 → R2 keeping the first two

coordinates is represented by the matrix Π =

(
1 0 0
0 1 0

)
, whose transpose is the

canonical injection R2 → R3. The interface plane D is given by the equation
a⊤x+α = 0, α ∈ R, where a = (a1, a2, a3)

⊤ ∈ S2 is a known unit normal vector
to D (S2 being the unit sphere of R3), oriented towards the camera (a⊤e3 ≤ 0).
We assume that a⊤e3 ̸= 0. The medium containing the camera is located in
M = {x ∈ R3,a⊤x + α > 0} and has IoR n, while the medium containing the
object under scrutiny is located in M = {x ∈ R3,a⊤x+ α ≤ 0} and has IoR n,
and we denote µ = n/n < 1. Lastly, for a plane P of equation v⊤x+ β = 0 and
w ∈ R3 with v⊤w ̸= 0, we define the projection on plane P along direction w
as

Pw
P (x) = x− v⊤x+ β

v⊤w
w =

(
id−wv⊤

w⊤v

)
x− βw

v⊤w
. (3.1)

The orthogonal projection on v⊤x = 0 is simply denoted by P v⊥ .
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Depth from the Interface In the orthographic case, all the light rays reaching
the camera are orthogonal to the image plane, i.e., parallel to e3. In the absence
of a refractive interface (or when the interface is fronto-parallel as in [16,18]), the
projection is simply p(x) = Πx and the surface parameterization, as its right
inverse, is S(u, v) = (u, v, z(u, v))⊤ with z the depth map. However, when a non
fronto-parallel refractive interface comes into play, the projection becomes non-
orthogonal (see Fig. 1b). In this case, the rays reaching the camera are parallel
to direction e3, and come from parallel incident rays with common direction
r ∈ S2 within the refractive medium M as the interface is planar. Vector r is
fully determined by Snell’s law (2.3) as it must refract to viewing direction e3:

r = Snell−a
µ (e3), (3.2)

where the sign before a comes from the fact that a is oriented towards the
camera, while e3 and r are oriented towards the surface (see Fig. 1b).

Therefore, a point x ∈ M on the immersed surface first projects non-
orthogonally onto D along the refracted viewing direction r, before being orthog-
onally projected onto the camera image plane along the viewing direction e3:

p(x) = ΠP e⊥3
(P r

D(x)). (3.3)

This leads to a straightforward model where we deproject pixel (u, v)⊤ in the
image plane to a point on the refractive interface D, and then follow the incident
ray up to the object: S(u, v) = P e3

D (u, v, 0)⊤ + z̄(u, v)r, with z̄ the pseudo-
depth (distance travelled along the refracted ray r). One readily checks that
p(S(u, v)) = (u, v)⊤. Using (3.1), we can write

S(u, v) = P e3

D (u, v, 0)⊤ + z̄(u, v)r = A(u, v, 0)⊤ + t+ z̄(u, v)r, (3.4)

with known quantities

A =

 1 0 0
0 1 0

−a1
a3

−a2
a3

0

 , t = − α

a3
e3. (3.5)

Surface Normals Now, let us establish the link between the pseudo-depth z̄
from the interface, and the normal n to the surface. To do this, let us consider the
partial derivatives of the parameterization. They are given by Su = Ae1 + z̄ur
and Sv = Ae2+z̄vr. An (unnormalized) normal to the surface S(u, v) is Su×Sv =
(Ae1+ z̄ur)×(Ae2+ z̄vr). Set b

1 = r×Ae2, b
2 = Ae1×r and b3 = Ae2×Ae1.

Then Su × Sv = z̄ub
1 + z̄vb

2 − b3. By letting B be the matrix −(b1,b2,b3),

n(u, v) = n(S(u, v)) ∝ B

(
∇z̄(u, v)

−1

)
, B =

a2r2
a3

+ r3 −a1r2
a3

a1
a3

−a2r1
a3

a1r1
a3

+ r3
a2
a3

−r1 −r2 1

 . (3.6)

Eq. (3.6) relates the surface normals to the underlying gradient of the pseudo-
depth from the interface. When the interface is fronto-parallel, a = −e3, r = e3
and z̄ = z− β. Hence, B = I3 and the formula matches the classic one obtained

in the absence of refraction: n(u, v) ∝
(
∇z(u, v)⊤,−1

)⊤
.
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4 Image Formation Model under Directional Lighting

Now, we turn our attention to extending the image formation model (2.1) to the
refractive case. We assume to have at hand a series of k images I1, . . . , Ik, with
lighting directions s1, . . . , sk and densities φ1, . . . , φk calibrated inside M. The
effective lighting inside M will however be different from the calibrated one, due
to refraction.

