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Measurement of film permeability in 2D foams

The coarsening of quasi 2D wet foams is well described theoretically by the model of Schimming and Durian (1), that takes into account the diffusion through the Plateau borders and the vertices in a rigorous manner. In this article, we describe an experimental study of coarsening in which the foam film permeability is measured in such quasi-2D wet foams. We first performed a full characterization of the structure of the studied foams. Then we measured the coarsening rates. It appears that, in these foams, the film thicknesses are still too small for the Plateau borders and the vertices to contribute, but the surface-Plateau borders lead to a smaller coarsening rate compared to dry foams. This rate increases with capillary pressure and follows well the prediction of the model. We demonstrate the importance of working in controlled pressure conditions during permeability measurements. Indeed, permeability depends on film thickness itself depending on capillary pressure

Introduction

Foams are dispersions of gas in liquids or solids, stabilized by surface-active agents, such as surfactants, polymers, proteins or particles (2). They have many practical applications, especially solid foams, which are light materials with good mechanical and insulating properties. The elaboration of foams remains empirical, because their structure is not solely determined by the foaming device used, but also by the degree of destabilization taking place during their formation. Note that solid foams are obtained by melting the solid matrix and are liquid foams during their elaboration. Liquid foam destabilization is a complex process, involving three distinct phenomena, liquid drainage due to gravity, coarsening or gas transfer due to differences of pressure between bubbles and coalescence or fusion of bubbles. It is very difficult to disentangle the role of these three phenomena, hence a possible approach is to suppress the occurrence of two of them in order to study the third one. In this work, we are interested in the coarsening process and we chose to suppress drainage by working with horizontal twodimensional foams. We will explain later how we avoid bubble coalescence.

Foam coarsening has been actively studied in the recent years [START_REF] Briceno-Ahumada | On the influence of surfactant on the coarsening of aqueous foams[END_REF]. The studies concern essentially dry foams, i.e. foams that have drained and contain very little amount of liquid. It has been found that the average bubble radius R increases as the square root of time as predicted by theory: R 2 ~ Deff t, Deff being an effective diffusion coefficient, proportional to the surface tension, to the permeability to gas of the liquid films separating bubbles and inversely proportional to gas pressure. Film permeability is not easy to determine independently and it is usually measured using the diminishing bubble method (4; 5).

In two-dimensional foams containing small amounts of liquid (dry foams), coarsening does not affect the bubbles with 6 sides, while the bubbles with less than 6 sides shrink and those with more than 6 sides grow (von Neumann's law) (2). The velocity at which bubbles with less than 6 sides disappear is related simply to Deff and the measurement of this velocity has recently be used to measure film permeability in situ in 2D-foams [START_REF] Saulnier | In situ measurement of the permeability of foam films using quasi-two-dimensional foams[END_REF]. In the present paper, we have followed this approach to study foams containing larger amounts of liquid. In this case, it is expected that gas will also diffuse across film borders and that the von Neumann's law will no longer be obeyed [START_REF] Schimming | Border-crossing model for the diffusive coarsening of twodimensional and quasi-two-dimensional wet foams[END_REF]. We have built a device in which the liquid content of the foam can be controlled in order to investigate how the disappearance of bubbles is affected by the wetness.

Theoretical background

Coarsening of perfectly dry 2D foams has been studied by von Neumann [START_REF] Jv | Metal Interfaces[END_REF]. He described the evolution of the area Ai of a bubble i due to the gas flux coming from its ni neighbouring bubbles and derived the temporal rate of change of Ai as:

𝑑𝐴 𝑖 𝑑𝑡 = -  𝑃 ∑ 𝑙 𝑖𝑗 𝑛 𝑗 𝑗=1 (𝑃 𝑖 -𝑃 𝑗 ) ( 1 
)
where  is the permeability of the film of length 𝑙 𝑖𝑗 which separates the bubble i from one of his neighbours j (j=1…ni) and 𝑃 𝑖 ( 𝑃 𝑗 ) is the pressure in the bubble i (j). The pressure in the bubbles is close to the atmospheric pressure P and differs between bubbles only by the capillary pressure. In this model,  is supposed to be the same for all the films. Equation 1 leads to the von Neumann's law:

𝑑𝐴 𝑑𝑡 = - 2𝜋γ𝜅 3𝑃 (6 -𝑛) = -𝐾 0 (6 -𝑛), (2) 
where  is the surface tension; 𝐾 0 is an effective diffusion coefficient taking into account not only the film permeability but also the pressure in the bubble and the surface tension. The variation of the bubble volume depends on the number 𝑛 of sides of the bubble. Bubbles with more than 6 sides grow, bubbles with less than 6 sides shrink and the six-sided bubbles remain unchanged.

