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An exterior calculus framework for polytopal methods

Abstract. We develop in this work the first polytopal complexes of differential forms. These com-
plexes, inspired by the Discrete De Rham and the Virtual Element approaches, are discrete versions
of the de Rham complex of differential forms built on meshes made of general polytopal elements.
Both constructions benefit from the high-level approach of polytopal methods, which leads, on certain
meshes, to leaner constructions than the finite element method. We establish commutation properties
between the interpolators and the discrete and continuous exterior derivatives, prove key polyno-
mial consistency results for the complexes, and show that their cohomologies are isomorphic to the
cohomology of the continuous de Rham complex.

Keywords: Discrete de Rham Method, Virtual Element Method, differential forms, exterior
calculus, polytopal methods.

1. Introduction

This work is a first step towards merging two extremely successful avenues of research in
numerical analysis: finite element differential forms and arbitrary-order polytopal methods.

The well-posedness of important classes of partial differential equations (PDEs), and
the development of stable approximations thereof, hinges on the properties of underlying
Hilbert complexes [23]. The best-known example is provided by the de Rham complex
which, for an open connected polyhedral domain Ω ⊂ R3, reads

{0} 𝐻1 (Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2 (Ω) {0},grad curl div

(1.1)
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where 𝐻1 (Ω) is the space of scalar-valued functions over Ω that are square-integrable
along with their gradient, while 𝑯(curl;Ω) and 𝑯(div;Ω) are the spaces of vector-valued
functions over Ω that are square-integrable along with their curl and divergence, respect-
ively. Using the framework of differential forms (see Appendix A), the de Rham complex
(1.1) can be generalised to a domain Ω of any dimension 𝑛 as:

{0} 𝐻Λ0 (Ω) · · · 𝐻Λ𝑘 (Ω) · · · 𝐻Λ𝑛 (Ω) {0}.d0 d𝑘−1 d𝑘 d𝑛−1

(1.2)
In what follows, we shall possibly omit the index 𝑘 from exterior derivatives and spaces in
(1.2) when no ambiguity can arise.

The de Rham complex enters the well-posedness analysis of PDEs through its cohomo-
logy spaces Kerd𝑘/Imd𝑘−1. A classical result links these spaces to the topological features
of the domain and their dimensions to its Betti numbers. Preserving such homological
structures at the discrete level leads to compatible methods and is key to the design of
stable numerical schemes.

The compatible finite element approximation of the vector-valued spaces appearing
in the de Rham complex (1.1) arose as a research subject in the late 70s [59, 60]. In the
late 80s, links with Whitney forms were identified [17]. More recently, the development
of Finite Element Exterior Calculus (FEEC) [2, 4, 5] has provided a unified perspective
on the generation and analysis of finite element approximations of the de Rham complex
(1.2). Finite Element Systems (FES) are a generalisation of FEEC covering spaces which
are not necessarily piecewise polynomial inside mesh elements (but can be, for example,
piecewise polynomial on subdivisions of these elements); see [28,29,31]. FEEC and FES
led to the unification of several families of finite elements and heavily hinge on the notion
of subcomplex, which makes them naturally geared towards conforming approximations.

While conforming methods are still widely used, their construction relies on polyno-
mial basis functions that can be globally and conformally glued, and can therefore only be
carried out on conforming meshes, composed of elements of simple shape (e.g., tetrahedra
or hexahedra); extensions to more general meshes, such as the barycentric dual of a sim-
plicial mesh, have been considered, e.g., in [26]. In recent years, significant efforts have
been made to develop and analyse numerical methods that support more general meshes
including, e.g., general polytopal elements and non-matching interfaces; a representat-
ive but by no means exhaustive list of contributions includes [1, 6, 7, 13, 16, 18, 21, 22,
24, 34, 36, 39–43, 50, 51, 54]. Polytopal technologies typically introduce some degree of
non-conformity, either because they are formulated in a fully discrete setting (like Hybrid
High-Order [34, 43] or Discrete de Rham – DDR methods [36, 39]) or through the use of
projections (as in Virtual Element Methods – VEM [7]).

Despite their non-conformity, polytopal technologies can be used to develop com-
patible frameworks. Polytopal discretisations of the de Rham complex (1.1) have been
proposed, e.g., in [10, 36, 39], and applied to a variety of models, such as magnetostat-
ics [8, 35], the Stokes equations [11], and the Yang–Mills equations [53]; they have also
inspired further developments, based on the same principles, for other complexes of interest
such as variants of the de Rham complex with increased regularity [32,62], elasticity com-
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plexes [19,46], and the Stokes complex [12,14,56]. Polytopal complexes have additionally
been used to construct methods that are robust with respect to the variations of physical
parameters, in particular for the Stokes [11], Reissner–Mindlin [45] and Brinkman [36]
problems. Many of these models have also been tackled using finite element complexes and
related methods (see, e.g., [2, 3, 27,29]). However, due to their higher-level design, which
does not require the existence and computability of globally conforming piecewise polyno-
mial basis functions, polytopal methods offer distinctive advantages over finite elements.
These include, in addition to the support of general meshes, the possibility to reduce the
dimension of discrete spaces, sometimes below their finite element counterparts [37, Table
3], through systematic processes such as enhancement or serendipity [9, 37]. Such added
flexibility comes at a minor (especially when using homogeneous numerical integration
[25]) additional cost with respect to standard finite elements, namely the need to solve
local problems to reconstruct discrete counterparts of the exterior derivative and of the
corresponding potentials. As for finite elements, the size of the algebraic systems corres-
ponding to the polytopal discretisation of a given problem can be reduced through static
condensation and hybridisation.

The purpose of the present work is to take one step further and show how exterior
calculus can be used to generalise the construction and analysis of polytopal complexes.
More specifically, we present two discrete de Rham complexes in arbitrary dimension and
with arbitrary approximation degree that generalise those introduced in [36] (DDR) and [8]
(VEM). Three key features set these constructions apart from Finite Element complexes:
• No explicit spaces of globally conforming differential forms (i.e., subspaces of𝐻Λ(Ω))

are needed. Instead, we work with fully discrete spaces made of vectors of polynomial
components on the mesh cells (of various dimensions). The meaning of these compon-
ents is provided by the interpolators on the fully discrete spaces.

• Due to the absence of explicit underlying conforming spaces, the differential operator
of the complex cannot be the exterior derivative. Instead, a discrete exterior derivative
is constructed combining the polynomial components to mimic the Stokes formula.

• Discrete potentials are also designed, again mimicking the Stokes formula. They are
piecewise (discontinuous) polynomial forms on the mesh used, in particular, to define
an 𝐿2-structure on the discrete spaces (an essential tool to discretise PDEs written in
weak form).

The choice of the polynomial components in the spaces and the design of discrete exter-
ior derivatives and potentials revolve around two key properties: polynomial consistency,
which is related to the ability to reproduce exactly polynomial differential forms up to a
selected polynomial degree, and compatibility, linked to the existence of an isomorphism
between the cohomology of the discrete and continuous de Rham complexes. Notice that,
in the finite element framework, polynomial consistency simply corresponds to the fact that
suitable polynomial spaces are contained in the (local) finite element space. While both
the DDR- and VEM-inspired constructions heavily rely on discrete versions of the Stokes
formula, they do so in a radically different spirit: in the DDR construction, the choice of
components in the discrete spaces is inspired by the formula to reconstruct a discrete exter-
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ior derivative, which is then used to construct discrete potentials. In the VEM construction,
on the other hand, the space components (and, in particular, those associated with differen-
tials) are chosen based on the formula used to define a discrete potential. While the choice in
the DDR construction leads to leaner spaces, the study of its properties is more elaborated.
Notice that, at this early stage, we haven’t tried to identify the virtual (conforming) spaces
that underlie the VEM-inspired construction, and we have made no effort whatsoever in
trying to reduce the dimension of the discrete spaces through serendipity.

The rest of this work is organised as follows. In Section 2 we establish the setting. In
Section 3 we present and analyse the discrete complex generalising the DDR construction
of [36]. Section 4 contains the definition and analysis of the complex generalising the VEM
construction of [8]. In Section 5, we discuss in greater detail similarities and differences
with respect to the FEEC, FES, and Distributional Differential Forms frameworks.

Differential forms of any degree in dimensions 2 and 3 have interpretations in terms
of vector fields. To make the exposition self-contained and improve the legibility for the
reader not accustomed to differential forms, we recall some facts on these so-called vector
proxies in Appendix A, and we include throughout the exposition a series of examples
to illustrate the development in the differential forms framework through vector calculus
operators.

2. Setting

We present here the main notions used in the construction of the polytopal complexes of
differential forms. For the reader not used to the framework of differential forms, we recall
in Appendix A some basic concepts and definitions.

2.1. Spaces of differential forms

Let 𝑀 denote an 𝑛-dimensional manifold. In what follows, 𝑀 will typically be a cell of a
polytopal mesh (see Section 2.5 below), and thus a relatively open set in a subspace of R𝑚

for some𝑚 ≥ 𝑛. For any natural number ℓ such that 0 ≤ ℓ ≤ 𝑛, we will denote byΛℓ (𝑀) the
space of differential ℓ-forms (often just called ℓ-forms) on 𝑀 without explicit regularity
requirements. When relevant, regularity is made explicit by prepending the appropriate
space (e.g., 𝐿2Λℓ (𝑀) stands for square-integrable ℓ-forms).

2.2. Integration by parts

We recall the following integration by parts (Stokes) formula:∫
𝑀

d𝜔 ∧ 𝜇 = (−1)ℓ+1
∫
𝑀

𝜔 ∧ d𝜇 +
∫
𝜕𝑀

tr𝜕𝑀 𝜔 ∧ tr𝜕𝑀 𝜇

∀(𝜔, 𝜇) ∈ 𝐶1Λℓ (𝑀) × 𝐶1Λ𝑛−ℓ−1 (𝑀), (2.1)
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where, for any form degree 𝑚, tr𝜕𝑀 : 𝐶0Λ𝑚 (𝑀) → 𝐶0Λ𝑚 (𝜕𝑀) is the trace operator, i.e.,
the pullback of the inclusion 𝜕𝑀 ⊂ 𝑀 , and 𝜕𝑀 is oriented with respect to 𝑀 . Formula
(2.1) will provide the starting point to define discrete counterparts of the exterior derivative
and of the corresponding potentials on mesh cells. It will also drive the choice of the
components in the discrete spaces, geared at ensuring that the reconstructions preserve
certain polynomial differential forms.

2.3. Hodge star

Assume now that 𝑀 is an open set in a subspace of R𝑚. We denote by ★ : Λℓ (𝑀) →
Λ𝑛−ℓ (𝑀) the Hodge star operator, and we set

★−1 ≔ (−1)ℓ (𝑛−ℓ )★, (2.2)

a notation justified observing that, for any 𝜔 ∈ Altℓ (𝑉) (with Altℓ (𝑉) denoting the set of
alternating ℓ-linear forms on R𝑛), ★−1 ★𝜔 = 𝜔 (see (A.3) in the appendix). Notice that,
while the Hodge star operator depends on 𝑀 , we won’t need to make this dependence
explicit as it will be clear from the context.

2.4. 𝐿2-orthogonal projectors

Integrating the inner product of Altℓ (𝑉) over 𝑀 yields the inner product of 𝐿2Λℓ (𝑀). For
any closed subspace X of 𝐿2Λℓ (𝑀), we therefore have an 𝐿2-orthogonal projector 𝜋X :
𝐿2Λℓ (𝑀) → X on X, defined by the following relation: For all 𝜔 ∈ 𝐿2Λℓ (𝑀), 𝜋X𝜔 ∈ X
satisfies ∫

𝑀

𝜋X𝜔 ∧★𝜇 =

∫
𝑀

𝜔 ∧★𝜇 ∀𝜇 ∈ X. (2.3)

To improve legibility, in the next sections we also introduce specific notations for 𝐿2-
orthogonal projectors on polynomial subspaces X that are particularly relevant to our
construction.

2.5. Polytopal mesh

From this point on, Ω will denote a polytopal domain of R𝑛. We letMℎ denote a polytopal
mesh of Ω, i.e., a collection of disjoint polytopal sets (mesh entities) of dimensions in
[0, 𝑛], relatively open in their spanned affine space, such that the boundary of each 𝑑-cell
(polytopal set of dimension 𝑑) is the union of mesh entities of dimension < 𝑑, and such that
any 𝑑-cell for 𝑑 < 𝑛 is contained in the boundary of some (𝑑 + 1)-cell. For any 𝑑 ∈ [0, 𝑛], the
set collecting all 𝑑-cells ofMℎ is denoted by Δ𝑑 (Mℎ). Notice that this notion of polytopal
mesh essentially coincides with that of CW-complex in algebraic topology. Thus, when Ω

is a domain in dimension 𝑛 = 3,Mℎ gathers the vertices collected in the setVℎ ≔Δ0 (Mℎ),
the edges collected in the set Eℎ ≔ Δ1 (Mℎ), the faces collected in the set Fℎ ≔ Δ2 (Mℎ),
and the elements collected in the set Tℎ ≔ Δ3 (Mℎ). For all 𝑓 ∈ Mℎ, we select a point
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𝒙 𝑓 ∈ 𝑓 which, whenMℎ belongs to a refined mesh sequence, is assumed at a distance
from the boundary of 𝑓 comparable to the meshsize.

If 𝑓 ∈ Δ𝑑 (Mℎ) and 𝑑′ ≤ 𝑑 is an integer, we denote by Δ𝑑′ ( 𝑓 ) the set of subcells of
𝑓 of dimension 𝑑′. Hence, if 𝑛 = 𝑑 = 3, so that 𝑓 = 𝑇 ∈ Tℎ is a polyhedral element of the
mesh, 𝑓 ∈ Δ𝑑′ (𝑇) is a vertex of 𝑇 if 𝑑′ = 0, an edge of 𝑇 if 𝑑′ = 1, a polygonal face of 𝑇
if 𝑑′ = 2, or 𝑇 itself if 𝑑′ = 3.

For future use, we note the following property.

Lemma 1 (Projectors on subspaces of differential forms). Let (𝑘, 𝑑) be integers such that
𝑘 ≤ 𝑑 ≤ 𝑛, 𝑓 ∈ Δ𝑑 (Mℎ), and X be a closed subspace of 𝐿2Λ𝑑−𝑘 ( 𝑓 ). Then, it holds: For
all 𝜔 ∈ 𝐿2Λ𝑘 ( 𝑓 ) and all 𝜇 ∈ X,∫

𝑓

★−1𝜋X (★𝜔) ∧ 𝜇 =

∫
𝑓

𝜇 ∧★𝜋X (★𝜔) =
∫
𝑓

𝜔 ∧ 𝜇. (2.4)

Proof. The first relation in (2.4) follows from (A.4). To prove the second relation, we write∫
𝑓

𝜇 ∧★𝜋X (★𝜔) =
∫
𝑓
��𝜋X (★𝜔) ∧★𝜇 =

∫
𝑓

𝜇 ∧ (★★𝜔) =
∫
𝑓

𝜔 ∧ 𝜇,

where the first equality follows from (A.4) (with (𝜔, 𝜇) ← (𝜋X (★𝜔), 𝜇)), the cancellation
of the projector is justified by its definition (2.3), the second equality is obtained using
(A.4) again, and the conclusion follows from (A.3) and the anticommutativity (A.1) of
∧.

2.6. Local polynomial spaces of differential forms

Let 𝑓 ∈ Δ𝑑 (Mℎ), 0 ≤ 𝑑 ≤ 𝑛. For any integer 𝑟 ≥ 0, we denote by P𝑟Λℓ ( 𝑓 ) the space
of polynomial ℓ-forms of total degree ≤ 𝑟 on 𝑓 . We also adopt the standard convention
P−1Λ

ℓ ( 𝑓 ) ≔ {0}. We denote by 𝜋ℓ
𝑟 , 𝑓

: 𝐿2Λℓ ( 𝑓 ) → P𝑟Λℓ ( 𝑓 ) the 𝐿2-orthogonal projector
onto P𝑟Λℓ ( 𝑓 ), defined by (2.3) with X = P𝑟Λℓ ( 𝑓 ).

The Koszul differential on 𝑓 (translated by 𝒙 𝑓 ) is denoted by 𝜅 so that, for all𝜔 ∈Λℓ ( 𝑓 ),
𝜅𝜔 ∈ Λℓ−1 ( 𝑓 ) satisfies (𝜅𝜔)𝒙 (𝒗1, . . . , 𝒗ℓ−1) = 𝜔𝒙 (𝒙 − 𝒙 𝑓 , 𝒗1, . . . , 𝒗ℓ−1) for all vectors
𝒗1, . . . , 𝒗ℓ−1 tangent to 𝑓 . For any 𝑓 ∈ Δ𝑑 (Mℎ), 1 ≤ 𝑑 ≤ 𝑛, any integer ℓ ∈ [0, 𝑑], and any
polynomial degree 𝑟 ≥ 0, we define the Koszul complement space as

Kℓ
𝑟 ( 𝑓 ) ≔ 𝜅P𝑟−1Λ

ℓ+1 ( 𝑓 ). (2.5)

The indices 𝑟 and ℓ in this notation serve as a reminder that elements inKℓ
𝑟 ( 𝑓 ) are polyno-

mial ℓ-forms of polynomial degree 𝑟. Note also that, since P−1Λ
ℓ ( 𝑓 ) = {0} andΛ𝑑+1 ( 𝑓 ) =

{0}, we have

Kℓ
0 ( 𝑓 ) = K

𝑑
𝑟 ( 𝑓 ) = {0} for all ℓ and all 𝑟 , respectively. (2.6)

Moreover, since 𝜅Λ0 ( 𝑓 ) = {0}, we adopt the conventionK−1
𝑟 ( 𝑓 )≔ {0} for all 𝑟 . We denote

by 𝜋K ,ℓ

𝑟 , 𝑓
the 𝐿2-orthogonal projector 𝐿2Λℓ ( 𝑓 ) →Kℓ

𝑟 ( 𝑓 ), defined by (2.3) withX =Kℓ
𝑟 ( 𝑓 ).
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For all integers 𝑟 ≥ 0 and ℓ ∈ [0, 𝑑], the following direct decomposition holds (see
[4, Eq. (3.11)] for ℓ ≥ 1, the case ℓ = 0 can be directly checked):

P𝑟Λ0 ( 𝑓 ) = P0Λ
0 ( 𝑓 ) ⊕ K0

𝑟 ( 𝑓 ), (2.7a)
P𝑟Λℓ ( 𝑓 ) = dP𝑟+1Λ

ℓ−1 ( 𝑓 ) ⊕ Kℓ
𝑟 ( 𝑓 ) if ℓ ≥ 1. (2.7b)

Since d ◦ d = 0 and dP0Λ
0 ( 𝑓 ) = {0} (since the coefficients of the form are constant), this

shows that
dP𝑟Λℓ ( 𝑓 ) = dKℓ

𝑟 ( 𝑓 ). (2.8)

Applying this relation to (𝑟 + 1, ℓ − 1) instead of (𝑟, ℓ) and recalling that d is one-to-one
on Kℓ−1

𝑟+1 ( 𝑓 ) (see [4, Theorem 3.2]), this shows that, for ℓ ≥ 1, the following mapping is
an isomorphism:

Kℓ−1
𝑟+1 ( 𝑓 ) × K

ℓ
𝑟 ( 𝑓 )

�−→ P𝑟Λℓ ( 𝑓 ),
(𝜇, 𝜈) ↦→ d𝜇 + 𝜈.

(2.9)

Example 2 (Interpretation in terms of vector proxies). In the case 𝑛 = 3, thanks to the links
between differential forms and vector proxies (see Appendix A), we can associate to each
space of polynomial differential forms a space of (vector- or scalar-valued) polynomial
fields. Let us consider decomposition (2.7b). We denote by 𝑓𝑑 a 𝑑-cell ofMℎ, and we use
a notation analogous to that of [36] for polynomial spaces and vector calculus differential
operators (with the exception that polynomial degrees are in subscripts instead of super-
scripts). Then, by definition (2.5) of the Koszul space, when 𝑓3 = 𝑇 ∈ Tℎ = Δ3 (Mℎ) is a
mesh element, we have

dP𝑟+1Λ
0 ( 𝑓3) ↔ G𝑟 (𝑇) ≔ gradP𝑟+1 (𝑇), K1

𝑟 ( 𝑓3) ↔ G
c
𝑟 (𝑇) ≔ (𝒙 − 𝒙𝑇 ) × P𝑟−1 (𝑇),

dP𝑟+1Λ
1 ( 𝑓3) ↔ R𝑟 (𝑇) ≔ curl P𝑟+1 (𝑇), K2

𝑟 ( 𝑓3) ↔ R
c
𝑟 (𝑇) ≔ (𝒙 − 𝒙𝑇 )P𝑟−1 (𝑇),

dP𝑟+1Λ
2 ( 𝑓3) ↔ divP𝑟+1 (𝑇) = P𝑟 (𝑇), K3

𝑟 ( 𝑓3) = {0},

where the first identity in the last line results from the surjectivity of the divergence operator.
On the other hand, when 𝑓2 = 𝐹 ∈ Fℎ = Δ2 (Mℎ) is a mesh face, we obtain the following

pair of possible correspondences:

dP𝑟+1Λ
0 ( 𝑓2) ↔ G𝑟 (𝐹) ≔ grad𝐹 P𝑟+1 (𝐹),
K1

𝑟 ( 𝑓2) ↔ G
c
𝑟 (𝐹) ≔ (𝒙 − 𝒙𝐹)⊥P𝑟−1 (𝐹)

(2.10)

or
dP𝑟+1Λ

0 ( 𝑓2) ↔ R𝑟 (𝐹) ≔ rot𝐹 P𝑟+1 (𝐹),
K1

𝑟 ( 𝑓2) ↔ R
c
𝑟 (𝐹) ≔ (𝒙 − 𝒙𝐹)P𝑟+1 (𝐹),

(2.11)

where, for any 𝒗 ∈ R2, 𝒗⊥ = 𝜚−𝜋/2𝒗 is the clockwise rotation of 𝒗 with respect to the ori-
entation of 𝐹. The existence of two possible correspondences between polynomial 1-forms
and polynomial vector fields is to due to the fact that, when 𝑑 = 2, one can identify a 1-
form either with a vector field 𝒗 = (𝑣1, 𝑣2) or with its rotation through a right angle (cf. [2,
Chapter 6]); in particular, we choose to identify it with the clockwise rotation 𝒗⊥ = (𝑣2,−𝑣1)
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(see Appendix A for further details). By (2.6), we have K2
𝑟 ( 𝑓2) = {0} and, according to

whether we consider the vector proxy leading to (2.10) or (2.11),

dP𝑟+1Λ
1 ( 𝑓2) ↔ rot𝐹 P𝑟+1 (𝐹) = P𝑟 (𝐹) or dP𝑟+1Λ

1 ( 𝑓2) ↔ div𝐹 P𝑟+1 (𝐹) = P𝑟 (𝐹).

Hence, since both 1-forms and 2-forms in R3 can be identified with vector fields, and
accounting for the two-fold identification of 1-forms inR2, the decomposition (2.7b) reads,
in terms of proxies,

P𝑟 ( 𝑓𝑑) = G𝑟 ( 𝑓𝑑) ⊕ G
c
𝑟 ( 𝑓𝑑) = R𝑟 ( 𝑓𝑑) ⊕ R

c
𝑟 ( 𝑓𝑑), 𝑑 ∈ {2, 3},

i.e., the same expressions as [36, Eqs. (2.4) and (2.6)]. On the other hand, concerning
0-forms, the decomposition (2.7a) reads, in terms of proxies,

P𝑟 ( 𝑓𝑑) = P0 ( 𝑓𝑑) ⊕ P
♭
𝑟 ( 𝑓𝑑), 𝑑 ∈ {0, . . . , 3},

where we have introduced the notationP♭
𝑟 ( 𝑓 ) ≔ (𝒙 − 𝒙 𝑓 ) · P𝑟−1 ( 𝑓 ) for any 𝑓 ∈ Δ𝑑 (Mℎ).

2.7. Trimmed local polynomial spaces

We recall the following local trimmed polynomial spaces (see e.g. [4, Theorem 3.5]): For
any 𝑓 ∈ Δ𝑑 (Mℎ), 1 ≤ 𝑑 ≤ 𝑛,

P−𝑟 Λ0 ( 𝑓 ) = P𝑟Λ0 ( 𝑓 ), (2.12a)
P−𝑟 Λℓ ( 𝑓 ) = dP𝑟Λℓ−1 ( 𝑓 ) ⊕ Kℓ

𝑟 ( 𝑓 ) for ℓ ≥ 1. (2.12b)

In (2.12b), comparing with the decompositions (2.7), we have decreased by one the poly-
nomial degree of the first space in the direct sum. Note that this definition leads to the
choice

P−𝑟 Λ0 ( 𝑓 ) ≔ P𝑟Λ0 ( 𝑓 ) � R ∀ 𝑓 ∈ Δ0 (Mℎ). (2.13)

The 𝐿2-orthogonal projector 𝐿2Λℓ ( 𝑓 ) → P−𝑟 Λℓ ( 𝑓 ) is denoted by 𝜋
−,ℓ
𝑟 , 𝑓

, and is defined by
(2.3) with X = P−𝑟 Λℓ ( 𝑓 ).

Let us note a few properties of trimmed polynomial spaces. For 𝑟 = 0, only the space
(2.12a) is non-trivial, that is, P−0 Λ

ℓ ( 𝑓 ) = {0} if ℓ ∈ [1, 𝑑]. Applying, if 𝑟 ≥ 1 and ℓ ≥ 1,
(2.7b) with 𝑟 − 1 instead of 𝑟 and noticing that Kℓ

𝑟−1 ( 𝑓 ) ⊂ K
ℓ
𝑟 ( 𝑓 ), we obtain the equality

P−𝑟 Λℓ ( 𝑓 ) = P𝑟−1Λ
ℓ ( 𝑓 ) + Kℓ

𝑟 ( 𝑓 ). (2.14)

This equality, which obviously also holds for ℓ = 0 (see (2.7a)), shows that trimmed poly-
nomial spaces sit between full polynomial spaces:

P𝑟−1Λ
ℓ ( 𝑓 ) ⊂ P−𝑟 Λℓ ( 𝑓 ) ⊂ P𝑟Λℓ ( 𝑓 ).

Recalling that K𝑑
𝑟 ( 𝑓 ) = {0} and that dP𝑟Λ𝑑−1 ( 𝑓 ) = P

𝑟−1Λ
𝑑 ( 𝑓 ) (by exactness of the

tail of the polynomial de Rham sequence [2, Corollary 7.3]), it holds

P−𝑟 Λ𝑑 ( 𝑓 ) = P𝑟−1Λ
𝑑 ( 𝑓 ). (2.15)
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Applying (2.8) with ℓ − 1 instead of ℓ, we moreover have

P−𝑟 Λℓ ( 𝑓 ) = dKℓ−1
𝑟 ( 𝑓 ) + Kℓ

𝑟 ( 𝑓 ) for ℓ ≥ 1. (2.16)

Since d is one-to-one onKℓ−1
𝑟 ( 𝑓 ), this gives the following isomorphism, whenever ℓ ≥ 1:

Kℓ−1
𝑟 ( 𝑓 ) × Kℓ

𝑟 ( 𝑓 )
�−→ P−𝑟 Λℓ ( 𝑓 ),

(𝜇, 𝜈) ↦→ d𝜇 + 𝜈.
(2.17)

Example 3 (Interpretation of (2.12b) in terms of vector proxies). Let 𝑛 = 3. For 𝑑 ∈ {2,3},
denoting again by 𝑓𝑑 a 𝑑-cell, we define the (local) Nédélec and Raviart–Thomas spaces

N𝑟 ( 𝑓𝑑) ≔ G𝑟−1 ( 𝑓𝑑) + Gc
𝑟 ( 𝑓𝑑), RT𝑟 ( 𝑓𝑑) ≔ R𝑟−1 ( 𝑓𝑑) + Rc

𝑟 ( 𝑓𝑑).