Fig. 2. Light refraction by a planar in-
terface with normal a, with s the light
direction calibrated outside the refrac-
tive medium, and s the effective re-
fracted direction (in this drawing, the
light source is on the right). Light di-
rection is changed according to Snell’s
law, while its density is multiplied by
a⊤s

a⊤s
.

Effective Lighting Directions and
Densities We assume that light direc-
tions and densities are known in the cam-
era medium M thanks to calibration, and
we denote these calibrated parameters by
si and φi. However, the directions si and
densities φi of the effective light beams
reaching the surface differ from calibrated
values, see Fig. 2.

After crossing the refractive interface,
the incident light beams obviously remain
parallel, yet their directions become, ac-
cording to Snell’s law (2.3):

si = −Snell−a
µ (−si), i ∈ {1, . . . , k}.

(4.1)
Moreover, the size of the surface elements
orthogonal to the rays also changes, ac-
cording to dΣ̄i

a⊤s̄i
= dΣD = dΣi

a⊤si
. Then:

φi =
a⊤si
a⊤si

φi, i ∈ {1, . . . , k}. (4.2)

Let us emphasize that, even if all the sources have exactly the same intensity
i.e., φi = φj ,∀i ̸= j, the effective densities will be different. For instance, when
n = 1, n = 1.5, and φ1 = φ2 = 1, a lighting orthogonal to the interface yields
φ1 = 1, while an incident angle of 30◦ yields φ2 = 0.91. This effect is thus far
from negligible in a calibrated PS setup.

Fresnel Coefficients The interface may act partially as a mirror, with the
amount of transmitted light being a function of the incident angle. This happens
twice in the process: first when going from the light source in M to the surface
embedded in M, and then when going from the latter to the camera, back in M.

The incident and outgoing angles when going from M towards M will vary
depending on the incident direction si, i ∈ {1, . . . , k}: each light source will thus
induce a different transmission rate. This rate is however the same whatever the
point x, since lighting is assumed directional - this would not be the case for
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instance under a near point light source. Assuming that all the light beams are
unpolarized, each transmission rate is given by the Fresnel coefficient

TM→M
i = 1− 1

2

((
µa⊤si − a⊤si

)2
(µa⊤si + a⊤si)

2 +

(
µa⊤si − a⊤si

)2
(µa⊤si + a⊤si)

2

)
, i ∈ {1, . . . , k}.

(4.3)
Taking again as an example the case n = 1, n = 1.5, an incident lighting or-

thogonal to the interface yields TM→M
1 = 0.9600, while an incident angle of 30◦

yields TM→M
2 = 0.9585. This shows that this Fresnel coefficient is non-negligible,

although less dramatic than the change in the incident densities.
When going from M to M, the incident and outgoing angles are the same for

all images I1, . . . , Ik (viewing direction is independent from the incident lighting
directions), therefore the transmission rate simply scales all the brightness values

at pixel p conjugate to x by the same coefficient TM→M(x), ∀i ∈ {1, . . . , k}.
Besides, since we assume orthographic viewing, these angles are the same for all

pixels, hence TM→M is independent from x as well - this would not be the case
under pinhole projection. The Fresnel coefficient is then written as

TM→M = 1− 1

2

((
−a⊤r+ µa⊤e3

)2
(−a⊤r− µa⊤e3)

2 +

(
−a⊤e3 + µa⊤r

)2
(−a⊤e3 − µa⊤r)

2

)
. (4.4)

Note that this second Fresnel coefficient simply scales all the observations by the
same constant, hence it can be taken into account by normalization.

Forward Model for Refractive PS To summarize the effects described above,
in the presence of refraction the classic image formation model (2.1) becomes

Ii(p) =
(
φiT

M→M
i

)
︸ ︷︷ ︸

:=ψi

(
TM→Mρ(x)

)
︸ ︷︷ ︸

:=ϱ(x)

n(x)⊤
(
−Snell−a

µ (−si)
)︸ ︷︷ ︸

:=si

, i ∈ {1, . . . , k},

(4.5)
where:

– the effective lighting directions si must be deduced from the calibrated ones
si according to Snell’s law (4.1);

– the effective lighting densities ψi must be deduced from the calibrated ones
φi using (4.2) (density attenuation) and (4.3) (Fresnel coefficients);

– the Fresnel-scaled albedo ϱ(x) (see (4.4)) and the surface normal n(x) (see (3.6))
constitute the unknowns of the PS problem.