The two-dimensional (2D) foams that we investigated are foams confined between two plates, the distance between the plates being smaller than the bubble's initial radius R0. These foams are not purely 2D and will be called quasi-2D foams in the following. Seen from above, these foams appear two-dimensional, but the bubbles are separated by films which connect to the wetting films covering the plates through thicker regions called surface Plateau borders by analogy with the liquid regions connecting three bubbles in three dimensional foams (3D). The 2D bubbles are also connected three by three by classical Plateau borders, themselves connected to the surface Plateau borders by regions called vertices, also by analogy with 3D foams (figure 1).

The gas transfer into this more complex structure has been recently studied theoretically by Schimming and Durian [START_REF] Schimming | Border-crossing model for the diffusive coarsening of twodimensional and quasi-two-dimensional wet foams[END_REF]. They first calculated the equivalent thickness of the Plateau borders. For the surface Plateau borders, they found an average thickness 𝑒 2 = √𝑟𝑙 arctan √𝑟/𝑙 where 𝑟 is the radius of curvature of the borders and 𝑙 the film thickness (see figure 1b). The film thickness is determined by an equilibrium between capillary pressure and disjoining pressure, the last pressure being the force between film surfaces (2). The film thickness is typically of the order of a few tens of nanometer, much smaller than the radius of surface Plateau borders, hence 𝑒 2 ~2 𝜋 √𝑟𝑙 . The average thickness of the Plateau borders is similar: 𝑒 3 = 𝑒 2 /√3, while the average thickness of the vertices is more difficult to evaluate, although it is expected to scale with √𝑟𝑙 as 𝑒 2 and 𝑒 3 . Schimming and Durian calculated the rate of bubble volume variation as:

where H is the distance between the two plates, A the bubble area and 𝐶(𝑛) is a dimensionless shape parameter ("circularity") set by the average film curvature times a power of bubble area, scaled to be one for circular bubbles: 𝐶(𝑛) is positive for convex bubbles, zero for polygonal bubbles, and negative for concave bubbles. It was found that:

𝐶(𝑛) = ±√[( 𝑛 4𝜋 ) (cot ( 𝜋 𝑛 ) -√3 ] - 𝑛-6
6 [START_REF] Roth | Bubble statistics and coarsening dynamics for quasi-twodimensional foams with increasing liquid content[END_REF]. Note that the 2r/H term in Eq. ( 3) comes from the fact that the film height is smaller than H, whereas the term

2𝑟𝑙 𝐻𝑒 2
comes from the fact that the film width is smaller due to the presence of the Plateau borders. Both terms thus contribute to slowing down the overall growth rate. Equation 3 also shows that the volume rate is not simply proportional to (𝑛 -6) as predicted by the von Neuman's law. In particular, the volume of the six-sided bubbles is expected to change slightly with time due to the presence of the 𝐶(𝑛) term (𝐶(6) ≠0).

Materials and Methods

We have used a device similar to the one built by Durian et al [START_REF] Roth | Bubble statistics and coarsening dynamics for quasi-twodimensional foams with increasing liquid content[END_REF]. The foam is made from a 5 g/L solution of tetradecyl-trimethyl ammonium bromide (TTAB purchased by Aldrich, used as received) in water (from a Millipore device, with a resistivity of 18.2 M.cm). We choose to work at high surfactant concentration to limit coalescence. In the device used and with the same surfactant solution, we found that coalescence were rare events, 2 in 10,000 during the typical duration of the experiments (9). This foam is confined between two plexiglass plates (10x14 cm²) held in place by eight screws. They are separated by a seal of controlled height and rectangular section in order to monitor the distance H between the plates. The cell made in this way is connected to a liquid reservoir (10.4 x 1.7 x 4.5 cm 3 ) (Figure 2 a). Gas and liquid are injected at the bottom of the reservoir through two separate holes (figure 2b). The gas is injected using a needle whose diameter is chosen according to the desired bubble size. In order to obtain a monodisperse foam, the gas flow rate is controlled by a syringe pump (World Precision Instruments, Aladdin pump) or a pressure controller (Elveflow, AF1). The bubbles are produced until the reservoir is filled by bubbles up to the top and the 2D cell is filled as well. In the experiments described afterwards, the gas used is air.