Notice that, when 𝑑 = 3, the Nédélec and Raviart–Thomas spaces can be obtained as
polynomial spaces of vector proxies of (2.12b) for ℓ = 1 and ℓ = 2, respectively. On the
other hand, when considering 𝑑 = 2, both spaces can be obtained by taking the same value
ℓ = 1 in (2.12b). Again, this is linked to the two-fold interpretation of 1-forms in terms
of vector proxies in R2, discussed in Example 2, and corresponds to the well-known fact
that two-dimensional Nédélec elements coincide with two-dimensional Raviart–Thomas
elements rotated by a right angle.

The following result generalises [36, Proposition 8].

Lemma 4 (Traces of trimmed polynomial spaces). The trace preserves trimmed spaces:
For all integers 𝑑 ∈ [0, 𝑛], 𝑑′ ∈ [0, 𝑑] and ℓ ∈ [0, 𝑑′], all 𝑓 ∈ Δ𝑑 (Mℎ), and all 𝑓 ′ ∈ Δ𝑑′ ( 𝑓 ),
we have

tr 𝑓 ′ P−𝑟 Λℓ ( 𝑓 ) ⊂ P−𝑟 Λℓ ( 𝑓 ′).

Proof. We first notice that the case ℓ = 0 is obvious since, in this case, trimmed spaces are
full polynomial spaces (see (2.12a)), and the trace preserves full polynomial spaces. We
therefore assume in the rest of the proof that ℓ ≥ 1. As the Koszul operators on differential
forms on 𝑓 and 𝑓 ′ are not the same (due to the translation by 𝒙 𝑓 and 𝒙 𝑓 ′ , respectively),
we temporarily denote them in this proof by 𝜅 𝑓 and 𝜅 𝑓 ′ .

The trace is a pullback, so it commutes with d, and we thus have

tr 𝑓 ′ (dP𝑟Λℓ−1 ( 𝑓 )) = d(tr 𝑓 ′ P𝑟Λℓ−1 ( 𝑓 )) ⊂ dP𝑟Λℓ−1 ( 𝑓 ′),

where the inclusion holds since the trace preserves full polynomial spaces. Given the defin-
ition (2.12b) of the trimmed spaces, the lemma follows if we show that

tr 𝑓 ′ Kℓ
𝑟 ( 𝑓 ) ⊂ P−𝑟 Λℓ ( 𝑓 ′) (2.14)

= P𝑟−1Λ
ℓ ( 𝑓 ′) + Kℓ

𝑟 ( 𝑓 ′). (2.18)

Let 𝜔 ∈ P
𝑟−1Λ

ℓ+1 ( 𝑓 ). The definitions of tr 𝑓 ′ and 𝜅 𝑓 give, for any 𝒙 ∈ 𝑓 ′ and 𝒗1, . . . , 𝒗ℓ
tangent to 𝑓 ′,

tr 𝑓 ′ (𝜅 𝑓𝜔)𝒙 (𝒗1, . . . , 𝒗ℓ) = 𝜔𝒙 (𝒙 − 𝒙 𝑓 , 𝒗1, . . . , 𝒗ℓ)
= 𝜔𝒙 (𝒙 𝑓 ′ − 𝒙 𝑓 , 𝒗1, . . . , 𝒗ℓ) + 𝜔𝒙 (𝒙 − 𝒙 𝑓 ′ , 𝒗1, . . . , 𝒗ℓ)
= 𝛼𝒙 (𝒗1, . . . , 𝒗ℓ) + (𝜅 𝑓 ′ tr 𝑓 ′ 𝜔)𝒙 (𝒗1, . . . , 𝒗ℓ),
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where we have used the linearity of𝜔𝒙 with respect to its first argument to obtain the second
equality, and introduced the differential form 𝛼 ≔ 𝜔(𝒙 𝑓 ′ − 𝒙 𝑓 , ·) in the third equality.
Hence, tr 𝑓 ′ (𝜅 𝑓𝜔) = 𝛼 + 𝜅 𝑓 ′ tr 𝑓 ′ 𝜔, which proves (2.18) since 𝛼 ∈ P

𝑟−1Λ
ℓ ( 𝑓 ′) (as 𝒙 𝑓 ′ − 𝒙 𝑓

is constant) and tr 𝑓 ′ 𝜔 ∈ P𝑟−1Λ
ℓ+1 ( 𝑓 ′).

3. Discrete de Rham complex

We define in this section a discrete counterpart of the de Rham complex of differential
forms (1.2) in the spirit of [36, 39]. Let, from this point on, an integer 𝑟 ≥ 0 be fixed,
corresponding to the polynomial degree of the discrete sequence. The general idea is, for
each form degree 𝑘 ∈ [0, 𝑛], to select the polynomial components of the discrete spaces in
order to reconstruct, on each 𝑑-cell 𝑓 and iteratively on the dimension 𝑑:
• A discrete exterior derivative in P𝑟Λ𝑘+1 ( 𝑓 ) that can reproduce exactly the exterior

derivative of differential forms in P−
𝑟+1Λ

𝑘 ( 𝑓 );
• Based on this discrete exterior derivative and on traces on (𝑑 − 1)-cells (either directly

available or reconstructed), a discrete potential in P𝑟Λ𝑘 ( 𝑓 ) that can reproduce exactly
differential forms belonging to this same space.

3.1. Definition

3.1.1. Discrete spaces. The discrete counterpart 𝑋 𝑘
𝑟 ,ℎ

of the space 𝐻Λ𝑘 (Ω), 0 ≤ 𝑘 ≤ 𝑛,
is defined as

𝑋 𝑘
𝑟 ,ℎ ≔

𝑛?
𝑑=𝑘

?
𝑓 ∈Δ𝑑 (Mℎ )

P−𝑟 Λ𝑑−𝑘 ( 𝑓 ), (3.1)

with × denoting the Cartesian product. We define the restrictions of the global space (3.1)
to a mesh entity or its boundary as follows: For all integers 𝑘 and 𝑑 such that 0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛

and all 𝑓 ∈ Δ𝑑 (Mℎ),

𝑋 𝑘
𝑟 , 𝑓 ≔

𝑑?
𝑑′=𝑘

?
𝑓 ′∈Δ𝑑′ ( 𝑓 )

P−𝑟 Λ𝑑′−𝑘 ( 𝑓 ′) and 𝑋 𝑘
𝑟 ,𝜕 𝑓

≔

𝑑−1?
𝑑′=𝑘

?
𝑓 ′∈Δ𝑑′ ( 𝑓 )

P−𝑟 Λ𝑑′−𝑘 ( 𝑓 ′) if 𝑑 ≥ 1.

We shall use the notation 𝜔
ℎ
= (𝜔 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘,𝑛] ∈ 𝑋 𝑘

𝑟 ,ℎ
for a generic element of the

global discrete space of 𝑘-forms and 𝜔
𝑓
= (𝜔 𝑓 ′ ) 𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘,𝑑 ] ∈ 𝑋 𝑘

𝑟 , 𝑓
(resp., 𝜔

𝜕 𝑓
=

(𝜔 𝑓 ′ ) 𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘,𝑑−1] ∈ 𝑋 𝑘
𝑟 ,𝜕 𝑓

) for its restriction to 𝑓 (resp., 𝜕 𝑓 ), obtained collecting
the components on the mesh entities 𝑓 ′ ∈ Δ𝑑′ ( 𝑓 ), 𝑑′ ∈ [𝑘, 𝑑] (resp., 𝑑′ ∈ [𝑘, 𝑑 − 1]). As
a generic convention in this article, underlined letters denote spaces or vectors made of
polynomial components on mesh entities. Table 1 gives an overview of the polynomial
unknowns in 𝑋 𝑘

𝑟 , 𝑓
, along with their vector proxies, in dimensions 0 to 3.

Remark 5 (Choice of polynomial components). The choice of using in (3.1) component
spaces spanned by (𝑑 − 𝑘)-forms instead of 𝑘-forms is motivated by the desire to recover
the DDR sequence of [36] through vector proxies; see Example 13 below. Applying the
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𝑘

𝑑
0 1 2 3

0 R = P𝑟Λ0 ( 𝑓0) P
𝑟−1Λ

1 ( 𝑓1) P
𝑟−1Λ

2 ( 𝑓2) P
𝑟−1Λ

3 ( 𝑓3)
1 P𝑟Λ0 ( 𝑓1) P−𝑟 Λ1 ( 𝑓2) P−𝑟 Λ2 ( 𝑓3)
2 P𝑟Λ0 ( 𝑓2) P−𝑟 Λ1 ( 𝑓3)
3 P𝑟Λ0 ( 𝑓3)

𝑘

𝑑
0 1 2 3

0 R = P𝑟 ( 𝑓0) P
𝑟−1 ( 𝑓1) P

𝑟−1 ( 𝑓2) P
𝑟−1 ( 𝑓3)

1 P𝑟 ( 𝑓1) RT𝑟 ( 𝑓2) RT𝑟 ( 𝑓3)
2 P𝑟 ( 𝑓2) N𝑟 ( 𝑓3)
3 P𝑟 ( 𝑓3)

Tab. 1. Polynomial components attached to each mesh entity 𝑓𝑑 of dimension 𝑑 ∈ {0, . . . , 3} for the
space 𝑋𝑘

𝑟 ,ℎ
for 𝑘 ∈ {0, . . . , 3} (top) and counterpart through vector proxies (bottom).

Hodge-star operator to these components could, in the Euclidean setting at least, enable
us to consider components in P−𝑟 Λ𝑘 ( 𝑓 ) (the situation is however different when designing
the method on manifolds [52]).

Notice that it is by no means clear that full polynomial spaces could be used instead
of trimmed spaces while ensuring that the discrete cohomology is isomorphic to the con-
tinuous one (cf. Theorem 14 below). As a matter of fact, as noticed in [39, Section 4.2],
this cannot hold in dimension 𝑛 = 2 on a simply connected polygon. In dimension 𝑛 = 3,
it has been shown in [61] that, in the lowest-order case, the dimension of the kernel of the
discrete gradient depends on the number of edges of the polygon, which clearly prevents
one from establishing an isomorphism with the de Rham cohomology.

Remark 6 (Virtual spaces). It is possible to identify virtual spaces underlying 𝑋 𝑘
𝑟 ,ℎ

and
its restrictions to mesh faces 𝑓 in the spirit of [7]. These spaces, however, play no role
in the following discussion, so we do not present them here to avoid confusion. In the
present framework, the connections between polynomial components attached to a mesh
cell and its boundary are not realised by a virtual function, but rather by the reconstructions
presented in Section 3.1.3 below.

Remark 7 (Comparison with trimmed finite element sequences). A detailed comparison
between the number of degrees of freedom for the DDR and classical trimmed finite ele-
ment sequences for 𝑛 = 3 has been made in [37, Table 3]. This comparison shows that
the DDR complex without serendipity reduction has slightly more degrees of freedom
than trimmed finite elements on tetrahedra, but fewer on hexahedra. This table also shows
that the difference on tetrahedra can be slimmed down (and the advantage on hexahedra
increased) using serendipity to reduce face and element degrees of freedom.
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3.1.2. Interpolators and interpretation of the polynomial components. The precise mean-
ing of the components in each DDR space is provided by the corresponding interpolator.
For 𝑓 ∈ Δ𝑑 (Mℎ) and 𝑘 ≤ 𝑑, the interpolator 𝐼𝑘

𝑟 , 𝑓
: 𝐶0Λ𝑘 ( 𝑓 ) → 𝑋 𝑘

𝑟 , 𝑓
is defined by: For

all 𝜔 ∈ 𝐶0Λ𝑘 ( 𝑓 ),

𝐼𝑘𝑟 , 𝑓𝜔 ≔ (𝜋−,𝑑
′−𝑘

𝑟 , 𝑓 ′ (★ tr 𝑓 ′ 𝜔)) 𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘,𝑑 ] . (3.2)

In other words, a discrete 𝑘-form on the mesh is made of polynomial forms attached to
each mesh entity of dimension 𝑑 ≥ 𝑘; on each entity, the form is of degree 𝑑 − 𝑘 as it
corresponds to the Hodge star of an underlying 𝑘-form. The Hodge star operator is used
in the definition of the polynomial components to ensure that the full space P𝑟Λ0 ( 𝑓 ) (see
(2.12a)) is attached to the lowest-dimensional cells 𝑓 ∈ Δ𝑘 (Mℎ).

3.1.3. Local discrete potentials and discrete exterior derivative. Let 0 ≤ 𝑘 ≤ 𝑛 be a fixed
integer. For all 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘 , we define the discrete potential 𝑃𝑘

𝑟 , 𝑓
: 𝑋 𝑘

𝑟 , 𝑓
→

P𝑟Λ𝑘 ( 𝑓 ) and, if 𝑑 ≥ 𝑘 + 1, the discrete exterior derivative d𝑘
𝑟 , 𝑓

: 𝑋 𝑘
𝑟 , 𝑓
→ P𝑟Λ𝑘+1 ( 𝑓 )

recursively on the dimension 𝑑 as follows:
• If 𝑑 = 𝑘 , then the discrete potential on 𝑓 is directly given by the component of 𝜔

𝑓
on

𝑓 :
𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

≔ ★−1𝜔 𝑓 ∈ P𝑟Λ𝑑 ( 𝑓 ). (3.3)

• If 𝑘 + 1 ≤ 𝑑 ≤ 𝑛:
(1) First, the discrete exterior derivative is defined by: For all 𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
,∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 = (−1)𝑘+1
∫
𝑓

★−1𝜔 𝑓 ∧ d𝜇 +
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇

∀𝜇 ∈ P𝑟Λ𝑑−𝑘−1 ( 𝑓 ), (3.4)

where we have introduced the piecewise polynomial boundary potential 𝑃𝑘
𝑟 ,𝜕 𝑓

:
𝑋 𝑘
𝑟 ,𝜕 𝑓
→ Λ𝑘 (𝜕 𝑓 ) such that (𝑃𝑘

𝑟 ,𝜕 𝑓
) | 𝑓 ′ ≔ 𝑃𝑘

𝑟 , 𝑓 ′ for all 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ) (𝑃𝑘
𝑟 , 𝑓 ′ being

the discrete potential on the (𝑑 − 1)-cell 𝑓 ′ defined at the previous step).
(2) Then, the discrete potential on the 𝑑-cell 𝑓 is given by: For all 𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
,

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈)

=

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1

∫
𝑓

★−1𝜔 𝑓 ∧ 𝜈

∀(𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) × K𝑑−𝑘

𝑟 ( 𝑓 ). (3.5)

Some remarks are in order.

Remark 8 (Boundary integration and orientation). Above and in the rest of the paper, any
integral

∫
𝜕 𝑓

on the boundary a cell 𝑓 is considered according to the orientation induced
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by the cell 𝑓 . As a consequence, if 𝜀 𝑓 𝑓 ′ ∈ {−1, 1} denotes the orientation of 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 )
relative to 𝑓 , we have ∫

𝜕 𝑓

• =
∑︁

𝑓 ′∈Δ𝑑−1 ( 𝑓 )
𝜀 𝑓 𝑓 ′

∫
𝑓 ′
•. (3.6)

Remark 9 (Definitions (3.4) and (3.5)). The fact that condition (3.4) defines d𝑘
𝑟 , 𝑓

𝜔
𝑓
uniquely

is an immediate consequence of the Riesz representation theorem for P𝑟Λ𝑘+1 ( 𝑓 ) equipped
with the 𝐿2-product (𝜌, 𝛽) ∋ 𝐿2Λ𝑘+1 ( 𝑓 ) × 𝐿2Λ𝑘+1 ( 𝑓 ) ↦→

∫
𝑓
𝜌 ∧★𝛽 ∈ R, after observing

that (3.4) can be equivalently reformulated as follows (notice the change in the degree of
the test differential form, with 𝛽 below corresponding to ★−1𝜇 in (3.4)):∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧★𝛽 = (−1)𝑘+1
∫
𝑓

𝜔 𝑓 ∧★d★ 𝛽 +
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 ★𝛽 ∀𝛽 ∈ P𝑟Λ𝑘+1 ( 𝑓 ),

where we have additionally used (A.4) for the first term in the right-hand side. Similar
considerations apply to the definition (3.5) of 𝑃𝑘

𝑟 , 𝑓
, applying the isomorphism (2.9) with

ℓ = 𝑑 − 𝑘 ≥ 1.
Notice that one cannot substitute (3.4) into (3.5), as the polynomial degree of the test

function 𝜇 in this second relation is one unit higher. In view of (3.37) below, the poten-
tial reconstruction can be regarded as a higher-order enhancement of ★𝜔 𝑓 exploiting the
additional information provided by the components on the boundary of the subcells.

Remark 10 (Validity of (3.5)). For 𝑘 + 1 ≤ 𝑑 ≤ 𝑛, equation (3.5) actually holds for all 𝜇 ∈
P−
𝑟+1Λ

𝑑−𝑘−1 ( 𝑓 ). To prove this assertion, since (3.5) holds for 𝜇 ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ), it suffices

to show that it also holds for 𝜈 = 0 and 𝜇 belonging to P0Λ
0 ( 𝑓 ) if 𝑑 = 𝑘 + 1 (see (2.12a)

and (2.7a)) or dP
𝑟+1Λ

𝑑−𝑘−2 ( 𝑓 ) if 𝑑 ≥ 𝑘 + 2 (see (2.12b)). In both cases, we have d𝜇 = 0,
so that the left-hand side of (3.5) vanishes; since 𝜇 ∈ P𝑟Λ𝑑−𝑘−1 ( 𝑓 ), the right-hand side
of (3.5) also vanishes due to the definition (3.4) of the discrete exterior derivative, which
concludes the argument.

Remark 11 (Potential for 𝑘 = 0). In the case 𝑘 = 0, we can define an improved potential
𝑃0
𝑟+1, 𝑓 : 𝑋0

𝑟 , 𝑓
→ P

𝑟+1Λ
0 ( 𝑓 ) of polynomial degree 𝑟 + 1 (instead of 𝑟) as follows: For all

𝜔
𝑓
∈ 𝑋0

𝑟 , 𝑓
,

• If 𝑑 = 0, then 𝑃0
𝑟+1, 𝑓𝜔 𝑓

=★−1𝜔 𝑓 ∈ P𝑟Λ0 ( 𝑓 ) � R � P
𝑟+1Λ

0 ( 𝑓 ) (since 𝑓 has dimension
0);

• If 1 ≤ 𝑑 ≤ 𝑛,

−
∫
𝑓

𝑃0
𝑟+1, 𝑓𝜔 𝑓

∧ d𝜇 =

∫
𝑓

d0
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 −
∫
𝜕 𝑓

𝑃0
𝑟+1,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 ∀𝜇 ∈ K𝑑−1

𝑟+2 ( 𝑓 ).

(3.7)
This definition is justified by the isomorphism (2.9) with ℓ = 𝑑 and 𝑟 + 1 instead of 𝑟
(recalling that K𝑑

𝑟+1 ( 𝑓 ) = {0}), and it can easily be checked, testing (3.5) and (3.7) with
𝜇 ∈K𝑑−1

𝑟+1 ( 𝑓 ), that 𝜋0
𝑟 , 𝑓

𝑃0
𝑟+1, 𝑓𝜔 𝑓

= 𝑃0
𝑟 , 𝑓

𝜔
𝑓
. We will moreover see in Remark 26 that 𝑃0

𝑟+1, 𝑓
enjoys optimal consistency properties.
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Remark 12 (Space of DDR potentials). The space of DDR reconstructed potentials, that
is,

{(𝑃𝑘
𝑟 , 𝑓𝜔ℎ

) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘,𝑛] : 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ}

cannot be considered as a space of differential forms with global regularity, as the recon-
structed polynomials do not have any compatibility condition of the traces; they are inher-
ently piecewise discontinuous polynomials.

Example 13 (Interpretation in terms of vector proxies). We start by considering 𝑘 = 0.
In this case, formula (3.3) means that (constant) real values are attached to the vertices
𝑓0 = 𝑉 ∈ Vℎ = Δ0 (Mℎ) of the mesh, so that an iterative procedure can be initialised to
reconstruct discrete gradients and related traces/potentials over higher-dimensional cells.
Indeed, formula (3.4) reconstructs a (scalar) gradient over edges 𝑓1 = 𝐸 ∈ Eℎ = Δ1 (Mℎ)
(i.e., the derivative along the direction given by the orientation of 𝐸) based on the values at
the vertices and the value on the edge itself. This edge gradient, in turn, enters (3.5) to define
a scalar edge trace over 𝐸 . When 𝑑 takes the values 2 and 3, the successive application
of formulas (3.4)–(3.5) defines, respectively, the pairs (face gradient, scalar face trace) on
mesh faces 𝑓2 = 𝐹 ∈ Fℎ = Δ2 (Mℎ), and (element gradient, scalar element potential) on
mesh elements 𝑓3 = 𝑇 ∈ Tℎ = Δ3 (Mℎ).

Let us now turn to the case 𝑘 = 1, for which we provide more details. The vector proxy
for the space 𝑋1

𝑟 ,ℎ
is the space

𝑿𝑟
curl,ℎ =

?
𝐸∈Eℎ

P𝑟 (𝐸) ×
?
𝐹∈Fℎ

RT𝑟 (𝐹) ×
?
𝑇∈Tℎ

RT𝑟 (𝑇)

and, with standard DDR notation, we denote by 𝑿𝑟
curl,𝑌 its restriction to a mesh element

or face 𝑌 ∈ Tℎ ∪ Fℎ. By (3.3) with 𝑑 = 𝑘 = 1, the reconstruction process is initialised
by 1-forms, whose vector proxies are scalar-valued polynomials of degree 𝑟 over edges
𝑓1 = 𝐸 ∈ Eℎ that play the role of edge tangential traces.

Then, for each mesh face 𝑓2 = 𝐹 ∈ Fℎ, we sequentially reconstruct a scalar face curl
𝐶𝑟
𝐹

: 𝑿𝑟
curl,𝐹 → P𝑟 (𝐹) by (3.4) with 𝑑 = 𝑘 + 1 = 2 and a vector face tangential trace

𝜸𝑟
t,𝐹 : 𝑿𝑟

curl,𝐹→P𝑟 (𝐹) by (3.5). Specifically,𝐶𝑟
𝐹

is such that, for all 𝒗
𝐹
=

(
(𝑣𝐸)𝐸∈E𝐹 , 𝒗𝐹

)
∈

𝑿𝑟
curl,𝐹 , ∫

𝐹

𝐶𝑟
𝐹𝒗𝐹 𝑞 =

∫
𝐹

𝒗𝐹 · rot𝐹 𝑞 +
∑︁

𝐸∈E𝐹
𝜀𝐹𝐸

∫
𝐸

𝑣𝐸 𝑞 ∀𝑞 ∈ P𝑟 (𝐹),

where, for all 𝐸 ∈ E𝐹 (the set of edges of 𝐹), 𝜀𝐹𝐸 ∈ {−1,+1} denotes the orientation of 𝐸
relative to 𝐹, while 𝜸𝑟

t,𝐹 satisfies, for all 𝒗
𝐹
∈ 𝑿𝑟

curl,𝐹 ,∫
𝐹

𝜸𝑟
t,𝐹𝒗𝐹 · (rot𝐹 𝑞 + 𝒘) =

∫
𝐹

𝐶𝑟
𝐹𝒗𝐹 𝑞 −

∑︁
𝐸∈E𝐹

𝜀𝐹𝐸

∫
𝐸

𝑣𝐸 𝑞 +
∫
𝐹

𝒗𝐹 · 𝒘,

∀(𝑞,𝒘) ∈ P♭
𝑟+1 (𝐹) × R

c
𝑟 (𝐹).
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The alternative interpretation of 1-forms in dimension 𝑑 = 2 results in a rotation of 𝑿𝑟
curl,𝐹

by a right angle. Correspondingly, (3.4) yields a face divergence (see (A.9) and (A.10) in
Appendix A.2).

Next, for each mesh element 𝑓3 = 𝑇 ∈ Tℎ, (3.4) defines the element curl 𝑪𝑟
𝑇 : 𝑿𝑟

curl,𝑇 →
P𝑟 (𝑇) such that, for all 𝒗

𝑇
=

(
(𝑣𝐸)𝐸∈E𝑇 , (𝒗𝐹)𝐹∈F𝑇 , 𝒗𝑇

)
∈ 𝑿𝑟

curl,𝑇 ,∫
𝑇

𝑪𝑟
𝑇𝒗𝑇 · 𝒘 =

∫
𝑇

𝒗𝑇 · curl𝒘 +
∑︁
𝐹∈F𝑇

𝜀𝑇𝐹

∫
𝐹

𝜸𝑟
t,𝐹𝒗𝐹 · (𝒘 × 𝒏𝐹) ∀𝒘 ∈ P𝑟 (𝑇),

where, for all 𝐹 ∈ F𝑇 (the set of faces of 𝑇), 𝜀𝑇𝐹 ∈ {−1, +1} denotes the orientation of 𝐹
relative to 𝑇 , while (3.5) defines the vector potential 𝑷𝑟

curl,𝑇 : 𝑿𝑟
curl,𝑇 → P𝑟 (𝑇) such that,

for all 𝒗
𝑇
∈ 𝑿𝑟

curl,𝑇 ,∫
𝑇

𝑷𝑟
curl,𝑇𝒗𝑇 · (curl𝒘 + 𝒛) =

∫
𝑇

𝑪𝑟
𝑇𝒗𝑇 · 𝒘 −

∑︁
𝐹∈F𝑇

𝜀𝑇𝐹

∫
𝐹

𝜸𝑟
t,𝐹𝒗𝐹 · (𝒘 × 𝒏𝐹) +

∫
𝑇

𝒗𝑇 · 𝒛

∀(𝒘, 𝒛) ∈ G
c
𝑟+1 (𝑇) × R

c
𝑟 (𝑇).

When 𝑘 = 2, (3.4) reconstructs on mesh elements 𝑓3 = 𝑇 ∈ Tℎ a discrete divergence of
order 𝑟 based on the polynomial scalar trace defined by (3.3), which plays the role of a
normal trace on the face 𝑓2 = 𝐹 ∈ F𝑇 . Then, (3.5) defines a vector potential of degree 𝑟

over 𝑇 .
Finally, in the case 𝑘 = 3, (3.3) simply yields a polynomial over mesh elements 𝑓3 =

𝑇 ∈ Tℎ.

3.1.4. Global discrete exterior derivative and DDR complex. To arrange the spaces 𝑋 𝑘
𝑟 ,ℎ

into a sequence that mimics the continuous de Rham complex, for any form degree 𝑘 such
that 0 ≤ 𝑘 ≤ 𝑛 − 1, we introduce the global discrete exterior derivative d𝑘

𝑟 ,ℎ
: 𝑋 𝑘

𝑟 ,ℎ
→ 𝑋 𝑘+1

𝑟 ,ℎ

defined as follows:

d𝑘
𝑟 ,ℎ

𝜔
ℎ
≔

(
𝜋
−,𝑑−𝑘−1
𝑟 , 𝑓

(★d𝑘
𝑟 , 𝑓𝜔 𝑓

)
)
𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛] . (3.8)

In what follows, given a 𝑑-cell 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ∈ [𝑘 + 1, 𝑛], we denote by d𝑘
𝑟 , 𝑓

the
local discrete exterior derivative collecting the components of d𝑘

𝑟 ,ℎ
on 𝑓 and its boundary.

