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Abstract

In this article, we extend the integration by parts formulae (IbPF) for the laws of
Bessel bridges recently obtained in [2] to linear functionals. Our proof relies on
properties of hypergeometric functions, thus providing a new interpretation of these
formulae.
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1 Introduction

1.1 Bessel SPDEs

Recently a family of stochastic PDEs which are infinite-dimensional analogues of
Bessel processes were studied in [2] and [1]. These SPDEs define reversible dynamics
for the laws of Bessel bridges, and have remarkable properties reminiscent of those
of Bessel processes. In particular, they have the same scaling property as the additive
stochastic heat equation, and are expected to arise as the scaling limits of several
discrete dynamical interface models constrained by a wall. While the Bessel SPDEs
of parameter � � 3, which are reversible dynamics for the laws of Bessel bridges of
dimension � � 3, had been introduced by Zambotti in the articles [7] and [8], an open
problem for several years was to extend the construction to � < 3: apart from the
derivation of an integration by parts formula for the special value � = 1 – see [9] and
[3] – the extension to the whole regime � < 3 had remained out of sight. This extension
was a major challenge since, while the laws of Bessel bridges of dimension � � 3 can be
represented as Gibbs measures with respect to the law of a Brownian bridge with an
explicit, convex potential, such a representation fails for the laws of Bessel bridges of
dimension � < 3, see Chap. 3.7 and 6.8 in [10]. Indeed, the latter are not log-concave
and, when � < 2, they are not even absolutely continuous with respect to the law of a
Brownian bridge. In such a context, one in general cannot hope to construct an SPDE
with the requested invariant measure. However, by exploiting the remarkable properties
of Bessel bridges, the recent articles [2] and [1] have achieved this extension.
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IbPF for Bessel bridges via hypergeometric functions

1.2 Integration by parts formulae

Let C([0, 1]) be the space of continuous real-valued functions on [0, 1]. By deriving
integration by parts formulae (IbPF) for the laws of Bessel bridges of dimension � < 3 on
the space C([0, 1]), [2] and [1] have identified the structure that the corresponding SPDEs
should have: namely, these SPDEs should contain a drift described by renormalised local
times of the solutions (see (1.11)–(1.13) in [2]), which is an analogue to higher orders
of the principal value of local times appearing in the SDE satisfies by Bessel processes
of dimension smaller than 1, see e.g. Exercise 1.26 in [5, Chap. XI.1]. The IbPF were
also exploited to construct weak stationary solutions of these SPDEs in the special cases
� = 1, 2, using Dirichlet form techniques, see [2, Section 5] and [1, Section 4].

1.3 Verification of the formulae for a different class of test functions

The IbPF proved in Theorem 4.1 of [2] and Theorem 3.1 of [1] are valid for functionals
of the form

�(X) = exp
�
�hm,X2i

�
, X 2 C([0, 1]), (1.1)

where we use the notation hm,X2i =
R 1
0 X(r)2 dm(r), and where m is any finite Borel

measure on [0, 1]. The reason for considering functionals as above is that squared Bessel
bridges possess a remarkable additivity property which allows to compute semi-explicitly
their Laplace transform, see [5, Chap. XI.3]. Note that observables defined by functionals
of the form (1.1) characterize the laws of Bessel bridges, since those are supported on
the set of non-negative paths. It is nevertheless natural to ask whether the IbPF obtained
in [2] and [1] still hold as such when one replaces functionals of the form (1.1) by more
general ones. In this article we show that these IbPF still hold for a very different class of
test functionals. Namely, given a function ' 2 C([0, 1]), we consider the linear functional
� defined on L2([0, 1]) by

�(X) := h', Xi, (1.2)

where we use the notation h', Xi =
R 1
0 '(r)X(r) dr. Note that, when ' is not identically

