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Abstract

The development, study, and experimental validation of cluster and grid middlewares are combersome, time
and resource consuming. Researchers need to deploy their middlewares on multiple nodes to test and evaluate
their modifications. But these middlewares are destine to be used in production with hundreds or thousands of
machines, and deploying at this scale to perform tests and evaluations is too costly. In this paper, we investigate
folding techniques to represent a full scale cluster on less physical machines. We evaluate the performance of
a distributed I/O benchmark application with respect to the level of folding to determine guidelines for future
folded experiments containing a distributed file-system.

1 Introduction
The increase of computing demands from scientists from all fields led to the development of computing cluster and
grid architectures. And with these new architectures came new challenges. Due to their high prices, clusters are
often shared among several research laboratories and teams. This sharing motivates the development of middlewares
such as batch schedulers that are responsible to assign the user jobs to physical machines, manage the state of the
resources, deal with reservation, etc. Such cluster, or grid, middlewares are complex applications of great research
interest, and they must be tested before reaching production. However, they are usually destine to operate in an
environment of hundreds or thousands of machines. Deploying a full scale environment is too costly to perform
simple tests and very specific evaluations.

We thus want to answer the following question: Can we reduce the number of physical machines needed
to perform a full scale experiment while keeping a similar behavior as the full scale system?

One solution to reduce the number of machines used for experiments would be to use simulation techniques.
The system, the applications, and the middlewares are modeled and can then be executed on a single node. Beside
reducing the number of machines used, simulators also reduce the execution time of the experiments. In the context
of distributed systems and applications, projects such as Simgrid [8] and Batsim [9] are leading the way. One
drawback of simulation is that the real middleware is not being executed, or not fully executed, but instead, a
partial or modelled version in a modelled environment. In the case of cluster and grid middlewares, the applications
are often far too complex to model them fully correctly.

Another approach is to fold the experiment by deploying more “virtual” resources on physical machines. In the
case of a Resources and Jobs Management Systems (RJMS), like Slurm [23] or OAR [5], it is possible to define
several resources, from the point of view of the RJMS, on a single machine, which would be completely transparent
for the users. For example, one can deploy a 1000-node virtual cluster on 10 physical nodes by defining 100 virtual
resources on each node. The advantage is that the experiment takes place on the real system (CPU, network, disk,
etc.) and with the real middleware code. The drawback is that this folding can introduce noise in the experiment
and degrade performance.

In this paper we evaluate the performance of a distributed I/O benchmark when we fold a computing cluster
onto itself, and quantify the impact of folding a computing cluster containing a file system. We then give a rule of
thumb for choosing the amount of folding for distributed experiences containing a distributed file-system.

Section 2 presents a motivating example for this study. Section 3 defines notions and concepts. We present the
experimental protocol in Section 4 and perform the evaluation in Section 5.
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Figure 1: Interactions between CiGri and the schedulers OAR of the computing grid. CiGri users submit Bag-of-
Tasks applications, whose jobs are then submitted to the different cluster schedulers of the computing grid. The
computing clusters are shared with users with more priority, thus CiGri jobs must be killed if one premium user
requires the resources.

2 Motivating Example: the CiGri middleware
CiGri [10] is a grid middleware in production at the French Gricad meso-center 1. The goal of CiGri is to use the
idle resources of the meso-center. It interacts with several clusters managed by OAR [5] batch schedulers.

Users of CiGri submit Bag-of-Tasks applications to the middleware. Such applications are composed of thou-
sands of short, independent and similar tasks are classified as embarrassingly parallel which make them a good
candidate for “filling the holes” in the cluster schedules. Monte-Carlo simulations or parameter sweeps are examples
of Bag-of-Tasks applications.

Once the set of tasks submitted to CiGri, the middleware will submit sub sets of jobs to the different schedulers
of the grid. The jobs are submitted with the lowest priority in order to allow premium users of the clusters to get
the resources used by CiGri jobs if needed.

