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Abstract

We develop in this work the first polytopal complexes of differential forms. These complexes,
inspired by the Discrete De Rham and the Virtual Element approaches, are discrete versions of
the de Rham complex of differential forms built on meshes made of general polytopal elements.
Both constructions benefit from the high-level approach of polytopal methods, which leads, on
certain meshes, to leaner constructions than the finite element method. We establish commutation
properties between the interpolators and the discrete and continuous exterior derivatives, prove key
polynomial consistency results for the complexes, and show that their cohomologies are isomorphic
to the cohomology of the continuous de Rham complex.
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1 Introduction
This work is a first step towards merging two extremely successful avenues of research in numerical
analysis: finite element differential forms and arbitrary-order polytopal methods.

The well-posedness of important classes of partial differential equations (PDEs), and the develop-
ment of stable approximations thereof, hinges on the properties of underlying Hilbert complexes [23].
The best-known example is provided by the de Rham complex which, for an open connected polyhedral
domain Ω ⊂ R3, reads

{0} 𝐻1(Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2(Ω) {0},grad curl div (1.1)

where 𝐻1(Ω) is the space of scalar-valued functions over Ω that are square-integrable along with their
gradient, while 𝑯(curl;Ω) and 𝑯(div;Ω) are the spaces of vector-valued functions over Ω that are
square-integrable along with their curl and divergence, respectively. Using the framework of differential
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forms (see Appendix A), the de Rham complex (1.1) can be generalised to a domain Ω of any dimension
𝑛 as:

{0} 𝐻Λ0(Ω) · · · 𝐻Λ𝑘 (Ω) · · · 𝐻Λ𝑛 (Ω) {0}.d0 d𝑘−1 d𝑘 d𝑛−1
(1.2)

In what follows, we shall possibly omit the index 𝑘 from exterior derivatives and spaces in (1.2) when
no ambiguity can arise.

The de Rham complex enters the well-posedness analysis of PDEs through its cohomology spaces
Ker d𝑘/Im d𝑘−1. A classical result links these spaces to the topological features of the domain and their
dimensions to its Betti numbers. Preserving such homological structures at the discrete level leads to
compatible methods and is key to the design of stable numerical schemes.

The compatible finite element approximation of the vector-valued spaces appearing in the de Rham
complex (1.1) arose as a research subject in the late 70s [53, 54]. In the late 80s, links with Whitney forms
were identified [17]. More recently, the development of Finite Element Exterior Calculus (FEEC) [2,
4, 5] has provided a unified perspective on the generation and analysis of finite element approximations
of the de Rham complex (1.2). Finite Element Systems (FES) are a generalisation of FEEC covering
spaces which are not necessarily piecewise polynomial inside mesh elements (but can be, for example,
piecewise polynomial on subdivisions of these elements); see [29–31]. FEEC and FES led to the
unification of several families of finite elements and heavily hinge on the notion of subcomplex, which
makes them naturally geared towards conforming approximations.

While conforming methods are still widely used, their construction can only be carried out on
conforming meshes, typically made of elements with simple shapes (e.g., tetrahedra or hexahedra);
extensions to more general meshes, such as the barycentric dual of a simplicial mesh, have been
considered, e.g., in [26]. In recent years, significant efforts have been made to develop and analyse
numerical methods that support more general meshes including, e.g., general polytopal elements and
non-matching interfaces; a representative but by no means exhaustive list of contributions includes [1,
6, 7, 13, 16, 18, 21, 22, 24, 33, 36, 38–42, 45, 46, 48]. Polytopal technologies typically introduce some
degree of non-conformity, either because they are formulated in a fully discrete setting (like Hybrid
High-Order [36, 42] or Discrete de Rham – DDR methods [33, 38]) or through the use of projections
(as in Virtual Element Methods – VEM [7]).

Despite their non-conformity, polytopal technologies can be used to develop compatible frameworks.
Polytopal discretisations of the de Rham complex (1.1) have been proposed, e.g., in [10, 33, 38], and
applied to a variety of models , such as magnetostatics [8, 34], the Stokes equations [11], and the
Yang–Mills equations [47]; they have also inspired further developments, based on the same principles,
for other complexes of interest such as variants of the de Rham complex with increased regularity [32,
55], elasticity complexes [19, 44], and the Stokes complex [12, 14, 49]. Polytopal complexes have
additionally been used to construct methods that are robust with respect to the variations of physical
parameters, in particular for the Stokes problem [11], for the Reissner–Mindlin equation [43], or the
Brinkman model [33]. Many of these models have also been tackled using finite element complexes
and related methods (see, e.g., [2, 3, 27, 31]). However, due to their higher-level design, which does not
require explicit expressions for the basis functions, polytopal methods offer distinctive advantages over
finite elements. These include, in addition to the support of general meshes, the possibility to reduce the
dimension of discrete spaces, sometimes below their finite element counterparts [35, Table 3], through
systematic processes such as enhancement or serendipity [9, 35]

The purpose of the present work is to take one step further and show how exterior calculus can be
used to generalise the construction and analysis of polytopal complexes. More specifically, we present
two discrete de Rham complexes in arbitrary dimension and with arbitrary approximation degree that
generalise those introduced in [33] (DDR) and [8] (VEM). Three key features set these constructions
apart from Finite Element complexes:
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• No explicit spaces of globally conforming differential forms (i.e., subspaces of 𝐻Λ(Ω)) are
sought. Instead, we work with fully discrete spaces made of vectors of polynomial components
on the mesh cells (of various dimensions). The meaning of these components is provided by the
interpolators on the fully discrete spaces.

• Due to the absence of explicit underlying conforming spaces, the differential operator of the
complex cannot be the exterior derivative. Instead, a discrete exterior derivative is constructed
combining the polynomial components to mimic the Stokes formula.