0, � is not bounded, and therefore may not be written as a function of the form (1.1), so
the results of [2] and [1] do not apply. However, it turns out that the IbPF still hold for
such a functional �. One striking feature of these formulae is the fact that, when � < 3,
they involve a renormalisation procedure using Taylor polynomials either of order 0 (for
� 2 (1, 3)) or of order 2 (for � 2 (0, 1)), however there is no regime where only first-order
renormalisation is required, as one would expect in the window � 2 (1, 2). This absence of
transition at � = 2 was already observed in [2, Remark 4.3] for functionals � of the form
(1.1). Note that those functionals are very special, in particular they depend smoothly in
X2. On the other hand, non-zero functionals of the form (1.2) depend smoothly on X but
not on X2, however the absence of transition at � = 2 holds for such functionals as well.
Moreover, in a forthcoming article, we will show that a similar phenomenon actually
holds for any functional � : L2(0, 1) ! R which is bounded, C1, with bounded Fréchet
differential. All these results support the conjecture, raised in [2], that the first-order
derivative of the diffusion local times of the solutions to the Bessel SPDEs must vanish
at 0, so that the drift term appearing in these SPDEs needs to be renormalised at order
0 and 2, for � 2 (1, 3) and � 2 (0, 1) respectively, but never at order 1: see Remark 2.2
below.

1.4 Hypergeometric functions

The proof of the IbPF for functionals of the form (1.2) has its own interest, as it
provides an interpretation of the IbPF using properties of hypergeometric functions.
More precisely, we exploit the fact that two-point functions of Bessel bridges can be
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IbPF for Bessel bridges via hypergeometric functions

written using hypergeometric functions, see (2.10) below. This fact is reminiscent of
Cardy’s formula for Bessel processes which, for the special value � = 5/3, admits an
interpretation in terms of the crossing probability for a critical percolation model: see
[4, Chap. 1.3].

2 The formulae for linear functionals

Henceforth, as in [2], for all � > 0, we denote by P � the law, on C([0, 1]), of a
�-dimensional Bessel bridge from 0 to 0 on [0, 1], and let E� denote the associated
expectation operator (see [5, Chap XI.3] for the definition of Bessel bridges). For all
b � 0 and r 2 (0, 1), we set as in Def. 3.4 of [2]

⌃�
r(dX | b) := p�r(b)

b��1
P �[dX |Xr = b], (2.1)

where P �[dX |Xr = b] is the law of a �-Bessel bridge between 0 and 0 pinned at b at time
r, see [2, Section 3.3], and p�r is the probability density function of Xr under P �, given by

p�r(b) =
b��1

2
�
2�1 �( �2 )(r(1� r))�/2

exp

✓
� b2

2r(1� r)

◆
, b � 0.

We also recall the definition of a family of Schwartz distributions on [0,1), denoted by
(µ↵)↵2R, that plays an important role in the IbPF:

• if ↵ = �k with k 2 N [ {0}, we set

hµ↵, i := (�1)k (k)(0), 8 2 S([0,1))

• else, we set

hµ↵, i :=
Z +1

0

0

@ (x)�
X

0j�↵

xj

j!
 (j)(0)

1

A x↵�1

�(↵)
dx, 8 2 S([0,1)),

where S([0,1)) is the family of C1 functions  : [0,1) ! R such that, for all k, l � 0,
there exists Ck,` � 0 satisfying

| (k)(x)|x`  Ck,`, 8x � 0.

In addition, for any Fréchet differentiable � : L2([0, 1]) ! R and any h 2 L2([0, 1]), we
denote by @h� the directional derivative of � along h:

@h�(X) = lim
✏!0

�(X + ✏h)� �(X)

✏
, X 2 L2([0, 1]).

In particular, for � of the form (1.2), @h�(X) = h', hi for all X 2 L2([0, 1]). Finally, we
denote by C2

c (0, 1) the space of C2 functions compactly supported in (0, 1). With these
notations at hand, we may now state the main result of this article.

Theorem 2.1. Let � > 0. For all ' 2 C([0, 1]), setting �(X) = h', Xi, then for all
h 2 C2

c (0, 1) we have

E�(@h�(X)) = �E�[hh00, Xi�(X)]

� �(�)

4(� � 2)

Z 1

0
dr h(r) hµ��3(db),⌃

�
r(�|b)i.