Figure 1 depicts the interactions between CiGri and different clusters of the grid.
One problem of CiGri is its submission algorithm. CiGri will submit a batch of jobs the one scheduler, and

wait for the completion of the batch to submit again. This strategy can lead to an underutilization of the cluster
resources. Moreover, one objective of CiGri is to harvest in a non-intrusive fashion. Meaning that the premium
users of the different clusters must not notice the impact of the CiGri jobs on the platform. However, once executing,
the CiGri jobs are using the shared resources of the cluster (file-system, network, etc.), which can have an impact
on the performance of every user jobs.

In the context of research projects requiring to modify CiGri to control its job submission based on the cluster
file-system load [14, 12, 13, 21, 22], we must deploy and perform experimentation evaluation of a modified version of
CiGri on a realistic environment. It is unreasonable to deploy on the entire Gricad meso-center, or using simulation
due to the complex software stack (CiGri + OAR + users jobs). We are thus interested in folding strategies to
perform the evaluation of our CiGri modifications.

A study of the CiGri jobs running on the Gricad platform [11] gives a statistical description of the execution
times of those jobs. This allows us to use a sleep model to represent the execution times. As sleep calls are
extremely lightweight for a CPU to deal with, we are able to fold several virtual resources onto one physical
resource. However, as explained earlier, no realistic job only does computation without reading and/or writing
data. We can extend the previous job model by adding I/O operations before or after the sleep with the dd
command. This addition makes it less obvious how much we can afford to fold.

1https://gricad.univ-grenoble-alpes.fr/index_en.html
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(a) Folding with a factor of 1 (4 physi-
cal resources and 4 virtual resources).
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(b) Folding with a factor of 2 (2 physi-
cal resources and 4 virtual resources).
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(c) Folding with a factor of 4 (1 phys-
ical resource and 4 virtual resources).

Figure 2: Example of folding a deployment for a system with 4 resources. Figure 2a depicts the system deployed
at full scale. Figure 2c represent the system completely folded. And Figure 2b shows an intermediate folded
deployment.

The questions that we want to answer are thus the following:

1. What is the minimum number of machines we need to deploy to emulate a full scale cluster
with this job model while keeping the same performance in I/O?

2. Is there a trade-off between the number of physical resources used and the overhead of perfor-
mances due to the folding?

3 Definitions & Concepts
We define the folding of a deployment as the action of defining several “virtual resources” on a physical resource.
A physical resource is a node from a cluster, and a virtual resource represents a resource on the full scale system
from the point of view of the RJMS.

We also define the folding factor (ffold) as the division of the number of physical resources in the deployment
divided by the number of virtual resources. Intuitively, it represents the number of virtual resources for each physical
resource:

ffold =
#resourcevirtual
#resourcephysical

∈ [1,+∞[ (1)

Figure 2 depicts an example of folding a deployment.

4 Methodology
We aim at evaluating the variations in performance of a distributed application using a distributed file-system for
different value of folding factors (ffold). As explained in Section 2, the job model that we are using is a sleep time
to represent the CPU bound phase, and a dd operation to represent the I/O phase. The sleep operation allows us
to fold the CPU bound phase on the same machine easily without noise. We thus focus on the performance of the
I/O operations in a folded deployment.

4.1 Experimental Setup
The following experiments were carried on the gros cluster, located in Nancy, of the Grid’5000 [1] French test bed.
The machines of this cluster have an Intel Xeon Gold 5220 CPU with 18 cores, 96 GiB of memory, a 2 x 25 Gbps
(SR-IOV) network and a 480 GB SSD SATA Micron MTFDDAK480TDN disk. The reproducibility of the deployed
environment was ensured by NixOS Compose [15].
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File System

I/O ops.

IO node

(a) Distributed File system like NFS. Multiple clients
query a single I/O node that process all the requests.

File System

I/O ops.

IO node IO node

(b) Parallel File system like OrangeFS. Multiple clients
query in parallel all the I/O nodes.