The DDR sequence reads

DDR(𝑟) ≔ {0} 𝑋0
𝑟 ,ℎ

𝑋1
𝑟 ,ℎ

· · · 𝑋𝑛−1
𝑟 ,ℎ

𝑋𝑛
𝑟,ℎ

{0}.
d0
𝑟,ℎ

d𝑛−1
𝑟,ℎ

(3.9)
The main results concerning this sequence are stated hereafter.

Theorem 14 (Cohomology of the Discrete de Rham complex). The DDR sequence (3.9)
is a complex and its cohomology is isomorphic to the cohomology of the continuous de
Rham complex (1.2).

Proof. See Section 3.6.
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Theorem 15 (Polynomial consistency of the discrete potential and exterior derivative).
For all integers 0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛 and all 𝑓 ∈ Δ𝑑 (Mℎ), it holds

𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝜔 ∀𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ), (3.10)

and, if 𝑑 ≥ 𝑘 + 1,
d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = d𝜔 ∀𝜔 ∈ P−𝑟+1Λ

𝑘 ( 𝑓 ). (3.11)

Proof. See Section 3.5.

Remark 16 (Consistency of traces). The above theorem actually implies that, for any 𝑑-face
𝑓 ∈ Δ𝑑 (Mℎ), 𝑑 ∈ [𝑘, 𝑛], any 𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ), and any integer 𝑑′ ∈ [𝑘, 𝑑],

𝑃𝑘
𝑟 , 𝑓 ′ 𝐼

𝑘
𝑟 , 𝑓 ′𝜔 = tr 𝑓 ′ 𝜔 ∀ 𝑓 ′ ∈ Δ𝑑′ ( 𝑓 ).

This can be easily seen noticing that 𝐼𝑘
𝑟 , 𝑓 ′𝜔 = 𝐼𝑘

𝑟 , 𝑓 ′ tr 𝑓 ′ 𝜔 and tr 𝑓 ′ 𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ′), and
invoking (3.10) with ( 𝑓 , 𝜔) ← ( 𝑓 ′, tr 𝑓 ′ 𝜔).

To state the consistency properties of the potential reconstruction and of the discrete
exterior derivative we introduce, for any real number 𝑝 ∈ [1,∞] and any integer 𝑠 ≥ 0, the
following scaled seminorm on 𝑊max(𝑟+1,𝑠) , 𝑝Λ𝑘 ( 𝑓 ):

|𝜔 |𝑊 (𝑟+1,𝑠) , 𝑝Λ𝑘 ( 𝑓 ) ≔


|𝜔 |𝑊𝑟+1, 𝑝Λ𝑘 ( 𝑓 ) if 𝑠 ≤ 𝑟 + 1,

𝑠∑︁
𝑡=𝑟+1

ℎ𝑡−𝑟−1
𝑓 |𝜔 |𝑊 𝑡,𝑝Λ𝑘 ( 𝑓 ) if 𝑠 > 𝑟 + 1.

(3.12)

Corollary 17 (Consistency of the discrete potential and exterior derivative on smooth
forms). Let 0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛 be integers, let 𝑓 ∈ Δ𝑑 (Mℎ), and take 𝜃 > 0 such that 𝑓 is
connected by star-shaped sets with parameter 𝜃, see [34, Definition 1.41] (in particular, 𝑓
satisfies this assumption if it is star-shaped with respect to a ball of diameter 𝜃ℎ 𝑓 ). Then,
for all 𝑝 ∈ [1,∞] and all integer 𝑠 such that 𝑠𝑝 > 𝑑, there exists 𝐶 > 0 depending only on
𝜃, 𝑑, 𝑘 , 𝑠 and 𝑟 such that, for all integer 0 ≤ 𝑚 ≤ 𝑟 + 1,

|𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 − 𝜔 |𝑊𝑚,𝑝Λ𝑘 ( 𝑓 ) ≤ 𝐶ℎ𝑟+1−𝑚𝑓 |𝜔 |𝑊 (𝑟+1,𝑠) , 𝑝Λ𝑘 ( 𝑓 ) ∀𝜔 ∈ 𝑊max(𝑟+1,𝑠) , 𝑝Λ𝑘 ( 𝑓 ),

(3.13)
and, if 𝑑 ≥ 𝑘 + 1,

|d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 − d𝜔 |𝑊𝑚,𝑝Λ𝑘+1 ( 𝑓 ) ≤ 𝐶ℎ𝑟+1−𝑚𝑓 |d𝜔 |𝑊 (𝑟+1,𝑠) , 𝑝Λ𝑘+1 ( 𝑓 )

∀𝜔 ∈ 𝐶1Λ𝑘 ( 𝑓 ) s.t. d𝜔 ∈ 𝑊max(𝑟+1,𝑠) , 𝑝Λ𝑘+1 ( 𝑓 ). (3.14)

Proof. See Section 3.5.
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3.1.5. Discrete 𝐿2-products. Using the potentials built in Section 3.1.3, we can define, for
all 𝑘 ∈ [0, 𝑛], an inner product (·, ·)𝑘,ℎ : 𝑋 𝑘

𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
→ R that induces an 𝐿2-structure on

𝑋 𝑘
𝑟 ,ℎ

. Specifically, we set: For all (𝜔
ℎ
, 𝜇

ℎ
) ∈ 𝑋 𝑘

𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
,

(𝜔
ℎ
, 𝜇

ℎ
)𝑘,ℎ ≔

∑︁
𝑓 ∈Δ𝑛 (Mℎ )

(𝜔
𝑓
, 𝜇

𝑓
)𝑘, 𝑓

with (𝜔
𝑓
, 𝜇

𝑓
)𝑘, 𝑓 ≔

∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧★𝑃𝑘
𝑟 , 𝑓 𝜇 𝑓

+ 𝑠𝑘, 𝑓 (𝜔 𝑓
, 𝜇

𝑓
) for all 𝑓 ∈ Δ𝑛 (Mℎ),

(3.15)
where 𝑠𝑘, 𝑓 : 𝑋 𝑘

𝑟 , 𝑓
× 𝑋 𝑘

𝑟 , 𝑓
→ R is the stabilisation bilinear form such that

𝑠𝑘, 𝑓 (𝜔 𝑓
, 𝜇

𝑓
)

=

𝑛−1∑︁
𝑑′=𝑘

ℎ𝑛−𝑑
′

𝑓

∑︁
𝑓 ′∈Δ𝑑′ ( 𝑓 )

∫
𝑓 ′
(tr 𝑓 ′ 𝑃𝑘

𝑟 , 𝑓𝜔 𝑓
− 𝑃𝑘

𝑟 , 𝑓 ′𝜔 𝑓 ′ ) ∧★(tr 𝑓 ′ 𝑃
𝑘
𝑟 , 𝑓 𝜇 𝑓

− 𝑃𝑘
𝑟 , 𝑓 ′𝜇 𝑓 ′

),

with ℎ 𝑓 denoting the diameter of 𝑓 . The first term in the right-hand side of (·, ·)𝑘, 𝑓 is
responsible for consistency, while the second one ensures the positivity and definiteness
of this bilinear form (required for (·, ·)𝑘,ℎ to define an inner product). More specifically,
by Theorem 15 and Remark 16 it holds, for all 𝑓 ∈ Δ𝑛 (Mℎ),

(𝐼𝑘𝑟 , 𝑓𝜔, 𝜇 𝑓
)𝑘, 𝑓 =

∫
𝑓

𝜔 ∧★𝑃𝑘
𝑟 , 𝑓 𝜇 𝑓

∀𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ) , ∀𝜇
𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓 . (3.16)

Additionally, by (3.37) below, the mapping 𝑋 𝑘
𝑟 , 𝑓
∋ 𝜔

𝑓
↦→ ∥𝜔

𝑓
∥𝑘, 𝑓 ≔ (𝜔 𝑓

, 𝜔
𝑓
)1/2
𝑘, 𝑓
∈ R

defines a norm on 𝑋 𝑘
𝑟 , 𝑓

. Numerical schemes for linear PDEs related to the de Rham com-
plex are typically obtained replacing continuous spaces and 𝐿2-products with their discrete
counterparts, according to the principles illustrated in the next section; see also [36, Sec-
tion 7].

Remark 18 (Stabilisation). A more general expression for the local 𝐿2-product in (3.15)
is obtained replacing 𝑠𝑘, 𝑓 with

𝑠B,𝑘, 𝑓 (𝜔 𝑓
, 𝜇

𝑓
) = B 𝑓 (𝐼𝑘𝑟 , 𝑓 𝑃

𝑘
𝑟 , 𝑓𝜔 𝑓

− 𝜔
𝑓
, 𝐼𝑘𝑟 , 𝑓 𝑃

𝑘
𝑟 , 𝑓 𝜇 𝑓

− 𝜇
𝑓
),

with B 𝑓 : 𝑋 𝑘
𝑟 , 𝑓
× 𝑋 𝑘

𝑟 , 𝑓
→ R denoting a symmetric positive definite bilinear form inducing

a norm that scales in ℎ 𝑓 as ∥·∥𝑘, 𝑓 defined above. Crucially, 𝑠B,𝑘, 𝑓 depends on its argu-
ments only through the difference operator 𝑋 𝑘

𝑟 , 𝑓
∋ 𝜔

𝑓
↦→ 𝐼𝑘

𝑟 , 𝑓
𝑃𝑘
𝑟 , 𝑓

𝜔
𝑓
−𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
, which

guarantees that it vanishes whenever one of its arguments is the interpolate of a differential
form in P𝑟Λ𝑘 ( 𝑓 ) as a result of (3.10).

The stabilisation bilinear form not only vanishes on interpolate of polynomials, it also
enjoys some consistency property on interpolate of smooth forms. Extending the notation
for Sobolev spaces, the 𝐻 (𝑟+1,𝑠) -seminorm corresponds to the 𝑊 (𝑟+1,𝑠) ,2-seminorm.
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Lemma 19 (Consistency of the stabilisation bilinear form). Under the assumptions on 𝑘 ,
𝑑, and 𝑓 in Corollary 17, for all integer 𝑠 such that 2𝑠 > 𝑑 there exists 𝐶 > 0 depending
only on 𝜃, 𝑑, 𝑘 , 𝑠 and 𝑟 such that

𝑠𝑘, 𝑓 (𝐼𝑘𝑟 , 𝑓𝜔, 𝐼
𝑘
𝑟 , 𝑓𝜔)

1/2 ≤ 𝐶ℎ𝑟+1𝑓 |𝜔 |𝐻 (𝑟+1,𝑠)Λ𝑘 ( 𝑓 ) ∀𝜔 ∈ 𝐻max(𝑟+1,𝑠)Λ𝑘 ( 𝑓 ). (3.17)

Proof. See Section 3.5.

3.2. Application to the Hodge Laplacian

In this section we write a DDR scheme for the Hodge Laplacian and use this model problem
to showcase the relevant properties for the analysis.

3.2.1. DDR scheme. In view of Remark 21 below, to keep the exposition as simple as
possible, we assume that Ω ⊂ R𝑛 has trivial topology, so that the spaces of harmonic forms
are trivial. Given a form degree 𝑘 ≥ 0 and a form 𝑔 ∈ Λ𝑘 (Ω) smooth enough, we focus on
the following mixed formulation: Find (𝜎, 𝑢) ∈ 𝐻Λ𝑘−1 (Ω) × 𝐻Λ𝑘 (Ω) such that

⟨𝜎, 𝜏⟩𝑘−1 − ⟨𝑢, d𝑘−1𝜏⟩𝑘 = 0 ∀𝜏 ∈ 𝐻Λ𝑘−1 (Ω),
⟨d𝑘−1𝜎, 𝑣⟩𝑘 + ⟨d𝑘𝑢, d𝑘𝑣⟩𝑘+1 = ⟨𝑔, 𝑣⟩𝑘 ∀𝑣 ∈ 𝐻Λ𝑘 (Ω),

where ⟨𝜔, 𝜇⟩ℓ ≔
∫
Ω
𝜔 ∧★𝜇 denotes the 𝐿2-product of ℓ-forms. Let a polynomial degree

𝑟 ≥ 0 be fixed. Assuming 𝑔 smooth enough for 𝐼𝑘
𝑟 ,ℎ

𝑔 to be well-defined, the DDR scheme
is obtained with obvious substitutions, and reads: Find (𝜎

ℎ
, 𝑢

ℎ
) ∈ 𝑋 𝑘−1

𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
such that

(𝜎
ℎ
, 𝜏

ℎ
)𝑘−1,ℎ − (𝑢ℎ, d

𝑘−1
𝑟 ,ℎ

𝜏
ℎ
)𝑘,ℎ = 0 ∀𝜏

ℎ
∈ 𝑋 𝑘−1

𝑟 ,ℎ ,

(d𝑘−1
𝑟 ,ℎ

𝜎
ℎ
, 𝑣

ℎ
)𝑘,ℎ + (d𝑘

𝑟 ,ℎ
𝑢
ℎ
, d𝑘

𝑟 ,ℎ
𝑣
ℎ
)𝑘+1,ℎ = (𝐼𝑘𝑟 ,ℎ𝑔, 𝑣ℎ)𝑘,ℎ ∀𝑣

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,

or, equivalently,

Aℎ ((𝜎ℎ
, 𝑢

ℎ
), (𝜏

ℎ
, 𝑣

ℎ
)) = (𝐼𝑘𝑟 ,ℎ𝑔, 𝑣ℎ)𝑘,ℎ ∀(𝜏

ℎ
, 𝑣

ℎ
) ∈ 𝑋 𝑘−1

𝑟 ,ℎ × 𝑋 𝑘
𝑟 ,ℎ, (3.18)

where the bilinear form Aℎ :
[
𝑋 𝑘−1
𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ

]2 → R is such that

Aℎ ((𝜎ℎ
, 𝑢

ℎ
), (𝜏

ℎ
, 𝑣

ℎ
))

≔ (𝜎
ℎ
, 𝜏

ℎ
)𝑘−1,ℎ − (𝑢ℎ, d

𝑘−1
𝑟 ,ℎ

𝜏
ℎ
)𝑘,ℎ + (d𝑘−1

𝑟 ,ℎ
𝜎

ℎ
, 𝑣

ℎ
)𝑘,ℎ + (d𝑘

𝑟 ,ℎ
𝑢
ℎ
, d𝑘

𝑟 ,ℎ
𝑣
ℎ
)𝑘+1,ℎ . (3.19)

Remark 20 (Regularity requirement on 𝑔). The regularity requirements on 𝑔 can be lowered
replacing (𝐼𝑘

𝑟 ,ℎ
𝑔, 𝑣

ℎ
)𝑘,ℎ with

∑
𝑓 ∈Δ𝑛 (Mℎ )

∫
𝑓
𝑔 ∧ ★𝑃𝑘

𝑟 , 𝑓
𝑣
𝑓
. The changes to the following

discussion are straightforward, and we leave them to the reader.
Remark 21 (Extension to domains with non-trivial topology). The extension to domains
with non-trivial topology requires to additionally enforce the 𝐿2-orthogonality of 𝑢 to har-
monic forms. The discrete space of harmonic forms is non-conforming (i.e. it is not a
subspace of the continuous harmonic forms) also when conforming finite element approx-
imations of 𝐻Λ𝑘−1 (Ω) and 𝐻Λ𝑘 (Ω) are used. We therefore refer to [2] for further discus-
sion on this subject.
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3.2.2. Existence and uniqueness of a discrete solution and stability analysis. We equip
the product space 𝑋 𝑘−1

𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
with the following norm:

||| (𝜏
ℎ
, 𝑣

ℎ
) |||ℎ ≔

(
|||𝜏

ℎ
|||2𝑘−1,ℎ + |||𝑣ℎ |||

2
𝑘,ℎ

)1/2
,

where, for all ℓ ≥ 0 and all 𝜔
ℎ
∈ 𝑋ℓ

𝑟 ,ℎ
,

|||𝜔
ℎ
|||ℓ,ℎ ≔

(
∥𝜔

ℎ
∥2ℓ + ∥d

ℓ
𝑟 ,ℎ

𝜔
ℎ
∥2ℓ+1

)1/2 with ∥·∥ℓ ≔ (·, ·)
1/2
ℓ,ℎ

.

From here on, we will assume that the mesh satisfies regularity properties generalising to
the dimension 𝑑 those of [34, Definition 1.9] and use 𝑎 ≲ 𝑏 as a shortcut for 𝑎 ≤ 𝐶𝑏 with
𝐶 > 0 independent of the meshsize (dependencies will be specified more precisely when
needed). The following Poincaré-type result has been proved for 𝑛 = 3 in [44] using vector
proxies: For all form degrees ℓ ≥ 0 and all 𝜔

ℎ
∈ 𝑋ℓ

𝑟 ,ℎ
, there exists 𝜇

ℎ
∈ 𝑋ℓ

𝑟 ,ℎ
such that

dℓ
𝑟 ,ℎ

𝜇
ℎ
= dℓ

𝑟 ,ℎ
𝜔

ℎ
and ∥𝜇

ℎ
∥ℓ ≲ ∥dℓ𝑟 ,ℎ𝜔ℎ

∥ℓ+1. (3.20)

Based on this relation, we can prove the following inf-sup condition on Aℎ proceeding
along the lines of [44, Section 5]: For all (𝜐

ℎ
, 𝑤

ℎ
) ∈ 𝑋 𝑘−1

𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
,

||| (𝜐
ℎ
, 𝑤

ℎ
) |||ℎ ≲ sup

(𝜏ℎ ,𝑣ℎ ) ∈𝑋𝑘−1
𝑟,ℎ
×𝑋𝑘

𝑟,ℎ
\{0}

Aℎ ((𝜐ℎ, 𝑤ℎ
), (𝜏

ℎ
, 𝑣

ℎ
))

||| (𝜏
ℎ
, 𝑣

ℎ
) |||ℎ

. (3.21)

3.2.3. Convergence analysis. For ℓ ≥ 0, we define the global potential reconstruction
𝑃ℓ
𝑟 ,ℎ

: 𝑋ℓ
𝑟 ,ℎ
→ 𝐿2Λℓ (Ω) and discrete differential dℓ

𝑟 ,ℎ
: 𝑋ℓ

𝑟 ,ℎ
→ 𝐿2Λℓ+1 (Ω) obtained patch-

ing the corresponding local counterparts on the mesh 𝑛-faces: For all 𝜔
ℎ
∈ 𝑋ℓ

𝑟 ,ℎ
,

(𝑃ℓ
𝑟 ,ℎ𝜔ℎ

) | 𝑓 ≔ 𝑃ℓ
𝑟 , 𝑓𝜔 𝑓

and (dℓ𝑟 ,ℎ𝜔ℎ
) | 𝑓 ≔ dℓ𝑟 , 𝑓𝜔 𝑓

for all 𝑓 ∈ Δ𝑛 (Mℎ).

To establish the convergence of the solution to the discrete problem (3.18), we let, for
the sake of brevity, (𝜎̂

ℎ
, 𝑢̂

ℎ
) ≔ (𝐼𝑘−1

𝑟 ,ℎ
𝜎, 𝐼𝑘

𝑟 ,ℎ
𝑢) (assuming 𝜎 and 𝑢 smooth enough for the

interpolation to be possible) and define the following errors:

(𝜀𝜋 , 𝑒𝜋) ≔ (𝜎 − 𝑃𝑘−1
𝑟 ,ℎ 𝜎̂

ℎ
, 𝑢 − 𝑃𝑘

𝑟 ,ℎ𝑢̂ℎ),
(𝜀d, 𝜋 , 𝑒d, 𝜋) ≔ (d𝑘−1𝜎 − d𝑘−1

𝑟 ,ℎ 𝜎̂
ℎ
, d𝑘𝑢 − d𝑘

𝑟 ,ℎ𝑢̂ℎ),
(𝜀

ℎ
, 𝑒

ℎ
) ≔

(
𝜎

ℎ
− 𝜎̂

ℎ
, 𝑢

ℎ
− 𝑢̂

ℎ

)
.

The approximation properties stated in Corollary 17 and Lemma 19 (with 𝑚 = 0, 𝑝 = 2,
and 𝑠 = 𝑟 + 1) and the commutation property (3.40) below yield the following estimate:

∥𝜀𝜋 ∥𝐿2Λ𝑘−1 (Ω) + ∥𝜀d,ℎ∥𝐿2Λ𝑘 (Ω) + ∥𝑒𝜋 ∥𝐿2Λ𝑘 (Ω) + ∥𝑒d, 𝜋 ∥𝐿2Λ𝑘+1 (Ω)

+ |𝜎̂
ℎ
|𝑘−1,ℎ + |d𝑘−1

𝑟 ,ℎ
𝜎̂

ℎ
|𝑘,ℎ + |𝑢̂ℎ |𝑘,ℎ + |d

𝑘−1
𝑟 ,ℎ

𝑢̂
ℎ
|𝑘+1,ℎ ≲ ℎ𝑟+1, (3.22)

where, for all ℓ ≥ 0, we introduced the stabilisation seminorm

|·|ℓ,ℎ ≔ 𝑠ℓ,ℎ (·, ·)1/2.
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Notice that the terms involving this seminorm can be interpreted as a measure of the
“jumps” between the traces of the potential reconstruction in the highest-dimensional cells
and the potential reconstructions on their subcells.

Bounding the discrete components (𝜀
ℎ
, 𝑒

ℎ
) of the error requires the following adjoint

consistency results that, for 𝑛 = 3, follow from the analysis done in [36, Section 6.2] using
vector proxies. Defining, for any form degree ℓ ≥ 0, any 𝜔 ∈ Λℓ+1 (Ω) smooth enough for
the interpolators to make sense, and any 𝜇

ℎ
∈ 𝑋ℓ

𝑟 ,ℎ
,

Ẽℓ𝑟 ,ℎ (𝜔; 𝜇
ℎ
) ≔ (𝐼ℓ𝑟 ,ℎ𝛿𝜔, 𝜇ℎ

)ℓ,ℎ − (𝐼ℓ+1𝑟 ,ℎ𝜔, d
ℓ
𝑟 ,ℎ

𝜇
ℎ
)ℓ+1,ℎ, (3.23)

(where 𝛿 is the co-differential) it holds, under additional piecewise regularity assumptions
on 𝜔,

|Ẽℓ𝑟 ,ℎ (𝜔; 𝜇
ℎ
) | ≲ ℎ𝑟+1 |||𝜇

ℎ
|||ℓ,ℎ ∀𝜇

ℎ
∈ 𝑋ℓ

𝑟 ,ℎ . (3.24)

Then, letting, for all (𝜏
ℎ
, 𝜇

ℎ
) ∈ 𝑋 𝑘−1

𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
,

Eℎ (𝜏ℎ, 𝑣ℎ) ≔ (𝐼
𝑘
𝑟 ,ℎ𝑔, 𝑣ℎ) − Aℎ ((𝜎̂ℎ

, 𝑢̂
ℎ
), (𝜏

ℎ
, 𝑣

ℎ
)), (3.25)

we write

||| (𝜀
ℎ
, 𝑒

ℎ
) |||ℎ

(3.21)
≲ sup

(𝜏ℎ ,𝑣ℎ ) ∈𝑋𝑘−1
𝑟,ℎ
×𝑋𝑘

𝑟,ℎ
\{0}

Aℎ ((𝜀ℎ, 𝑒ℎ), (𝜏ℎ, 𝑣ℎ))
||| (𝜏

ℎ
, 𝑣

ℎ
) |||ℎ

(3.18), (3.25)
= |||Eℎ (·, ·) |||ℎ,∗.

(3.26)
with |||·|||ℎ,∗ denoting the norm dual to |||·|||ℎ. Recalling that 𝑔 = d𝜎 + 𝛿d𝑢 almost everywhere
and expanding the bilinear form Aℎ according to its definition (3.19), we next observe
that, for all (𝜏

ℎ
, 𝜇

ℎ
) ∈ 𝑋 𝑘−1

𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
, and provided d𝜎 and 𝛿d𝑢 are smooth enough for their

interpolation to make sense,

Eℎ (𝜏ℎ, 𝜇ℎ
) =

�������(𝐼𝑘𝑟 ,ℎd𝜎, 𝑣
ℎ
)𝑘,ℎ + (𝐼𝑘𝑟 ,ℎ𝛿d𝑢, 𝑣

ℎ
)𝑘,ℎ

− (𝜎̂
ℎ
, 𝜏

ℎ
)𝑘−1,ℎ + (𝑢̂ℎ, d

𝑘−1
𝑟 ,ℎ

𝜏
ℎ
)𝑘,ℎ

−
�������(d𝑘−1

𝑟 ,ℎ
𝜎̂

ℎ
, 𝑣

ℎ
)𝑘,ℎ − (d𝑘

𝑟 ,ℎ
𝑢̂
ℎ
, d𝑘

𝑟 ,ℎ
𝑣
ℎ
)𝑘+1,ℎ

= (𝐼𝑘𝑟 ,ℎ𝛿d𝑢, 𝑣
ℎ
)𝑘,ℎ − (𝐼𝑘+1𝑟 ,ℎ d𝑢, d𝑘

𝑟 ,ℎ
𝑣
ℎ
)𝑘+1,ℎ

− (𝐼𝑘−1
𝑟 ,ℎ 𝛿𝑢, 𝜏

ℎ
)𝑘−1,ℎ + (𝐼𝑘𝑟 ,ℎ𝑢, d

𝑘−1
𝑟 ,ℎ

𝜏
ℎ
)𝑘,ℎ

(3.23)
= Ẽ𝑘

𝑟 ,ℎ (d𝑢; 𝑣
ℎ
) − Ẽ𝑘−1

𝑟 ,ℎ (𝑢; 𝜏
ℎ
),

(3.27)

where the cancellation in the first step is a consequence of the commutation property (3.40)
below, while, in the second step, we have used again this commutation property to write
d𝑘
𝑟 ,ℎ

𝑢̂
ℎ
= 𝐼𝑘+1

𝑟 ,ℎ
d𝑢 and 𝜎̂

ℎ
= 𝐼𝑘−1

𝑟 ,ℎ
𝜎 = 𝐼𝑘−1

𝑟 ,ℎ
𝛿𝑢. Combining (3.26) and (3.27), and using the

adjoint consistency (3.24), we finally get

||| (𝜀
ℎ
, 𝑒

ℎ
) |||ℎ ≲ ℎ𝑟+1. (3.28)
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Finally, using triangle inequalities, invoking (3.22) and (3.28), and using the |||·|||ℎ-boundedness
of the 𝐿2-norm of the potential (resulting from the defintion of this norm), we arrive at the
following error estimate:

∥𝜎 − 𝑃𝑘−1
𝑟 ,ℎ 𝜎

ℎ
∥𝐿2Λ𝑘−1 (Ω) + ∥d𝜎 − d𝑘−1

𝑟 ,ℎ 𝜎
ℎ
∥𝐿2Λ𝑘 (Ω)

+ ∥𝑢 − 𝑃𝑘
𝑟 ,ℎ𝑢ℎ∥𝐿2Λ𝑘 (Ω) + ∥d𝑢 − d𝑘

𝑟 ,ℎ𝑢ℎ∥𝐿2Λ𝑘+1 (Ω)

+ |𝜎
ℎ
|𝑘−1,ℎ + |d𝑘−1

𝑟 ,ℎ
𝜎

ℎ
|𝑘,ℎ + |𝑢ℎ |𝑘,ℎ + |d

𝑘−1
𝑟 ,ℎ

𝑢
ℎ
|𝑘+1,ℎ ≲ ℎ𝑟+1.

Notice that, as in the finite element framework, improved error estimates for certain com-
ponents of the above error can be obtained using the Aubin–Nitsche trick, which has been
extended to the fully discrete in [33, Section 2.3]. This topic will be explored in a future
work.