(2.2)
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Remark 2.2. By Lemma 2.4 below, for a functional � of the form (1.2), and for all
r 2 (0, 1), ⌃�

r(�|b) is a smooth function of b2, so in particular

d

db
⌃�

r(�|b)
��
b=0

= 0. (2.3)

Recalling the definition of the distribution µ�, we thus retrieve from (2.2) the formulae
of Theorem 4.1 in [2]. Note in particular that, due to (2.3), the apparent singularity
at � = 2 due to the term 1

��2 is cured by the vanishing at � = 2 of hµ��3(db),⌃�
r(�|b)i.

The vanishing property (2.3) was already observed in [2] and [1] when � is of the form
(1.1): for such functionals, which are very special as they depend smoothly on X2, it was
noted that ⌃�

r(�|b) is a smooth function of b2, but it was unclear whether ⌃�
r(�|b) has a

more complicated dependence on b for more general functionals �. On the other hand
(2.3) above shows that the smoothness of ⌃�

r(�|b) in b2 remains true even when �(X) is
not smooth in X2, as is the case for non-zero functionals � of the form (1.2). From the
dynamical viewpoint, this supports the conjecture, proposed in [2] and [1] that, for all
x 2 (0, 1), the family of diffusion local times (`bt,x)b,t�0 of the process (u(t, x))t�0, where
u is a solution to the Bessel SPDE of parameter �, satisfies

@

@b
`bt,x

��
b=0

= 0.

As a consequence, the Taylor polynomials based at b = 0 of `bt,x are even. Thus, the Taylor
remainders appearing in the Bessel SPDEs (1.11)–(1.13) in [2] jump, as � goes below 1,
from 0th order to 2nd order, and there is no window for � where the SPDE involves a
renormalisation of purely order 1.

Remark 2.3. While [2] proved IbPF for the laws of Bessel bridges from 0 to 0, [1]
extended these formulae to the case of bridges with arbitrary endpoints a, a0 � 0. In this
article, we are considering for simplicity the former case, for which the interpretation
in terms of hypergeometric functions is more transparent, but we believe Theorem 2.1
remains true for bridges with arbitrary endpoints as well.

In the remainder of this article, we prove Theorem 2.1. Note that given the linearity
of our test functional � = h', ·i, the above formula can be rewritten in the following way:

h', hi = �
Z 1

0
'(s)

Z 1

0
h00(r)E� [XsXr] dr ds

� �(�)

4(� � 2)

Z 1

0
ds'(s)

Z 1

0
dr h(r) hµ��3(db),⌃

�
r(Xs|b)i.

(2.4)

In the last line, we used that, for all r 2 (0, 1)

hµ��3(db),⌃
�
r(�(X)|b)i =

Z 1

0
ds'(s)hµ��3,⌃

�
r(Xs|b)i. (2.5)

We will first justify this interversion. To do so we invoke the following result which
shows that, for all r 2 (0, 1), the function (s, b) ! ⌃�

r(Xs|b) is analytic on the domain
(s, b) 2 (0, 1) \ {r}⇥R+.

Lemma 2.4. For all r, s 2 (0, 1), r 6= s, and b � 0, we have

⌃�
r(Xs|b) =

1

2�/2�1(r(1� r))�/2
exp

✓
�D(s, r)

2
b2
◆ 1X

k=0

Ckfk(s, r) b
2k,

where

D(s, r) := 1{s<r}
1� s

(r � s)(1� r)
+ 1{s>r}

s

r(s� r)
,
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and, for all k � 0

Ck :=
�(k + �+1

2 )

�(�/2)�(k + �/2) k!
,

and

fk(s, r) =
1{s<r}

(2 (r � s))k�
1
2

⇣s
r

⌘k+1/2
+

1{s>r}

(2 (s� r))k�
1
2

✓
1� s

1� r

◆k+1/2

.

Proof. Assume for instance that s < r. Then, the joint law of (Xs, Xr) on [0,1)2, when
X is distributed as P �, is given in terms of the transition densities (p�t (x, y))t>0,x,y�0 of a
�-dimensional Bessel process by

p�s(0, a) p
�
r�s(a, b)

p�1�r(b, 0)

p�1(0, 0)
da db, (2.6)

where we use the notation
p�1�r(b, 0)

p�1(0, 0)
= lim

✏!0

p�1�r(b, ✏)

p�1(0, ✏)
,

see [5, Chap XI.3]. Therefore, for all b � 0,

⌃�
r(Xs|b) =

p�r(b)

b��1
E�

r [Xs|Xr = b] =

Z 1

0

p�s(0, a)p
�
r�s(a, b)

b��1

p�1�r(b, 0)

p�1(0, 0)
a da.