To summarize, we have established the geometric parameterization of the
surface, and shown how to deduce the effective lighting directions and densities
from the ones calibrated outside the refractive medium. In the next section, we
turn our attention to the numerical resolution of the system of equations (4.5),
by adapting state-of-the-art strategies.
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5 Solving Refractive PS

To invert the image formation model (4.5), it is possible to either sequentially
estimate normals and the 3D-shape, or to directly compute the 3D-shape.

Normal and Albedo Estimation Estimating the surface normals and albedo
comes down to solving the system of equations (4.5) with known effective lighting
densities ψi and effective incident lighting directions si. This system of equations
admits a unique approximate solution as long as k ≥ 3 and the effective directions
si are non-coplanar (which is the case if the incident directions si are themselves
non-coplanar). Any calibrated PS method can be applied for this task, simply
changing the light directions and densities so as to take refraction into account.
For instance, defining m := ϱn, one may consider the following pixelwise linear
least-squares solution, ∀p:

m(p) = argmin
m∈R3

k∑
i=1

(
ψis

⊤
i m− Ii(p)

)2
, ϱ(x) = |m(p)|, n(x) = m(p)

|m(p)|
, (5.1)

which can be computed in closed-form by using the pseudo-inverse. If robust-
ness (e.g., to shadows or specularities) needs to be addressed, more evolved solu-
tions based on deep neural networks [7] can be considered. Semi-calibrated algo-
rithms [8] could also be employed for automatically inferring the coefficients ψi.
Provided that the integrability constraint [28] is adapted to the refractive case,
uncalibrated algorithms [12] would even provide the si up to a generalized bas-
relief ambiguity [2], which could be resolved a posteriori using one of the methods
discussed in [24].

Normal Integration The next stage consists in obtaining the surface from its
normals. Eq. (3.6) tells us that once n(u, v) is estimated, computing B−1n(u, v)
using the definition in (3.6) of B, and then normalizing both its first compo-
nents by the third one provides an estimate for ∇z̄(u, v). Given these gradient
estimates, the pseudo-depth map from the interface can be obtained by integra-
tion. Any approach designed for the classic case can be employed at this stage,
just changing the input gradient estimates (see [20]). Once the pseudo-depth has
been computed, one simply has to apply Eq. (3.4) to obtain the 3D-surface.

Direct Differential Approach To avoid bias accumulation due to the se-
quential estimation of normals and shape, it is also possible to follow a direct
differential approach. Plugging (3.6) into (4.5), we get, ∀(i,p):

Ii(p) = ψi
ϱ(x)∣∣∣∣B(∇z(p)−1

)∣∣∣∣︸ ︷︷ ︸
:=ϱ̃(p)

(
B⊤si

)⊤︸ ︷︷ ︸
:=s̃⊤i

(
∇z(p)
−1

)
, (5.2)
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which is a system of nonlinear PDEs. Therein, ϱ̃ will be considered as the un-
known “pseudo-albedo” and vectors s̃i as known “pseudo light vectors”. The
direct joint estimation of the pseudo-albedo and the pseudo-depth from the in-
terface can then be written as a variational problem:

min
z,ϱ̃

∑
p

∑
i

Φ

(
ψiϱ̃(p)s̃i

⊤
(
∇z̄(p)
−1

)
− Ii(p)

)
, (5.3)

using some robust estimator Φ and a finite differences approximation of the
gradient operator. Once the depth from the interface and the pseudo-albedo
have been estimated, it only remains to deduce the true Fresnel-scaled albedo ϱ
from ϱ̃ and ∇z̄ using the definition in Eq. (5.2), and eventually the 3D-surface
by using Eq. (3.4). Again, such a differential approach can be extended to the
semi-calibrated scenario [21], or even to refine the pseudo light vectors [22].

Validation on Synthetic and Real-world Data In order to empirically
validate our forward model and its inversion, we first generated synthetic PS
images using Blender [1]. The Lambertian surfaces were placed inside glass (n =
1.5) while the light sources and the orthographic camera were placed inside air
(n = 1). In each experiment, 12 images were rendered under varying parallel
lighting, whose direction and relative density are provided by the engine.

We first considered images of a perfect sphere. We used the sequential ap-
proach (5.1) followed by DCT integration [20], as well as the differential ap-
proach (5.3) with Cauchy estimator [22]. In both cases, we carried out 3D-
reconstruction first neglecting all refraction effects, and then with refraction
considered. To quantitatively evaluate the results, we fit a sphere to the 3D-
reconstruction using least-squares, and compute the normalized RMSE between
the 3D-reconstruction and the spherical fit. Results are shown in Table 1. It can
be seen that for both approaches, considering refraction drastically improves the
3D-reconstruction, even when the interface is not rotated. Indeed, as can be seen
in Fig. 3, neglecting refraction causes the 3D-reconstruction to “flatten”.