3.2.4. Summary of the relevant results. In summary, to carry out the error analysis above
we have used the following relevant results:
• The isomorphism in cohomology between the discrete and continuous de Rham com-

plexes stated in Theorem 14 below to infer the existence and uniqueness of a solution
to the discrete problem (3.18);

• The uniform Poincaré-type inequalities (3.20) to prove an inf-sup condition on the
bilinear form Aℎ. Such inequalities have been proved for 𝑛 = 3 in [44] using vector
proxies, with arguments that lend themselves to an adaptation to the framework of
differential forms;

• The approximation properties stated in Corollary 17 and Lemma 19, consequences of
the polynomial consistency properties of Theorem 15;

• The adjoint consistency estimates (3.24) to bound the discrete components of the error.
Adjoint consistency results have been proved for 𝑛 = 3 in [36, Section 6.2] using vector
proxies. The proofs therein, however, use different arguments for each form degree.
Devising a unified proof valid for all form degrees is still an open problem, which we
leave for a future work.

3.3. Complex property

We denote by Λ𝑘+1 (𝜕 𝑓 ) the space
>

𝑓 ′∈Δ𝑑−1 ( 𝑓 ) Λ
𝑘+1 ( 𝑓 ′), which can be intuitively under-

stood as a space of piecewise (𝑘 + 1)-forms on 𝜕 𝑓 . For all integers 𝑑 ∈ [𝑘 + 2, 𝑛], the
piecewise polynomial boundary exterior derivative d𝑘

𝑟 ,𝜕 𝑓
: 𝑋 𝑘

𝑟 ,𝜕 𝑓
→ Λ𝑘+1 (𝜕 𝑓 ) is defined

such that (d𝑘
𝑟 ,𝜕 𝑓
) | 𝑓 ′ ≔ d𝑘

𝑟 , 𝑓 ′ for all 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ) (d𝑘
𝑟 , 𝑓 ′ being the discrete exterior derivative

on the (𝑑 − 1)-cell 𝑓 ′ defined by (3.4)). The following lemma generalises the links between
element gradients (resp., curls) and face gradients (resp., curls) proved in [36, Propositions
1 and 4] using vector proxies.
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Lemma 22 (Link between discrete exterior derivatives on subcells). It holds, for all 𝑑 ≥
𝑘 + 2, all 𝑓 ∈ Δ𝑑 (Mℎ), and all 𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
,∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ d𝛼 = (−1)𝑘+1
∫
𝜕 𝑓

d𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼 ∀𝛼 ∈ P−𝑟+1Λ

𝑑−𝑘−2 ( 𝑓 ). (3.29)

Proof. Take 𝜇 = d𝛼 ∈ P𝑟Λ𝑑−𝑘−1 ( 𝑓 ) in (3.4) and use d ◦ d = 0 and tr𝜕 𝑓 d = d tr𝜕 𝑓 (since
the trace is a pullback, it commutes with the exterior derivative) to get∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ d𝛼 =

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ d tr𝜕 𝑓 𝛼. (3.30)

For each 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ) forming 𝜕 𝑓 , by Lemma 4 we have tr 𝑓 ′ 𝛼 ∈ P−𝑟+1Λ
𝑑−𝑘−2 ( 𝑓 ′) so, by

(3.5) applied to 𝑓 ′ instead of 𝑓 with test function (𝜇, 𝜈) = (tr 𝑓 ′ 𝛼, 0) (see Remark 10), we
have, additionally using the fact that tr𝜕 𝑓 ′ (tr 𝑓 ′ 𝛼) = tr𝜕 𝑓 ′ 𝛼,

(−1)𝑘+1
∫
𝑓 ′
𝑃𝑘
𝑟 , 𝑓 ′𝜔 𝑓 ′ ∧ d tr 𝑓 ′ 𝛼 =

∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′𝜔 𝑓 ′ ∧ tr 𝑓 ′ 𝛼 −

∫
𝜕 𝑓 ′

𝑃𝑘
𝑟 ,𝜕 𝑓 ′𝜔𝜕 𝑓 ′ ∧ tr𝜕 𝑓 ′ 𝛼.

Multiplying the first term in the right-hand side by the relative orientation 𝜀 𝑓 𝑓 ′ and sum-
ming over 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ), we have∑︁

𝑓 ′∈Δ𝑑−1 ( 𝑓 )
𝜀 𝑓 𝑓 ′

∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′𝜔 𝑓 ′ ∧ tr 𝑓 ′ 𝛼

(3.6)
=

∫
𝜕 𝑓

d𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼.

Proceeding similarly for the second term in the right-hand side, we have∑︁
𝑓 ′∈Δ𝑑−1 ( 𝑓 )

𝜀 𝑓 𝑓 ′

∫
𝜕 𝑓 ′

𝑃𝑘
𝑟 ,𝜕 𝑓 ′𝜔𝜕 𝑓 ′ ∧ tr𝜕 𝑓 ′ 𝛼

(3.6)
=

∑︁
𝑓 ′∈Δ𝑑−1 ( 𝑓 )

𝜀 𝑓 𝑓 ′

( ∑︁
𝑓 ′′∈Δ𝑑−2 ( 𝑓 ′ )

𝜀 𝑓 ′ 𝑓 ′′

∫
𝑓 ′′

𝑃𝑘
𝑟 , 𝑓 ′′𝜔 𝑓 ′′ ∧ tr 𝑓 ′′ 𝛼

)
=

∑︁
𝑓 ′′∈Δ𝑑−2 ( 𝑓 )

( ∑︁
𝑓 ′∈Δ𝑑−1 ( 𝑓 ) s.t. 𝑓 ′′∈Δ𝑑−2 ( 𝑓 ′ )

𝜀 𝑓 𝑓 ′𝜀 𝑓 ′ 𝑓 ′′︸                                       ︷︷                                       ︸
=0

) ∫
𝑓 ′′

𝑃𝑘
𝑟 , 𝑓 ′′𝜔 𝑓 ′′ ∧ tr 𝑓 ′′ 𝛼 = 0.

Thus,
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ dtr𝜕 𝑓 𝛼 = (−1)𝑘+1

∫
𝜕 𝑓

d𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼which, plugged into (3.30),

gives the desired result.

Theorem 23 (Link between discrete potentials and exterior derivatives, complex property).
It holds, for all integers 𝑘 ∈ [1, 𝑛] and 𝑑 ≥ 𝑘 , all 𝑓 ∈ Δ𝑑 (Mℎ), and all 𝜔

𝑓
∈ 𝑋 𝑘−1

𝑟 , 𝑓
,

𝑃𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) = d𝑘−1

𝑟 , 𝑓 𝜔 𝑓
, (3.31)

and, if 𝑑 ≥ 𝑘 + 1,
d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) = 0. (3.32)

As a consequence, the sequence (3.9) defines a complex.
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Proof. The proof is done by induction on 𝜌 ≔ 𝑑 − 𝑘 .
If 𝜌 = 0 (i.e., 𝑑 = 𝑘), by the definitions (3.3) of the discrete potential and (3.8) of

the global discrete exterior derivative with 𝑘 − 1 instead of 𝑘 , we have 𝑃𝑘
𝑟 , 𝑓
(d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
) =

★−1 (★d𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) = d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
(notice that, in the first passage, we can omit the projector in

front of ★d𝑘−1
𝑟 , 𝑓

𝜔
𝑓

since this quantity sits in P𝑟Λ0 ( 𝑓 ) = P−𝑟 Λ0 ( 𝑓 ), and is therefore left
unchanged by 𝜋

−,0
𝑟 , 𝑓

). This proves (3.31), and the relation (3.32) is irrelevant here since
𝑑 = 𝑘 .

Let us now assume that (3.31) and (3.32) hold for a given 𝜌 ≥ 0, and let us consider
𝑑 and 𝑘 such that 𝑑 − 𝑘 = 𝜌 + 1. We start by considering (3.32) (which we need to prove
since 𝑑 ≥ 𝑘 + 1 in the present case). Let us take 𝑓 ∈ Δ𝑑 (Mℎ). Applying (3.4) with d𝑘−1

𝑟 , 𝑓
𝜔

𝑓

instead of 𝜔
𝑓

and a generic 𝜇 ∈ P𝑟Λ𝑑−𝑘−1 ( 𝑓 ), we have, expanding the local discrete
exterior derivative d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
according to its definition (i.e., the restriction to 𝑓 of (3.8) with

𝑘 − 1 instead of 𝑘),∫
𝑓

d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ 𝜇 = (−1)𝑘+1

∫
𝑓

★−1 (𝜋−,𝑑−𝑘
𝑟 , 𝑓

(★d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

)) ∧ d𝜇

+
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓
(d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
) ∧ tr𝜕 𝑓 𝜇. (3.33)

By the induction hypothesis, (3.31) holds on each 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ) (since (𝑑 − 1) − 𝑘 = 𝜌),
and thus

𝑃𝑘
𝑟 ,𝜕 𝑓
(d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
) = d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
. (3.34)

Invoking then (2.4) with (X,𝜔, 𝜇) ← (P−𝑟 Λ𝑑−𝑘 ( 𝑓 ),d𝑘−1
𝑟 , 𝑓

𝜔
𝑓
,d𝜇), noticing that d𝜇 ∈ P

𝑟−1Λ
𝑑−𝑘 ( 𝑓 ) ⊂

P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) (by (2.14) with ℓ = 𝑑 − 𝑘) to handle the first term in the right-hand side of
(3.33), we infer∫

𝑓

d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ 𝜇 = (−1)𝑘+1

∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ d𝜇 +
∫
𝜕 𝑓

d𝑘−1
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 = 0, (3.35)

where the conclusion follows from the link (3.29) between discrete exterior derivatives on
subcells applied with 𝑘 − 1 instead of 𝑘 and 𝛼 = 𝜇 ∈ P𝑟Λ𝑑−𝑘−1 ( 𝑓 ) ⊂ P−

𝑟+1Λ
𝑑−(𝑘−1)−2 ( 𝑓 ).

Since 𝜇 is arbitrary in P𝑟Λ𝑑−𝑘−1 ( 𝑓 ), (3.35) proves (3.32).
We next prove (3.31). For any (𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) × K𝑑−𝑘
𝑟 ( 𝑓 ), the definition (3.5) of

the potential applied to d𝑘−1
𝑟 , 𝑓

𝜔
𝑓

gives

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ (d𝜇 + 𝜈) =

∫
𝑓

d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ 𝜇

−
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓
(d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
) ∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1

∫
𝑓

★−1𝜋−,𝑑−𝑘
𝑟 , 𝑓

(★d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

) ∧ 𝜈,

where we have additionally used, in the last term, the definition of the local discrete exter-
ior derivative d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
, corresponding to the restriction to 𝑓 of (3.8) with 𝑘 − 1 instead of

𝑘 . Using the complex property (3.32) that we have just proved, we have d𝑘
𝑟 , 𝑓
(d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
) = 0.
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Moreover, the induction hypothesis (3.34) yields 𝑃𝑘
𝑟 ,𝜕 𝑓
(d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
) = d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓

. Hence,
invoking (3.29) with 𝑘 − 1 instead of 𝑘 and𝛼 = 𝜇 (notice that 𝜇 ∈K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) ⊂ P−
𝑟+1Λ

𝑑−(𝑘−1)−2 ( 𝑓 )
by (2.12)) and applying (2.4) with (X, 𝜔, 𝜇) ← (P−𝑟 Λ𝑑−𝑘 ( 𝑓 ), d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
, 𝜈), which is valid

since 𝜈 ∈ K𝑑−𝑘
𝑟 ( 𝑓 ) ⊂ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) by (2.12b) with ℓ = 𝑑 − 𝑘 ≥ 1, we obtain

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ (d𝜇 + 𝜈)

= −(−1)𝑘
∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ d𝜇 + (−1)𝑘+1
∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ 𝜈.

Simplifying by (−1)𝑘+1 and recalling the isomorphism (2.9) concludes the proof of (3.31).

3.4. Commutation

The following lemma shows that the reconstructed potential 𝑃𝑘
𝑟 , 𝑓

𝜔
𝑓

on a 𝑑-cell 𝑓 is built
by adding a high-order enhancement to ★−1𝜔 𝑓 ; this enhancement is designed to obtain a
polynomial consistency unachievable by the component alone (see (3.10)).

Lemma 24 (Links between component and potential reconstruction). For all integers 𝑑 ∈
[0, 𝑛] and 𝑘 ≤ 𝑑, if 𝑓 ∈ Δ𝑑 (Mℎ) and 𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
, then it holds

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈) = (−1)𝑘+1
∫
𝑓

★−1𝜔 𝑓 ∧ (d(𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇) + 𝜈)

+
∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (𝜇 − 𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇) −

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 (𝜇 − 𝜋𝑑−𝑘−1

𝑟 , 𝑓 𝜇)

∀(𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) × K𝑑−𝑘

𝑟 ( 𝑓 ). (3.36)

As a consequence,
𝜋
−,𝑑−𝑘
𝑟 , 𝑓

(★𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

) = 𝜔 𝑓 . (3.37)

Proof. If 𝑑 = 𝑘 , the relation (3.36) follows fromK𝑑−𝑘−1
𝑟+1 ( 𝑓 ) =K−1

𝑟+1 ( 𝑓 ) = {0} and𝑃𝑘
𝑟 , 𝑓

𝜔
𝑓
=

★−1𝜔 𝑓 (see (3.3)), which also establishes (3.37) since 𝜋−,0
𝑟 , 𝑓

= Id on P𝑟Λ0 ( 𝑓 ) = P−𝑟 Λ0 ( 𝑓 ).
Consider now 𝑑 ≥ 𝑘 + 1 and take (𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) ×K𝑑−𝑘
𝑟 ( 𝑓 ). Inserting±𝜋𝑑−𝑘−1

𝑟 , 𝑓
𝜇

into the definition (3.5) of 𝑃𝑘
𝑟 , 𝑓

𝜔
𝑓

we have

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈)

=

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇 +

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (𝜇 − 𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇) −

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇

+ (−1)𝑘+1
∫
𝑓

★−1𝜔 𝑓 ∧ 𝜈.

(3.38)
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On the other hand, the definition (3.4) of d𝑘
𝑟 , 𝑓

𝜔
𝑓

applied to 𝜋𝑑−𝑘−1
𝑟 , 𝑓

𝜇 yields∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇

= (−1)𝑘+1
∫
𝑓

★−1𝜔 𝑓 ∧ d(𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇) +

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 (𝜋𝑑−𝑘−1

𝑟 , 𝑓 𝜇).

Substituting this relation into (3.38) yields (3.36).
To prove (3.37) we apply (3.36) with (𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟 ( 𝑓 ) × K𝑑−𝑘
𝑟 ( 𝑓 ) and notice that

𝜇 = 𝜋𝑑−𝑘−1
𝑟 , 𝑓

𝜇 since K𝑑−𝑘−1
𝑟 ( 𝑓 ) ⊂ P𝑟Λ𝑑−𝑘−1 ( 𝑓 ), to get∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈) =
∫
𝑓

★−1𝜔 𝑓 ∧ (d𝜇 + 𝜈). (3.39)

The isomorphism (2.17) with ℓ = 𝑑 − 𝑘 ≥ 1 shows that d𝜇 + 𝜈 spans P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) when
(𝜇, 𝜈) span K𝑑−𝑘−1

𝑟 ( 𝑓 ) × K𝑑−𝑘
𝑟 ( 𝑓 ). Hence, (3.39) gives∫

𝑓

★−1𝜔 𝑓 ∧ 𝛼 =

∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝛼 (2.4)
=

∫
𝑓

★−1𝜋−,𝑑−𝑘
𝑟 , 𝑓

(★𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

) ∧ 𝛼 ∀𝛼 ∈ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ),

proving (3.37) since ★−1𝜔 𝑓 ∈ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) and ★−1 is an isomorphism.

Theorem 25 (Commutation property for the local discrete exterior derivative). For all
integers 𝑑 ∈ [1, 𝑛] and 𝑘 ≤ 𝑑 − 1, and for all 𝑓 ∈ Δ𝑑 (Mℎ), recalling the definition (3.2)
of the interpolators, it holds

d𝑘
𝑟 , 𝑓
(𝐼𝑘𝑟 , 𝑓𝜔) = 𝐼𝑘+1𝑟 , 𝑓 (d𝜔) ∀𝜔 ∈ 𝐶1Λ𝑘 ( 𝑓 ), (3.40)

expressing the commutativity of the following diagram:

𝐶1Λ𝑘 ( 𝑓 ) 𝐶0Λ𝑘+1 ( 𝑓 )

𝑋 𝑘
𝑟 , 𝑓

𝑋 𝑘+1
𝑟 , 𝑓

.

d

𝐼𝑘
𝑟, 𝑓

𝐼𝑘+1
𝑟, 𝑓

d𝑘
𝑟, 𝑓

Proof. Given the definitions (3.2) of the interpolator and (3.8) of the discrete exterior deriv-
ative, we have to prove that, for all 𝑓 ′ ∈Δ𝑑′ ( 𝑓 )with 𝑑′ ∈ [𝑘 + 1, 𝑑], 𝜋−,𝑑

′−𝑘−1
𝑟 , 𝑓 ′ (★d𝑘

𝑟 , 𝑓 ′ 𝐼
𝑘
𝑟 , 𝑓 ′𝜔) =

𝜋
−,𝑑′−𝑘−1
𝑟 , 𝑓 ′ (★ tr 𝑓 ′ (d𝜔)). Recalling the definition of the projector 𝜋−,𝑑

′−𝑘−1
𝑟 , 𝑓 ′ (i.e., (2.3) with

X = P−𝑟 Λ𝑑′−𝑘−1 ( 𝑓 ′)), we need to prove that, for any 𝜇 ∈ P−𝑟 Λ𝑑′−𝑘−1 ( 𝑓 ′)∫
𝑓 ′
★d𝑘

𝑟 , 𝑓 ′ 𝐼
𝑘
𝑟 , 𝑓 ′𝜔 ∧★𝜇 =

∫
𝑓 ′
★ tr 𝑓 ′ (d𝜔) ∧★𝜇.

Applying (A.4), this amounts to proving that∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′ 𝐼

𝑘
𝑟 , 𝑓 ′𝜔 ∧ 𝜇 =

∫
𝑓 ′

tr 𝑓 ′ (d𝜔) ∧ 𝜇. (3.41)
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Using the definitions (3.4) of the discrete exterior derivative on 𝑓 ′ and (3.2) of 𝐼𝑘
𝑟 , 𝑓 ′ , we

have∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′ 𝐼

𝑘
𝑟 , 𝑓 ′𝜔 ∧ 𝜇

= (−1)𝑘+1
∫
𝑓 ′����������: tr 𝑓 ′ 𝜔
★−1𝜋−,𝑑

′−𝑘
𝑟 , 𝑓 ′ (★ tr 𝑓 ′ 𝜔) ∧ d𝜇 +

∫
𝜕 𝑓 ′

𝑃𝑘
𝑟 ,𝜕 𝑓 ′ 𝐼

𝑘
𝑟 ,𝜕 𝑓 ′𝜔 ∧ tr𝜕 𝑓 ′ 𝜇, (3.42)

where the substitution is justified by (2.4) with (X, 𝜔, 𝜇) ← (P−𝑟 Λ𝑑′−𝑘 ( 𝑓 ′), tr 𝑓 ′ 𝜔, d𝜇),
since d𝜇 ∈ dP−𝑟 Λ𝑑′−𝑘−1 ( 𝑓 ′) ⊂ dP𝑟Λ𝑑′−𝑘−1 ( 𝑓 ′) ⊂ P−𝑟 Λ𝑑′−𝑘 ( 𝑓 ′) (see (2.12b)). For all
𝑓 ′′ ∈ Δ𝑑′−1 ( 𝑓 ′) we have tr 𝑓 ′′ 𝜇 ∈ P−𝑟 Λ𝑑′−1−𝑘 ( 𝑓 ′′) (see Lemma 4), so∫

𝑓 ′′
𝑃𝑘
𝑟 , 𝑓 ′′ 𝐼

𝑘
𝑟 , 𝑓 ′′𝜔 ∧ tr 𝑓 ′′ 𝜇

(2.4)
=

∫
𝑓 ′′
★−1𝜋−,𝑑

′−1−𝑘
𝑟 , 𝑓 ′′ (★𝑃𝑘

𝑟 , 𝑓 ′′ 𝐼
𝑘
𝑟 , 𝑓 ′′𝜔) ∧ tr 𝑓 ′′ 𝜇

(3.37), (3.2)
=

∫
𝑓 ′′
★−1𝜋−,𝑑

′−1−𝑘
𝑟 , 𝑓 ′′ (★ tr 𝑓 ′′ 𝜔) ∧ tr 𝑓 ′′ 𝜇

(2.4)
=

∫
𝑓 ′′

tr 𝑓 ′′ 𝜔 ∧ tr 𝑓 ′′ 𝜇.

Summing this relation over 𝑓 ′′ ∈ Δ𝑑′−1 ( 𝑓 ′) and substituting the result into (3.42) we obtain∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′ 𝐼

𝑘
𝑟 , 𝑓 ′𝜔 ∧ 𝜇 = (−1)𝑘+1

∫
𝑓 ′

tr 𝑓 ′ 𝜔 ∧ d𝜇 +
∫
𝜕 𝑓 ′

tr𝜕 𝑓 ′ 𝜔 ∧ tr𝜕 𝑓 ′ 𝜇.

The proof of (3.41) is concluded invoking the integration by part formula (2.1) and writing
d tr 𝑓 ′ = tr 𝑓 ′ d (since the trace is a pullback).

3.5. Consistency

Proof of Theorem 15. The proof is made, as in Theorem 23, by induction on 𝜌 ≔ 𝑑 − 𝑘 .
If 𝜌 = 0, then 𝑑 = 𝑘 and the definitions (3.3) of the discrete potential and (3.2) of the

interpolator give 𝑃𝑘
𝑟 ,𝑑

𝐼𝑘
𝑟 , 𝑓

𝜔 =★−1𝜋−,0
𝑟 , 𝑓
(★𝜔) =★−1 ★𝜔 =𝜔, where, to remove the projector,

we have used the fact that ★𝜔 ∈ P𝑟Λ0 ( 𝑓 ) = P−𝑟 Λ0 ( 𝑓 ) (cf. (2.12a)).
Let us now assume that the lemma holds for a given 𝜌 ≥ 0, and let us consider 𝑑 and 𝑘

such that 𝑑 − 𝑘 = 𝜌 + 1. We first consider(3.11). By relation (3.31) applied to 𝑘 + 1 instead
of 𝑘 and the commutation property (3.40), we have, for 𝜔 ∈ P−

𝑟+1Λ
𝑘 ( 𝑓 ),

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝑃𝑘+1

𝑟 , 𝑓 (d
𝑘
𝑟 , 𝑓

𝐼𝑘𝑟 , 𝑓𝜔) = 𝑃𝑘+1
𝑟 , 𝑓 𝐼

𝑘+1
𝑟 , 𝑓 (d𝜔).

We have d𝜔 ∈ dP−
𝑟+1Λ

𝑘 ( 𝑓 ) ⊂ P𝑟Λ𝑘+1 ( 𝑓 ), and the pair (𝑑, 𝑘 + 1) satisfies 𝑑 − (𝑘 + 1) = 𝜌.
We can therefore apply the induction hypothesis to see that (3.10) holds for this pair and
d𝜔 instead of 𝜔; this gives d𝑘

𝑟 , 𝑓
𝐼𝑘
𝑟 , 𝑓

𝜔 = d𝜔 and proves (3.11).
We now turn to (3.10). For 𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ), applying the property (3.11) that we have

just proved to 𝜔 and recalling the definitions (3.5) and (3.2) of the potential and of the
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interpolator, we find, for all (𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) × K𝑑−𝑘

𝑟 ( 𝑓 ),

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 ∧ (d𝜇 + 𝜈)

=

∫
𝑓

d𝜔 ∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝐼𝑘
𝑟 ,𝜕 𝑓

tr𝜕 𝑓 𝜔 ∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1
∫
𝑓��������:𝜔

(★−1𝜋−,𝑑−𝑘
𝑟 , 𝑓

★𝜔) ∧ 𝜈,

the replacement being justified by (2.4) and 𝜈 ∈ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) (see (2.12)). We can then
apply the polynomial consistency (3.10) on each 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ) (as (𝑑 − 1) − 𝑘 = 𝜌) to
write 𝑃𝑘

𝑟 ,𝜕 𝑓
𝐼𝑘
𝑟 ,𝜕 𝑓

tr𝜕 𝑓 𝜔 = tr𝜕 𝑓 𝜔 , and then integrate by parts to conclude, since 𝜇, 𝜈 are
generic elements, that 𝑃𝑘

𝑟 , 𝑓
𝐼𝑘
𝑟 , 𝑓

𝜔 = 𝜔.

Remark 26 (Consistency property of the improved potential for 𝑘 = 0). In the case 𝑘 = 0,
the improved potential defined in Remark 11 satisfies the following consistency property:

𝑃0
𝑟+1, 𝑓 𝐼

0
𝑟 , 𝑓𝜔 = 𝜔 ∀𝜔 ∈ P𝑟+1Λ

0 ( 𝑓 ).

To see this, first notice that when 𝑑 = 𝑘 = 0 we have 𝑃0
𝑟+1, 𝑓 = 𝑃0

𝑟 , 𝑓
since P

𝑟+1Λ
0 ( 𝑓 ) =

P𝑟Λ0 ( 𝑓 ) � R, and then, for 𝑑 ≥ 𝑘 + 1, invoke the definition (3.7) of 𝑃0
𝑟+1, 𝑓 𝐼

0
𝑟 , 𝑓

𝜔, apply
(3.11) (since P−

𝑟+1Λ
0 ( 𝑓 ) = P

𝑟+1Λ
0 ( 𝑓 )) and a recursion argument on 𝑑.

Proof of Corollary 17. Since 𝑠𝑝 > 𝑑, the Sobolev embedding give 𝑊 𝑠, 𝑝Λ𝑘 ( 𝑓 ) ⊂ 𝐶0 ( 𝑓 )
and thus the mapping 𝑃𝑘

𝑟 , 𝑓
◦ 𝐼𝑘

𝑟 , 𝑓
: 𝑊 𝑠, 𝑝Λ𝑘 ( 𝑓 ) → P𝑟Λ𝑘 ( 𝑓 ) is well defined. Introducing

𝜋𝑘
𝑟 , 𝑓

𝜔 = 𝑃𝑘
𝑟 , 𝑓

𝐼𝑘
𝑟 , 𝑓

𝜋𝑘
𝑟 , 𝑓

𝜔 (the equality coming from (3.10) applied to 𝜋𝑘
𝑟 , 𝑓

𝜔 instead of 𝜔)
we write, with hidden constants in ≲ having the same dependencies as 𝐶 in (3.13),

|𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 − 𝜔 |𝑊𝑚,𝑝Λ𝑘 ( 𝑓 ) ≤ |𝑃𝑘

𝑟 , 𝑓 𝐼
𝑘
𝑟 , 𝑓 (𝜔 − 𝜋𝑘

𝑟 , 𝑓𝜔) |𝑊𝑚,𝑝Λ𝑘 ( 𝑓 ) + |𝜋𝑘
𝑟 , 𝑓𝜔 − 𝜔 |𝑊𝑚,𝑝Λ𝑘 ( 𝑓 )

≲
𝑠∑︁

𝑡=𝑚

ℎ𝑡−𝑚𝑓 |𝜔 − 𝜋𝑘
𝑟 , 𝑓𝜔 |𝑊 𝑡,𝑝Λ𝑘 ( 𝑓 ) , (3.43)

where the second inequality follows from the boundedness [47, Eq. (A.21)] of 𝑃𝑘
𝑟 , 𝑓

𝐼𝑘
𝑟 , 𝑓

(the last term in the first line has been included in the sum for 𝑡 = 𝑚). If 𝑡 ≤ 𝑟 + 1, the
approximation properties of polynomial 𝐿2-projector ([34, Theorem 1.45] applied to each
component of a fixed basis of alternate forms) yield

|𝜔 − 𝜋𝑘
𝑟 , 𝑓𝜔 |𝑊 𝑡,𝑝Λ𝑘 ( 𝑓 ) ≲ ℎ𝑟+1−𝑡𝑓 |𝜔 |𝑊𝑟+1, 𝑝Λ𝑘 ( 𝑓 ) .

