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Abstract: The validity of the information stored in a database may be guaranteed or 
not, according to the family of items which is considered. The information available 
in the database may be complete or not, as well, for a given type of items. The paper 
discusses how these forms of uncertainty can be represented in the framework of 
possibility theory, and how queries to a database where information is neither 
necessarily complete and nor valid, can be handled using possibilistic logic. One 
benefit of  the possibilistic modelling is to allow for the use of graded levels of  
validity, and of graded levels of certainty that the information is complete. 

1 Introduction 

The validity of the information stored in a database can be often asserted, but not 
always, depending on the reliability of the sources which are feeding the database. 
Dually, the information available on a given topic may be known as complete in the 
sense that all the true information pertaining to this topic is stored in the base, i.e., no 
missing items can be true; but often the completeness of the information cannot be 
asserted. 

Demolombe (1996a) gives the following illustrative example: 

"Let us take an example where a database contains 
information about flights which is represented by the 
relation schema: F(#Flight, Departure-city, Arrival-city, 
Company, Day). Assume that the information about 
validity is: all the tuples in the relation F corresponding 
to flights whose departure city or arrival city is Paris, 
represent true ,facts of  the world, and the information 
about completeness is all the true facts of  the world 
corresponding to flights whose company is Air France 
are represented by a tuple in the relation F." 

As pointed out, already a long time ago, in the database literature (e.g., Morro, 
1986, 1989), it might be desirable to inform the user about the validity and 
completeness of the retrieved information, when answering a given query. Thus, 
considering the previous example, Demolombe (1996a) writes 

"Now, if one asks the standard query: what are theflights 
from Paris to London ?, the answer to the corresponding 
validity query is: all the tuples in the answer are valid, 
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and the answer to the completeness query is the answer is 
complete for  all the tuples where the company is Air 
France." 

Several modelling frameworks have been proposed for handling various types of  
uncertainty in databases; see (Motro and Smets, 1997) for introductions to these 
different approaches. Possibility theory (Dubois and Prade, 1988) has been shown of  
particular interest for modelling partially-known attribute values (whose precise 
values are pervaded with imprecision and uncertainty), as well as standard null values 
(e.g., Bosc and Prade, 1997). Moreover, the modelling of  uncertainty provided by 
possibility theory can remain purely qualitative and is suitable for the representation 
of  partial ignorance. It is thus tempting to investigate how validity and completeness 
issues could be captured in the framework of  possibility theory. 

The paper  is organized in the fol lowing way. Section 2 discusses the 
representation of  validity and completeness information using possibility theory, 
where validity and certainty of completeness can be easily graded according to the 
sources providing the pieces of  data stored in the base. Section 3 suggests how 
possibilistic logic can handle queries w.r.t, to validity and completeness information. 
Section 4 briefly outlines directions for further research. 

2 Representing Validity and Completeness Information 

2.1 Possibility Theory 

In possibility theory, the assessment of  uncertainty is based on a [0,1 ]-valued measure 
of  possibility 11 and an associated measure of  necessity N. 1-I and N are supposed to 
be defined on a set of classical propositions closed under negation, conjunction and 
disjunction, l-I and N are such that the following duality relation holds, 

N(q)) = 1 - 1-I(-,q0). (1) 

This relation expresses that the more impossible '-,q)', the more certain (or necessary) 
'q0' is. Besides, N satisfies the min-decomposability characteristic properties 

N(q) ^ ~)  = min(N(q0), N(~)) (2a) 
and N(_L) = 0 (2b) 

where .1. denotes the contradiction. Moreover,  it enables the user to introduce 
intermediary states between the three basic epistemic states: ~p is true, i.e., N(q0) = 
[~(q)) = 1; q0 is false, i.e., N(q0) = l~(cp) = 0, and (p is unknown, i.e., N(q)) = 0 and 
l~(q0) = 1. These intermediary states are 

• q0 is believed, or accepted: N(q0) > 0 and l"I(q0) = 1 
(since min(N(q0), N(-~q0)) = 0, due to (2a-b), and due to (1) N(-,q0) = 0 ~ 1-I(q0) = 1), 

• q0 is disbelieved: [-I(q0) < 1 and N(q0) = 0 
(since N(-,q0) > 0 ~ N(q0) = 0 and N(-,q0) > 0 ¢=> lq(q0) < 1). 

A possibility measure l'I can be defined from a possibility distribution n on the set of  
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interpretations of  the language under consideration, in a finite setting. Namely,  we 
have 

II(cp) = maxe0~q~ r~(e0) and N0p) = min0) I~p (!  - rc(r.0)). 