4.2 Benchmark application
To evaluate the performance of the cluster file system, we chose to use the IOR [17] benchmark. IOR is a MPI
application to benchmark I/O performances. It is the most popular benchmark among research on I/O in HPC [3],
and is also used in the context of the IO500 list [16].

IOR has a multitude of parameters, but give the main ones here. We used the POSIX protocol (api=POSIX), a
transfer size (transferSize) of 1Mbytes and a segment count of 1 (segmentCount). We assigned a single file per
IOR process (filePerProc), and checked the correct writing and reading afterwards (checkWrite and checkRead).
The number of tasks (numTasks), which represent the number of IOR processes, and the block size (blockSize),
which is the total size of the file to read/write in this case, are parameters of the following experiments. We used
OpenMPI with the TCP backend.

4.3 Distributed File-Systems
For the chosen distributed file-systems, we used NFS and OrangeFS.

4.3.1 NFS (v4)

NFS [20] is a popular distributed file-system for small clusters. There is only one server. Clients mount the file-
system and can perform POSIX operations. Figure 3a depicts the simplified architecture of a distributed file system
like NFS. All the clients query the same I/O node for their files. NFS servers do have several workers that can manage
the requests concurrently. The NFS export options used are: *(rw,no_subtree_check,fsid=0,no_root_squash).
The NFS server runs under the default configuration (8 workers).

4.3.2 OrangeFS

OrangeFS [4] (or PVFS2) is a parallel file-system. This means that there are several servers (also called I/O
nodes) to answer the requests of the clients. Figure 3b depicts the simplified architecture of a parallel file-system
like OrangeFS. The clients query a I/O node of the file system. If one stripe asked by the client is not present
on the query I/O nodes, the file system indicate on which I/O node to find it. We used the default configuration
recommended by the OrangeFS installer (the I/O nodes host both the metadata and the storage). Moreover, in
our system (Section 2), we do not consider the problem of metadata.

4.4 Number of I/O nodes
In the case of PFS, like OrangeFS, we did not find any methodology nor “rule of thumb” to define the number of
I/O nodes for a computing cluster. In the following, we will consider OrangeFS file-systems with 1, 2, or 4 I/O
nodes. Note that in the case of NFS there is only one I/O node.
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4.5 I/O load
We consider 5 different sizes of I/O operations to perform, both in writing and reading: 1Mbytes, 10Mbytes,
100Mbytes, 500Mbytes, and 1Gbytes. These file sizes will be the values of the IOR blockSize option.

4.6 Number of CPU nodes
As a first step, and because we aim at emulating clusters from regional meso-centers, we will thus consider small
clusters of 8, 16, 24, and 32 nodes. These number of nodes will be the values of the IOR numTasks option: one
tasks per node of the cluster.

4.7 Protocol
Let us consider a system with N CPU nodes. We first deploy the system at full scale, i.e., N machines and the I/O
nodes of the file system. As IOR is an MPI application, we compute the hostfile with one slots per compute
node. We then start the IOR benchmark, that we repeat 5 times (the IOR repetitions option), and gather the
performance reports. We remove one compute node from the hostfile and recompute the slots for the remaining
nodes to keep the number of processes (numTasks) constant. This protocol is then repeated for all the different
variations: number of CPU, size of I/O operations, type of file system, number of I/O nodes.

Figure 4 shows a visual representation of the experimental protocol for an experiment with 4 CPU nodes.

5 Evaluation
In this Section, we present the results of the experiments presented in the previous section. We first consider the
file-system of the cluster to be NFS in Section 5.1, and then OrangeFS in Section 5.2.

5.1 Evaluation of NFS
Figure 5 shows the results of the experiments when using NFS. We also plot the 95% confidence intervals. Note
that we did not remove the outliers. We notice that the writing performances (bottom row) does not seem to be
affected by the folding of the deployment as it remains flat. However, for the reading performances (top row), we
can see that the reading times increasing for higher folding factor. This means that the more we fold, the more we
degrade the reading performances.