Recalling from [5, Chap. XI.1] that, for all a, b > 0,

p�s(0, a) =
a��1

2�/2�1 s�/2 �(�/2)
exp

✓
�a2

2s

◆
,

p�r�s(a, b) =
b

r � s

✓
b

a

◆�/2�1

exp

✓
� a2 + b2

2(r � s)

◆ 1X

k=0

⇣
ab

2(r�s)

⌘2k+�/2�1

k!�(k + �/2)
,

p�1�r(b, 0)

p�1(0, 0)
= (1� r)��/2 exp

✓
� b2

2(1� r)

◆
,

the result follows at once by applying Fubini and by computations of integrals in terms
of the � function.

As a consequence, we deduce that the equality (2.5) holds for all r 2 (0, 1). Indeed,
since µ��3 is the distributional third-order derivative of µ� (see Prop 2.5 in [2]), we have

hµ��3(db),⌃
�
r(�(X)|b)i = �hµ�(db),

d3

db3
⌃�

r(�(X)|b)i

= � 1

�(�)

Z 1

0
db b��1 d3

db3
⌃�

r(�(X)|b),

and Lemma 2.4 ensures that
Z 1

0
ds

Z 1

0
db b��1

����
d3

db3
⌃�

r(Xs|b)
���� < 1. (2.7)

Hence, we deduce that

hµ��3(db),⌃
�
r(�(X)|b)i = �hµ�(db),

d3

db3
⌃�

r(�(X)|b)i

= �
Z 1

0
ds'(s)

1

�(�)

Z 1

0
db b��1 d3

db3
⌃�

r(Xs|b)

= �
Z 1

0
ds'(s) hµ�,

d3

db3
⌃�

r(Xs|b)i

=

Z 1

0
ds'(s) hµ��3,⌃

�
r(Xs|b)i,
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where an application of Fubini justified by (2.7) was used to obtain the second line.
Hence, the claimed equality (2.5) follows, and the proof of Theorem 2.1 indeed reduces
to establishing the equality (2.4). To prove the latter, it suffices to prove that the following
equality holds ds-almost-everywhere:

h(s) = �
Z 1

0
h00(r)E� [XsXr] dr

� �(�)

4(� � 2)

Z 1

0
dr h(r) hµ��3(db),⌃

�
r(Xs|b)i.

In turn, the latter equality will follow upon showing that, for all s 2 (0, 1), the function
r 7! E� [XrXs] satisfies the following equality of distributions on (0, 1):

d2

dr2
E� [XrXs] = ��s(r)

� �(�)

4(� � 2)
hµ��3(db),⌃

�
r(Xs|b)i,

(2.8)

where �s denotes the Dirac measure at s. The proof of (2.8) will rely on the explicit
computation of second moments of Bessel bridges using hypergeometric functions.

Proof of equality (2.8). First step: We start by showing that, for all s 2 (0, 1), the
function r 7! E� [XrXs] is twice differentiable for r 2 (0, 1) \ {s}, and that

d2

dr2
E� [XrXs] = � �(�)

4(� � 2)
hµ��3(db),⌃

�
r(Xs|b)i. (2.9)

Assume for instance that 0 < s < r < 1. Then, using the expression (2.6) for the joint

density of (Xs, Xr), where X
(d)
= P �, we obtain

E�[XsXr] = 2
�
�
�+1
2

�2

�
�
�
2

�2
(r � s)�/2+1 (s(1� r))1/2

(r(1� s))
�+1
2

2F1

✓
� + 1

2
,
� + 1

2
,
�

2
,
s(1� r)

r(1� s)

◆
, (2.10)

while, by Lemma 2.4, the right-hand side of (2.9) equals

� 1

2

�
�
�+1
2

�2

�
�
�
2

�2
(r � s)�/2�1s1/2

(1� r)3/2r
�+1
2 (1� s)