• Discrete potentials are also designed, again mimicking the Stokes formula. They are piecewise
(discontinuous) polynomial forms on the mesh used, in particular, to define an 𝐿2-structure on
the discrete spaces (an essential tool to discretise PDEs written in weak form).

The choice of the polynomial components in the spaces and the design of discrete exterior derivatives
and potentials revolve around two key properties: polynomial consistency, which is related to the ability
to reproduce polynomial differential forms up to a selected polynomial degree, and compatibility, linked
to the existence of an isomorphism between the cohomology of the discrete and continuous de Rham
complexes. While both the DDR- and VEM-inspired constructions heavily rely on discrete versions of
the Stokes formula, they do so in a radically different spirit: in the DDR construction, the choice of
components in the discrete spaces is inspired by the formula to reconstruct a discrete exterior derivative,
which is then used to construct discrete potentials. In the VEM construction, on the other hand, the space
components (and, in particular, those associated with differentials) are chosen based on the formula used
to define a discrete potential. While the choice in the DDR construction leads to leaner spaces, the
study of its properties is more elaborated. Notice that, at this early stage, we haven’t tried to identify the
virtual (conforming) spaces that underlie the VEM-inspired construction and we have made no effort
whatsoever in trying to reduce the dimension of the discrete spaces through serendipity.

The rest of this work is organised as follows. In Section 2 we establish the setting. In Section 3 we
present and analyse the discrete complex generalising the DDR construction of [33]. Section 4 contains
the definition and analysis of the complex generalising the VEM construction of [8]. In Section 5, we
discuss in greater detail similarities and differences with respect to the FEEC, FES and Distributional
Differential Forms frameworks.

Differential forms of any degree in dimensions 2 and 3 have interpretations in terms of vector fields.
To make the exposition self-contained and improve the legibility for the reader not used to differential
forms, we recall some facts on these so-called vector proxies in Appendix A, and we include throughout
the exposition a series of examples to illustrate the development in the differential forms framework
through vector calculus operators.

2 Setting
We present here the main notions used in the construction of the polytopal complexes of differential
forms. For the reader not used to the framework of differential forms, we recall in Appendix A some
basic concepts and definitions.

2.1 Spaces of differential forms
Let 𝑀 denote an 𝑛-dimensional manifold. In what follows, 𝑀 will typically be a cell of a polytopal mesh
(see Section 2.5 below), and thus a relatively open set in a subspace of R𝑚 for some 𝑚 ≥ 𝑛. For any
natural number ℓ such that 0 ≤ ℓ ≤ 𝑛, we will denote by Λℓ (𝑀) the space of differential ℓ-forms (often
just called ℓ-forms) on 𝑀 without explicit regularity requirements. When relevant, regularity is made
explicit by prepending the appropriate space (e.g., 𝐿2Λℓ (𝑀) stands for square-integrable ℓ-forms).
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2.2 Integration by parts
We recall the following integration by parts (Stokes) formula:∫

𝑀

d𝜔∧𝜇 = (−1)ℓ+1
∫
𝑀

𝜔∧d𝜇+
∫
𝜕𝑀

tr𝜕𝑀 𝜔∧tr𝜕𝑀 𝜇 ∀(𝜔, 𝜇) ∈ 𝐶1Λℓ (𝑀)×𝐶1Λ𝑛−ℓ−1(𝑀), (2.1)

where, for any form degree 𝑚, tr𝜕𝑀 : 𝐶0Λ𝑚(𝑀) → 𝐶0Λ𝑚(𝜕𝑀) is the trace operator. Formula
(2.1) will provide the starting point to define discrete counterparts of the exterior derivative and of the
corresponding potentials on mesh cells. It will also drive the choice of the components in the discrete
spaces, geared at ensuring that the reconstructions preserve certain polynomial differential forms.

2.3 Hodge star
Assume now that 𝑀 is an open set in a subspace of R𝑚. We denote by ★ : Λℓ (𝑀) → Λ𝑛−ℓ (𝑀) the
Hodge star operator, and we set

★−1 ≔ (−1)ℓ (𝑛−ℓ )★, (2.2)

a notation justified observing that, for any 𝜔 ∈ Altℓ (𝑉), ★−1 ★𝜔 = 𝜔 (see (A.3) in the appendix).

2.4 𝐿2-orthogonal projectors
Integrating the inner product of Altℓ (𝑉) over 𝑀 yields the inner product of 𝐿2Λℓ (𝑀). For any closed
subspace X of 𝐿2Λℓ (𝑀), we therefore have an 𝐿2-orthogonal projector 𝜋X : 𝐿2Λℓ (𝑀) → X on X,
defined by the following relation: For all 𝜔 ∈ 𝐿2Λℓ (𝑀), 𝜋X𝜔 ∈ X satisfies∫

𝑀

𝜋X𝜔 ∧★𝜇 =

∫
𝑀

𝜔 ∧★𝜇 ∀𝜇 ∈ X. (2.3)

To improve legibility, we will introduce in the following sections specific notations to 𝜋X for some
polynomial subspaces X that are particularly relevant to our construction.

For future use, we note the following property.