The possibil i ty distribution r~ rank-orders the interpretations according to their 
plausibility. The use of  the real interval [0,1 ] is not compulsory; any discrete, linearly 
ordered, scale of  the form 1 = ~1 >.. .  > Ctn = 0 can be used as well, where 1 (resp. O) 
denotes the top (resp. bottom) element of  the scale (then the complementation to 1 in 
(1) is replaced by the order-reversing operation n of  the scale defined by n(cq) = c~ n_ 
i+l, V i = 1,n). 

2.2 Graded Validity and Completeness 

Let  s(x) be a statement corresponding to a potential or existing tuple x of  the 
relational database R under consideration (e.g., in the example of  the introduction, 
s(x) pertains to the description of  a flight x in terms of  the attributes "Flight number", 
"Departure_city", "Arrival_city", "Company" and "Day"). Let R(x) denotes the fact 
that the corresponding tuple is stored in the database, i.e., belongs to the relation R. 

Then, it is reasonable to admit that what is stored in the database corresponds to 
accepted beliefs, while what is not stored in the database is somewhat  disbelieved. 
Formally speaking, we have 

R(x) ::* N(s(x)) > 0 (3) 
and -,R(x) ~ I~(s(x)) < 1 (4) 

where N(s(x)) > 0 (resp. II(s(x)) < 1) expresses that the statement s(x) corresponding 
to x is believed to be true (resp. is somewhat disbelieved, i.e., is believed to be false 
due to (1)). Thus, (3) and (4) express how the presence, or the absence, of  a tuple x 
w.r.t, the database is understood. (3) and (4) are interpretative constraints which are 
supposed to hold. Moreover,  since s(x) represents a tuple information, it can be seen 
as the conjunction of  elementary pieces of  information si(x) corresponding to the 
different attributes, namely s(x) = Sl (x) ^ . . .  ix st(x). Then, note that N(s(x)) > 0 is 
equivalent to V j = 1,t, N(sj(x)) > 0 due to (2), while N(s(x))  < 1 expresses that 
altogether Sl(X) and..,  and st(x) is somewhat impossible. 

Some tuples in the database are asserted as being fully valid. By that, we mean 
that these tuples are not just believed to be true, but that their truth is fully guaranteed. 
This means that the person who enters the information corresponding to s(x) in the 
database considers that this information is fully reliable, taking the source which 
provides it, and its area of  competence,  into account. It is also supposed that it is 
checked that s(x) does not violate any integrity constraint, as any tuple entered in the 
database. Let  Val be the property describing the tuples whose validity is fully 
guaranteed, then we have for those tuples x 

R(x) A Val(x) ::> N(s(x)) = 1 (5) 

which expresses that if the tuple appears in the database and belongs to a family of  
tuples asserted as valid, then it is comple te ly  certain that it represents  true 
information. 

Expression (5) can be also equivalently written Val(x) ~ (R(x) ~ N(s(x)) = I),  
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which somewhat parallels Demolombe (1996a)'s view of validity which in its 
simplest form, can be represented under the form Val(cp) ~ (Bop ~ cp), which 
expresses that if a formula q0 is valid and if cp is believed by the database (which is 
expressed by Bq0 where B is a belief modality), then q~ is true. In fact, Demolombe 
(1996a) uses a slightly more sophisticated definition of validity, namely 
RV(p(x)) =def K(Vx (Bp(x) --) p(x)) where K is a modality pertaining to the 
knowledge of an agent. 

For other tuples, described as satisfying a property Comp, the information, is 
guaranteed to be complete; it means that 

-,R(x) ^ Comp(x) ~ l-I(s(x)) = 0 (6) 

i.e., if x is a tuple which satisfies Comp and which does not appear in the database, 
then it is false since the database is supposed to contain all the true tuples which 
satisfy Comp (e.g., in the example of the introduction, the predicate 'Comp' 
corresponds to the property of being an Air France flight). 

Thus we can distinguish between i) statements which are surely true (since the 
corresponding information is in the database and is validated), ii) statements which 
are believed although they might be false (they correspond to pieces of information in 
the database whose validity is not fully guaranteed), iii) statements which are 
disbelieved although they might be true (since the corresponding information is not in 
the database), and iv) statements which are surely false (since they do not correspond 
to a piece of information stored in the base and the base is known to have a complete 
information on the topic under consideration). 