If 𝑡 > 𝑟 + 1, since derivatives of order> 𝑟 + 1 of 𝜋𝑘
𝑟 , 𝑓

𝜔 vanish, we have |𝜔− 𝜋𝑘
𝑟 , 𝑓

𝜔 |𝑊 𝑡,𝑝Λ𝑘 ( 𝑓 ) =

|𝜔 |𝑊 𝑡,𝑝Λ𝑘 ( 𝑓 ) . Splitting the sum in the right-hand side of (3.43) between 𝑡 ≤ min(𝑟 + 1, 𝑠)
and 𝑡 ≥ min(𝑟 + 1, 𝑠) + 1 and applying the results above yields

|𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 − 𝜔 |𝑊𝑚,𝑝Λ𝑘 ( 𝑓 ) ≲ ℎ𝑟+1−𝑚𝑓 |𝜔 |𝑊𝑟+1, 𝑝Λ𝑘 ( 𝑓 ) +

𝑠∑︁
𝑡=min(𝑟+1,𝑠)+1

ℎ𝑡−𝑚𝑓 |𝜔 |𝑊 𝑡,𝑝Λ𝑘 ( 𝑓 ) .
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(the second sum is actually absent if 𝑠 ≤ 𝑟 + 1). Writing in the last sum ℎ𝑡−𝑚
𝑓

= ℎ𝑟+1−𝑚
𝑓

ℎ𝑡−𝑟−1
𝑓

and recalling the definition (3.12) of |·|𝑊 (𝑟+1,𝑠) , 𝑝Λ𝑘 ( 𝑓 ) concludes the proof of (3.13).

To prove (3.14), use the link (3.31) between discrete potential and exterior derivative
(with 𝑘 + 1 instead of 𝑘) together with the commutation property (3.40) to write

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝑃𝑘+1

𝑟 , 𝑓 d𝑘
𝑟 , 𝑓

𝐼𝑘𝑟 , 𝑓𝜔 = 𝑃𝑘+1
𝑟 , 𝑓 𝐼

𝑘+1
𝑟 , 𝑓 (d𝜔)

and conclude by applying (3.13) to d𝜔 instead of 𝜔 and with 𝑘 + 1 instead of 𝑘 .

Proof of Lemma 19. Notice first that𝜔 ∈𝐻max(𝑟+1,𝑠)Λ𝑘 ( 𝑓 ) is continuous over 𝑓 (by Sobolev
embedding since 2𝑠 > 𝑑), and therefore that 𝐼𝑘

𝑟 , 𝑓
𝜔 is well-defined. It is easily deduced from

the polynomial consistency (3.10) that the stabilisation bilinear form vanishes whenever
one of its arguments is the interpolate of a polynomial of degree ≤ 𝑟 . Hence,

𝑠𝑘, 𝑓 (𝐼𝑘𝑟 , 𝑓𝜔, 𝐼
𝑘
𝑟 , 𝑓𝜔) = 𝑠𝑘, 𝑓 (𝐼𝑘𝑟 , 𝑓 (𝜔 − 𝜋𝑘

𝑟 , 𝑓𝜔), 𝐼
𝑘
𝑟 , 𝑓 (𝜔 − 𝜋𝑘

𝑟 , 𝑓𝜔)).

We then invoke [47, Lemmas 10 and 11] (with 𝑟 ← 𝑠 and 𝑠← 2) to infer

𝑠𝑘, 𝑓 (𝐼𝑘𝑟 , 𝑓𝜔, 𝐼
𝑘
𝑟 , 𝑓𝜔) ≲

(
𝑠∑︁

𝑡=0
ℎ𝑡𝑓 |𝜔 − 𝜋𝑘

𝑟 , 𝑓𝜔 |𝐻𝑡Λ𝑘 ( 𝑓 )

)2

with hidden constant having the same dependencies as𝐶 in (3.17). The conclusion follows
as in the proof of (3.13): for 𝑡 ≤ 𝑟 + 1, we invoke the approximation properties [34, Theorem
1.45] of 𝜋𝑘

𝑟 , 𝑓
to write |𝜔 − 𝜋𝑘

𝑟 , 𝑓
𝜔 |𝐻𝑡Λ𝑘 ( 𝑓 ) ≲ ℎ𝑟+1−𝑡

𝑓
|𝜔 |𝐻𝑟+1Λ𝑘 ( 𝑓 ) while, for 𝑡 > 𝑟 + 1, we

eliminate 𝜋𝑘
𝑟 , 𝑓

𝜔 from the semi-norms since its derivatives of degree > 𝑟 + 1 vanish.

3.6. Cohomology

A strategy to establish the exactness of the de Rham complex (for a domain with trivial
topology) is to design a Poincaré operator 𝑝 : 𝐶1Λ𝑘 (Ω) → 𝐶1Λ𝑘−1 (Ω), that satisfies d𝑝 +
𝑝d = Id. The Poincaré operator is built integrating a certain flow of contracted differential
forms; see [29, 57] for details and applications to the design of finite element complexes.
Extending such a construction to the context of fully discrete spaces is not trivial, as it is
not clear how the discrete polynomial components on cells should evolve with such a flow.
We therefore select an alternative approach, more suited to hierarchical discrete spaces.

The starting point is the following idea: if 𝜂 ∈ 𝐶1Λ𝑘 (Ω) satisfies d𝜂 = 0 and we have
𝜔 ∈ 𝐶2Λ𝑘−1 (Ω) such that d𝜔 = 𝜂, then (2.1) shows that, for any 𝑑-cell 𝑓 ,

(−1)𝑘
∫
𝑓

𝜔 ∧ d𝜇 =

∫
𝑓

𝜂 ∧ 𝜇 −
∫
𝜕 𝑓

tr𝜕 𝑓 𝜔 ∧ tr𝜕 𝑓 𝜇 ∀𝜇 ∈ 𝐶1Λ𝑑−𝑘 (Ω). (3.44)

In the discrete setting,𝜔 is built starting from the lowest-dimensional cells, and (3.44) thus
gives a condition on𝜔 over 𝑓 based on the already constructed tr𝜕 𝑓 𝜔. To start this process,
we must fix the values of 𝜔 on the lowest-dimensional cells, which is not an easy task in
general. Actually, from the point of view of differential forms, the lowest-dimensional cells
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encode the topology of the domain, and thus the cohomology of the complex; for a generic
𝜂, the recursive construction of 𝜔 can therefore only be fully complete if the complex is
exact, and thus the topology trivial.

This limitation is circumvented by using the following idea: if 𝜂 has zero average on 𝑘-
cells, then𝜔 can be set to zero on (𝑘 − 1)-cells, which completes the construction above (see
Lemma 27 below). This result is then exploited, through the extension/reduction strategy
developed in [37,38], to compare the cohomology of the arbitrary-order DDR(𝑟) complex
to that of the lowest-order DDR(0) complex, which is trivially isomorphic to the CW
complex based on the mesh.

We therefore start by considering the subspace 𝑋 𝑘
𝑟 ,ℎ,♭

of 𝑋 𝑘
𝑟 ,ℎ

made of vectors of dif-
ferential forms whose integrals over cells of dimension 𝑑 = 𝑘 vanish:

𝑋 𝑘
𝑟 ,ℎ,♭

≔

{
𝜔

ℎ
= (𝜔 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘,𝑛] :

∫
𝑓

★−1𝜔 𝑓 = 0 ∀ 𝑓 ∈ Δ𝑘 (Mℎ)
}
.

Lemma 27 (Exactness property for 𝑋 𝑘
𝑟 ,ℎ,♭

). For any integer 𝑘 ∈ [0, 𝑛], if 𝜂
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,♭
satis-

fies d𝑘
𝑟 ,ℎ

𝜂
ℎ
= 0, then there exists 𝜔

ℎ
∈ 𝑋 𝑘−1

𝑟 ,ℎ,♭
such that 𝜂

ℎ
= d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
, where, in accordance

with (3.9), we have set d−1
𝑟 ,ℎ

= d𝑛
𝑟,ℎ

≔ 0.

Remark 28 (Exact sub-complex). It can easily be checked that d𝑘
𝑟 ,ℎ

: 𝑋 𝑘
𝑟 ,ℎ,♭
→ 𝑋 𝑘+1

𝑟 ,ℎ,♭
. As

a consequence, the previous lemma shows that (𝑋 𝑘
𝑟 ,ℎ,♭

, d𝑘
𝑟 ,ℎ
)𝑘 is an exact sub-complex of

DDR(𝑟) (even if the latter complex is not exact).

Proof of Lemma 27. We first notice that the case 𝑟 = 0 is trivial since, for all 𝑘 , 𝑋 𝑘
0,ℎ,♭ =

{(0) 𝑓 ∈Δ𝑘 (Mℎ ) }. This comes from the fact that the space 𝑋 𝑘
0,ℎ only has non-zero components

(which are moreover constant) on cells of dimension 𝑑 = 𝑘; to check this, notice that the
spaces (2.12b) are all trivial since the first component vanishes for 𝑘-forms with constant
coefficients, while the second is zero by (2.6). We can therefore assume that 𝑟 ≥ 1. The
cases 𝑘 = 0 and 𝑘 ≥ 1 have to be handled separately.

Case 𝑘 = 0. We prove that, if 𝜂
ℎ
∈ 𝑋0

𝑟 ,ℎ,♭
and d0

𝑟 ,ℎ
𝜂
ℎ
= 0, then 𝜂 𝑓 = 0 for all 𝑓 ∈ Δ𝑑 (Mℎ),

𝑑 ∈ [0, 𝑛]. This is done by induction on 𝑑. The case 𝑑 = 0 follows immediately from the
definition of 𝑋0

𝑟 ,ℎ,♭
which shows that the value of ★−1𝜂 𝑓 on any vertex 𝑓 ∈ Δ0 (Mℎ) is

zero. Assuming that all components of 𝜂
ℎ

on cells of dimension 𝑑 − 1 ≥ 0 vanish, we now
prove that 𝜂 𝑓 = 0 for all 𝑓 ∈ Δ𝑑 (Mℎ). Note first that, by (3.31), the property d0

𝑟 , 𝑓
𝜂
𝑓
= 0

implies d0
𝑟 , 𝑓

𝜂
𝑓
= 0. Enforcing then 𝜂

𝜕 𝑓
= 0 (by induction hypothesis) in the definition (3.4)

of d0
𝑟 , 𝑓

𝜂
𝑓

gives ∫
𝑓

★−1𝜂 𝑓 ∧ d𝜇 = 0 ∀𝜇 ∈ P𝑟Λ𝑑−1 ( 𝑓 ).

By definition (2.12b) of the trimmed space with ℓ = 𝑑, and accounting for (2.6), we have
dP𝑟Λ𝑑−1 ( 𝑓 ) = P−𝑟 Λ𝑑 ( 𝑓 ), so the relation above and (A.4) with (𝜔, 𝜇) ← (𝜂 𝑓 , d𝜇) and
𝜌 = d𝜇 show that

∫
𝑓
𝜂 𝑓 ∧ ★𝜌 = 0 for all 𝜌 ∈ P−𝑟 Λ𝑑 ( 𝑓 ). Since 𝜂 𝑓 belongs to this same

space, we conclude that 𝜂 𝑓 = 0.
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Case 𝑘 ≥ 1. Let 𝜂
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,♭
be such that d𝑘

𝑟 ,ℎ
𝜂
ℎ
= 0, and let us construct 𝜔

ℎ
∈ 𝑋 𝑘−1

𝑟 ,ℎ,♭
such

that d𝑘−1
𝑟 ,ℎ

𝜔
ℎ
= 𝜂

ℎ
. This construction of 𝜔

ℎ
is done by increasing dimension 𝑑 ∈ [𝑘 − 1, 𝑛]

of the cells. For all 𝑓 ∈ Δ𝑘−1 (Mℎ), we set 𝜔 𝑓 = 0 (which ensures, in particular, that the
zero-average condition embedded in the space 𝑋 𝑘−1

𝑟 ,ℎ,♭
is fulfilled). Assume now that the

components of 𝜔
ℎ

have been constructed up to cells of dimension 𝑑 − 1 ≥ 𝑘 − 1, and
consider 𝑓 ∈ Δ𝑑 (Mℎ). We choose 𝜔 𝑓 ∈ P−𝑟 Λ𝑑−𝑘+1 ( 𝑓 ) such that the following relation
holds:

(−1)𝑘
∫
𝑓

★−1𝜔 𝑓 ∧ d𝜇 =

∫
𝑓

𝑃𝑘
𝑟 , 𝑓 𝜂 𝑓

∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘−1
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 ∀𝜇 ∈ K𝑑−𝑘

𝑟 ( 𝑓 ).

(3.45)
Notice that, since the construction is recursive on the dimension of the cells, 𝜔

𝜕 𝑓
has

already been constructed at this stage. Owing to the isomorphism (2.17) with ℓ = 𝑑 − 𝑘 +
1 ≥ 1, this relation completely defines the projection of𝜔 𝑓 on dK𝑑−𝑘

𝑟 ( 𝑓 ) ⊂ P−𝑟 Λ𝑑−𝑘+1 ( 𝑓 ).
The projection of 𝜔 𝑓 on the remaining component K𝑑−𝑘+1

𝑟 ( 𝑓 ) of P−𝑟 Λ𝑑−𝑘+1 ( 𝑓 ) is not
relevant to the rest of the proof and can be set to 0.

Let us now prove that d𝑘−1
𝑟 ,ℎ

𝜔
ℎ
= 𝜂

ℎ
. It suffices to show that

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

= 𝑃𝑘
𝑟 , 𝑓 𝜂 𝑓

∀ 𝑓 ∈ Δ𝑑 (Mℎ) , 𝑑 ∈ [𝑘, 𝑛] . (3.46)

Indeed, applying 𝜋
−,𝑑−𝑘
𝑟 , 𝑓

★ to this relation and using (3.37) yields 𝜋−,𝑑−𝑘
𝑟 , 𝑓

(★d𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) = 𝜂 𝑓 ;

using this relation for all cells 𝑓 , and recalling the definition (3.8) of the global discrete
exterior derivative (with 𝑘 − 1 instead of 𝑘), then gives d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
= 𝜂

ℎ
as claimed.

The relation (3.46) is a direct consequence of the following property:∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ 𝜇 =

∫
𝑓

𝑃𝑘
𝑟 , 𝑓 𝜂 𝑓

∧ 𝜇 ∀𝜇 ∈ P𝑟Λ𝑑−𝑘 ( 𝑓 ). (3.47)

Owing to (2.7), we only need to prove this relation first for 𝜇 ∈ K𝑑−𝑘
𝑟 ( 𝑓 ), and then 𝜇 ∈

P0Λ
0 ( 𝑓 ) if 𝑑 = 𝑘 or 𝜇 ∈ dP

𝑟+1Λ
𝑑−𝑘−1 ( 𝑓 ) if 𝑑 ≥ 𝑘 + 1.

If 𝜇 ∈ K𝑑−𝑘
𝑟 ( 𝑓 ), the definition (3.4) of d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
together with the property (3.45)

immediately give (3.47).
Let us consider the case 𝑑 = 𝑘 and 𝜇 ∈ P0Λ

0 ( 𝑓 ). Then d𝜇 = 0, so the definition (3.4) of
d𝑘−1
𝑟 , 𝑓

𝜔
𝑓

and 𝜔
𝜕 𝑓

= 0 (by construction, 𝜔
ℎ

vanishes on cells of dimension 𝑑 − 1 = 𝑘 − 1)
show that the left-hand side of (3.47) vanishes. Since 𝑃𝑘

𝑟 , 𝑓
𝜂
𝑓
= ★−1𝜂 𝑓 (see (3.3)) and∫

𝑓
★−1𝜂 𝑓 = 0 as 𝜂

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,♭
, the right-hand side of (3.47) vanishes as well, and this relation

holds.
Finally, we turn to the case 𝑑 ≥ 𝑘 + 1 and 𝜇 ∈ dP

𝑟+1Λ
𝑑−𝑘−1 ( 𝑓 ), which is proved by

induction on 𝑑 (the base case 𝑑 = 𝑘 having already been covered). By (2.8) with (ℓ, 𝑟) ←
(𝑑 − 𝑘 − 1, 𝑟 + 1), we have 𝜇 ∈ dK𝑑−𝑘−1

𝑟+1 ( 𝑓 ), and we can therefore write 𝜇 = d𝛼 with
𝛼 ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) ⊂ P−
𝑟+1Λ

𝑑−𝑘−1 ( 𝑓 ) (see (2.12)). Invoking the link (3.29) between discrete
exterior derivatives on subcells (notice that 𝑑 ≥ (𝑘 − 1) + 2), we obtain∫

𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ 𝜇 = (−1)𝑘
∫
𝜕 𝑓

d𝑘−1
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼 = (−1)𝑘

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼,
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where the second equality follows from the induction hypothesis that (3.47) holds on sub-
cells of 𝑓 . We have d𝑘

𝑟 , 𝑓
𝜂
𝑓
= 0 and 𝑑 ≥ 𝑘 + 1, so we can apply (3.31) with 𝑘 + 1 instead of

𝑘 to get d𝑘
𝑟 , 𝑓

𝜂
𝑓
= 0; the definition (3.5) of 𝑃𝑘

𝑟 , 𝑓
𝜂
𝑓

(with (𝜇, 𝜈) ← (𝛼, 0), see Remark 10
for the validity of this choice of 𝜇) allows us to continue with∫

𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ 𝜇 = −(−1)𝑘 × (−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 𝜂 𝑓

∧ d𝛼.

Recalling that d𝛼 = 𝜇 concludes the proof of (3.47).

Proof of Theorem 14. As in [38, Lemma 4], it is straightforward to see that the (discrete) de
Rham map establishes a chain isomorphism between the lowest-degree complex DDR(0)
and the CW complex defined byMℎ. Since this CW complex has the same cohomology
as the de Rham complex (1.2), the proof is complete if we show that the cohomology of
DDR(𝑟) is isomorphic to the cohomology of DDR(0). This obviously means that we can
assume 𝑟 ≥ 1 in the following.

Step 1: Reductions and extensions. With the goal of applying [37, Proposition 2], we define
reduction and extension maps between DDR(𝑟) and DDR(0) as in (3.48).

DDR(𝑟) : · · · 𝑋 𝑘
𝑟 ,ℎ

𝑋 𝑘+1
𝑟 ,ℎ

· · ·

DDR(0) : · · · 𝑋 𝑘
0,ℎ 𝑋 𝑘+1

0,ℎ · · ·

d𝑘
𝑟,ℎ

𝑅𝑘
ℎ

𝑅𝑘+1
ℎ

d𝑘0,ℎ

𝐸𝑘
ℎ

𝐸𝑘+1
ℎ

(3.48)

The reduction 𝑅𝑘
ℎ

: 𝑋 𝑘
𝑟 ,ℎ
→ 𝑋 𝑘

0,ℎ is defined taking the average of components on the cells
of dimension 𝑘 (recall that vectors in 𝑋 𝑘

0,ℎ only have components on these cells): For all
𝜔

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
,

𝑅𝑘
ℎ𝜔ℎ

= (𝜋0
0, 𝑓𝜔 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) . (3.49)

The extension 𝐸 𝑘
ℎ

: 𝑋 𝑘
0,ℎ → 𝑋 𝑘

𝑟 ,ℎ
is defined by induction on the cell dimension: For all

𝜂
ℎ
∈ 𝑋 𝑘

0,ℎ, 𝐸 𝑘
ℎ
𝜂
ℎ
≔ (𝐸 𝑘

𝑓
𝜂
𝑓
) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘,𝑛] , where

• If 𝑑 = 𝑘 ,
𝐸 𝑘

𝑓 𝜂 𝑓
= 𝜂 𝑓 ∈ P−0 Λ

0 ( 𝑓 ) ⊂ P−𝑟 Λ0 ( 𝑓 ); (3.50a)

• If 𝑑 ≥ 𝑘 + 1, 𝐸 𝑘
𝑓
𝜂
𝑓
∈ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) satisfies

(−1)𝑘+1
∫
𝑓

★−1𝐸 𝑘
𝑓 𝜂 𝑓
∧ (d𝜇 + 𝜈)

=

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝐸 𝑘
𝜕 𝑓
𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1

∫
𝑓

𝑃𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜈

∀(𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟 ( 𝑓 ) × K𝑑−𝑘

𝑟 ( 𝑓 ), (3.50b)
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where 𝐸 𝑘
𝜕 𝑓
𝜂
𝜕 𝑓

= (𝐸 𝑘
𝑓 ′𝜂 𝑓 ′
) 𝑓 ′∈Δ𝑑−1 ( 𝑓 ) gathers the extensions already built at previous

steps on the subcells of dimension 𝑑 − 1 of 𝑓 . The isomorphism (2.17) with ℓ = 𝑑 − 𝑘 ≥
1 ensures that the relation above fully and properly defines 𝐸 𝑘

𝑓
𝜂
𝑓
.

Extensions are designed in such a way that, for all 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘 + 1,∫
𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜇 =

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜇 ∀𝜇 ∈ K𝑑−𝑘−1
𝑟 ( 𝑓 ),

as can be checked combining the definitions (3.4) of d𝑘
𝑟 , 𝑓

𝐸 𝑘
𝑓
𝜂
𝑓

and (3.50b) of 𝐸 𝑘
𝑓
𝜂
𝑓

(with

𝜈 = 0). Since d𝑘
0, 𝑓 𝜂 𝑓

= 𝑃𝑘+1
0, 𝑓 d𝑘

0, 𝑓 𝜂 𝑓
by (3.31), using the definition of 𝐸 𝑘+1

𝑓
d𝑘

0, 𝑓 𝜂 𝑓
(namely,

(3.50a) if 𝑑 = 𝑘 + 1, or (3.50b) with (𝜇, 𝜈) ← (0, 𝜇) if 𝑑 ≥ 𝑘 + 2) we deduce that∫
𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜇 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ 𝜇 ∀𝜇 ∈ K𝑑−𝑘−1

𝑟 ( 𝑓 ). (3.51)

Step 2: Proof of the theorem. To apply [37, Proposition 2], we need to prove that

d𝑘
0,ℎ = 𝑅𝑘+1

ℎ d𝑘
𝑟 ,ℎ

𝐸 𝑘
ℎ (3.52)

and that [37, Assumption 1] holds, that is:
(C1) 𝑅𝑘

ℎ
𝐸 𝑘
ℎ
= Id on Ker d𝑘

0,ℎ;

(C2) (𝐸 𝑘
ℎ
𝑅𝑘
ℎ
− Id) (Ker d𝑘

𝑟 ,ℎ
) ⊂ Im d𝑘−1

𝑟 ,ℎ
;

(C3) The graded maps 𝐸•
ℎ

and 𝑅•
ℎ

are cochain maps.
We start by noticing that, since DDR(0) is already known to be a complex, (C1) and

(C3) imply (3.52). Indeed, (C3) gives 𝑅𝑘+1
ℎ

d𝑘
𝑟 ,ℎ

𝐸 𝑘
ℎ
= 𝑅𝑘+1

ℎ
𝐸 𝑘+1
ℎ

d𝑘
0,ℎ and, by the complex

property, Im d𝑘
0,ℎ ⊂ Ker d𝑘+1

0,ℎ , so (C1) applied to 𝑘 + 1 instead of 𝑘 yields (3.52).

1. Proof of (C1). The definitions (3.49) and (3.50a) of the reduction and the extension com-
ponents on the lowest dimensional cells directly shows that 𝑅𝑘

ℎ
𝐸 𝑘
ℎ
= Id on 𝑋 𝑘

𝑟 ,ℎ
, which

establishes a stronger result than (C1).

2. Proof of (C3) for the extension. We now turn to (C3), considering first the case of the
extension. We have to show that, for all 𝜂

ℎ
∈ 𝑋 𝑘

0,ℎ it holds d𝑘
𝑟 ,ℎ

𝐸 𝑘
ℎ
𝜂
ℎ
= 𝐸 𝑘+1

ℎ
d𝑘

0,ℎ𝜂ℎ
. Given

the definitions (3.8) of the global discrete exterior derivative and of the extension, this boils
down to showing that

★−1𝜋−,𝑑−𝑘−1
𝑟 , 𝑓

(★d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
) = ★−1𝐸 𝑘+1

𝑓 d𝑘
0, 𝑓 𝜂 𝑓

∀ 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘 + 1,

which, testing against 𝜌 ∈ P−𝑟 Λ𝑑−𝑘−1 ( 𝑓 ) and recalling the relation (2.4), can be recast as∫
𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜌 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ 𝜌

∀ 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘 + 1, ∀𝜌 ∈ P−𝑟 Λ𝑑−𝑘−1 ( 𝑓 ). (3.53)
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We start by noticing that, by (3.51), the relation (3.53) holds for 𝜌 ∈ K𝑑−𝑘−1
𝑟 ( 𝑓 ). The

decompositions (2.7a) of P𝑟Λ0 ( 𝑓 ) = P−𝑟 Λ0 ( 𝑓 ) (if 𝑑 = 𝑘 + 1) and (2.16) of P−𝑟 Λ𝑑−𝑘−1 ( 𝑓 )
(if 𝑑 ≥ 𝑘 + 2) then show that we only have to prove (3.53) for 𝜌 ∈ P0Λ

0 ( 𝑓 ) (if 𝑑 = 𝑘 + 1)
or 𝜌 ∈ dK𝑑−𝑘−2

𝑟 ( 𝑓 ) (if 𝑑 ≥ 𝑘 + 2). This fact is proved by induction on 𝑑:

• Let us first consider 𝑑 = 𝑘 + 1 and take 𝜌 ∈ P0Λ
0 ( 𝑓 ). We can use this polynomial form

as a test function in the definition (3.4) of d𝑘
0, 𝑓 𝜂 𝑓

to get∫
𝜕 𝑓

𝑃𝑘
0,𝜕 𝑓

𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝜌 =

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜌 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ 𝜌 ∀𝜌 ∈ P0Λ

0 ( 𝑓 ),

(3.54)
where the second equality follows from (3.50a) with (𝑘, 𝜂

𝑓
) ← (𝑘 + 1,d𝑘

0, 𝑓 𝜂 𝑓
). For all

𝑓 ′ ∈ Δ𝑘 ( 𝑓 ), by definition (3.3) of 𝑃𝑘
0, 𝑓 ′ and (3.50a) of 𝐸 𝑘

𝑓 ′ , we have 𝑃𝑘
0, 𝑓 ′𝜂 𝑓 ′

=★−1𝜂 𝑓 ′ =

★−1𝐸 𝑘
𝑓 ′𝜂 𝑓 ′

= 𝑃𝑘
𝑟 , 𝑓 ′𝐸

𝑘
𝑓 ′𝜂 𝑓 ′

, where the last relation follows applying the definition (3.3)
of 𝑃𝑘

𝑟 , 𝑓 ′ . We infer from this equality and (3.54) that∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝐸 𝑘
𝜕 𝑓
𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝜌 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ 𝜌 ∀𝜌 ∈ P0Λ

0 ( 𝑓 ).

Applying the definition (3.4) of d𝑘
𝑟 , 𝑓

𝐸 𝑘
𝑓
𝜂
𝜕 𝑓

with 𝜇 = 𝜌 (which satisfies d𝜌 = 0) to the
left-hand side then concludes the proof of (3.53).