��3
2

2F1

✓
� + 1

2
,
� � 3

2
,
�

2
,
s(1� r)

r(1� s)

◆
(2.11)

where 2F1 denotes the hypergeometric function. Recall that the hypergeometric function

2F1 is defined, for all a, b, c 2 C \Z�, and all z 2 C such that |z| < 1, by

2F1(a, b, c, z) :=
+1X

k=0

(a)k(b)k
k!(c)k

zk

where, for any ↵ > 0 and k � 0,

(↵)k :=

(
1, if k = 0

↵(↵+ 1) . . . (↵+ k � 1), if k � 1.

Note that the second argument of the hypergeometric function appearing in (2.10), �+1
2 ,

differs by 2 from the one appearing in (2.11), ��3
2 . Hence, in order to prove the equality

(2.9), we need to exploit a differential equality relating 2F1(a, b, c, z) to 2F1(a, b0, c, z), for
any two parameters b and b0 differing by an integer. Such a relation is provided by the
following property:
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Lemma 2.5.

d

dz

�
zc�b(1� z)a+b�c

2F1(a, b, c, z)
�
= (c� b) zc�b�1(1� z)a+b�c�1

2F1(a, b� 1, c, z). (2.12)

Proof. Since the above relation does not seem easy to find in the litterature, we provide
a proof. Note that the left-hand side of (2.12) takes the form

zc�b�1(1� z)a+b�c�1S(a, b, c, z),

where

S(a, b, c, z) =
1X

k=0

(a)k(b)k
k!(c)k

⇥
(k + c� b)(1� z)zk � (a+ b� c)zk+1

⇤

=
1X

k=0

(a)k(b)k
k!(c)k

⇥
(k + c� b)zk � (k + a)zk+1

⇤
.

Now, recalling that (a)k(k + a) = (a)k+1, it follows that

1X

k=0

(a)k(b)k
k!(c)k

(k + a)zk+1 =
1X

k=0

(a)k+1(b)k
k!(c)k

zk+1

=
1X

k=1

(a)k(b)k�1

(k � 1)! (c)k�1
zk

=
1X

k=1

(a)k(b)k�1

k!(c)k
k(c+ k � 1) zk.

Therefore,

S(a, b, c, z) = (c� b) +
1X

k=1

(a)k(b)k�1

k!(c)k
[(b+ k � 1)(k + c� b)� k(c+ k � 1)] zk.

Since, for all k � 1, (b+ k� 1)(k+ c� b)� k(c+ k� 1) = (c� b)(b� 1), and recalling that
(b� 1)(b)k�1 = (b� 1)k, we deduce that

S(a, b, c, z) = (c� b) + (c� b)
1X

k=1

(a)k(b� 1)k
k!(c)k

zk = (c� b) 2F1(a, b� 1, c, z),

so the claim follows.

We exploit the relation provided by Lemma 2.5 as follows. Let s 2 (0, 1), and r 2 (s, 1).
Setting z := s(1�r)

r(1�s) , we have

1� z =
r � s

r(1� s)
.

Therefore, equality (2.10) can be rewritten as follows

E�[XsXr] = K(�) s(1� r) z�1/2(1� z)�/2+1
2F1

✓
� + 1

2
,
� + 1

2
,
�

2
, z

◆

where

K(�) := 2
�
�
�+1
2

�2

�
�
�
2

�2 .
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Therefore, for all r 2 (s, 1), we obtain, by the Leibniz formula and the chain rule

d

dr
E� [XrXs] = �K(�) sz�1/2(1� z)�/2+1

2F1

✓
� + 1

2
,
� + 1

2
,
�

2
, z

◆

+K(�) s(1� r)
dz

dr

d

dz

✓
z�1/2(1� z)�/2+1

2F1

✓
� + 1

2
,
� + 1

2
,
�

2
, z

◆◆
.

But dz
dr = � s

r2(1�s) , and, by Lemma 2.5, it holds

d

dz

✓
z�1/2(1� z)�/2+1

2F1

✓
�+1

2
,
�+1

2
,
�

2
, z

◆◆
=�1

2
z�3/2(1�z)�/22F1

✓
�+1

2
,
�� 1

2
,
�

2
, z

◆
.