The amount of liquid injected controls the foam height and therefore fixes the hydrostatic pressure. Indeed, the liquid level in the reservoir is below the level of the 2D cell. The foam above the liquid adjusts its liquid fraction in order to balance hydrostatic and osmotic pressures. The liquid fraction at a height h above the liquid-foam interface can thus be calculated using an empirical expression recently derived [START_REF] Maestro | Liquid dispersions under gravity: volume fraction profile and osmotic pressure[END_REF]. The interface between the liquid and the foam in the reservoir can be observed through a glass window. The reservoir is in contact with the atmospheric pressure through a graduated burette, which allows to measure the liquid height and to ensure that the pressures are at equilibrium. Finally, two outlets were pierced in the top plexiglass plate. They allow to evacuate the foam easily and to ensure an average pressure equal to the atmospheric pressure; they are open at atmospheric pressure during cell filling and closed afterwards. One of the main difficulties of this experiment is the sealing; the first devices were made using a 3D printer sealed by epoxy glue but the epoxy was progressively dissolved in the surfactant solution and leakage started after one month. To avoid this problem, an aluminum device was built and was used in the experiments presented thereafter. The spacing H between the two plates was set to either 1, 1.5 or 2 mm, and the bubbles radii R0 to 1.1, 1.2 or 1.35 mm.

𝑑𝑉 𝑑𝑡 = -𝐾 0 𝐻 (1 - 2𝑟 𝐻 + 2𝑟𝑙 𝐻𝑒 2 ) {(𝑛 -6) + 6𝐶(𝑛)𝑛𝑟 √3𝜋𝐴 [1 - (1 - 2𝑟 𝐻 ) 𝑙 𝑒 3 + 2𝑟𝑙 𝐻𝑒 4 1 - 2𝑟 𝐻 + 2𝑟𝑙 𝐻𝑒 2 ]} (3) 
We studied the foam evolution by image analysis. For this purpose, homogeneous light illumination is needed and was achieved using a crown of grazing light in a dark environment. A high-resolution camera (3840x2748 px²) U-eye 1490 with a Fujinon lens HF3557-1/1.4 was placed above the cell and pictures were taken at regular intervals with the software "U-eye trigger". A second similar U-eye camera with a Pentax C2514-5M lens, pointed towards the side of the tank, takes pictures to measure the fluid level in the cell and to check that it remains constant during the experiment.

We used closer views of the 2D-foams, at the scale of a few bubbles, to measure the surface liquid fraction and the size of the surface Plateau borders, (Figure 4). In this configuration and in order to improve the pictures quality, we placed a prism at right angles to the top plate of the cell (Figure 3). The prism is located in the center of the plate to avoid the possible influence of cell edges. The prism is coupled to a telecentric lens, and in this way, only the thin films between the plates and the bubbles at the wall appear in white (Figure 4(a)).

The accuracy of the method on the measurement of surface Plateau borders width can be simply estimated as follows. Because we use a telecentric lens, we collect only parallel rays, and once the surface of the Plateau border starts to curve, the reflection by the air-water interface is lost. The contrast between refractive indices at the cell surface changes (plexiglass-air to plexiglass-water), less light is collected and the borders appear gray in figure 4a. The missed PB portion in the image is linked to the angular accuracy of the telecentric lens  ~ 0.5°. As soon as the tangent to the PB makes an angle less than 0.5° with the plate, the reflected rays are parallel to the rays reflected by the plate portions in contact with bubbles and are collected by the lens. The missing PB portion has a length of xRPS ~ 0.009 RPS, i.e. the error made on the PBs width is less than 1%.