• We now take 𝑑 ≥ 𝑘 + 2 and 𝜌 ∈ dK𝑑−𝑘−2
𝑟 ( 𝑓 ), which we write 𝜌 = d𝛼with𝛼 ∈K𝑑−𝑘−2

𝑟 ( 𝑓 ) ⊂
P−𝑟 Λ𝑑−𝑘−2 ( 𝑓 ). Applying the link (3.29) between discrete exterior derivatives on 𝑓 and
𝜕 𝑓 , we have ∫

𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜌 = (−1)𝑘+1

∫
𝜕 𝑓

d𝑘
𝑟 ,𝜕 𝑓

𝐸 𝑘
𝜕 𝑓
𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼. (3.55)

By Lemma 4, for all 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ), tr 𝑓 ′ 𝛼 ∈ P−𝑟 Λ𝑑−𝑘−2 ( 𝑓 ′), so we can apply (3.53) on
𝑓 ′ (by the induction hypothesis) to get∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′𝐸

𝑘
𝑓 ′𝜂 𝑓 ′

∧ tr 𝑓 ′ 𝛼 =

∫
𝑓 ′
★−1𝐸 𝑘+1

𝑓 ′ d𝑘
0, 𝑓 ′𝜂 𝑓 ′

∧ tr 𝑓 ′ 𝛼 =

∫
𝑓 ′
𝑃𝑘+1
𝑟 , 𝑓 ′𝐸

𝑘+1
𝑓 ′ d𝑘

0, 𝑓 ′𝜂 𝑓 ′
∧ tr 𝑓 ′ 𝛼,

the second equality being justified by (3.37) and (2.4) (with (X, 𝑓 , 𝑑, 𝑘) ← (P−𝑟 Λ(𝑑−1)−(𝑘+1) ( 𝑓 ′), 𝑓 ′, 𝑑 −
1, 𝑘 + 1)) and the fact that tr 𝑓 ′ 𝛼 ∈ P−𝑟 Λ(𝑑−1)−(𝑘+1) ( 𝑓 ′). Plugging this relation into
(3.55) yields∫

𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜌 = (−1)𝑘+1

∫
𝜕 𝑓

𝑃𝑘+1
𝑟 ,𝜕 𝑓

𝐸 𝑘+1
𝜕 𝑓

d𝑘
0,𝜕 𝑓

𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼.

Invoking then the definition (3.50b) of𝐸 𝑘+1
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

with (𝑘, 𝜇, 𝜈,𝜂
𝑓
) ← (𝑘 + 1, 𝛼,0,d0, 𝑓 𝜂 𝑓

),
and using the property d𝑘+1

0, 𝑓 ◦ d𝑘
0, 𝑓 = 0 (consequence of (3.32) with 𝑘 + 1 instead of 𝑘)

we infer ∫
𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜌 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ d𝛼

and (3.53) follows by recalling that 𝜌 = d𝛼.
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3. Proof of (C3) for the reduction. To conclude the proof of (C3), it remains to show that
𝑅𝑘+1
ℎ

d𝑘
𝑟 ,ℎ

𝜔
ℎ
= d𝑘

0,ℎ𝑅
𝑘
ℎ
𝜔

ℎ
for all 𝜔

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
. Since vectors in 𝑋 𝑘+1

0,ℎ only have constant com-
ponents on cells of dimension 𝑘 + 1, and since 𝑅𝑘+1

ℎ
is defined by (3.49), we only have to

show that∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜌 =

∫
𝑓

d𝑘
0, 𝑓 𝑅

𝑘
𝑓𝜔 𝑓
∧ 𝜌 ∀ 𝑓 ∈ Δ𝑘+1 (Mℎ) , ∀𝜌 ∈ P0Λ

0 ( 𝑓 ). (3.56)

Let 𝜌 as above and apply the definition (3.4) of d𝑘
𝑟 , 𝑓

𝜔
𝑓

to 𝜇 = 𝜌; accounting for d𝜌 = 0,
we obtain ∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜌 =

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜌. (3.57)

For each 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ), by definition (3.3) of 𝑃𝑘
𝑟 , 𝑓 ′ , we can write∫

𝑓 ′
𝑃𝑘
𝑟 , 𝑓 ′𝜔 𝑓

∧ tr 𝑓 ′ 𝜌 =
∫
𝑓 ′
★−1𝜔 𝑓 ∧ tr 𝑓 ′ 𝜌 =

∫
𝑓 ′
★−1𝜋0

0, 𝑓𝜔 𝑓 ∧ tr 𝑓 ′ 𝜌 =
∫
𝑓 ′
𝑃𝑘

0, 𝑓 ′𝑅
𝑘
𝑓 ′𝜔 𝑓 ′ ∧ tr 𝑓 ′ 𝜌,

(3.58)
where we have used the fact that tr 𝑓 ′ 𝜌 ∈ P0Λ

0 ( 𝑓 ′) to insert the projector in the second
equality and the definitions (3.49) of 𝑅𝑘

𝑓 ′ and (3.3) of 𝑃𝑘
0, 𝑓 ′ to conclude. Combining (3.57)

and (3.58), we find ∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜌 =

∫
𝜕 𝑓

𝑃𝑘
0,𝜕 𝑓

𝑅𝑘
𝜕 𝑓
𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜌.

Applying the definition (3.4) of d𝑘
0, 𝑓 𝑅

𝑘
𝑓
𝜔

𝑓
then concludes the proof of (3.56).

4. Proof of (C2). Finally, to prove (C2), we notice that if 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
, then by (3.49) and

(3.50a) the components of 𝐸 𝑘
ℎ
𝑅𝑘
ℎ
𝜔

ℎ
on the lowest dimensional cells 𝑓 ∈ Δ𝑘 (Mℎ) are

just the averages of the components of 𝜔
ℎ

on these cells; hence, 𝐸 𝑘
ℎ
𝑅𝑘
ℎ
𝜔

ℎ
− 𝜔

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,♭
.

Moreover, by the cochain map property (C3), d𝑘
𝑟 ,ℎ
(𝐸 𝑘

ℎ
𝑅𝑘
ℎ
𝜔

ℎ
−𝜔

ℎ
) = 𝐸 𝑘

ℎ
𝑅𝑘
ℎ
d𝑘
𝑟 ,ℎ

𝜔
ℎ
− d𝑘

𝑟 ,ℎ
𝜔

ℎ
=

0 whenever 𝜔
ℎ
∈ Ker d𝑘

𝑟 ,ℎ
. We can thus, for such an 𝜔

ℎ
, apply Lemma 27 with 𝜔

ℎ
←

𝐸 𝑘
ℎ
𝑅𝑘
ℎ
𝜔

ℎ
− 𝜔

ℎ
to see that this element belongs to Im d𝑘−1

𝑟 ,ℎ
, establishing (C2).

4. A VEM-inspired complex

In this section we consider an alternative construction inspired by the Virtual Element
complex of [8]. This complex hinges on Koszul complements, unlike the one of [10],
which was based on orthogonal complements (as noticed in [36], the latter are less natural
to prove analytical properties). Notice that we make here no effort to reduce the polynomial
degree of certain components of the discrete spaces, which is known to be possible; see,
e.g., [9] and also [37] for a general framework with application to DDR methods. Notice
also that we work in a fully discrete spirit, without attempting to identify the underlying
virtual spaces (which are not needed for the purposes of the present work).
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Let again a polynomial degree 𝑟 ≥ 0 be fixed. The general principle to design the VEM-
inspired sequence is to select polynomial components that make it possible to reconstruct,
for each 𝑑-cell and inductively on the dimension 𝑑, a discrete potential capable of repro-
ducing polynomial forms in P−

𝑟+1Λ
𝑘 ( 𝑓 ). The main difference with respect to the DDR

approach illustrated in Section 3 is that, with the exception of (𝑘 + 1)-cells, the required
information on the discrete exterior derivative is directly encoded in the discrete spaces.

Adopting this approach has several, far-reaching, consequences. The first one is that
the discrete spaces contain a mix of both traces and exterior derivatives (which, in passing,
requires higher regularity on the domains of the interpolators). The components on 𝑘-
and (𝑘 + 1)-cells in the discrete space of 𝑘-forms play a slightly different role than the
others (and are, as a result, treated separately in the definition of the space). The second
consequence is that the proofs of key properties (polynomial consistency, cohomology,
etc.) are carried out by induction on the dimension (and not on the difference between
the dimension and the form degree, as in Theorems 15 and 23). This leads to somewhat
simpler arguments, at the cost of larger discrete spaces. Also, the commutation property is
essentially obtained by definition of the local discrete exterior derivative (with the exception
of lowest-dimensional cells).

4.1. Definition

4.1.1. Discrete spaces. We define the following discrete counterpart of 𝐻Λ𝑘 (Ω), 0 ≤ 𝑘 ≤
𝑛:

𝑉 𝑘
𝑟 ,ℎ

≔
?

𝑓 ∈Δ𝑘 (Mℎ )
P𝑟Λ0 ( 𝑓 ) ×

?
𝑓 ∈Δ𝑘+1 (Mℎ )

(
K1

𝑟+1 ( 𝑓 ) × K
0
𝑟 ( 𝑓 )

)
×

𝑛?
𝑑=𝑘+2

?
𝑓 ∈Δ𝑑 (Mℎ )

(
K𝑑−𝑘

𝑟+1 ( 𝑓 ) × K
𝑑−𝑘−1
𝑟+1 ( 𝑓 )

)
. (4.1)

Notice that, on (𝑘 + 1)-cells, the second component has polynomial degree reduced by one
compared to 𝑑-cells with 𝑑 ≥ 𝑘 + 2, i.e., we have K0

𝑟 ( 𝑓 ) instead of K0
𝑟+1 ( 𝑓 ). A generic

element of 𝑉 𝑘
𝑟 ,ℎ

will be denoted by

𝜔
ℎ
=

(
(𝜔 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) , (𝜔 𝑓 , 𝐷𝜔, 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
. (4.2)

The notation 𝐷𝜔, 𝑓 is reminiscent of the fact that these polynomial components are inter-
preted as Hodge stars of exterior derivatives. We refer to Table 2 for an overview of the
polynomial unknowns in 𝑉 𝑘

𝑟 , 𝑓
in dimensions 0 to 3, as well as their vector proxies.

4.1.2. Interpolators. For all integers 0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛 and any 𝑓 ∈ Δ𝑑 (Mℎ), the local inter-
polator is such that, for all 𝜔 ∈ 𝐶1Λ𝑘 ( 𝑓 ),

𝐼𝑘𝑟 , 𝑓𝜔 ≔

( (
𝜋0
𝑟 , 𝑓 ′ (★ tr 𝑓 ′ 𝜔)

)
𝑓 ′∈Δ𝑘 ( 𝑓 ) ,(

𝜋
K ,1
𝑟+1, 𝑓 ′ (★ tr 𝑓 ′ 𝜔), 𝜋K ,0

𝑟 , 𝑓 ′ (★ tr 𝑓 ′ d𝜔)
)
𝑓 ′∈Δ𝑘+1 ( 𝑓 )

)
,(

𝜋
K ,𝑑′−𝑘
𝑟+1, 𝑓 ′ (★ tr 𝑓 ′ 𝜔), 𝜋K ,𝑑′−𝑘−1

𝑟+1, 𝑓 ′ (★ tr 𝑓 ′ d𝜔)
)
𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘+2,𝑑 ]

)
.

(4.3)
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𝑘

𝑑
0 1 2 3

0 R = P𝑟Λ0 ( 𝑓0) {0} × K0
𝑟 ( 𝑓1) {0} × K1

𝑟+1 ( 𝑓2) {0} × K2
𝑟+1 ( 𝑓3)

1 P𝑟Λ0 ( 𝑓1) K1
𝑟+1 ( 𝑓2) × K

0
𝑟 ( 𝑓2) K2

𝑟+1 ( 𝑓3) × K
1
𝑟+1 ( 𝑓3)

2 P𝑟Λ0 ( 𝑓2) K1
𝑟+1 ( 𝑓3) × K

0
𝑟 ( 𝑓3)

3 P𝑟Λ0 ( 𝑓3)

𝑘

𝑑
0 1 2 3

0 R = P𝑟 ( 𝑓0) {0} × P♭
𝑟 ( 𝑓1) {0} × Rc

𝑟+1 ( 𝑓2) {0} × Rc
𝑟+1 ( 𝑓3)

1 P𝑟 ( 𝑓1) Rc
𝑟+1 ( 𝑓2) × P

♭
𝑟 ( 𝑓2) Rc

𝑟+1 ( 𝑓3) × Gc
𝑟+1 ( 𝑓3)

2 P𝑟 ( 𝑓2) Gc
𝑟+1 ( 𝑓3) × P

♭
𝑟 ( 𝑓3)

3 P𝑟 ( 𝑓3)

Tab. 2. Polynomial components attached to each mesh entity 𝑓𝑑 of dimension 𝑑 ∈ {0, . . . , 3} for the
space 𝑉 𝑘

𝑟 ,ℎ
for 𝑘 ∈ {0, . . . , 3} (top) and counterparts through vector proxies (bottom).

Remark 29 (Domain of the interpolator). Owing to the presence of polynomial components
that are interpreted as exterior derivatives (compare (3.2) with (4.3)), the interpolator in the
VEM-inspired construction requires higher regularity of the interpolated functions com-
pared to the DDR complex presented in Section 3, namely 𝐶1Λ𝑘 ( 𝑓 ) instead of 𝐶0Λ𝑘 ( 𝑓 ).

4.1.3. Global discrete exterior derivative and VEM complex. For all 𝑓 ∈ Δ𝑘+1 (Mℎ), we
define the discrete exterior derivative d𝑘

𝑟 , 𝑓
:𝑉 𝑘

𝑟 , 𝑓
→P𝑟Λ𝑘+1 ( 𝑓 ) such that, for all𝜔

𝑓
∈𝑉 𝑘

𝑟 , 𝑓
,∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (𝜇 + 𝜈) =
∫
𝜕 𝑓

★−1𝜔𝜕 𝑓 ∧ tr𝜕 𝑓 𝜇 +
∫
𝑓

★−1𝐷𝜔, 𝑓 ∧ 𝜈

∀(𝜇, 𝜈) ∈ P0Λ
0 ( 𝑓 ) × K0

𝑟 ( 𝑓 ), (4.4)

where, as before, 𝜔𝜕 𝑓 is defined by (𝜔𝜕 𝑓 ) | 𝑓 ′ = 𝜔 𝑓 ′ ∈ P𝑟Λ0 ( 𝑓 ′) for all 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ). Notice
that the above equation defines d𝑘

𝑟 , 𝑓
𝜔

𝑓
uniquely since, by (2.7a), 𝜇 + 𝜈 spans P𝑟Λ0 ( 𝑓 )

as (𝜇, 𝜈) spans P0Λ
0 ( 𝑓 ) × K0

𝑟 ( 𝑓 ). Moreover, taking 𝜇 = 0 and letting 𝜈 span K0
𝑟 ( 𝑓 ), we

infer, using (2.4) with (X, 𝜔, 𝜇) ← (K0
𝑟 ( 𝑓 ), d𝑘

𝑟 , 𝑓
𝜔

𝑓
, 𝜈),

𝐷𝜔, 𝑓 = 𝜋
K ,0
𝑟 , 𝑓
(★d𝑘

𝑟 , 𝑓𝜔 𝑓
) ∀ 𝑓 ∈ Δ𝑘+1 (Mℎ). (4.5)

Unlike the DDR complex, the construction of a global discrete exterior derivative for
the VEM complex does not require to first reconstruct traces on lower-dimensional cells, as
all the necessary information is encoded in the polynomial components (𝐷𝜔, 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+2,𝑛]
supplemented by (d𝑘

𝑟 , 𝑓
𝜔

𝑓
) 𝑓 ∈Δ𝑘+1 (Mℎ ) . More specifically, for all integers 𝑘 ∈ [0, 𝑛 − 1], we
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let d𝑘
𝑟 ,ℎ

: 𝑉 𝑘
𝑟 ,ℎ
→ 𝑉 𝑘+1

𝑟 ,ℎ
be such that, for all 𝜔

ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ
,

d𝑘
𝑟 ,ℎ

𝜔
ℎ
≔

(
(★d𝑘

𝑟 , 𝑓𝜔 𝑓
) 𝑓 ∈Δ𝑘+1 (Mℎ ) , (𝐷𝜔, 𝑓 , 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+2,𝑛]

)
(4.6)

(compare with (4.2) and notice the different positioning, compared to𝜔
ℎ
, of the polynomial

components 𝐷𝜔, 𝑓 ). As for the DDR complex, we will denote by d𝑘
𝑟 , 𝑓

the restriction of d𝑘
𝑟 ,ℎ

to 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ∈ [0, 𝑛] such that 𝑘 ≤ 𝑑 − 1.
The VEM sequence of spaces and operators then reads

VEM(𝑟) ≔ {0} 𝑉0
𝑟 ,ℎ

𝑉1
𝑟 ,ℎ

· · · 𝑉𝑛−1
𝑟 ,ℎ

𝑉𝑛
𝑟,ℎ

{0}.
d0
𝑟,ℎ

d𝑛−1
𝑟,ℎ

(4.7)

4.1.4. Local discrete potentials and discrete exterior derivatives. Given a form degree
𝑘 ∈ [0, 𝑛], for all 𝑓 ∈ Δ𝑑 (Mℎ), 𝑘 ≤ 𝑑 ≤ 𝑛, we define the local discrete potential 𝑃𝑘

𝑟 , 𝑓
:

𝑉 𝑘
𝑟
( 𝑓 ) → P−

𝑟+1Λ
𝑘 ( 𝑓 ) by induction on 𝑑 as follows: For all 𝜔

𝑓
∈ 𝑉 𝑘

𝑟 , 𝑓
,

• If 𝑑 = 𝑘 , we simply set

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

≔ ★−1𝜔 𝑓 ∈ P𝑟Λ𝑑 ( 𝑓 ) = P−𝑟+1Λ
𝑑 ( 𝑓 ), (4.8)

where the last equality follows from (2.13) if 𝑑 = 0 (after noticing that P𝑟Λ𝑑 ( 𝑓 ) � R �
P−
𝑟+1Λ

𝑑 ( 𝑓 )) and from (2.15) if 𝑑 ≥ 1;
• If 𝑘 + 1 ≤ 𝑑 ≤ 𝑛, using the isomorphism (2.17) with ℓ = 𝑑 − 𝑘 ≥ 1 and 𝑟 replaced by

𝑟 + 1, we define 𝑃𝑘
𝑟 , 𝑓

𝜔
𝑓
∈ P−

𝑟+1Λ
𝑘 ( 𝑓 ) as the unique solution of the following equation:

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈)

=

∫
𝑓

★−1𝐷𝜔, 𝑓 ∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1

∫
𝑓

★−1𝜔 𝑓 ∧ 𝜈

∀(𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) × K𝑑−𝑘

𝑟+1 ( 𝑓 ), (4.9)

where

𝐷𝜔, 𝑓 ≔

{
★d𝑘

𝑟 , 𝑓
𝜔

𝑓
if 𝑑 = 𝑘 + 1,

𝐷𝜔, 𝑓 if 𝑑 ≥ 𝑘 + 2,
(4.10)

and we have introduced the piecewise polynomial boundary potential 𝑃𝑘
𝑟 ,𝜕 𝑓

: 𝑉 𝑘
𝑟 ,𝜕 𝑓
→

Λ𝑘 (𝜕 𝑓 ) such that (𝑃𝑘
𝑟 ,𝜕 𝑓
) | 𝑓 ′ ≔ 𝑃𝑘

𝑟 , 𝑓 ′ for all 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ).
Leveraging the above-defined discrete potentials, we can define the discrete exterior deriv-
ative d𝑘

𝑟 , 𝑓
: 𝑉 𝑘

𝑟 , 𝑓
→ P−

𝑟+1Λ
𝑘+1 ( 𝑓 ) for all 𝑓 ∈ Δ𝑑 (Mℎ), 𝑘 + 2 ≤ 𝑑 ≤ 𝑛 − 1, setting:

d𝑘
𝑟 , 𝑓𝜔 𝑓

≔ 𝑃𝑘+1
𝑟 , 𝑓 d𝑘

𝑟 , 𝑓
𝜔

𝑓
∀𝜔

𝑓
∈ 𝑉 𝑘

𝑟 , 𝑓
. (4.11)

These discrete exterior derivatives, which were previously only defined for 𝑑 = 𝑘 + 1 (see
(4.4)), are not relevant in the definition of the VEM complex, but may be useful in practical
applications.
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4.2. Main properties of the VEM complex

The main results for the VEM complex are stated below.

Theorem 30 (Cohomology of the VEM complex). The VEM sequence (4.7) is a complex
and its cohomology is isomorphic to the cohomology of the continuous de Rham complex
(1.2).

Proof. See Section 4.6.

Theorem 31 (Polynomial consistency of the discrete potential and exterior derivative).
For all integers 0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛 and all 𝑓 ∈ Δ𝑑 (Mℎ), it holds

𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝜔 ∀𝜔 ∈ P−𝑟+1Λ

𝑘 ( 𝑓 ), (4.12)

and, if 𝑑 ≥ 𝑘 + 1,
d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = d𝜔 ∀𝜔 ∈ P−𝑟+1Λ

𝑘 ( 𝑓 ). (4.13)

Proof. See Section 4.5.

4.3. Complex property

Lemma 32 (Complex property). The sequence (4.7) defines a complex, i.e., for all integers
𝑘 ∈ [1, 𝑛 − 1] and all 𝜔

ℎ
∈ 𝑉 𝑘−1

𝑟 ,ℎ
,

d𝑘
𝑟 ,ℎ
(d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
) = 0.

Proof. Applying the definition (4.6) of the global discrete exterior derivative for 𝑘 − 1, we
obtain

d𝑘−1
𝑟 ,ℎ

𝜔
ℎ
=

(
(★d𝑘−1

𝑟 , 𝑓 𝜔 𝑓
) 𝑓 ∈Δ𝑘 (Mℎ ) , (𝐷𝜔, 𝑓 , 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
∈ 𝑉 𝑘

𝑟 ,ℎ
, (4.14)

which shows that, for all 𝑑 ∈ [𝑘 + 1, 𝑛] and all 𝑓 ∈ Δ𝑑 (Mℎ), the exterior derivative com-
ponents of d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
are zero, and thus that

d𝑘
𝑟 ,ℎ
(d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
) =

( (
★ d𝑘

𝑟 , 𝑓 (d
𝑘−1
𝑟 , 𝑓

𝜔
𝑓
)
)
𝑓 ∈Δ𝑘+1 (Mℎ ) , (0, 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+2,𝑛]

)
∈ 𝑉 𝑘+1

𝑟 ,ℎ
.

The assertion is therefore proved if we show that d𝑘
𝑟 , 𝑓
(d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
) = 0 for all 𝑓 ∈ Δ𝑘+1 (Mℎ).

Applying the definition of the local discrete exterior derivative (see (4.4)) with𝜔
𝑓

replaced
by d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
obtained by restricting (4.14) to 𝑓 , we get: For all (𝜇, 𝜈) ∈ P0Λ

0 ( 𝑓 ) × K0
𝑟 ( 𝑓 ),∫

𝑓

d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ (𝜇 + 𝜈) =

∫
𝜕 𝑓

d𝑘−1
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 = 0,

where the conclusion follows using the definition (4.4) of d𝑘−1
𝑟 , 𝑓 ′𝜔 𝑓 ′ with (𝜇, 𝜈) ← (tr 𝑓 ′ 𝜇,0)

for all 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ) and noticing, as at the end of the proof of Lemma 22, that the sum over
𝑓 ′ of the integrals over 𝜕 𝑓 ′ is zero.
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4.4. Commutation

Proposition 33 (Commutation property for the discrete exterior derivative in dimension
𝑑 = 𝑘 + 1). For all 𝑓 ∈ Δ𝑘+1 (Mℎ), it holds

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = ★−1𝜋0

𝑟 , 𝑓 (★d𝜔) ∀𝜔 ∈ 𝐶1Λ𝑘 ( 𝑓 ), (4.15)

expressing the commutativity of the following diagram:

𝐶1Λ𝑘 ( 𝑓 ) 𝐶0Λ𝑘+1 ( 𝑓 )

𝑉 𝑘
𝑟
( 𝑓 ) P𝑟Λ𝑘+1 ( 𝑓 ).

d

𝐼𝑘
𝑟, 𝑓

★−1 𝜋0
𝑟, 𝑓

★

d𝑘
𝑟, 𝑓

Proof. Plugging the definition (4.3) of the interpolator into (4.4) we get, for all (𝜇, 𝜈) ∈
P0Λ

0 ( 𝑓 ) × K0
𝑟 ( 𝑓 ),∫

𝑓

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 ∧ (𝜇 + 𝜈) =

∫
𝜕 𝑓

★−1𝜋0
𝑟 ,𝜕 𝑓
(★ tr𝜕 𝑓 𝜔) ∧ tr𝜕 𝑓 𝜇 +

∫
𝑓

★−1𝜋K ,0
𝑟 , 𝑓
(★d𝜔) ∧ 𝜈,

where 𝜋0
𝑟 ,𝜕 𝑓

denotes the piecewise 𝐿2-orthogonal projector obtained patching together the
𝜋0
𝑟 , 𝑓 ′ , 𝑓

′ ∈ Δ𝑘 ( 𝑓 ). Using (2.4) with (X, 𝜔, 𝜇) ← (K0
𝑟 ( 𝑓 ′), d𝜔, 𝜈) for the second term and,

for each 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ), (X, 𝑑, 𝑓 ) ← (P𝑟Λ0 ( 𝑓 ′), 𝑘, 𝑓 ′) for the first term, the projectors can be
removed. The Stokes formula (2.1) along with d𝜇 = 0 (since 𝜇 has constant coefficients)
then yields∫

𝑓

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 ∧ (𝜇 + 𝜈) =

∫
𝑓

d𝜔 ∧ 𝜇 +
∫
𝑓

d𝜔 ∧ 𝜈 =

∫
𝑓

★−1𝜋0
𝑟 , 𝑓 (★d𝜔) ∧ (𝜇 + 𝜈),

where the conclusion follows from (2.4) with (X, 𝜔, 𝜇) ← (P𝑟Λ0 ( 𝑓 ), d𝜔, 𝜇 + 𝜈). Since,
by (2.7a), 𝜇 + 𝜈 spans P𝑟Λ0 ( 𝑓 ) as (𝜇, 𝜈) spans P0Λ

0 ( 𝑓 ) × K0
𝑟 ( 𝑓 ), this concludes the

proof.

Proposition 34 (Commutation property for the local discrete exterior derivative). For all
integers 𝑑 ∈ [1, 𝑛] and 𝑘 ≤ 𝑑 − 1, and all 𝑓 ∈ Δ𝑑 (Mℎ), it holds

d𝑘
𝑟 , 𝑓
(𝐼𝑘𝑟 , 𝑓𝜔) = 𝐼𝑘+1𝑟 , 𝑓 (d𝜔) ∀𝜔 ∈ 𝐶2Λ𝑘 ( 𝑓 ), (4.16)

expressing the commutativity of the following diagram:

𝐶2Λ𝑘 ( 𝑓 ) 𝐶1Λ𝑘+1 ( 𝑓 )

𝑉 𝑘
𝑟
( 𝑓 ) 𝑉 𝑘+1

𝑟
( 𝑓 ).

d

𝐼𝑘
𝑟, 𝑓

𝐼𝑘+1
𝑟, 𝑓

d𝑘
𝑟, 𝑓

Proof. Immediate consequence of (4.15) along with the definition (4.3) of the interpolator,
and the property d ◦ d = 0.
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4.5. Polynomial consistency

Proof of Theorem 31. The proof proceeds by induction on the dimension 𝑑. When 𝑑 = 𝑘 ,
(4.12) is a direct consequence of the definitions (4.8) of the potential and (4.3) of the
interpolator, which give 𝑃𝑘

𝑟 , 𝑓
𝐼𝑘
𝑟 , 𝑓

𝜔 = ★−1𝜋0
𝑟 , 𝑓
(★𝜔) = 𝜔, where, to remove the projector,

we have used the fact that ★𝜔 ∈ P𝑟Λ0 ( 𝑓 ), since 𝜔 ∈ P−
𝑟+1Λ

𝑑 ( 𝑓 ) = P𝑟Λ𝑑 ( 𝑓 ) (by (2.15)
with 𝑟 + 1 instead of 𝑟).