In the possibility theory framework, it is easy to grade the levels of certainty, or 
the levels of possibility. Indeed, (3) and (4) can be modified into 

R(x) ~ N(s(x)) >_ o~ > 0 (7) 
and "~R(x) ~ 1-I(s(x)) < 13 < 1 (8) 

for expressing that our level of certainty that a tuple in database corresponds to a true 
statement, is at least cq and the level of possibility that a tuple x not in the database 
corresponds to a true statement, is upper bounded by [5 (i.e., the certainty that the 
statement corresponding to x is false is at least equal to 1 - [3). As already said at the 
end of Section 2.1, a discrete linearly ordered scale is enough for assessing possibility 
and necessity degrees, so that c~ (resp. 13) is, in practice, nothing more than the label of 
the minimal confidence in any information in the database (resp. the maximal 
possibility that an information not in the database is true), even if these labels are 
numerically encoded. It is only required that ~ is strictly greater than 0 (0 is the 
bottom element of the scale, i.e., the confidence is nonzero), and 13 is strictly less than 
1 (1 is the top element of the scale), although [5 can be as "close" to ! as it is 
meaningful in the scale. The inequality [5 < 1 expresses that any information outside 
the database is (at least slightly) less possibly true than a piece of information inside 
the database (since N(s(x)) > 0 ~ 1-[(s(x)) = 1). 

Besides, the reliability of the stored information depends on the sources which 
provide it. Thus, (5) can be generalized into 

R(x) ^ Vali(x) ~ N(s(x)) > oq > 0, i = 1,k (9) 

where the tuples which satisfy the property Vali are validated by source i whose level 
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of  reliability is cq. It is assumed that the sources can be rank-ordered according to 
their reliability and that there exists a more reliable source which provides pieces of  
information which are completely certain, i.e., cz I = 1 >_ o~ 2 _>... _> o~ k > 0. For the sake 
of  coherence, it is assumed that mini=l,k cq = C~k = c~ where oc appears in (7). Indeed, 
any information in a database is at least as certain as the certainty level attached to the 
information provided by the least reliable source which feeds the database. Clearly, 
the reliability of  a source may be topic-dependent. In such a case, we shall divide the 
source in several fictitious sources corresponding to each topic. 

Similarly for completeness information, (6) is generalized into 

"-R(x) A Compj(x) ~ I~(s(x)) -< 13j < 1,j = 1,~ rio) 

where the tuples which satisfy the property Compj are assumed to be complete in the 
database with a certainty level at least equal to 1 - 13j. The 13j's are supposed to be 
rank-ordered such that [}1 = 0 < 132 -<... < 1~2 < 1, with maxj ~j = I]g = ~ for the sake of  
coherence with (8). 

This enables us to distinguish between sets o f  pieces of  information which are 
more or less certainly valid, or more or less certainly complete. 

3 Processing Queries in Possibilistie Logic 

3.1 Possibilistic Logic 

The reader is referred to Dubois, Lang and Prade (1994a, b) for introductory and 
detailed presentations respectively. In the following, we only recall some basic points. 

A possibilistic logic formula (%00 is an ordered pair constituted of  a (first order or 
propositional) classical logic formula q0 and a weight o~ belonging to a totally ordered 
scale, e.g., [0,1], or a finite scale. (q0,~) is semantically interpreted as a constraint of  
the form N(q~) > oc where N is a necessity measure. Then the following resolution rule 
is in agreement with this semantics in terms of necessity measure: 

(9,00, ('q/,13) v-- (Resolvent(%~), min(oq3)). 

A particular case of  the resolution rule is the cut rule for the propositional case: 

(-,tp v ~J, c0 
(co v o, 13) 

(~  v O, min(ml3)) ' 

Refutation can be extended to this framework. Let K be a possibilistic knowledge 
base made of  a set of  possibilistic logic formulas put under clausal form (this can be 
always done thanks to the min-decomposability property of  necessity measures w.r.t. 
conjunction). Then, proving (q0,cQ from K, which can be written symbolical ly 
K ~- (%00, amounts to prove (2,00, where _1_ denotes the empty clause, by applying 
the resolution rule to K u {(-xp, 1)} repeatedly. Moreover we have, (%00 ~ (%c0 iff 

< or'; besides, if K ~ (%00 and K v-- (~0,oO, then K v- (% max(~x,oO). So we are 
looking for the refutation which provides the greatest lower bound. This syntactic 
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machinery is sound and complete with respect to a semantics in terms of  a possibility 
distribution encoding an ordering on the interpretations, in agreement  with the 
understanding of  (%00 as N(cp) > o~. 