Lemma 1 (Projectors on subspaces of differential forms). Let (𝑘, 𝑑) be integers such that 𝑘 ≤ 𝑑 ≤ 𝑛,
𝑓 ∈ Δ𝑑 (Mℎ) and X be a closed subspace of 𝐿2Λ𝑑−𝑘 ( 𝑓 ). Then, it holds: For all 𝜔 ∈ 𝐿2Λ𝑘 ( 𝑓 ) and all
𝜇 ∈ X, ∫

𝑓

★−1𝜋X (★𝜔) ∧ 𝜇 =

∫
𝑓

𝜇 ∧★𝜋X (★𝜔) =
∫
𝑓

𝜔 ∧ 𝜇. (2.4)

Proof. The first relation in (2.4) follows from (A.4). To prove the second relation, we write∫
𝑓

𝜇 ∧★𝜋X (★𝜔) =
∫
𝑓
��𝜋X (★𝜔) ∧★𝜇 =

∫
𝑓

𝜇 ∧ (★★𝜔) =
∫
𝑓

𝜔 ∧ 𝜇,

where the first equality follows from (A.4) (with (𝜔, 𝜇) ← (𝜋X (★𝜔), 𝜇)), the cancellation of the
projector is justified by its definition (2.3), the second equality is obtained using (A.4) again, and the
conclusion follows from (A.3) and the anticommutativity (A.1) of ∧. □

2.5 Polytopal mesh
From this point on, Ω will denote a polytopal domain of R𝑛. We letMℎ denote a polytopal mesh of
Ω, i.e., a collection of disjoint polytopal sets (mesh entities) of dimensions in [0, 𝑛], relatively open
in their spanned affine space, such that the boundary of each 𝑑-cell (polytopal set of dimension 𝑑) is
the union of mesh entities of dimension < 𝑑, and such that any 𝑑-cell for 𝑑 < 𝑛 is contained in the
boundary of some (𝑑 + 1)-cell. For any 𝑑 ∈ [0, 𝑛], the set collecting all 𝑑-cells ofMℎ is denoted by
Δ𝑑 (Mℎ). Notice that this notion of polytopal mesh essentially coincides with that of CW-complex in
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algebraic topology. Thus, when Ω is a domain in dimension 𝑛 = 3,Mℎ gathers the vertices collected
in the set Vℎ ≔ Δ0(Mℎ), the edges collected in the set Eℎ ≔ Δ1(Mℎ), the faces collected in the set
Fℎ ≔ Δ2(Mℎ), and the elements collected in the set Tℎ ≔ Δ3(Mℎ). For all 𝑓 ∈ Mℎ, we select a
point 𝒙 𝑓 ∈ 𝑓 which, whenMℎ belongs to a refined mesh sequence, is assumed at a distance from the
boundary of 𝑓 comparable to the meshsize.

If 𝑓 ∈ Δ𝑑 (Mℎ) and 𝑑′ ≤ 𝑑 is an integer, we denote by Δ𝑑′ ( 𝑓 ) the set of subcells of 𝑓 of dimension
𝑑′. Hence, if 𝑛 = 𝑑 = 3, so that 𝑓 = 𝑇 ∈ Tℎ is a polyhedral element of the mesh, 𝑓 ∈ Δ𝑑′ (𝑇) is a vertex
of 𝑇 if 𝑑′ = 0, an edge of 𝑇 if 𝑑′ = 1, a polygonal face of 𝑇 if 𝑑′ = 2, or 𝑇 itself if 𝑑′ = 3.

2.6 Local polynomial spaces of differential forms
Let 𝑓 ∈ Δ𝑑 (Mℎ), 0 ≤ 𝑑 ≤ 𝑛. For any integer 𝑟 ≥ 0, we denote by P𝑟Λℓ ( 𝑓 ) the space of polynomial
ℓ-forms of total degree ≤ 𝑟 on 𝑓 . We also adopt the standard convention P−1Λ

ℓ ( 𝑓 ) ≔ {0}. We
denote by 𝜋ℓ

𝑟 , 𝑓
: 𝐿2Λℓ ( 𝑓 ) → P𝑟Λℓ ( 𝑓 ) the 𝐿2-orthogonal projector on P𝑟Λℓ ( 𝑓 ), defined by (2.3) with

X = P𝑟Λℓ ( 𝑓 ).
The Koszul differential on 𝑓 (translated by 𝒙 𝑓 ) is denoted by 𝜅 so that, for all 𝜔 ∈ Λℓ ( 𝑓 ),

𝜅𝜔 ∈ Λℓ−1( 𝑓 ) satisfies (𝜅𝜔)𝒙 (𝒗1, . . . , 𝒗ℓ−1) = 𝜔𝒙 (𝒙 − 𝒙 𝑓 , 𝒗1, . . . , 𝒗ℓ−1) for all vectors 𝒗1, . . . , 𝒗ℓ−1
tangent to 𝑓 . For any 𝑓 ∈ Δ𝑑 (Mℎ), 1 ≤ 𝑑 ≤ 𝑛, any integer ℓ ∈ [0, 𝑑], and any polynomial degree
𝑟 ≥ 0, we define the Koszul complement space as

Kℓ
𝑟 ( 𝑓 ) ≔ 𝜅P𝑟−1Λ

ℓ+1( 𝑓 ). (2.5)

The indices 𝑟 and ℓ in this notation serve as a reminder that elements in Kℓ
𝑟 ( 𝑓 ) are polynomial ℓ-forms

of polynomial degree 𝑟 . Note also that, since P−1Λ
ℓ ( 𝑓 ) = {0} and Λ𝑑+1( 𝑓 ) = {0}, we have

Kℓ
0 ( 𝑓 ) = K

𝑑
𝑟 ( 𝑓 ) = {0} for all ℓ and all 𝑟 , respectively. (2.6)

Moreover, since 𝜅Λ0( 𝑓 ) = {0}, we adopt the convention K−1
𝑟 ( 𝑓 ) ≔ {0} for all 𝑟 . We denote by 𝜋

K ,ℓ

𝑟 , 𝑓

the 𝐿2-orthogonal projector 𝐿2Λℓ ( 𝑓 ) → Kℓ
𝑟 ( 𝑓 ), defined by (2.3) with X = Kℓ