We next prove (4.12) for 𝑑 ≥ 𝑘 + 1 assuming that it holds for 𝑑 − 1. Writing the definition
(4.9) of the potential for 𝜔

𝑓
= 𝐼𝑘

𝑟 , 𝑓
𝜔, we get, for all (𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) × K𝑑−𝑘
𝑟+1 ( 𝑓 ),

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 (𝐼

𝑘
𝑟 , 𝑓𝜔) ∧ (d𝜇 + 𝜈)

=

∫
𝑓

★−1𝐷𝜔, 𝑓 ∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓
(𝐼𝑘

𝑟 ,𝜕 𝑓
tr𝜕 𝑓 𝜔) ∧ tr𝜕 𝑓 𝜇

+ (−1)𝑘+1
∫
𝑓

★−1 (𝜋K ,𝑑−𝑘
𝑟+1, 𝑓 ★𝜔) ∧ 𝜈

=

∫
𝑓

★−1𝐷𝜔, 𝑓 ∧ 𝜇 −
∫
𝜕 𝑓

tr𝜕 𝑓 𝜔 ∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1
∫
𝑓

𝜔 ∧ 𝜈,

(4.17)

where we have used the induction hypothesis for the second term in the right-hand side
after noticing that, by Lemma 4 with ℓ = 𝑘 , tr 𝑓 ′ 𝜔 ∈ P−𝑟+1Λ

𝑘 ( 𝑓 ′) for all 𝑓 ′ ∈ Δ𝑑−1 ( 𝑓 ),
together with (2.4) for the third one. Recalling the definition (4.10) of 𝐷𝑘

𝜔, 𝑓
, we distin-

guish two cases for the first term in the right-hand side. If 𝑑 = 𝑘 + 1, (4.13) (immediate
consequence of (4.15) after observing that 𝑑P−

𝑟+1Λ
𝑘 ( 𝑓 ) ⊂ P𝑟Λ𝑘+1 ( 𝑓 )) gives ★−1𝐷𝜔, 𝑓 =

★−1 ★ d𝑘
𝑟 , 𝑓
(𝐼𝑘

𝑟 , 𝑓
𝜔) = d𝜔. If, on the other hand, 𝑑 ≥ 𝑘 + 2, recalling the definition (4.3) of

the interpolator, we have
∫
𝑓
★−1𝐷𝜔, 𝑓 ∧ 𝜇 =

∫
𝑓
★−1 (𝜋K ,𝑑−𝑘−1

𝑟+1, 𝑓 ★ d𝜔) ∧ 𝜇
(2.4)
=

∫
𝑓

d𝜔 ∧ 𝜇.
Plugging these relations into (4.17), using the Stokes formula (2.1), and simplifying, we
get ∫

𝑓

𝑃𝑘
𝑟 , 𝑓 (𝐼

𝑘
𝑟 , 𝑓𝜔) ∧ (d𝜇 + 𝜈) =

∫
𝑓

𝜔 ∧ (d𝜇 + 𝜈),

which yields (4.12) for 𝑑 ≥ 𝑘 + 1 since, by (2.17) with ℓ = 𝑑 − 𝑘 ≥ 1, d𝜇 + 𝜈 spans
P−
𝑟+1Λ

𝑑−𝑘 ( 𝑓 ) as (𝜇, 𝜈) spans K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) × K𝑑−𝑘

𝑟+1 ( 𝑓 ).
We have already seen above that (4.13) holds for 𝑑 = 𝑘 + 1. To prove this relation for

𝑑 ≥ 𝑘 + 2, it suffices to recall (4.11) and (4.16) to write

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝑃𝑘+1

𝑟 , 𝑓 (d
𝑘
𝑟 , 𝑓

𝐼𝑘𝑟 , 𝑓𝜔) = 𝑃𝑘+1
𝑟 , 𝑓 (𝐼

𝑘+1
𝑟 , 𝑓 d𝜔) = d𝜔,

where the conclusion follows from (4.12) after observing that d𝜔 ∈ P𝑟Λ𝑘+1 ( 𝑓 ) ⊂ P−
𝑟+1Λ

𝑘+1 ( 𝑓 ).
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4.6. Cohomology

As in Section 3.6, given a form degree 𝑘 ∈ [0, 𝑛], we first consider the following subspace
of 𝑉 𝑘

𝑟 ,ℎ
:

𝑉 𝑘
𝑟 ,ℎ,♭

≔

{
𝜔

ℎ
=

(
(𝜔 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) , (𝜔 𝑓 , 𝐷𝜔, 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
:∫

𝑓

★−1𝜔 𝑓 = 0 ∀ 𝑓 ∈ Δ𝑘 (Mℎ)
}
.

Lemma 35 (Exactness property for 𝑉 𝑘
𝑟 ,ℎ,♭

). For all 𝑘 ∈ [0, 𝑛], if 𝜂
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ,♭
satisfies

d𝑘
𝑟 ,ℎ

𝜂
ℎ
= 0, then there exists 𝜔

ℎ
∈ 𝑉 𝑘−1

𝑟 ,ℎ,♭
such that 𝜂

ℎ
= d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
, where, in accordance

with the sequence (4.7), we have set d−1
𝑟 ,ℎ

= d𝑛
𝑟,ℎ

≔ 0.

Proof. Recalling the definition (4.6) of d𝑘
𝑟 ,ℎ

𝜂
ℎ
, we have

d𝑘
𝑟 ,ℎ

𝜂
ℎ
=

(
(★d𝑘

𝑟 , 𝑓 𝜂 𝑓
) 𝑓 ∈Δ𝑘+1 (Mℎ ) , (𝐷𝜂, 𝑓 , 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+2,𝑛]

)
.

If 𝑘 = 0, then
∫
𝑓
★−1𝜂 𝑓 = 0 implies 𝜂 𝑓 = 0 for all 𝑓 ∈ Δ0 (Mℎ); moreover, 𝜂 𝑓 = 0 for all

𝑓 ∈ Δ𝑑 (Mℎ), 𝑑 ∈ [1, 𝑛], by definition (4.1) of 𝑉0
𝑟 ,ℎ

(recall thatK𝑑
𝑟 ( 𝑓 ) = {0} for all 𝑟 and

all 𝑓 ∈ Δ𝑑 (Mℎ), cf. (2.6)). The condition d𝑘
𝑟 ,ℎ

𝜂
ℎ
= 0 together with (4.5) yields 𝐷𝜔, 𝑓 = 0

for all 𝑓 ∈ Δ𝑑 (Mℎ), 𝑑 ≥ 𝑘 + 1, and thus

𝜂
ℎ
=

(
(0) 𝑓 ∈Δ0 (Mℎ ) , (0, 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
= d−1

𝑟 ,ℎ
0.

If 1 ≤ 𝑘 ≤ 𝑛 − 1, on the other hand, from d𝑘
𝑟 ,ℎ

𝜂
ℎ
= 0 and (4.5) we infer

𝜂
ℎ
=

(
(𝜂 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) , (𝜂 𝑓 , 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
, (4.18a)

while, if 𝑘 = 𝑛, we simply have

𝜂
ℎ
= (𝜂 𝑓 ) 𝑓 ∈Δ𝑛 (Mℎ ) . (4.18b)

Let now

𝜔
ℎ
=

(
(0) 𝑓 ∈Δ𝑘−1 (Mℎ ) , (0, 𝜋

K ,0
𝑟 , 𝑓

𝜂 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) , (0, 𝜂 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]
)
∈ 𝑉 𝑘−1

𝑟 ,ℎ,♭
.

To check that this 𝜔
ℎ

is well defined, it suffices to notice that, if 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥
𝑘 + 1 = (𝑘 − 1) + 2, then 𝜂 𝑓 ∈ K𝑑−𝑘

𝑟+1 ( 𝑓 ) = K
𝑑−(𝑘−1)−1
𝑟+1 ( 𝑓 ) is a suitable choice for the

corresponding component of𝜔
ℎ
. By definition (4.4) of d𝑘−1

𝑟 , 𝑓
, we have: For all 𝑓 ∈ Δ𝑘 (Mℎ)

and all (𝜇, 𝜈) ∈ P0Λ
0 ( 𝑓 ) × K0

𝑟 ( 𝑓 ), since 𝜔 𝑓 ′ = 0 for all 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ),∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ (𝜇 + 𝜈) =
∫
𝑓

★−1
�
��𝜋
K ,0
𝑟 , 𝑓

𝜂 𝑓 ∧ 𝜈 =

∫
𝑓

★−1𝜂 𝑓 ∧ (𝜇 + 𝜈),

where the cancellation of 𝜋K ,0
𝑟 , 𝑓

is made possible by (2.4) with (X,𝜔, 𝜇) ← (K0
𝑟 ( 𝑓 ),★−1𝜂 𝑓 , 𝜈),

while the introduction of 𝜇 in the last passage is justified observing that 𝜂
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ,♭
implies
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𝑓
★−1𝜂 𝑓 = 0 for all 𝑓 ∈ Δ𝑘 (Mℎ). This relation gives d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
=★−1𝜂 𝑓 for all 𝑓 ∈ Δ𝑘 (Mℎ)

which, combined with the definition (4.6) of the global discrete exterior derivative and the
expression (4.18) of 𝜂

ℎ
, readily yields 𝜂

ℎ
= d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
and concludes the proof.

Proof of Theorem 30. Contrary to the DDR(0) complex, the VEM(0) complex is not iso-
morphic to the CW complex (the VEM spaces for 𝑟 = 0 do not have only constant polyno-
mial components on the lowest-dimensional cells). As a consequence, designing extensions
and reductions between the VEM(𝑟) and VEM(0) complexes in the spirit of Theorem
14 would not directly characterise the cohomology of the VEM complex. To circum-
vent this difficulty, we will instead design extensions 𝐸 𝑘

ℎ
: 𝑋 𝑘

0,ℎ → 𝑉 𝑘
𝑟 ,ℎ

and reductions
𝑅𝑘
ℎ

: 𝑉 𝑘
𝑟 ,ℎ
→ 𝑋 𝑘

0,ℎ between the VEM(𝑟), 𝑟 ≥ 0, and the DDR(0) complexes, in order to
show that their cohomologies are isomorphic. By Theorem 14, this will prove that the
cohomology of VEM(𝑟) is isomorphic to the continuous de Rham cohomology.

Throughout the rest of this proof, (𝑃𝑘
0, 𝑓 ,d

𝑘
0, 𝑓 ) and (𝑃𝑘

𝑟 , 𝑓
,d𝑘

𝑟 , 𝑓
) denote, respectively, the

couple (potential reconstruction, discrete exterior derivative) of the DDR(0) and VEM(𝑟)
complexes. We do not need to differentiate these notations, as the argument removes all
ambiguity. For all form degrees 𝑘 ∈ [0, 𝑑], the reduction is obtained setting

𝑅𝑘
ℎ𝜔ℎ

≔
(
(𝜋0

0, 𝑓𝜔 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ )
)

∀𝜔
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ
, (4.19)

while the extension is given by

𝐸 𝑘
ℎ𝜂ℎ

≔

(
(𝜂 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) ,(
𝜋
K ,1
𝑟+1, 𝑓 (★𝑃

𝑘
0, 𝑓 𝜂 𝑓

), 𝜋K ,0
𝑟 , 𝑓
(★d𝑘

0, 𝑓 𝜂 𝑓
)
)
𝑓 ∈Δ𝑘+1 (Mℎ ) ,(

𝜋
K ,𝑑−𝑘
𝑟+1, 𝑓 (★𝑃

𝑘
0, 𝑓 𝜂 𝑓

), 𝜋K ,𝑑−𝑘−1
𝑟+1, 𝑓 (★d𝑘

0, 𝑓 𝜂 𝑓
)
)
𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑≥𝑘+2

)
∀𝜂

ℎ
∈ 𝑋 𝑘

0,ℎ .

(4.20)
As in the proof of Theorem 14, we need to establish the properties (C1)–(C3) of [37,
Assumption 1] to obtain the desired isomorphism in cohomology (also in this case, the
relation (3.52) is an immediate consequence of (C1) and (C3)).

Proof of (C1). An inspection of the definitions (4.19) of the reduction and (4.20) of the
extension shows that 𝑅𝑘

ℎ
𝐸 𝑘
ℎ
𝜂
ℎ
= 𝜂

ℎ
for all 𝜂

ℎ
∈ 𝑋 𝑘

0,ℎ, and thus (C1) holds a fortiori.

Proof of (C3). We need to prove that both the reduction and extension are cochain maps.
Let us start with the extension. We have to prove that, for any integer 𝑘 ∈ [0, 𝑛 − 1] and

all 𝜂
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
, 𝐸 𝑘+1

ℎ
(d𝑘

0,ℎ𝜂ℎ
) = d𝑘

𝑟 ,ℎ
(𝐸 𝑘

ℎ
𝜂
ℎ
). Owing to the definitions (4.20) of the extension,

(3.8) of d𝑘
0, 𝑓 , and (4.6) of d𝑘

𝑟 , 𝑓
, and since d𝑘+1

0, 𝑓 ◦ d𝑘
0, 𝑓 = 0 (by (3.32) with 𝑟 = 0 and 𝑘 + 1

instead of 𝑘) this amounts to proving that

★d𝑘
0, 𝑓 𝜂 𝑓

= ★ d𝑘
𝑟 , 𝑓 (𝐸

𝑘
𝑓 𝜂 𝑓
) ∀ 𝑓 ∈ Δ𝑘+1 (Mℎ), (4.21)

𝜋
K ,𝑑−𝑘−1
𝑟+1, 𝑓 (★𝑃𝑘+1

0, 𝑓 d𝑘
0, 𝑓 𝜂 𝑓

) = 𝜋
K ,𝑑−𝑘−1
𝑟+1, 𝑓 (★d𝑘

0, 𝑓 𝜂 𝑓
) ∀ 𝑓 ∈ Δ𝑑 (Mℎ), 𝑑 ≥ 𝑘 + 2. (4.22)
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The relation (4.22) trivially follows from 𝑃𝑘+1
0, 𝑓 d𝑘

0, 𝑓 = d𝑘
0, 𝑓 , which comes from (3.31) with

(𝑘, 𝑟) ← (𝑘 + 1, 0). To prove (4.21), we take (𝜇, 𝜈) ∈ P0Λ
0 ( 𝑓 ) × K0

𝑟 ( 𝑓 ) and apply the
definitions (4.4) of d𝑘

𝑟 , 𝑓
(𝐸 𝑘

𝑓
𝜂
𝑓
) and (4.20) of 𝐸ℎ

𝑘
𝜂
ℎ

to get∫
𝑓

d𝑘
𝑟 , 𝑓 (𝐸

𝑘
𝑓 𝜂 𝑓
) ∧ (𝜇 + 𝜈) =

∫
𝜕 𝑓

★−1𝜂𝜕 𝑓 ∧ 𝜇 +
∫
𝑓

★−1𝜋K ,0
𝑟 , 𝑓
(★d𝑘

0, 𝑓 𝜂 𝑓
) ∧ 𝜈

=

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜇 +
∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜈 =

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ (𝜇 + 𝜈),

where the second equality is obtained using the definition (3.4) of d𝑘
0, 𝑓 for the first term and

(2.4) with (X, 𝜔, 𝜇) ← (K0
𝑟 ( 𝑓 ), d𝑘

0, 𝑓 𝜂 𝑓
, 𝜈) for the second one. By (2.7a), and since both

d𝑘
𝑟 , 𝑓
(𝐸 𝑘

𝑓
𝜂
𝑓
) and d𝑘

0, 𝑓 𝜂 𝑓
belong to P𝑟Λ𝑘+1 ( 𝑓 ), this relation gives d𝑘

𝑟 , 𝑓
(𝐸 𝑘

𝑓
𝜂
𝑓
) = d𝑘

0, 𝑓 𝜂 𝑓
,

thus proving (4.21).
Let us now turn to the reduction. We need to show that, for any integer 𝑘 ∈ [0, 𝑛 − 1]

and all 𝜔
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ
, 𝑅𝑘+1

ℎ
(d𝑘

𝑟 ,ℎ
𝜔

ℎ
) = d𝑘

0,ℎ (𝑅𝑘
ℎ
𝜔

ℎ
), i.e., accounting for the definitions (4.19)

of the reduction, (3.8) of d𝑘
0,ℎ (additionally noticing that 𝜋−,00, 𝑓 coincides with 𝜋0

0, 𝑓 owing
to (2.12a)), and (4.6) of d𝑘

𝑟 ,ℎ
,

𝜋0
0, 𝑓 (★d𝑘

𝑟 , 𝑓𝜔 𝑓
) = ★d𝑘

0, 𝑓 𝑅
𝑘
𝑓𝜔 𝑓

∀ 𝑓 ∈ Δ𝑘+1 (Mℎ). (4.23)

To check this relation, let 𝑓 ∈ Δ𝑘+1 (Mℎ) and write, for all 𝜇 ∈ P0Λ
0 ( 𝑓 ),∫

𝑓

★−1𝜋0
0, 𝑓 (★d𝑘

𝑟 , 𝑓𝜔 𝑓
) ∧ 𝜇 =

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 Eq. (2.4)

=

∫
𝜕 𝑓

★−1𝜔𝜕 𝑓 ∧ tr𝜕 𝑓 𝜇 Eq. (4.4)

=

∫
𝜕 𝑓

★−1𝜋0
0,𝜕 𝑓

𝜔𝜕 𝑓 ∧ tr𝜕 𝑓 𝜇

=

∫
𝑓

d𝑘
0, 𝑓 𝑅

𝑘
𝑓𝜔 𝑓
∧ 𝜇, Eqs. (4.19), (3.4), (3.3)

where the third equality follows from (2.4) with (X,𝜔, 𝜇) ← (P0Λ
0 (𝜕 𝑓 ),★−1𝜔𝜕 𝑓 , tr𝜕 𝑓 𝜇).

This proves (4.23), and thus that the reductions form a cochain map.

Proof of (C2). For all 𝜔
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ
, by the definitions (4.19) and (4.20) of the reduction and

extension, it holds 𝐸 𝑘
ℎ
𝑅𝑘
ℎ
𝜔

ℎ
− 𝜔

ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ,♭
. The proof then continues as in point 4. of

the proof of Theorem 14 (see Section 3.6) with 𝑋 𝑘
𝑟 ,ℎ,♭

replaced by 𝑉 𝑘
𝑟 ,ℎ,♭

and Lemma 27
replaced by Lemma 35.

5. Related works

We provide here some elements of comparison between the DDR and VEM constructions
of Sections 3 and 4, and two other families of discrete complexes.
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5.1. Finite Element Exterior Calculus and Finite Element Systems

Finite Element Exterior Calculus (FEEC) is the (conforming) finite element approach for
the unified analysis of discrete complexes [2, 4]. It is based on the selection of piecewise
polynomial subspaces of 𝐻Λ(Ω) that form a subcomplex of the continuous complex (1.2).
Finite Element Systems (FES) is a framework for designing subcomplexes that generalises
FEEC to cover finite dimensional spaces spanned by differential forms that may not be
piecewise polynomial on the selected mesh [29,31]. In FEEC complexes, only the spaces
of differential forms in the continuous complex are replaced with discrete counterparts:
the graded map that links these spaces is the usual exterior derivative d. Generalised FES
is an abstract setting which also gives freedom on the definition of the graded maps in the
complex [29].

A (generalised) FES space is a space of 𝑘-forms on all 𝑑-cells with 𝑑 ≥ 𝑘 , with a
compatibility condition on the traces:

𝐴𝑘 (Mℎ) =
{
𝑣
ℎ
∈

?
𝑓 ∈ Δ𝑑 (Mℎ )
𝑑 ∈ [𝑘, 𝑛]

𝐴𝑘 ( 𝑓 ) :

tr 𝑓 ′ 𝑣 𝑓 = 𝑣 𝑓 ′ for all ( 𝑓 , 𝑓 ′) ∈ Δ𝑑 (Mℎ) × Δ𝑑′ ( 𝑓 ) with 𝑘 ≤ 𝑑′ ≤ 𝑑

}
, (5.1)

where each 𝐴𝑘 ( 𝑓 ) is a finite-dimensional space of 𝑘-forms and 𝑣 𝑓 denotes the component
of 𝑣

ℎ
on 𝑓 . In the original FES setting (in which the graded maps are d), each element

of 𝐴𝑘 (Mℎ) can be identified with an element of 𝐻Λ𝑘 (Ω). This setting contains the usual
FEEC complexes (in which case 𝐴𝑘 ( 𝑓 ) are certain polynomial subspaces – typically full
polynomial spaces or trimmed polynomial spaces depending on the considered finite ele-
ment), but has also been used to develop other discrete complexes, e.g. based on macro-
elements (in which case 𝐴𝑘 ( 𝑓 ) is a space of piecewise polynomial forms on a subdivision
of 𝑓 ) or with higher inter-element regularity (𝐶1 spaces, for example).

The concept of (faithful) mirror system plays the role of degrees of freedom in the FES
framework. Mirror systems are constructed on a case-by-case basis for each FES, and are
auxiliary tools in the framework: they are not required to design the FES spaces (or maps),
but they identify (by duality) a basis of such spaces. A mirror system for 𝐴𝑘 (Mℎ) is a
family of subspaces of linear forms:

𝑍 𝑘 (Mℎ) =
?

𝑓 ∈ Δ𝑑 (Mℎ )
𝑑 ∈ [𝑘, 𝑛]

𝑍 𝑘 ( 𝑓 ) with 𝑍 𝑘 ( 𝑓 ) ⊂ 𝐴𝑘 ( 𝑓 )∗ for all 𝑓 ∈ Δ(Mℎ), (5.2)

where 𝐴𝑘 ( 𝑓 )∗ is the dual space of 𝐴𝑘 ( 𝑓 ) (actually, to link mirror systems and interpolators,
each 𝑍 𝑘 ( 𝑓 ) is chosen as a subspace of 𝑋̂ 𝑘 ( 𝑓 )∗ with 𝑋̂ 𝑘 ( 𝑓 ) ⊃ 𝐴𝑘 ( 𝑓 ), but we won’t need
this in the discussion here). As can be seen in (5.2), a mirror system is built hierarchically
on the mesh, and each 𝑍 𝑘 ( 𝑓 ) identifies the modes of the FES forms that are “interior” to
𝑓 ; to obtain all the modes (interior and boundary) associated with 𝑓 , one must consider>

𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘,𝑑 ] 𝑍
𝑘 ( 𝑓 ′).
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A particular case of interest in the present context is when 𝑍 𝑘 ( 𝑓 ) ⊂ 𝐿2Λ𝑘 ( 𝑓 )∗ (see
Remark 9). Using the Riesz representation theorem and applying the Hodge star trans-
formation, 𝑍 𝑘 ( 𝑓 ) can then be identified with a family of subspaces of 𝐿2-integrable (𝑑 −
𝑘)-forms:

𝑍 𝑘 (Mℎ) �
?

𝑓 ∈ Δ𝑑 (Mℎ )
𝑑 ∈ [𝑘, 𝑛]

𝑍𝑑−𝑘 ( 𝑓 ) with 𝑍𝑑−𝑘 ( 𝑓 ) ⊂ 𝐿2Λ𝑑−𝑘 ( 𝑓 ). (5.3)

Here, and contrary to (5.1), no compatibility condition of the traces is imposed: the spaces
𝑍𝑑−𝑘 ( 𝑓 ) are completely disconnected from each other.

The FEEC framework provides a setting for the algebraic and analytical study of
discrete complexes based on piecewise polynomial subspaces of the continuous spaces;
the constraint of having piecewise polynomial subspaces and of imposing the suitable
inter-element continuities restricts the design of finite element methods to certain types of
meshes – mostly tetrahedral and hexahedral. The FES framework is more general in the
sense that it does not, in principle, require to identify conforming subspaces (or accepts
conforming subspaces that are not piecewise polynomial on the chosen mesh – these spaces
are then usually not explicitly known). Its main restriction, compared to FEEC, is that it
only provides algebraic results on the discrete complexes, not analytical results such as
Poincaré inequalities, or primal and adjoint consistencies – all critical for the numerical
analysis of numerical schemes based on the complex. Moreover, as far as we could see in
the literature, all complexes based on the FES framework and fully computable (that is, the
spaces and operators are explicitly known) seem to rely on the design of discrete subcom-
plexes of the continuous complex, which imposes restrictions on the types of meshes that
can be considered (as in FEEC, mostly tetrahedral and hexahedral meshes, with the graded
map being the exterior derivative). On the contrary, the DDR and VEM constructions of
Sections 3 and 4 provide explicit and computable discrete complexes on generic polyto-
pal meshes, that do not rely on finding computable conforming subspaces of the de Rham
spaces. These polytopal methods can be entirely built using spaces of polynomial functions
on the mesh, without any compatibility condition on the traces. The spaces are explicit,
their bases are directly given by the polynomial components, and the graded map (acting
as a discrete exterior derivative) is explicitly expressed in terms of these components.

Comparing (3.1) and (5.3) for example, we see that the DDR space plays the role of a
mirror system, and puts discrete polynomial components at the center of the construction.
A similar approach is also true for the VEM-inspired spaces (4.1), with, contrary to DDR,
some polynomial components representing exterior derivatives; see the definition (4.3) of
the interpolator.

A closer link between DDR and FES can be drawn by noticing that the FES [28, Sec-
tion 2.1] has the DDR spaces as mirror system (in the sense of (5.3)). The spaces of this
FES are based on liftings of harmonic functions on each cell, which cannot be explicitly
described in general, and therefore cannot be directly used, say, in a weak formulation of
a PDE to design a numerical scheme. This is in contrast with the fully discrete approach
employed by the DDR technique, which not only identifies explicit discrete spaces and
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exterior derivatives, but also consistent 𝐿2-inner products on these spaces, therefore provid-
ing all the tools required to build numerical schemes, see, e.g. [11,35,56]). We also notice,
in passing, that, in the context of vector proxies, different conforming (non-explicit) spaces
having the DDR components as degrees of freedom were also identified in [11, Section
6.2].

Finally, it can be shown, using the results of Section 3.3 and Lemma 27, that the DDR
complex fits into the generalised FES framework. [29, Theorem 1] then provides an altern-
ative study of the cohomology of the DDR complex. The approach developed in the proof
of Theorem 14 provides a practical way to compute the cohomology spaces of the DDR
complex based on those of the underlying CW complex (see [38, Remark 13] for details),
for which efficient algorithms are available [48]. Moreover, as mentioned above, the FES
framework does not cover any analytical properties of the discrete complexes. In particu-
lar, for DDR, it only relies on the global discrete exterior derivative d𝑘

𝑟 ,ℎ
defined in (3.8),

and would not identify or make use of the local potential reconstructions 𝑃𝑘
𝑟 , 𝑓

and discrete
exterior derivatives d𝑘

𝑟 , 𝑓
which encode the optimal consistency properties of the method

(see Theorem 15 and (3.16)).

5.2. Distributional Differential Forms

The theory of Distributional Differential Forms (DDF) has been introduced in [58] as a
generalisation of the construction in [20] for the a posteriori error analysis of Nédélec
edge elements. DDF are built on triangulations of the domain and, using their relation
with the underlying simplicial complexes (as well as the concept of double complexes),
their cohomology was analysed in [58] for rather general boundary conditions. Poincaré–
Friedrichs inequalities were later established in [30].