Results. Quasi 2D foams structure

The surface liquid fraction,  s, is the proportion of area covered by the liquid just below the wetting film. It is not possible to use directly the raw images to evaluate this fraction. Because of the many gray levels (Figure 4a), we then used the ImageJ software to binarize the images (Figure 4b). One sees that at the difference of the surface liquid fraction shown in figure 5a, which exhibits a systematic dependence on the bubbles size, the r values fall on a universal curve and depend only on the hydrostatic pressure (see figure 5b). This is as expected, since the capillary pressure Pcap =  / r is equal in principle to the hydrostatic pressure gd, which is fixed during each experiment. In order to check the validity of this assumption, we plotted in Figure 6 the variation of the capillary pressure with hydrostatic pressure. The two quantities r and s can be related as follows. Let us call R the distance between the 2D bubble centers and corners (in the mid-plane of the Plateau borders) (see figure 7). The gas fraction is given by the ratio of the bubble area to the bubble area supplemented by half a Plateau border (dashed hexagon in Figure 7). In first approximation, both have the same shape so that they scale respectively with (𝑅 -𝑟)² and with 𝑅² with an identical pre-factor. This leads to the liquid fraction:

Φ 𝑠 = 1 - (𝑅 -𝑟) 2 𝑅 2 .
The radius of a bubble confined between two plates is R = f R0 3/2 /√H, where R0 is the radius of the unconfined bubble and H the distance between plates. For identical hexagonal bubbles, f = (9√3/(8)) 1/2 ~0.79. It follows that:

√1 -Φ 𝑠 = 1 -f√ 𝐻 𝑅 0 3 r ()
The plot of √1 -Φ 𝑠 versus √ 𝐻 𝑅 0 3 r is shown in figure 8, and leads to f = 1.03. The agreement with the simple model outlined above is therefore rather good.

We have also made experiments to compare monodisperse and polydisperse foams (polydispersity > 15%). In order to obtain polydisperse foams, the flow rate was increased: at low gas flow rate, the foam is monodisperse and, at large flow rate, the foam obtained is polydisperse. The results for the surface liquid fraction and the surface Plateau border radius were found to be the same for a given liquid height, whether the foam is ordered or not, polydisperse or not.

In conclusion, this experimental setup allows to control the surface Plateau border radius via the capillary pressure Pcap = /r. The surface liquid fraction s is more difficult to control, as it depends both on the liquid height and on the bubble size (equation 4). 

Results. Quasi 2D Foams coarsening

In the experiments performed, the radius of the surface-Plateau borders is varied between 0.04 and 0.4 mm (see figure 6). Nevertheless, for the drier foams, coalescence events are observed. We therefore selected experiments at smaller capillary pressure, in which no coalescence events were observed. This also ensure that the foams are wet enough and beyond the validity limit of the von Neumann's model.

The capillary pressure varies therefore between 100 and 1000 Pa. According to disjoining pressure curves published by Bergeron for 1.2 g/L TTAB solutions [START_REF] Bergeron | Disjoining pressures and film stability of alkyltrimethylammonium bromide foam films[END_REF], the film thickness at these pressures is about 40 nm. We worked with more concentrated surfactant solutions, in which the ionic strength is larger, hence the electrostatic repulsion between film surfaces is shorter ranged. We then used the disjoining pressure curves of the solutions with added salt in reference [START_REF] Bergeron | Disjoining pressures and film stability of alkyltrimethylammonium bromide foam films[END_REF], in which the ionic concentrations were similar and set the value of l to 20 nm. The ratio e2 / l ~ √ (r/ l) is therefore of the order of 100. The same applies to the ratio e3 / l and e4 / l. The contributions from the Plateau borders and the surface vertices in the last bracket of equation 3 then amounts to less than 3% and may be neglected. Moreover, the bubble volume can be approximated by V = AH. Equation 3 can therefore be rewritten as:

𝑑𝐴 𝑑𝑡 = -𝐾 0 (1 - 2𝑟 𝐻 + 𝜋√𝑟𝑙 𝐻 ) {(𝑛 -6) + 6𝐶(𝑛)𝑛𝑟 √3𝜋𝐴 } (5) 
In ref [START_REF] Saulnier | In situ measurement of the permeability of foam films using quasi-two-dimensional foams[END_REF], a simpler approximation was used, in which the film length is replaced by H-2r, leading to:

𝑑𝐴 𝑑𝑡 = -𝐾 0 (1 - 2𝑟 𝐻 ) (𝑛 -6) = -𝐷 eff (𝑛 -6) (6) 
If we further neglect the contribution of the surface Plateau borders, we obtain the von Neumann's law (equation 2), so that 𝐾 0 = lim 𝑟→0 𝐷 eff .