Let us assume that a possibilistic knowledge base contains the two formulas 
(-N9 v V, o0, (-,g~ v -%0' v V, c~') with c~' > co. Then if  we add the information (~p,1), we 
can infer that (%00, while if  we have both (%1) and (q0',l), we can infer a more  
certain conclusion, namely ( % 0 0  using the more "specific" clause ( - ~  v %0' v V, or'), 
since or' > or. 

Besides, in possibilistic logic it is always possible to move literals from the 
formula  slot to the weight slot. Indeed, it can be shown that there is a semantic 
equivalence between ('~q) v V, c~) and (V, min(oq cp[m])) for instance, where q0[m] 
denotes the truth-value (1 for 'true', 0 for 'false') of  ~p for an interpretation m. It means 
that saying that -,(p v V is at least or-certain is semantically equivalent to say that ~ is 
c~-certain provided that (p is true (i.e., provided that we are in a situation m which 
makes  ~p true). This remark can be exploited when some literal cannot be eliminated 
in the resolution process, and more generally in hypothetical reasoning. 

3 , 2  A p p l i c a t i o n  t o  q u e r y  e v a l u a t i o n  

The machinery briefly recalled in Section 3.1 can be applied to querying a 
database  w.r.t, to validity and completeness  issues. Let  W(x) be a predicate  
expressing that the information reported in tuple x is indeed true in the real world. 
Then the validity and completeness information can be encoded by the following 
possibilistic knowledge base: 

{(-,R(x) v W(x), o0, 
(-~R(x) v "~Vali(x ) v W(x), oq) for i = 1,k, 
( R ( x )  v - , W ( x ) ,  1 - 1~), 
(R(x) v -~Compj(x) v -,W(x), 1 - 13j) for j  = 1,l~ }. 

It  expresses that 

- if  a tuple x appears in the (relational) database (i.e., R(x) holds), then this 
information is true in the world with certainty oq 

- if  moreover  x satisfies the validity condition Val i, it is certain at degree ~i > {x that 
it represents a true information, for i = 1,k; in particular for i = 1, the validity is 
completely guaranteed (or 1 = 1); 

- i f  a tuple x does not appear in the base, it is not true in the world with certainty I - 
13; 

- if moreover  x satisfies the completeness condition Compj, it is certain that it is not 
a true information with certainty degree 1 - [3j _> 1 - 13; for j  = 1, it is totally certain 
that the information x in the base, such that Compl  (x) is true, is complete (131 = 0). 

Let  us go back to the example of  Section 1. It writes, 

K = { (-,R(x) v W(x), ~), 
(-,R(x) v -~Depart(x, Paris) v W(x), 1), 
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(-,R(x) v -~Arriv(x, Paris) v W(x), 1), 
( R ( x )  v - ~ W ( x ) ,  1 - ~), 
(R(x) v -~Comp(x, Air France) v -~W(x), 1) }. 

Then, let us consider a flight which flies from Paris, i.e., it corresponds to tuples 
which are described by the possibilistic formula 

f=(Depar t (x ,  Paris), 1). 

I f  we are asking for what is the valid information, i.e., the x's such that W(x) is true, 
we proceed by refutation, adding the formula 

(-~W(x), 1) 

to K t j  {f}. Then by applying the resolution principle repeatedly and moving literals 
in the weight slot when necessary, we get the empty clause 

(_L, R(x)[o3]) 

which means that we are certain that the information about flight x is valid provided 
that it is in the base. Note that there is another way to get the empty clause but with a 
smaller weight, namely (_L, min(~z, R(x)[m])) by using the general rule (-,R(x) v W(x), 
(z) only. 

Assume we are looking for the flights for which the information is valid, i.e., we 
are interested in the x's such that -,R(x) v W(x) is true with a certainty as great as 
possible. So we add to K the two clauses (R(x), 1) and (-,W(x), 1) and we get (±,  
max((z, Depart(x, Paris)It0]), Arriv(x, Paris)I(0]), i.e., we obtain that the information 
about flights leaving from or arriving in Paris is valid, and to a less extent (certainty 
c0 that any information in the database is valid. More generally, we obtain (£,  max(cz, 
maxi=l,k min(oq, Vali(x)[m]))), which expresses that the items which satisfy Vali(x) 
are indeed valid with certainty degree ot i (since Vi, cq > or). 

If  we now ask what are the tuples in the base for which the information is 
complete, these tuples x are such as -,W(x) v R(x), i.e., if x is true in the world, it is in 
the base. Thus, proceeding by refutation from K, we add 

(-~R(x), 1) 
and (W(x), 1) 

to K, and we get by resolution (with the two last clauses of  K) 

(_1_, max(1 - 13, Comp(x, Air France)[o3]), 

i.e., we obtain the Air France flights (and by default, if Comp(x, Air France)[o)]) = 0 
any information is complete with certainty degree 1 - 13). 