As is the case for the spaces appearing in the DDR and VEM complexes, DDF spaces
are collections of differential forms on cells of various dimensions, with form degree
depending on the dimension of the cell: if the domain Ω has dimension 𝑛, the DDF space
of degree 𝑘 is made of (𝑘 − 𝑛 + 𝑑)-forms on 𝑑-cells. No compatibility of the traces is
enforced on these forms, which can be completely discontinuous between two 𝑑-simplices.
The discrete distributional exterior derivative on the DDF space is then composed of two
contributions: the exterior derivative inside the simplices, and a trace term. For example,
focusing on the highest dimension 𝑑 = 𝑛, if the DDF space of 𝑘-forms is

Λ̂𝑘
−2 (Δ𝑛 (Mℎ)) = Λ̂𝑘

−1 (Δ𝑛 (Mℎ)) ⊕ Λ̂𝑘−1
−1 (Δ𝑛−1 (Mℎ)), (5.4)

(with Λ̂ℓ
−1 subspace of piecewise𝐶∞Λℓ forms, the index−1 expressing the absence of con-

tinuity properties at the interfaces), for a family 𝜔𝑛,ℎ = (𝜔 𝑓 ) 𝑓 ∈Δ𝑛 (Mℎ ) ∈ Λ̂𝑘
−1 (Δ𝑛 (Mℎ)),

we define the distributional derivative d̂𝑘
ℎ

: Λ̂𝑘
−1 (Δ𝑛 (Mℎ)) → Λ̂𝑘+1

−2 (Δ𝑛 (Mℎ)) by

d̂𝑘
ℎ𝜔𝑛,ℎ =

©­«(d𝑘𝜔 𝑓 ) 𝑓 ∈Δ𝑛 (Mℎ ) ,
©­«−

∑︁
𝑓 ∈Σ𝑛 ( 𝑓 ′ )

𝜀 𝑓 𝑓 ′ tr 𝑓 ′ 𝜔 𝑓
ª®¬ 𝑓 ′∈Δ𝑛−1 (Mℎ )

ª®¬ , (5.5)
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where Σ𝑛 ( 𝑓 ′) is the set of 𝑛-simplices 𝑓 that share 𝑓 ′ (that is, 𝑓 ′ ∈ Δ𝑛−1 ( 𝑓 )), and 𝜀 𝑓 𝑓 ′ is
the relative orientation of the simplex 𝑓 ′ with respect to the simplex 𝑓 . Note that, in (5.5),
we have adopted a presentation of the distributional derivative that distributes its two con-
tributions (D and T in [58]) on the corresponding components (Λ̂𝑘+1−𝑖

−1 (Δ𝑛−𝑖 (Mℎ)))𝑖=0,1
of Λ̂𝑘+1

−2 (Δ𝑛 (Mℎ)) (see (5.4) with 𝑘 + 1 instead of 𝑘), instead of writing d̂𝑘
ℎ

as a sum of
elements in the global space Λ̂𝑘+1

−2 (Δ𝑛 (Mℎ)); this is to better compare with the definition
(3.8). This definition of distributional derivative is a global one, obtained by testing the
piecewise smooth form 𝜔𝑛,ℎ against globally smooth forms, which classically results in
a term inside each 𝑓 ∈ Δ𝑛 (Mℎ) corresponding to the standard exterior derivative (first
component in (5.5)), and a jump across the (𝑛 − 1)-sub-simplices based on the difference
of traces on the two adjacent 𝑛-simplices (second component in (5.5)).

A crucial remark is that, in (5.5), the component (d𝑘𝜔 𝑓 ) 𝑓 ∈Δ𝑛 (Mℎ ) of 𝑑𝑘
ℎ
𝜔𝑛,ℎ on 𝑛-cells

only depends on the values 𝜔𝑛,ℎ of the discrete distributional differential form on 𝑛-cells,
not on the values of these forms on lower-dimensional cells (e.g., Λ̂𝑘−1

−1 (Δ𝑛−1 (Mℎ)) in
(5.4)). This is in contrast with the discrete exterior derivatives in DDR and VEM complexes,
whose definition on higher-dimensional cells depends on polynomial components on their
sub-cells; see (3.4) and (4.6). Another difference between DDR and DDF can be seen when
recasting the discrete exterior derivative: integrating by parts (3.4) yields the following
characterisation:∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 = −
∫
𝑓

d(★−1𝜔 𝑓 ) ∧ 𝜇 +
∫
𝜕 𝑓

(𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
− tr𝜕 𝑓 (★−1𝜔 𝑓 )) ∧ tr𝜕 𝑓 𝜇

∀𝜇 ∈ P𝑟Λ𝑑−𝑘−1 ( 𝑓 ).

This relation reveals that d𝑘
𝑟 , 𝑓

𝜔
𝑓

is, as in DDF, composed of an exterior derivative term
in the 𝑑-cell and a boundary term involving jumps. However, contrary to DDF, the jumps
here are between the trace of the 𝑑-cell unknown and the potential 𝑃𝑘

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓

reconstructed
on (𝑑 − 1)-cells (which depends on the unknowns on all 𝑑′-subcells of 𝑓 , 𝑘 ≤ 𝑑′ ≤ 𝑑),
not between traces of two 𝑑-cells unknowns (as in (5.5) with 𝑑 = 𝑛). In this respect, the
“jump” term in DDR relates more to the kind of face differences encountered in polytopal
methods (e.g., the HHO method [34]) while the jump term in DDF is more akin to those
arising in discontinuous Galerkin (DG) methods [41].

This comparison can be extended to the potential reconstructions themselves. Equation
(3.36) shows that 𝑃𝑘

𝑟 , 𝑓
𝜔

𝑓
is obtained applying a higher-order enhancement to the cell

component ★−1𝜔 𝑓 , designed from the discrete exterior derivative on 𝑓 and the potentials
on 𝜕 𝑓 . This enhancement ensures the high-order consistency of the method starting from
lower-order polynomial unknowns. In the context of elliptic equations, it is commonly used
in methods with unknowns in the elements and on the faces of the mesh, but it is not directly
available in DG methods. In DDF, as in DG, the cell unknown itself must be used (e.g.,
in a scheme to discretise the source term), and the consistency is therefore limited by the
degree of this unknown.
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Appendix A. Differential forms and vector proxies

In this section, we briefly recall basic concepts on alternating (resp. differential) forms, and
their representation in terms of vectors (resp. vector fields); these representations are often
referred to as “vector proxies”. We refer the reader to [2, Chapter 6] for a presentation in the
framework of Finite Element Exterior Calculus, and to [15], [49, Chapter 1], [55, Chapter 1]
for an introduction in more general scientific and engineering contexts.

A.1. Exterior algebra in R𝑛

A.1.1. Alternating forms. Let {𝒆𝑖}𝑖∈[1,𝑛] be the canonical basis of R𝑛, equipped with
the standard inner product. A basis for the space of linear forms over R𝑛, i.e., the dual
space (R𝑛)′ of R𝑛, is given by {d𝑥𝑖}𝑖∈[1,𝑛] , with d𝑥𝑖 (𝒆 𝑗 ) ≔ 𝛿𝑖

𝑗
(Krönecker symbol), for

all (𝑖, 𝑗) ∈ [1, 𝑛]2. The starting point of exterior calculus is to consider alternating mul-
tilinear forms, vanishing whenever they are applied to a set of linearly dependent vectors
in R𝑛. For any integer 𝑘 ≥ 1, the set of alternating 𝑘-linear forms on R𝑛 is denoted by
Alt𝑘 (R𝑛); by convention, we set Alt0 (R𝑛) ≔ R. We also note that Alt1 (R𝑛) = (R𝑛)′ and
that Alt𝑘 (R𝑛) = {0} if 𝑘 > 𝑛 (since families of 𝑘 > 𝑛 vectors are always linearly depend-
ent). It can be checked that dimAlt𝑘 (R𝑛) =

(𝑛
𝑘

)
. In particular, Alt𝑛 (R𝑛) is the 1-dimensional

space spanned by the determinant in the canonical basis vol (called the volume form).

A.1.2. Exterior product. Given two alternating multilinear forms 𝜔 ∈ Alt𝑖 (R𝑛) and 𝜇 ∈
Alt 𝑗 (R𝑛), their exterior product𝜔∧ 𝜇 ∈Alt𝑖+ 𝑗 (R𝑛) is defined, for any vectors 𝒗1, . . . , 𝒗𝑖+ 𝑗 ∈
R𝑛, by

(𝜔 ∧ 𝜇) (𝒗1, . . . , 𝒗𝑖+ 𝑗 ) ≔
∑︁

𝜎∈Σ𝑖, 𝑗

sign(𝜎) 𝜔(𝒗𝜎1 , . . . , 𝒗𝜎𝑖
) 𝜇(𝒗𝜎𝑖+1 , . . . , 𝒗𝜎𝑖+ 𝑗 ),

where Σ𝑖, 𝑗 is the set of all permutations 𝜎 of the (𝑖 + 𝑗)-tuple (1, . . . , 𝑖 + 𝑗) such that
𝜎1 < · · · < 𝜎𝑖 and 𝜎𝑖+1 < · · · < 𝜎𝑖+ 𝑗 . The exterior product satisfies the anticommutativity
law

𝜔 ∧ 𝜇 = (−1)𝑖 𝑗𝜇 ∧ 𝜔, (A.1)

so that, in particular, we have d𝑥𝑖 ∧ d𝑥𝑖 = 0 and d𝑥𝑖 ∧ d𝑥 𝑗 = −d𝑥 𝑗 ∧ d𝑥𝑖 . With these defin-
itions, for 𝑘 ∈ [1, 𝑛] a basis of the space Alt𝑘 (R𝑛) is {d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 }𝜎 where 𝜎 spans
all strictly increasing functions [1, 𝑘] → [1, 𝑛]. Hence, any 𝜔 ∈ Alt𝑘 (R𝑛) can be written

𝜔 =
∑︁

1≤𝜎1<· · ·<𝜎𝑘≤𝑛
𝑎𝜎 d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 , 𝑎𝜎 ∈ R. (A.2)

A.1.3. Hodge star operator. The scalar product in R𝑛 induces a scalar product, denoted
by ⟨·, ·⟩, on Alt𝑛−𝑘 (R𝑛) – namely, the scalar product for which the aforementioned basis
{d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑛−𝑘 }𝜎 of Alt𝑛−𝑘 (R𝑛) is orthonormal. The Hodge star operator is the
unique linear mapping★ : Alt𝑘 (R𝑛) →Alt𝑛−𝑘 (R𝑛) such that, for all𝜔 ∈Alt𝑘 (R𝑛), ⟨★𝜔, 𝜇⟩vol=
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𝜔 ∧ 𝜇 for all 𝜇 ∈ Alt𝑛−𝑘 (R𝑛). It can be checked that

★(d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 ) = sign(𝜎, 𝜏) (d𝑥𝜏1 ∧ · · · ∧ d𝑥𝜏𝑛−𝑘 ),

where (𝜎, 𝜏) = (𝜎1, . . . , 𝜎𝑘 , 𝜏1, . . . , 𝜏𝑛−𝑘) is a permutation of (1, . . . , 𝑛) such that 𝜎1 <

· · · < 𝜎𝑘 and 𝜏1 < · · · < 𝜏𝑛−𝑘 . From the above identity, one can infer that

★(★𝜔) = (−1)𝑘 (𝑛−𝑘 )𝜔 ∀𝜔 ∈ Alt𝑘 (R𝑛) (A.3)

and, hence, that ⟨★𝜔,★𝜇⟩ = ⟨𝜔, 𝜇⟩, i.e.,★ is an isometry. Formula (A.3) justifies the defin-
ition (2.2) of★−1. The anticommutativity (A.1) of ∧, the definition of★, and the symmetry
of ⟨·, ·⟩ then give

★−1𝜔 ∧ 𝜇 = 𝜇 ∧★𝜔 = 𝜔 ∧★𝜇 ∀𝜔, 𝜇 ∈ Alt𝑘 (R𝑛). (A.4)

Example 36 (Hodge star operator in two and three dimensions). If 𝜔 ∈ Alt2 (R3), i.e.,
𝜔 = 𝑎12 d𝑥1 ∧ d𝑥2 + 𝑎13 d𝑥1 ∧ d𝑥3 + 𝑎23 d𝑥2 ∧ d𝑥3 (see (A.2)), one obtains★𝜔 ∈ Alt1 (R3)
with

★𝜔 = 𝑎12 d𝑥3 − 𝑎13 d𝑥2 + 𝑎23 d𝑥1.

If 𝜔 ∈ Alt1 (R2), i.e., 𝜔 = 𝑎1 d𝑥1 + 𝑎2 d𝑥2, then ★𝜔 ∈ Alt1 (R2) with

★𝜔 = 𝑎1 d𝑥2 − 𝑎2 d𝑥1.

A.1.4. Vector proxies for alternating forms. As already mentioned in Section A.1.1, Alt0 (R𝑛) =
R and Alt𝑛 (R𝑛) � R. Using the Riesz representation theorem to identify (R𝑛)′ and R𝑛, we
can identify two more spaces of alternating forms: Alt1 (R𝑛) = (R𝑛)′ � R𝑛 and, writing
★Alt𝑛−1 (R𝑛) = Alt1 (R𝑛) � R𝑛 since ★ is bijective, Alt𝑛−1 (R𝑛) � R𝑛.

Applied with 𝑛 = 3, and recalling the formula for Hodge star transformations of 2-forms
in Remark 36, these identifications lead to considering a vector 𝒗 = (𝑎, 𝑏, 𝑐) ∈ R3 as a proxy
for both the alternating linear and bilinear forms

Alt1 (R3) ∋𝜔 = 𝑎 d𝑥1 + 𝑏 d𝑥2 + 𝑐 d𝑥3 and Alt2 (R3) ∋ 𝜇 = 𝑎 d𝑥2 ∧ d𝑥3 − 𝑏 d𝑥1 ∧ d𝑥3 + 𝑐 d𝑥1 ∧ d𝑥2.

On the other hand, when 𝑛 = 2, the discussion above gives two possible ways to identify
Alt1 (R2) = Alt2−1 (R2) with R2. This leads to associating 𝑎 d𝑥1 + 𝑏 d𝑥2 = 𝜔 ∈ Alt1 (R2)
either to the vector 𝒗 = (𝑎, 𝑏) ∈ R2, or to its rotation by a right angle 𝜚−𝜋/2𝒗 = (𝑏,−𝑎) ∈ R2.

Based on the above identifications, when 𝑛 = 3, one can interpret the exterior product
of two alternating multilinear forms 𝜔 ∧ 𝜇 in terms of vector proxies (𝒘, 𝒗) as follows:
• the vector productR3 ×R3 ∋ (𝒘, 𝒗) ↦→ 𝒘 × 𝒗 ∈ R3 when (𝜔, 𝜇) ∈ Alt1 (R3) ×Alt1 (R3);
• the dot product R3 × R3 ∋ (𝒘, 𝒗) ↦→ 𝒘 · 𝒗 ∈ R when (𝜔, 𝜇) ∈ Alt1 (R3) × Alt2 (R3).
On the other hand, if 𝑛 = 2 and 𝜔, 𝜇 ∈ Alt1 (R2), we can write 𝜔 ∧ 𝜇 = (𝑎 d𝑥1 + 𝑏 d𝑥2) ∧
( 𝑓 d𝑥1 + 𝑔 d𝑥2) = (𝑎𝑔 − 𝑏 𝑓 ) d𝑥1 ∧ d𝑥2. Considering the correspondences 𝜔↔ 𝒘 = (𝑎, 𝑏)
and 𝜇↔ 𝒗 = ( 𝑓 , 𝑔), we obtain

𝜔 ∧ 𝜇 = (𝒘 · 𝜚−𝜋/2𝒗) d𝑥1 ∧ d𝑥2. (A.5)
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A.1.5. Contraction and trace. For a given vector 𝒗 ∈R𝑛, the contraction𝜔⌟𝒗 ∈Alt𝑘−1 (R𝑛)
of 𝜔 ∈ Alt𝑘 (R𝑛) with 𝒗 is defined, for any 𝒗1, . . . , 𝒗𝑘−1 ∈ R𝑛, by

(𝜔⌟𝒗) (𝒗1, . . . , 𝒗𝑘−1) ≔ 𝜔(𝒗, 𝒗1, . . . , 𝒗𝑘−1). (A.6)

In terms of vector proxies, in the case where 𝑛 = 3, this contraction with 𝒗 corresponds to
• the scalar product R3 ∋ 𝒘 ↦→ 𝒗 · 𝒘 ∈ R when 𝒘 ↔ 𝜔 ∈ Alt1 (R3);
• the vector product R3 ∋ 𝒘 ↦→ 𝒗 × 𝒘 ∈ R3 when 𝒘 ↔ 𝜔 ∈ Alt2 (R3);
• the multiplication of a real number R ∋ 𝑤 ↦→ 𝑤𝒗 ∈ R3 when 𝑤↔ 𝜔 ∈ Alt3 (R3).

Let now𝑉 ⊂𝑊 be finite dimensional subspaces ofR𝑛, and 𝜄𝑉 :𝑉 ↩→𝑊 be the inclusion
of𝑉 in𝑊 . The trace tr𝑉 : Alt𝑘 (𝑊) →Alt𝑘 (𝑉) is the pullback under 𝜄𝑉 : For any 𝒗1, . . . , 𝒗𝑘 ∈
𝑉 ,

tr𝑉 𝜔(𝒗1, . . . , 𝒗𝑘) ≔ 𝜔(𝜄𝑉𝒗1, . . . , 𝜄𝑉𝒗𝑘). (A.7)

The trace respects the exterior product, i.e., tr𝑉 (𝜔 ∧ 𝜇) = tr𝑉𝜔 ∧ tr𝑉 𝜇.
It is easy to see that, through the vector proxy of Alt1 spaces, tr𝑉 : Alt1 (𝑊) → Alt1 (𝑉)

is the orthogonal projection 𝜋𝑉 : 𝑊 → 𝑉 of a vector 𝒘 ∈ 𝑊 onto 𝑉 .
Let us fix an integer 𝑚 ∈ [1, 𝑛] and suppose that dim(𝑊) = 𝑚 and dim(𝑉) = 𝑚 − 1, and

that both spaces are oriented; let 𝒏𝑉 be the unit normal to𝑉 such that, given a positively ori-
ented basis (𝒆1, . . . , 𝒆𝑚−1) of𝑉 , the family (𝒏𝑉 , 𝒆1, . . . , 𝒆𝑚−1) forms a positively oriented
basis of 𝑊 . Then, an identification of the trace tr𝑉 : Alt𝑚−1 (𝑊) → Alt𝑚−1 (𝑉) through
vector proxies is the scalar product with the vector 𝒏𝑉 , that is, 𝑊 ∋ 𝒘 ↦→ 𝒘 · 𝒏𝑉 ∈ R.

A.2. Exterior calculus in R𝑛

A.2.1. Differential forms. Let 𝑀 be an 𝑛-dimensional flat manifold. When the coefficients
in (A.2) are functions 𝑎𝜎 : 𝑀→R, the map𝜔 : 𝑀→Alt𝑘 (R𝑛) is referred to as a differential
form, or simply a 𝑘-form. Consistently with the notation adopted in Section 2.1, the space
of 𝑘-forms over 𝑀 without any specific smoothness requirement on the coefficients 𝑎𝜎 is
denoted by Λ𝑘 (𝑀). If 𝜔 ∈ Λ𝑘 (𝑀), the value of 𝜔 at 𝒙 ∈ 𝑀 is denoted by 𝜔𝒙 ∈ Alt𝑘 (R𝑛).

If the coefficients 𝑎𝜎 in (A.2) are polynomial functions, 𝜔 is said to be a polynomial
differential form. Specifically, for an integer 𝑟 ≥ 0, the space of polynomial 𝑘-forms of
degree ≤ 𝑟 is defined as

P𝑟Λ𝑘 (𝑀) ≔
{ ∑︁

1≤𝜎1<· · ·<𝜎𝑘≤𝑛
𝑝𝜎 d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 : 𝑝𝜎 ∈ P𝑟 (𝑀)

}
,

where P𝑟 (𝑀) is the space of scalar polynomials of degree ≤ 𝑟 over 𝑀 . All the arguments
concerning vector proxies presented in Section A.1 for alternating 𝑘-linear forms can be
immediately extended to the case of 𝑘-forms. Hence, when 𝑛 ∈ {2, 3}, their corresponding
vector proxies are scalar fields over 𝑀 when 𝑘 ∈ {0, 𝑛}, and vector fields over 𝑀 when
𝑘 ∈ {1, 𝑛 − 1}.
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A.2.2. Exterior derivative and de Rham complexes. Provided that the coefficients 𝑎𝜎

in (A.2) are smooth enough, the exterior derivative of a 𝑘-form 𝜔 ∈ Λ𝑘 (𝑀) is the linear
unbounded operator d : Λ𝑘 (𝑀) → Λ𝑘+1 (𝑀) such that, in terms of standard coordinates
on R𝑛,

d𝜔 =
∑︁

1≤𝜎1<· · ·<𝜎𝑘≤𝑛

𝑛∑︁
𝑖=1

𝜕𝑎𝜎

𝜕𝑥𝑖
d𝑥𝑖 ∧ d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 .

The interpretation of the exterior derivative in terms of vector calculus operators,
through vector proxies of alternating forms and when 𝑀 is a domain Ω of R3, is given
in (A.8). We have used in this diagram the spaces defined in the introduction of the paper.

Differential forms: 𝐻Λ0 (Ω) 𝐻Λ1 (Ω) 𝐻Λ2 (Ω) 𝐻Λ3 (Ω)

Vector proxies: 𝐻1 (Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2 (Ω).

d d d

grad curl div

(A.8)
In the case 𝑛 = 2, as we have two possible vector proxies for Alt1 (R2). These inter-

pretations are illustrated in (A.9) when 𝜔 = 𝑎 d𝑥1 + 𝑏 d𝑥2 ∈ Alt1 (R2) is identified with
𝒗 = (𝑎, 𝑏), and in (A.10) when𝜔 ∈Alt2−1 (R2) is identified with 𝜚−𝜋/2𝒗 (with rot = div 𝜚−𝜋/2
and rot = 𝜚−𝜋/2 grad, respectively, denoting the scalar and vector curls, and 𝑯(rot;Ω) the
space of square-integrable vector-valued functions whose rot is also square-integrable).

Differential forms: 𝐻Λ0 (Ω) 𝐻Λ1 (Ω) 𝐻Λ2 (Ω)

Vector proxies: 𝐻1 (Ω) 𝑯(rot;Ω) 𝐿2 (Ω).

d d

grad rot

(A.9)

Differential forms: 𝐻Λ0 (Ω) 𝐻Λ1 (Ω) 𝐻Λ2 (Ω)

Vector proxies: 𝐻1 (Ω) 𝑯(div;Ω) 𝐿2 (Ω).

d d

rot div

(A.10)

Notice, finally, that the exterior derivative satisfies the complex property d ◦ d = 0. This
property translates, through vector proxies, into the well-known identities curl grad = 0
and div curl = 0 for 𝑛 = 3, and rot grad = 0, div rot = 0 when 𝑛 = 2.

A.2.3. Koszul differential. Given 𝒙𝑀 ∈R𝑛, the Koszul differential 𝜅𝑀 :Λ𝑘 (𝑀) →Λ𝑘−1 (𝑀)
is defined pointwise over 𝑀 as follows: For all 𝒙 ∈ 𝑀 , recalling the definition (A.6) of the
contraction ⌟,

(𝜅𝑀𝜔)𝒙 ≔ 𝜔𝒙⌟(𝒙 − 𝒙𝑀 ).

Its interpretation in terms of vector fields proxy is then analogous to that of a contraction of
an alternating multilinear form with a vector, except that the contraction is made pointwise
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with the vector field R𝑛 ∋ 𝒙 ↦→ 𝒙 − 𝒙𝑀 ∈ R𝑛. The terminology “differential” is legitimate,
as 𝜅𝑀 satisfies the complex property 𝜅𝑀 ◦ 𝜅𝑀 = 0 (since any alternating form applied to
the same vector twice vanishes).

A.2.4. Trace. If 𝑃 ⊂ 𝑄 are (relatively) open sets in affine subspaces𝑉 ⊂𝑊 ofR𝑛, the trace
operator tr𝑃 : 𝐶0Λ𝑘 (𝑄) → 𝐶0Λ𝑘 (𝑃) on differential forms is defined pointwise, using the
trace operator (A.7) on alternating forms: For all 𝜔 ∈ 𝐶0Λ𝑘 (𝑄),

(tr𝑃 𝜔)𝒙 ≔ tr𝑉 𝜔𝒙 ∀𝒙 ∈ 𝑃.

Note that, in the case 𝑃 = 𝑄, the trace is simply the identity operator (and can be defined
without any continuity assumption): tr𝑃 𝜔 = 𝜔 for all 𝜔 ∈ Λ𝑘 (𝑃).

Applying the same arguments as in Section A.1 pointwise over 𝑃, the trace operator in
terms of vector fields proxy gives
• the restriction of functions, when 𝑘 = 0;
• the orthogonal projection onto 𝑉 (that is, tr𝑃 𝜔↔ 𝜋𝑉𝒘 if 𝜔↔ 𝒘), when 𝑘 = 1;
• the normal component on 𝑃 along the direction 𝒏 (that is, tr𝑃𝜔↔ 𝒘 · 𝒏 if𝜔↔ 𝒘), with

𝒏 unit normal vector field preserving the orientations of𝑉 and𝑊 , when 𝑘 = dim(𝑃) =
dim(𝑄) − 1.

Example 37 (Interpretation of the Stokes formula for ℓ = 1 and 𝑛 = 3). We rewrite here,
for the reader’s convenience, the integration by parts formula (2.1) for ℓ = 1 and 𝑛 = 3:∫

𝑀

d𝜔∧ 𝜇 =
∫
𝑀

𝜔∧ d𝜇 +
∫
𝜕𝑀

tr𝜕𝑀 𝜔∧ tr𝜕𝑀 𝜇 ∀(𝜔, 𝜇) ∈Λ1 (𝑀) ×Λ1 (𝑀). (A.11)

Given the previous interpretations of the exterior derivative and product in terms of vector
proxies, if 𝜔 ↔ 𝒘 and 𝜇 ↔ 𝒗, then d𝜔 ∧ 𝜇 ↔ curl𝒘 · 𝒗 and 𝜔 ∧ d𝜇 ↔ 𝒘 · curl 𝒗. This
leads to the following integration by parts formula for the curl:∫

𝑀

curl𝒘 · 𝒗 =
∫
𝑀

𝒘 · curl 𝒗 +
∫
𝜕𝑀

(𝒏 × (𝒘 × 𝒏)) · (𝒗 × 𝒏), (A.12)

where 𝒏 is the outer unit normal vector field over 𝜕𝑀 . For any fixed 𝒙 ∈ 𝜕𝑀 , we have 𝒏(𝒙) ×
(𝒘(𝒙) × 𝒏(𝒙)) = 𝜋𝑇𝒙𝜕𝑀𝒘(𝒙) (here, 𝑇𝒙𝜕𝑀 is the tangent space of 𝜕𝑀 at 𝒙), whereas
𝒗(𝒙) × 𝒏(𝒙) = 𝜚−𝜋/2 (𝜋𝑇𝒙𝜕𝑀𝒗(𝒙)), where the rotation is considered with respect to the
orientation of the tangent plane given by 𝒏(𝒙). The boundary terms of (A.11) and (A.12)
therefore coincide, through the vector proxy for the exterior product of 1-forms in dimension
2 (see (A.5)).
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