In the rather monodisperse 2D foams studied, most bubbles have 6 sides (figure 4). A few bubbles have 5 or 7 sides, and a negligible number have a different number of sides. In order to determine the effective diffusion coefficient 𝐷 eff , we have used the bubbles with 5 sides and the relation 𝐷 eff = dA5/dt, where A5 is the average area of five sided bubbles.

The number of bubbles decreases with time essentially because of the disappearance of the 5-sided bubbles. For dry enough foams, one can neglect the contributions of surface Plateau borders, use equation 2 and calculate the time at which the first set of five sided bubbles disappears: t*= A5(t=0)/ K0 . This time has been called catastrophic in ref [START_REF] Saulnier | In situ measurement of the permeability of foam films using quasi-two-dimensional foams[END_REF], because at this time the total number of bubbles decreases appreciably. In the present study, there is also a decrease of the number of bubbles after a certain time, but the decrease is less marked, because the foams are wetter and somewhat less monodisperse. The accuracy of the determination of Deff by this method is rather poor. We have therefore used instead the change in area with time of 5-sided bubbles as described below.

We identified every 5-sided bubble in the first image, and monitored the area of all these bubbles along time. This time variation is plotted in figure 9a for one given 5-sided bubble. One observes that the area decreases linearly until A5 becomes 0. Then, a different bubble is identified as the closest 5sided bubble and followed in time. The slope dA5/dt is the same, but its determination is more accurate with the first bubble. This slope is called to Deff in the following. We then averaged the values of Deff for every bubble present at the beginning of the experiment. The results are plotted in figure 9b. The error bars are the standard deviation, Deff varying between bubbles. As expected, Deff decreases with increasing liquid fraction, i.e. as the foam gets wetter. Let us now discuss the decrease of Deff with increasing Plateau border radius. Von Neuman (Eq. 2) predicts a value independent on the value of r. Eq. 5 and 6 predict values, which depend on r by taking into account respectively the actual size of the film (Eq. 6) the actual size of the film plus the circularity (Eq. 5). Figure 10 shows the experimental values of Deff together with calculations using equations 2, 5 and 6 and

𝐾 0 = lim 𝑟→0 (𝐷 eff ) = 2𝜋 3 𝛾 𝑃 𝜅 = 2𝜋 3
𝛾 𝐷 𝑚 𝐻𝑒 𝑉 𝑚 𝑃 𝑙 [START_REF] Jv | Metal Interfaces[END_REF] where P is the pressure inside the bubbles (close to the atmospheric pressure),  is the film permeability, Dm is the diffusion coefficient of the gas molecules into the liquid, Vm the gas molar volume and He the Henry constant (expressed in terms of gas volume fraction in water). We have used the following values for pure water films in air, He = 0.013 and Dm = 2.6 10 -9 m 2 /s (12) and a film thickness of 20 nm; the film permeability  = Dm He/l is about 1.7 mm/s, close to the permeability measured for films of these surfactant solutions  = 1.9 mm/s (5).