Take away # 1

Write operations on NFS do not seem to be affected by the folding of the deployment. On the other hand,
read operation performances degrade the more the cluster is folded with a quadratic behavior.

We modeled the reading performances based on the size of the file to read and the number of CPU nodes
involved. Figure 6 shows the results of a linear regression between the reading time and the folding ratio, file size
and number of CPU nodes involved. We fitted a model with the following form:

tread(ffold, fsize) ≃ α+ β1ffold
2 + β2fsize + γffold

2fsize (2)

with α, β1, β2, γ ∈ R the coefficients of the model. The R2 of the fitting is 0.9982.
Figure 6 shows the fitting of the model on the NFS data. The bottom row represents the same information

as the top one, but in log scale. We can see that the model fits all the file sizes but for 1M. We believe that the
variations in performance for the 1M files are due to noise.

We are interested in knowing the maximum folding factor (ffold) possible for a desired file size (fsize). Let p > 1
be the percentage of increased reading time compared to the full scale deployment containing nbcpu CPU nodes.
By using the definition of the model for tread in Equation 2, we get:

tread(f, fsize)

tread(nbcpu, fsize)
< p =⇒ f <

√
p× tread(nbcpu, fsize)− (α+ β2fsize)

β1 + γfsize
(3)
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File System

I/O ops.

node1 node2 node3 node4
slots=1 slots=1 slots=1 slots=1

(a) Initial deployment at full scale: one process per node.

File System

I/O ops.

node1 node2 node3 node4
slots=1 slots=1 slots=2 slots=0

(b) We remove node4 and add one extra slot to node3.

File System

I/O ops.

node1 node2 node3 node4
slots=2 slots=0 slots=2 slots=0

(c) We remove node2 and add one extra slot to node1.

File System

I/O ops.

node1 node2 node3 node4
slots=4 slots=0 slots=0 slots=0

(d) We remove node3 and reach a fully folded deploy-
ment.

Figure 4: Graphical representation of the experimental protocol presented in Section 4. We start with a full scale
deployment, i.e., one MPI process (viewed as a virtual resource) per physical node (Figure 4a), and remove from
the hostfile the physical nodes one by one while keeping the number of MPI processes (i.e., the number of virtual
resources) constant. We recompute the number of slots per node to balance the processes (Figures 4b and 4c).
The experiment stops when there is no more node to remove (i.e., after Figure 4d).
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Figure 5: Evolution of the reading (top row) and writing (bottom row) times based on the folding factor (x-axis)
for experiments with different cluster size (i.e., number of CPU nodes) and different sizes of file to read and write
(point shape). We observe that the writing performances are not affected by the folding, but that the reading ones
are, and that the degradation has quadratic growth with respect to the folding factor.
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scale. We can see that the model fits correctly the data for file sizes greater than 10M. 1M files does not seem to
be affected by the folding, and their variation in performance seem to be due to noise.
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Figure 7: Figure 7a shows the maximum folding factor to use to have a desired overhead on the reading times on
NFS base on the file size. Figure 7b shows the distribution of the number of read requests per size on ANL-Theta.
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Figure 8: Evolution of the writing times with OrangeFS based on the folding factor (ffold) for experiments with
different number of CPU and I/O nodes and different sizes of file to write.

Take away # 2

For files of size 10M, folding 10 resources onto a single physical resource leads to a degradation of 5%. To
reach the same degradation for file size of 100M or 1G, the maximum folding factor would be 5. (Figure 7a)

From the model defined previously, Figure 7a, and the Darshan [7, 6] logs from ANL-Theta between 2019 and
2022 (Figure 7b)2, we can have an estimation of the overhead if we decided to rerun these Darshan logs (on NFS
and with the job model considered in Section 2) with different folding factors. For example, a folding factor of
10 would lead to an overhead of 64 hours over 4 years (i.e., an increase of 0.2%), while requiring 10 times fewer
machines.