𝑟 ( 𝑓 ).
For all integers 𝑟 ≥ 0 and ℓ ∈ [0, 𝑑], the following direct decomposition holds (see [4, Eq. (3.11)]

for ℓ ≥ 1, the case ℓ = 0 can be directly checked):

P𝑟Λ0( 𝑓 ) = P0Λ
0( 𝑓 ) ⊕ K0

𝑟 ( 𝑓 ), (2.7a)
P𝑟Λℓ ( 𝑓 ) = dP𝑟+1Λ

ℓ−1( 𝑓 ) ⊕ Kℓ
𝑟 ( 𝑓 ) if ℓ ≥ 1. (2.7b)

Since d ◦ d = 0 and dP0Λ
0( 𝑓 ) = {0}, this shows that

dP𝑟Λℓ ( 𝑓 ) = dKℓ
𝑟 ( 𝑓 ). (2.8)

Applying this relation to (𝑟 + 1, ℓ − 1) instead of (𝑟, ℓ) and recalling that d is one-to-one on Kℓ−1
𝑟+1 ( 𝑓 )

(see [4, Theorem 3.2]), this shows that, for ℓ ≥ 1, the following mapping is an isomorphism:

Kℓ−1
𝑟+1 ( 𝑓 ) × K

ℓ
𝑟 ( 𝑓 )

�−→ P𝑟Λℓ ( 𝑓 ),
(𝜇, 𝜈) ↦→ d𝜇 + 𝜈.

(2.9)

Example 2 (Interpretation in terms of vector proxies). In the case 𝑛 = 3, thanks to the links between
differential forms and vector proxies (see Appendix A), we can associate to each space of polynomial
differential forms a space of (vector- or scalar-valued) polynomial fields. Let us consider decompo-
sition (2.7b). We denote by 𝑓𝑑 a 𝑑-cell of Mℎ, and we use a notation analogous to that of [33] for
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polynomial spaces and vector calculus differential operators (with the exception that polynomial de-
grees are in subscripts instead of superscripts). Then, by definition (2.5) of the Koszul space, when
𝑓3 = 𝑇 ∈ Tℎ = Δ3(Mℎ) is a mesh element, we have

dP𝑟+1Λ
0( 𝑓3) ↔ G𝑟 (𝑇) ≔ gradP𝑟+1(𝑇), K1

𝑟 ( 𝑓3) ↔ G
c
𝑟 (𝑇) ≔ (𝒙 − 𝒙𝑇 ) × P𝑟−1(𝑇),

dP𝑟+1Λ
1( 𝑓3) ↔ R𝑟 (𝑇) ≔ curl P𝑟+1(𝑇), K2

𝑟 ( 𝑓3) ↔ R
c
𝑟 (𝑇) ≔ (𝒙 − 𝒙𝑇 )P𝑟−1(𝑇),

dP𝑟+1Λ
2( 𝑓3) ↔ divP𝑟+1(𝑇) = P𝑟 (𝑇), K3

𝑟 ( 𝑓3) = {0},

where the first identity in the last line results from the surjectivity of the divergence operator.
On the other hand, when 𝑓2 = 𝐹 ∈ Fℎ = Δ2(Mℎ) is a mesh face, we obtain the following pair of

possible correspondences:

dP𝑟+1Λ
0( 𝑓2) ↔ G𝑟 (𝐹) ≔ grad𝐹 P𝑟+1(𝐹), K1

𝑟 ( 𝑓2) ↔ G
c
𝑟 (𝐹) ≔ (𝒙 − 𝒙𝐹)⊥P𝑟−1(𝐹) (2.10)

or

dP𝑟+1Λ
0( 𝑓2) ↔ R𝑟 (𝐹) ≔ rot𝐹 P𝑟+1(𝐹), K1

𝑟 ( 𝑓2) ↔ R
c
𝑟 (𝐹) ≔ (𝒙 − 𝒙𝐹)P𝑟+1(𝐹), (2.11)

where, for any 𝒗 ∈ R2, 𝒗⊥ = 𝜚−𝜋/2𝒗 is the clockwise rotation of 𝒗 with respect to the orientation of 𝐹.
The existence of two possible correspondences between polynomial 1-forms and polynomial vector fields
is to due to the fact that, when 𝑑 = 2, one can identify a 1-form either with a vector field 𝒗 = (𝑣1, 𝑣2) or
with its rotation through a right angle (cf. [2, Chapter 6]); in particular, we choose to identify it with the
clockwise rotation 𝒗⊥ = (𝑣2,−𝑣1) (see Appendix A for further details). By (2.6), we have K2

𝑟 ( 𝑓2) = {0}
and, according to whether we consider the vector proxy leading to (2.10) or (2.11),

dP𝑟+1Λ
1( 𝑓2) ↔ rot𝐹 P𝑟+1(𝐹) = P𝑟 (𝐹) or dP𝑟+1Λ

1( 𝑓2) ↔ div𝐹 P𝑟+1(𝐹) = P𝑟 (𝐹).

Hence, since both 1-forms and 2-forms in R3 can be identified with vector fields, and accounting for the
two-fold identification of 1-forms in R2, the decomposition (2.7b) reads, in terms of proxies,

P𝑟 ( 𝑓𝑑) = G𝑟 ( 𝑓𝑑) ⊕ G
c
𝑟 ( 𝑓𝑑) = R𝑟 ( 𝑓𝑑) ⊕ R

c
𝑟 ( 𝑓𝑑), 𝑑 ∈ {2, 3},

i.e., the same expressions as [33, Eqs. (2.4) and (2.6)]. On the other hand, concerning 0-forms, the
decomposition (2.7a) reads, in terms of proxies,

P𝑟 ( 𝑓𝑑) = P0( 𝑓𝑑) ⊕ P
♭
𝑟 ( 𝑓𝑑), 𝑑 ∈ {0, . . . , 3},

where we have introduced the notation P♭
𝑟 ( 𝑓 ) ≔ (𝒙 − 𝒙 𝑓 ) · P𝑟−1( 𝑓 ) for any 𝑓 ∈ Δ𝑑 (Mℎ).