Hence we obtain

d

dr
E� [XrXs] = �K(�) sz�1/2(1� z)�/2+1

2F1

✓
� + 1

2
,
� + 1

2
,
�

2
, z

◆

�K(�) s(1� r)
s

r2(1� s)

✓
�1

2
z�3/2(1� z)�/22F1

✓
� + 1

2
,
� � 1

2
,
�

2
, z

◆◆

= �K(�) sz�1/2(1� z)�/2+1
2F1

✓
� + 1

2
,
� + 1

2
,
�

2
, z

◆

+K(�)
1

2

1� s

1� r
z1/2(1� z)�/22F1

✓
� + 1

2
,
� � 1

2
,
�

2
, z

◆
.

Differentiating with respect to r a second time, we obtain

d2

dr2
E� [XrXs] = �K(�) s

dz

dr

d

dz

⇢
z�1/2(1� z)�/2+1

2F1

✓
� + 1

2
,
� + 1

2
,
�

2
, z

◆�

+
1

2
K(�)

1� s

(1� r)2
z1/2(1� z)�/22F1

✓
� + 1

2
,
� � 1

2
,
�

2
, z

◆

+
1

2
K(�)

1� s

1� r

dz

dr

d

dz

⇢
z1/2(1� z)�/22F1

✓
� + 1

2
,
� � 1

2
,
�

2
, z

◆�
.

Using again the expression for dz
dr , as well as Lemma 2.5, we deduce that

d2

dr2
E� [XrXs] = K(�) s

(1� r)

r2(1� s)

⇢
�1

2
z�3/2(1� z)�/22F1

✓
� + 1

2
,
� � 1

2
,
�

2
, z

◆�

+
1

2
K(�)

1� s

(1� r)2
z1/2(1� z)�/22F1

✓
� + 1

2
,
� � 1

2
,
�

2
, z

◆

� 1

2
K(�)

1� s

1� r

s

r2(1� s)

⇢
1

2
z�1/2(1� z)�/2�1

2F1

✓
� + 1

2
,
� � 3

2
,
�

2
, z

◆�
.

The first two terms cancel out, so that we obtain

d2

dr2
E� [XrXs] = �K(�)

4

s

r2(1� r)
z�1/2(1� z)�/2�1

2F1

✓
� + 1

2
,
� � 3

2
,
�

2
, z

◆

= �K(�)

4

(r � s)�/2�1s1/2

(1� r)3/2r
�+1
2 (1� s)

��3
2

2F1

✓
� + 1

2
,
� � 3

2
,
�

2
,
s(1� r)

r(1� s)

◆

and, by (2.11), the last expression is equal to

� �(�)

4(� � 2)
hµ��3( db),⌃

�
r(Xs|b)i.

This yields the claim.
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Second step: We now prove that equality (2.8) holds. More precisely, for any test
function h 2 C2

c (0, 1), we compute

Z 1

0
h00(r)E�[XrXs] dr.

Performing two successive integration by parts on the intervals (0, s) and (s, 1), and
recalling that h has compact support in (0, 1) and is continuous at s, we obtain

Z 1

0
h00(r)E�[XrXs]dr = h(s)

⇢
d+

dr
E�[XrXs]�

d�

dr
E�[XrXs]

�
(2.13)

+

Z 1

0
h(r)

d2

dr2
E�[XrXs] dr

where
d+

dr
E�[XrXs] := lim

r&s

d

dr
E�[XrXs] (2.14)

and
d�

dr
E�[XrXs] := lim

r%s

d

dr
E�[XrXs] (2.15)

are the right and left limits of the derivative of E�[XrXs] at r = s (the existence of these
limits will be justified herebelow). By the first step, we readily know that the second
term in the right-hand side above equals

� �(�)

4(� � 2)

Z 1

0
dr h(r) hµ��3( db),⌃

�
r(Xs|b)i.