As expected, von Neumann does not predict the dependence of Deff on r. One sees in figure 10 that equation 6 already leads to values closer to the experimental ones and accounts well for the dependence with Plateau border radius. In the following, we will rely on the simplified version of Schimming and Durian model (equation 5), which is more rigorous than equation 6 and accounts for values even closer to the experimental ones. While the dependence of Deff on Plateau border radius is well accounted for by the model, the absolute values differ by a factor of about 2.5. This might be due to the reduction of film permeability by the surfactant monolayers at the film surfaces. It was shown that:

𝜅 = 𝐷 𝑚 𝐻𝑒 𝑙+2𝐷 𝑚 /𝜅 𝑠 ( 8 
)
where s is the gas permeability across a surfactant monolayer (5). In the case of very thin films, in particular Newton black films which are surfactant bilayers containing little water, the surfactant monolayers at the film surfaces usually control the gas transfer. Here, the films contain more water, but the water thickness l is not much larger than the surfactant monolayer thickness, which is close to 2.5 nm (13); the surface monolayers thus contribute by 25% to the total thickness; their effect on film permeability is probably more significant, since densely packed monolayers are less permeable to gas than water (4). Note that no details are given on the experimental conditions leading to the value quoted in ref ( 5) (1.9 mm/s), while  should depend on surfactant concentration (close to the critical micellar concentration, the water film thickness at capillary pressures of 100 Pa is twice as large as here, 40 nm) and on capillary pressure.

We also attempted to check if the coarsening law R ~ t 1/2 was followed, but the radius only increased by a small factor during the experiment (2-3) and the time exponent could not be determined accurately. This is probably because the foams are initially quite monodisperse so that the time needed to reach the self-similar regime too long.

Conclusion

In conclusion, we have built an experiment similar to the one developed by Roth et al. to study the coarsening of wet quasi 2D-foams. We first fully characterize the geometry of the 2D-foams by measuring both the size of the surface Plateau borders and the surface liquid fraction. We show that the experiment fixes the capillary pressure in the 2D-foams and that the surface liquid fraction can be derived by simple geometrical considerations.

The coarsening of quasi 2D wet foams is well described by the model of Schimming and Durian, that takes into account the diffusion through the Plateau borders in a rigorous manner. We have studied foams made with solutions of an ionic surfactant. In these foams, the film areas are still too small for the Plateau borders and the vertices to contribute and only the surface-Plateau borders reduce the coarsening rate. This rate increases with capillary pressure, following the predictions of the model.

The film permeability differs from the value calculated using the film thickness measured in disjoining pressure experiments. Because of the accuracy of the model describing foam coarsening, we attribute these differences to the contribution of the surfactant layers covering the film surfaces, which should become important in the thin films studied.

We emphasize that the permeability strongly depends on capillary pressure and on surfactant concentration, which influences the ionic strength and therefore the repulsion between film surfaces. Furthermore, at large ionic strength, the surfactant monolayers become denser and their permeability decreases. This demonstrates the importance of working in controlled pressure and surfactant concentration conditions during film permeability measurements.
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 1 Figure 1. Schematic representation of a quasi-2D foam (a) perspective view, (b) side view of a surface Plateau border. Note that the scale is unrealistic in scheme (b) since the film thickness is actually orders of magnitude smaller than the radius of curvature of the surface Plateau borders.
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 2 Figure 2. (a) schematic of the device used to produce the 2D foam and to control its liquid fraction. (b) picture of the cell.
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 3 Figure 3. Prism used to improve image quality.
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 45 Figure 4. (a) original foam image (b) image processed with Image J; bar= 1 mm. We show in figure 5a the measured values of s for different liquid heights h, i.e. for different hydrostatic pressures. The images were also used to determine the radius r of the surface-Plateau borders, the results are shown in figure 5b.
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 6 Figure 6. Capillary pressure versus hydrostatic pressure; this line corresponds to Pcap =gd One sees that both pressures are close, although a small shift is observed. Roth et al. already noticed a similar discrepancy (8). It could be due to an additional stress exerted by the confining plates.
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 7 Figure 7. Scheme of hexagonal 2D bubbles used to derive equation 4.

Figure 8 .

 8 Figure 8. Measured values of √1 -Φ 𝑠 versus the reduced radius of the surface-Plateau borders for the different bubble radius and spacing between plates. The line is a fit with equation 4 leading to f= 1.03.

Figure 9 .

 9 Figure 9. (a) Decrease of the area of 5 sided bubbles with time in an initially quite monodisperse foam; (b) Variation of the effective diffusion coefficient with Plateau border radius.

Figure 10 .

 10 Figure 10. Experimental values of Deff together with calculations using equations 5 and 6 with l = 20nm versus Plateau border radius.
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