2.7 Trimmed local polynomial spaces
We recall the following local trimmed polynomial spaces (see e.g. [4, Theorem 3.5]): For any
𝑓 ∈ Δ𝑑 (Mℎ), 1 ≤ 𝑑 ≤ 𝑛,

P−𝑟 Λ0( 𝑓 ) = P𝑟Λ0( 𝑓 ), (2.12a)
P−𝑟 Λℓ ( 𝑓 ) = dP𝑟Λℓ−1( 𝑓 ) ⊕ Kℓ

𝑟 ( 𝑓 ) for ℓ ≥ 1. (2.12b)

In (2.12b), comparing with the decompositions (2.7), we have decreased by one the polynomial degree
of the first space in the direct sum. Note that this definition leads to the choice

P−𝑟 Λ0( 𝑓 ) ≔ P𝑟Λ0( 𝑓 ) � R ∀ 𝑓 ∈ Δ0(Mℎ). (2.13)
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The 𝐿2-orthogonal projector 𝐿2Λℓ ( 𝑓 ) → P−𝑟 Λℓ ( 𝑓 ) is denoted by 𝜋
−,ℓ
𝑟 , 𝑓

, and is defined by (2.3) with
X = P−𝑟 Λℓ ( 𝑓 ).

Let us note a few properties of trimmed polynomial spaces. For 𝑟 = 0, only the space (2.12a) is
non-trivial, that is, P−0 Λ

ℓ ( 𝑓 ) = {0} if ℓ ∈ [1, 𝑑]. Applying, if 𝑟 ≥ 1 and ℓ ≥ 1, (2.7b) with 𝑟 − 1 instead
of 𝑟 and noting that Kℓ

𝑟−1( 𝑓 ) ⊂ K
ℓ
𝑟 ( 𝑓 ), we obtain the equality

P−𝑟 Λℓ ( 𝑓 ) = P𝑟−1Λ
ℓ ( 𝑓 ) + Kℓ

𝑟 ( 𝑓 ). (2.14)

This equality, which obviously also holds for ℓ = 0 (see (2.7a)), shows that trimmed polynomial spaces
sit between full polynomial spaces:

P𝑟−1Λ
ℓ ( 𝑓 ) ⊂ P−𝑟 Λℓ ( 𝑓 ) ⊂ P𝑟Λℓ ( 𝑓 ).

Recalling that K𝑑
𝑟 ( 𝑓 ) = {0} and that dP𝑟Λ𝑑−1( 𝑓 ) = P

𝑟−1Λ
𝑑 ( 𝑓 ) (by exactness of the tail of the

polynomial de Rham sequence [2, Corollary 7.3]), it holds

P−𝑟 Λ𝑑 ( 𝑓 ) = P𝑟−1Λ
𝑑 ( 𝑓 ). (2.15)

Applying (2.8) with ℓ − 1 instead of ℓ, we moreover have

P−𝑟 Λℓ ( 𝑓 ) = dKℓ−1
𝑟 ( 𝑓 ) + Kℓ

𝑟 ( 𝑓 ) for ℓ ≥ 1. (2.16)

Since d is one-to-one on Kℓ−1
𝑟 ( 𝑓 ), this gives the following isomorphism, whenever ℓ ≥ 1:

Kℓ−1
𝑟 ( 𝑓 ) × Kℓ

𝑟 ( 𝑓 )
�−→ P−𝑟 Λℓ ( 𝑓 ),

(𝜇, 𝜈) ↦→ d𝜇 + 𝜈.
(2.17)

Example 3 (Interpretation of (2.12b) in terms of vector proxies). Let 𝑛 = 3. For 𝑑 ∈ {2, 3}, denoting
again by 𝑓𝑑 a 𝑑-cell, we define the (local) Nédélec and Raviart–Thomas spaces

N𝑟 ( 𝑓𝑑) ≔ G𝑟−1( 𝑓𝑑) + Gc
𝑟 ( 𝑓𝑑), RT𝑟 ( 𝑓𝑑) ≔ R𝑟−1( 𝑓𝑑) + Rc

𝑟 ( 𝑓𝑑).

Notice that, when 𝑑 = 3, the Nédélec and Raviart–Thomas spaces can be obtained as polynomial spaces
of vector proxies of (2.12b) for ℓ = 1 and ℓ = 2, respectively. On the other hand, when considering
𝑑 = 2, both spaces can be obtained by taking the same value ℓ = 1 in (2.12b). Again, this is linked
to the two-fold interpretation of 1-forms in terms of vector proxies in R2, as already mentioned in
Example 2, and corresponds to the well-known fact that two-dimensional Nédélec elements coincide
with two-dimensional Raviart–Thomas elements rotated by a right angle.

The following result generalises [33, Proposition 8].

Lemma 4 (Traces of trimmed polynomial spaces). The trace preserves trimmed spaces: For all integers
𝑑 ∈ [0, 𝑛], 𝑑′ ∈ [0, 𝑑] and ℓ ∈ [0, 𝑑′], all 𝑓 ∈ Δ𝑑 (Mℎ) and all 𝑓 ′ ∈ Δ𝑑′ ( 𝑓 ), we have

tr 𝑓 ′ P−𝑟 Λℓ ( 𝑓 ) ⊂ P−𝑟 Λℓ ( 𝑓 ′).