5.2 Evaluation of OrangeFS
In the case of OrangeFS, there is an extra dimension to explore: the number of I/O nodes in the file-system.

Figures 8 and 9 show respectively the evolution of the performance in reading and writing time of the IOR
benchmark for different number of CPU nodes in the cluster and I/O nodes in the file-system, as well as different
sizes of file to read/write.

We can see on Figure 8 that contrary to NFS, there is a significant loss of performance for the write operations
when increasing the folding factor. This loss of performance appears more significant when there are more I/O
nodes in the file-system.

Concerning the reading performances (Figure 9), we observe the same behavior as for NFS. High folding factors
lead to an increase of reading time. The increase appears greater when there are more I/O nodes in the file-system.

2This data was generated from resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357.
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Figure 9: Evolution of the reading times with OrangeFS based on the folding factor (ffold) for experiments with
different number of CPU and IO nodes and different sizes of file to read.
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Figure 10: Model of the breaking point in behavior of performance in reading (left) and writing (right) for 32 CPU
nodes (nbcpu) and 4 I/O nodes (nbio). The model (dashed line) comes from Equation 4.

The start of this increase seems to depend on the number of CPU nodes. The more CPU nodes, the later the
increase starts. It is interesting to note that the variation when measuring the reading time during the experiments
is smaller (thus more stable) than for NFS.

Take away # 3

The reading performance of a fully folded deployment does not depend on the number of I/O nodes in
OrangeFS (Figure 9).

For both reading and writing performances there seem to be two behaviors. First a phase where the folding
does not affect the performances, and then, from a given folding factor, the reading/writing times grow linearly. As
we want to know the maximum folding factor until which the folded system behaves like a full scale system, we are
now interested in finding this breakpoint where the behavior changes. Using segmented regression techniques [19],
we found a model that we simplified to make it a rule of thumb:

fbreak,r ≃ 1 + 0.3× nbcpu − 0.5× nbio

fbreak,w ≃ 2 + 0.3× nbcpu − 0.5× nbio
(4)

where, fbreak,r and fbreak,w are respectivelly the folding factor of the breakpoint for the reading and writing
performances, nbcpu and nbio are the number of CPU and I/O nodes in the system.

Take away # 4

For writing and reading times on OrangeFS, there is a breakpoint in performance before which there is no
degradation. We modeled rules of thumb to them in Equation 4. These rules of thumb are depicted in Figure
10.

As fbreak,w (Equation 4) will always be greater than fbreak,r, the overall breaking point in performance
for OrangeFS is fbreak,r.
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6 Conclusion
In this paper, we investigated the use of folding techniques to reduce the number of deployed machines for the large
scale evaluation of applications such as grid and cluster middlewares. We have seen that folding requires a change
in the job model We focused on the impact on the performances of the file-system. To do so, we took a distributed
I/O benchmark, IOR, and ran it for several cluster sizes, I/O loads and distributed file-systems. We analyzed the
results of the benchmark and reached to the following conclusions:

• Write operations on NFS are not subject to folding (Take away 1).

• The performance of read operations on NFS can be modeled with a quadratic relation, and this model can be
used to determine the maximum folding for an accepted degradation (Take away 2).

• The performance of read operations in a fully folded cluster with OrangeFS do not depend on the number of
I/O nodes (Take away 3).

• There are breaking point in reading and writing performance for OrangeFS when the fold the cluster. Equation
4 gives rules of thumb to estimate these breakpoints (Take away 4).

This study presents some limitations. The studied file-systems are not among the most popular in large HPC
centers. It would be interesting to consider file-systems such as Lustre[18] of BeeGFS[2]. The reasons of this loss of
performance due to folding are still unclear. The main suspect is the network. We did observe a speed similar (23
Gbps) to the one advertised on the NIC (25 Gbps). We think that the overhead can be due to the TCP protocol.
Investigating different network protocol like InfinyBand or OmniPath would be interesting.
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