So there remains to establish the existence of and compute the limits (2.14) and (2.15).
For this, we use the following lemma:

Lemma 2.6. Let ↵,�, � 2 C such that � /2 Z�, and ��↵�� 2 R⇤
� \Z. Then, for z 2 (0, 1)

tending to 1,

2F1(↵,�, �, z) ⇠
z!1

�(�)�(↵+ � � �)

�(↵)�(�)
(1� z)��↵�� .

Proof. By Thm 8.5 in [6], the following equality holds for all z 2 (0, 1):

2F1(↵,�, �, z) =
�(�)�(� � ↵� �)

�(� � ↵)�(� � �)
2F1(↵,�,↵+ � � � � 1, 1� z)

+
�(�)�(↵+ � � �)

�(↵)�(�)
(1� z)��↵��

2F1(� � ↵, � � �, � � ↵� � + 1, 1� z).

Now, the functions 2F1(↵,�,↵ + � � � � 1, ·) and 2F1(� � ↵, � � �, � � ↵ � � + 1, ·) are
continuous at 0 and take value 1 there, while (1 � z)��↵�� ! +1 as z ! 1, since
� � ↵� � < 0. The claim follows.

Now, recalling the computations done in the first step, we have, for all r > s,

d

dr
E� [XrXs] =�K(�) sz�1/2(1� z)�/2+1

2F1

✓
� + 1

2
,
� + 1

2
,
�

2
, z

◆

+K(�)
1

2

1� s

1� r
z1/2(1� z)�/22F1

✓
� + 1

2
,
� � 1

2
,
�

2
, z

◆
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where z := s(1�r)
r(1�s) 2 (0, 1). Therefore, letting r & s and using Lemma 2.6 we see that

lim
r&s

d

dr
E� [XrXs] =�K(�)

�
�
�
2

�
�( �2 + 1)

�
�
�+1
2

�2 s+
1

2
K(�)

�
�
�
2

�2

�
�
�+1
2

�
�
�
��1
2

�

=� �s+
� � 1

2
.

Similarly, for all r < s, we have

d

dr
E� [XrXs] =K(�) (1� s)z�1/2(1� z)�/2+1

2F1

✓
� + 1

2
,
� + 1

2
,
�

2
, z

◆

� 1

2
K(�)

1

2

s

r
z1/2(1� z)�/22F1

✓
� + 1

2
,
� � 1

2
,
�

2
, z

◆

where z := r(1�s)
s(1�r) 2 (0, 1). Therefore, letting r % s and using Lemma 2.6 we see that

lim
r%s

d

dr
E� [XrXs] =K(�)

�
�
�
2

�
�( �2 + 1)

�
�
�+1
2

�2 (1� s)� 1

2
K(�)

�
�
�
2

�2

�
�
�+1
2

�
�
�
��1
2

�

=�(1� s)� � � 1

2
.

Therefore, d+

dr E
�[XrXs] and d�

dr E
�[XrXs] do indeed exist, and they satisfy

d+

dr
E� [XrXs]�

d�

dr
E� [XrXs] =

✓
��s+ � � 1

2

◆
�

✓
�(1� s)� � � 1

2

◆

= � 1.

Hence, (2.13), finally becomes

Z 1

0
h00(r)E�[XrXs] dr = �h(s)

� �(�)

4(� � 2)

Z 1

0
dr h(r) hµ��3( db),⌃

�
r(Xs|b)i,

which concludes the proof of Theorem 2.1.

3 A more general class of functionals

More generally, given a continuous function ' : [0, 1] ! R and a finite Borel measure
m on [0, 1], we can consider the functional � defined on C([0, 1]) by

�(X) := h', Xi exp
�
�hm,X2i

�
, X 2 C([0, 1]), (3.1)

which is a product of functionals of the form (1.2) and (1.1). Note that, as soon as ' 6= 0
andm 6= 0, � is neither of of the form (1.1) nor of the form (1.2), and cannot be written as
a linear combination of such functionals. However, using the same arguments as above,
and interpreting exp

�
�hm,X2i

�
P �(dX) as the law (up to a constant) of a time-changed

Bessel bridge (see [2, Lemma 3.3]), one can show that the IbPF above also hold for a
functional � of the form (3.1). Since the techniques are the same as those presented
above, but the computations much lenghtier, we do not provide a proof of this fact.
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