R e m a r k :  Let us consider an example where we know that flight information in the 
database is valid both for the flights leaving from Paris or those leaving from London, 
and where we have a flight x 0 for which we do not know if it leaves from Paris or 
London. It writes 
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K' = { (-~R(x) v -~Depart(x, Paris) v W(x), 1), 
(-R(x) v -,Depart(x, London) v W(x), 1), 
(Depart(x 0, Paris) v Depart(x 0, London), 1) }. 

Then, wondering if the information about x 0 is valid, we add the formula (-~W(x0), I) 
to K', and we obtain ( l ,  R(x0)[E0] ), i.e., the information about x 0 stored in the 
database is valid. Let us imagine now that the validity information is itself imprecise, 
and only asserts that flight information about Paris departing flights o r  flight 
information about London departing flights is valid. In such a case, we should not 
conclude that the flight information about x 0 is valid. Moreover, it raises a technical 
problem since we would have to deal with a d i s junc t i on  of possibilistic logic formulas 
(namely here (-,R(x) v -Depart(x, Paris) v W(x), 1) o r  (-R(x) v -Depart(x, 
London) v W(x), 1)) which cannot be handled inside standard possibilistic logic 
(however here, by reasoning case by case on the possible actual contents of the 
knowledge base, it can be seen that indeed we cannot conclude that the information 
about x 0 is valid). It is however possible in the general case to compute a possibilistic 
logic knowledge base which is semantically equivalent to the disjunction of 
possibilistic knowledge bases; see (Benferhat et al., 1997) on this point. 

4 Concluding Remarks 

We have suggested a simple way for modelling validity and completeness 
information in the possibility theory framework, in this preliminary study. A careful 
comparison with the modal logic-based approach proposed by Demolombe (1996a, b) 
is still to be done. However possibility theory-based logic have connections with 
conditional modal logic (e.g., Farifias del Cerro and Herzig, 1991), so we should not 
be too much surprised by the existence of a possibilistic logic approach to the 
handling of valid and/or complete information in databases. 

One benefit of the possibilistic approach is to allow for graded level of certainty. 
Due to the inference mechanism of possibilistic logic, the most certain conclusions 
with respect to the available information, can be obtained. It would be also possible to 
keep explicitly track of the sources providing the information. This can be done by 
dealing with generalized possibilistic formulas of the form (q0, (Ix 1 / Sl, o~ 2 t s2 . . . . .  
cd n / sin)) with the following intended meaning: cp is true with certainty c~ 1 according 
to source s 1 . . . . .  with certainty c~ m according to source Sm. Thus, all the information 
provided by a source has not necessarily the same level of reliability (a source may be 
more reliable on some topics than others), and the certainty labels associated with 
formulas are now only partially ordered. However, the basic possibilistic machinery 
can be extended to this framework; see (Dubois, Lang and Prade, 1992) for details. 
See also Demolombe (1997) for another approach where, in a modal logic framework, 
the author can model that a source s o is as much as reliable as some other source s i 
(belonging to a set of sources used as references), by expressing that if an information 
is valid and believed by s 0, then it is also believed by s i. 

The validity information can be also easily incorporated into the framework 
proposed by (Prade and Testemale, 1984) for handling ill-known attribute values. 
Indeed in this approach the available information about attribute values in a tuple is 
represented by means of possibility distributions on the attribute domains. Asserting 
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the validity of a tuple, as being certain at least at level c~, then amounts to modifying 
each possibility distribution rc into re' = max(re, 1 - c0 (since there is a possibility 
1 - c~ that the information is not valid and thus that the value of the attribute is outside 
the (fuzzy) set of values restricted by re). Then, the evaluation of queries is made in 
terms of possibility and necessity measures, l-I and N, that each tuple satisfies the 
requirement. It can be easily checked that if [](Q) and N(Q) are the evaluations of a 
query Q based on ~z, the evaluation incorporating the validity assessment (based on re') 
are given by max(I](Q), 1 - o0 and min(N(Q), ~) respectively. The latter expresses 
that, even if N(Q) is high (which means that according to the information represented 
by re we are certain that Q is satisfied), we cannot be more certain of the relevance of 
the tuple w.r.t, the query than its validity degree ~. 

Obviously, these ideas have also to be experimented in real databases still, in 
order to check if they provide a satisfactory handling of the problem, at the practical 
level. 
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