Proof. We first notice that the case ℓ = 0 is obvious since, in this case, trimmed spaces are full
polynomial spaces (see (2.12a)), and the trace preserves full polynomial spaces. We therefore assume
in the rest of the proof that ℓ ≥ 1. As the Koszul operators on differential forms on 𝑓 and 𝑓 ′ are not the
same (due to the translation by 𝒙 𝑓 and 𝒙 𝑓 ′ , respectively), we temporarily denote them in this proof by
𝜅 𝑓 and 𝜅 𝑓 ′ .
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The trace is a pullback, so it commutes with d, and we thus have

tr 𝑓 ′ (dP𝑟Λℓ−1( 𝑓 )) = d(tr 𝑓 ′ P𝑟Λℓ−1( 𝑓 )) ⊂ dP𝑟Λℓ−1( 𝑓 ′),

where the inclusion holds since the trace preserves full polynomial spaces. Given the definition (2.12b)
of the trimmed spaces, the lemma follows if we show that

tr 𝑓 ′ Kℓ
𝑟 ( 𝑓 ) ⊂ P−𝑟 Λℓ ( 𝑓 ′) = P𝑟−1Λ

ℓ ( 𝑓 ′) + Kℓ
𝑟 ( 𝑓 ′) (2.18)

(where the equality follows from (2.14) applied to 𝑓 ′ instead of 𝑓 ). Let 𝜔 ∈ P
𝑟−1Λ

ℓ+1( 𝑓 ). The
definitions of tr 𝑓 ′ and 𝜅 𝑓 give, for any 𝒙 ∈ 𝑓 ′ and 𝒗1, . . . , 𝒗ℓ tangent to 𝑓 ′,

tr 𝑓 ′ (𝜅 𝑓𝜔)𝒙 (𝒗1, . . . , 𝒗ℓ) = 𝜔𝒙 (𝒙 − 𝒙 𝑓 , 𝒗1, . . . , 𝒗ℓ)
= 𝜔𝒙 (𝒙 𝑓 ′ − 𝒙 𝑓 , 𝒗1, . . . , 𝒗ℓ) + 𝜔𝒙 (𝒙 − 𝒙 𝑓 ′ , 𝒗1, . . . , 𝒗ℓ)
= 𝛼𝒙 (𝒗1, . . . , 𝒗ℓ) + (𝜅 𝑓 ′ tr 𝑓 ′ 𝜔)𝒙 (𝒗1, . . . , 𝒗ℓ),

where we have used the linearity of 𝜔𝒙 with respect to its first argument to obtain the second equality,
and introduced the differential form 𝛼 ≔ 𝜔(𝒙 𝑓 ′ − 𝒙 𝑓 , ·) in the third equality. Hence, tr 𝑓 ′ (𝜅 𝑓𝜔) =
𝛼 + 𝜅 𝑓 ′ tr 𝑓 ′ 𝜔, which proves (2.18) since 𝛼 ∈ P

𝑟−1Λ
ℓ ( 𝑓 ′) (as 𝒙 𝑓 ′ − 𝒙 𝑓 is constant) and tr 𝑓 ′ 𝜔 ∈

P
𝑟−1Λ

ℓ+1( 𝑓 ′). □

3 Discrete de Rham complex
We define in this section a discrete counterpart of the de Rham complex of differential forms (1.2) in
the spirit of [33, 38]. Let, from this point on, an integer 𝑟 ≥ 0 be fixed corresponding to the polynomial
degree of the discrete sequence. The general idea is, for each form degree 𝑘 ∈ [0, 𝑛], to select the
polynomial components of the discrete spaces in order to reconstruct, on each 𝑑-cell 𝑓 and iteratively
on the dimension 𝑑:

• A discrete exterior derivative in the full polynomial space P𝑟Λ𝑘+1( 𝑓 ) that can reproduce exactly
the exterior derivative of differential forms in P−

𝑟+1Λ
𝑘 ( 𝑓 );

• Based on this discrete exterior derivative and on traces on (𝑑 − 1)-cells (either directly available
or reconstructed), a discrete potential in P𝑟Λ𝑘 ( 𝑓 ) that can reproduce exactly differential forms
belonging to this same space.

3.1 Definition
3.1.1 Discrete spaces

The discrete counterpart 𝑋 𝑘
𝑟 ,ℎ

of the space 𝐻Λ𝑘 (Ω), 0 ≤ 𝑘 ≤ 𝑛, is defined as

𝑋 𝑘
𝑟 ,ℎ ≔

𝑛?
𝑑=𝑘

?
𝑓 ∈Δ𝑑 (Mℎ )

P−𝑟 Λ𝑑−𝑘 ( 𝑓 ). (3.1)

We define the restrictions of the global space (3.1) to a mesh entity or its boundary as follows: For all in-
tegers 𝑘 and 𝑑 such that 0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛 and all 𝑓 ∈ Δ𝑑 (Mℎ),

𝑋 𝑘
𝑟 , 𝑓 ≔

𝑑?
𝑑′=𝑘

?
𝑓 ′∈Δ𝑑′ ( 𝑓 )

P−𝑟 Λ𝑑′−𝑘 ( 𝑓 ′) and 𝑋 𝑘
𝑟 ,𝜕 𝑓

≔

𝑑−1?
𝑑′=𝑘

?
𝑓 ′∈Δ𝑑′ ( 𝑓 )

P−𝑟 Λ𝑑′−𝑘 ( 𝑓 ′) if 𝑑 ≥ 1.