No interface (0◦, 0◦) (11.5◦, 0◦) (11.5◦, 22.5◦)
Sequential w/o refraction 0.0035 0.0195 0.0232 0.0403
Sequential w/ refraction 0.0035 0.0116 0.0129 0.0261

Differential w/o refraction 0.0020 0.0202 0.0239 0.0396
Differential w/ refraction 0.0020 0.0114 0.0127 0.0254

Table 1. Normalized root mean square error between the estimated surface and a
least-squares spherical fit, for a planar refractive interface (the angles stand for the
rotations around the horizontal and vertical axes, respectively). Considering refraction
systematically improves performance, for both the sequential and the differential ap-
proaches.
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Fig. 3. 3D-reconstructions of the spheres from Table 1 using the differential approach,
neglecting (top) or considering (bottom) refraction. The light grey spheres are the least-
squares spherical fits to the estimated surfaces used for the quantitative evaluation in
Table 1. Neglecting refraction induces a severe “flattening”.

Then, we replaced the sphere by two objects with a more complex shape: an
insect (imaged with the interface rotated by 5◦ around the horizontal axis) and
a skull (imaged with the interface rotated by 20◦ around the horizontal axis,
and by 11.25◦ around the vertical one). The results in Fig. 4, obtained with
the differential approach, show that it is possible to achieve a 3D-reconstruction
which is indistinguishable from the one obtained in the absence of refraction. In
particular, the “flattening” effect is corrected.

No interface w/o refraction w/ refraction

Fig. 4. 3D-reconstruction of an insect (top) and a skull (bottom). In each row, the
first image represents one of the input images (out of 12); the second one shows the
3D-reconstruction obtained in the absence of the interface (for reference); and the other
ones show the 3D-reconstruction in the presence of the interface, while neglecting or
considering refraction.
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Lastly, we conducted experiments on a real-world dataset. Our acquisition
setup, illustrated in Fig. 1a, consists of 8 calibrated directional light sources. A
diffuse sphere was imaged in the air, and then immersed in an aquarium filled
with pure water (see Fig. 5). We performed the 3D-reconstruction using (5.3),
and compared the results neglecting or considering refraction effects. For both
a fronto-parallel and a rotated interface, considering refraction largely reduces
the flattening and distortion effects, which empirically validates our method.
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No interface (0◦, 0◦) (0.0◦, 15.0◦)

Fig. 5. 3D-reconstruction of a real-world sphere. On the left, we show two of the input
images, in the absence (“air”) and in presence (“water”) of a refractive interface which is
rotated by 15.0◦ around the vertical axis. On the right, we show the 3D-reconstruction
of the sphere, taking into account (top) or not (bottom) refraction effects, in three cases:
in the air, with a fronto-parallel interface, and with a rotated interface. Neglecting
refraction leads to flattened and distorded 3D-reconstructions, while these effects are
much attenuated with the proposed approach.

6 Conclusion and Future Work

In this paper, we have explored the impact of the presence of a refractive interface
on the modeling of the photometric stereo problem, both in terms of geometry
and of photometric image formation model. We further showed how to adapt
existing solutions so as to take into account geometric deformation, refraction of
incident directions, attenuation of densities and Fresnel coefficients. We showed
that taking into account such phenomena largely improves the accuracy of the
3D-reconstruction. However, the explicit modeling of refraction effects was eased
by a few simplifying assumptions: orthographic viewing, directional lighting, pla-
nar interface and absence of light absorption. In the future, we plan to explore
the changes induced by the relaxation of these assumptions. This can partially
be achieved by making the forward more realistic through the incorporation of,
e.g., a refractive near-field illumination model [23] or distance-dependent light
attenuation [26,16]. However, we believe that differentiable inverse rendering
frameworks may constitute an even more promising track for solving nonstan-
dard photometric 3D-reconstruction problems in a somehow generic manner.
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Such approaches have recently been successfully employed for solving complex
multi-view 3D-reconstruction problems [15], yet for now they remain limited to
cases where the surface projection onto the camera comes down to a simple
rasterization. To cope with evolved refractive effects, one could thus imagine
combining differentiable inverse rendering with powerful renderers such as Mit-
suba 2 [19].
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