We shall use the notation𝜔
ℎ
= (𝜔 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘,𝑛] ∈ 𝑋 𝑘

𝑟 ,ℎ
for a generic element of the global discrete

space of 𝑘-forms and 𝜔
𝑓
= (𝜔 𝑓 ′) 𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘,𝑑 ] ∈ 𝑋 𝑘

𝑟 , 𝑓
(resp., 𝜔

𝜕 𝑓
= (𝜔 𝑓 ′) 𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘,𝑑−1] ∈
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𝑘

𝑑
0 1 2 3

0 R = P𝑟Λ0( 𝑓0) P𝑟−1Λ
1( 𝑓1) P𝑟−1Λ

2( 𝑓2) P𝑟−1Λ
3( 𝑓3)

1 P𝑟Λ0( 𝑓1) P−𝑟 Λ1( 𝑓2) P−𝑟 Λ2( 𝑓3)
2 P𝑟Λ0( 𝑓2) P−𝑟 Λ1( 𝑓3)
3 P𝑟Λ0( 𝑓3)

𝑘

𝑑
0 1 2 3

0 R = P𝑟 ( 𝑓0) P
𝑟−1( 𝑓1) P

𝑟−1( 𝑓2) P
𝑟−1( 𝑓3)

1 P𝑟 ( 𝑓1) RT𝑟 ( 𝑓2) RT𝑟 ( 𝑓3)
2 P𝑟 ( 𝑓2) N𝑟 ( 𝑓3)
3 P𝑟 ( 𝑓3)

Table 1: Polynomial components attached to each mesh entity 𝑓𝑑 of dimension 𝑑 ∈ {0, . . . , 3} for the
space 𝑋 𝑘

𝑟 ,ℎ
for 𝑘 ∈ {0, . . . , 3} (top) and counterpart through vector proxies (bottom).

𝑋 𝑘
𝑟 ,𝜕 𝑓

) for its restriction to 𝑓 (resp., 𝜕 𝑓 ), obtained collecting the components on the mesh entities
𝑓 ′ ∈ Δ𝑑′ ( 𝑓 ), 𝑑′ ∈ [𝑘, 𝑑] (resp., 𝑑′ ∈ [𝑘, 𝑑 − 1]). As a generic convention in this article, underlined
letters denote spaces or vectors made of polynomial components on mesh entities. Table 1 gives an
overview of the polynomial unknowns in 𝑋 𝑘

𝑟 , 𝑓
, along with their vector proxies, in dimensions 0 to 3.

3.1.2 Interpolators and interpretation of the polynomial components

The precise meaning of the components in each DDR space is provided by the corresponding interpolator.
For 𝑓 ∈ Δ𝑑 (Mℎ) and 𝑘 ≤ 𝑑, the interpolator 𝐼𝑘

𝑟 , 𝑓
: 𝐶0Λ𝑘 ( 𝑓 ) → 𝑋 𝑘

𝑟 , 𝑓
is defined by: For all

𝜔 ∈ 𝐶0Λ𝑘 ( 𝑓 ),
𝐼𝑘𝑟 , 𝑓𝜔 ≔ (𝜋−,𝑑

′−𝑘
𝑟 , 𝑓 ′ (★ tr 𝑓 ′ 𝜔)) 𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘,𝑑 ] . (3.2)

In other words, a discrete 𝑘-form on the mesh is made of polynomial forms attached to each mesh
entity of dimension 𝑑 ≥ 𝑘; on each such entity, the form is of degree 𝑑 − 𝑘 as it corresponds to the
Hodge star of an underlying 𝑘-form. The Hodge star operator is used in the definition of the polynomial
components to ensure that the full space P𝑟Λ0( 𝑓 ) (see (2.12a)) is attached to the lowest-dimensional
cells 𝑓 ∈ Δ𝑘 (Mℎ).
3.1.3 Local discrete potentials and discrete exterior derivative

Let 0 ≤ 𝑘 ≤ 𝑛 be a fixed integer. For all 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘 , we define the discrete potential
𝑃𝑘
𝑟 , 𝑓

: 𝑋 𝑘
𝑟 , 𝑓
→ P𝑟Λ𝑘 ( 𝑓 ) and, if 𝑑 ≥ 𝑘 + 1, the discrete exterior derivative d𝑘

𝑟 , 𝑓
: 𝑋 𝑘

𝑟 , 𝑓
→ P𝑟Λ𝑘+1( 𝑓 )

recursively on the dimension 𝑑 as follows:

• If 𝑑 = 𝑘 , then the discrete potential on 𝑓 is directly given by the component of 𝜔
𝑓

on 𝑓 :

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

≔ ★−1𝜔 𝑓 ∈ P𝑟Λ𝑑 ( 𝑓 ). (3.3)

• If 𝑘 + 1 ≤ 𝑑 ≤ 𝑛:

9



1. First, the discrete exterior derivative is defined by: For all 𝜔
𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
,∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 = (−1)𝑘+1
∫
𝑓

★−1𝜔 𝑓 ∧ d𝜇 +
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇

∀𝜇 ∈ P𝑟Λ𝑑−𝑘−1( 𝑓 ), (3.4)

where we have introduced the piecewise polynomial boundary potential 𝑃𝑘
𝑟 ,𝜕 𝑓

: 𝑋 𝑘
𝑟 ,𝜕 𝑓
→

Λ𝑘 (𝜕 𝑓 ) such that (𝑃𝑘
𝑟 ,𝜕 𝑓
) | 𝑓 ′ ≔ 𝑃𝑘

𝑟 , 𝑓 ′ for all 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ) (𝑃𝑘
𝑟 , 𝑓 ′ being the discrete potential

on the (𝑑 − 1)-cell 𝑓 ′ defined at the previous step).
2. Then, the discrete potential on the 𝑑-cell 𝑓 is given by: For all 𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
,

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈)

=

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1

∫
𝑓

★−1𝜔 𝑓 ∧ 𝜈

∀(𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) × K𝑑−𝑘

𝑟 ( 𝑓 ). (3.5)

Some remarks are in order.
Remark 5 (Definitions (3.4) and (3.5)). The fact that condition (3.4) defines d𝑘

𝑟 , 𝑓
𝜔

𝑓
uniquely is an im-

mediate consequence of the Riesz representation theorem for P𝑟Λ𝑘+1( 𝑓 ) equipped with the 𝐿2-product
(𝜌, 𝛽) ∋ 𝐿2Λ𝑘+1( 𝑓 ) × 𝐿2Λ𝑘+1( 𝑓 ) ↦→

∫
𝑓
𝜌 ∧ ★𝛽 ∈ R, after observing that (3.4) can be equivalently

reformulated as follows (notice the change in the degree of the test differential form, with 𝛽 below
corresponding to ★−1𝜇 in (3.4)):∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧★𝛽 = (−1)𝑘+1
∫
𝑓

𝜔 𝑓 ∧★d★ 𝛽 +
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 ★𝛽 ∀𝛽 ∈ P𝑟Λ𝑘+1( 𝑓 ),

where we have additionally used (A.4) for the first term in the right-hand side. Similar considerations
apply to the definition (3.5) of 𝑃𝑘

𝑟 , 𝑓
, applying the isomorphism (2.9) with ℓ = 𝑑 − 𝑘 ≥ 1.

Remark 6 (Validity of (3.5)). For 𝑘+1 ≤ 𝑑 ≤ 𝑛, equation (3.5) actually holds for all 𝜇 ∈ P−
𝑟+1Λ

𝑑−𝑘−1( 𝑓 ).
To prove this assertion, since (3.5) holds for 𝜇 ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ), it suffices to show that it also holds for
𝜈 = 0 and 𝜇 belonging to P0Λ

0( 𝑓 ) if 𝑑 = 𝑘 + 1 (see (2.12a) and (2.7a)) or dP
𝑟+1Λ

𝑑−𝑘−2( 𝑓 ) if 𝑑 ≥ 𝑘 + 2
(see (2.12b)). In both cases, we have d𝜇 = 0, so that the left-hand side of (3.5) vanishes; since
𝜇 ∈ P𝑟Λ𝑑−𝑘−1( 𝑓 ), the right-hand side of (3.5) also vanishes due to the definition (3.4) of the discrete
exterior derivative, which concludes the argument.
Remark 7 (Potential for 𝑘 = 0). In the case 𝑘 = 0, we can define an improved potential 𝑃0

𝑟+1, 𝑓 : 𝑋0
𝑟 , 𝑓
→

P
𝑟+1Λ

0( 𝑓 ) of polynomial degree 𝑟 + 1 (instead of 𝑟) as follows: For all 𝜔
𝑓
∈ 𝑋0

𝑟 , 𝑓
,

• If 𝑑 = 0, then 𝑃0
𝑟+1, 𝑓𝜔 𝑓

= ★−1𝜔 𝑓 ∈ P𝑟Λ0( 𝑓 ) � R � P
𝑟+1Λ

0( 𝑓 ) (since 𝑓 has dimension 0);

• If 1 ≤ 𝑑 ≤ 𝑛,

−
∫
𝑓

𝑃0
𝑟+1, 𝑓𝜔 𝑓

∧ d𝜇 =

∫
𝑓

d0
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 −
∫
𝜕 𝑓

𝑃0
𝑟+1,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 ∀𝜇 ∈ K𝑑−1

𝑟+2 ( 𝑓 ). (3.6)

This definition is justified by the isomorphism (2.9) with ℓ = 𝑑 and 𝑟 + 1 instead of 𝑟 (recalling
that K𝑑

𝑟+1( 𝑓 ) = {0}), and it can easily be checked, testing (3.5) and (3.6) with 𝜇 ∈ K𝑑−1
𝑟+1 ( 𝑓 ), that

𝜋0
𝑟 , 𝑓

𝑃0
𝑟+1, 𝑓𝜔 𝑓

= 𝑃0
𝑟 , 𝑓

𝜔
𝑓
. We will moreover see in Remark 18 that 𝑃0

𝑟+1, 𝑓 enjoys optimal consistency
properties.

10



Remark 8 (Space of DDR potentials). The space of DDR reconstructed potentials, that is,

{(𝑃𝑘
𝑟 , 𝑓𝜔ℎ

) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘,𝑛] : 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ}

cannot be considered as a space of differential forms with global regularity, as the reconstructed polyno-
mials do not have any compatibility condition of the traces; they are inherently piecewise discontinuous
polynomials.

Example 9 (Interpretation in terms of vector proxies). We start by considering 𝑘 = 0. In this case,
formula (3.3) means that (constant) real values are attached to the vertices 𝑓0 = 𝑉 ∈ Vℎ = Δ0(Mℎ) of
the mesh, so that an iterative procedure can be initialised to reconstruct discrete gradients and related
traces/potentials over higher-dimensional cells. Indeed, formula (3.4) reconstructs a (scalar) gradient
over edges 𝑓1 = 𝐸 ∈ Eℎ = Δ1(Mℎ) (i.e., the derivative along the direction given by the orientation
of 𝐸) based on the values at the vertices and the value on the edge itself. This edge gradient, in turn,
enters (3.5) to define a scalar edge trace over 𝐸 . When 𝑑 takes the values 2 and 3, the successive
application of formulas (3.4)–(3.5) defines, respectively, the pairs (face gradient, scalar face trace) on
mesh faces 𝑓2 = 𝐹 ∈ Fℎ = Δ2(Mℎ), and (element gradient, scalar element potential) on mesh elements
𝑓3 = 𝑇 ∈ Tℎ = Δ3(Mℎ).

Let us now turn to the case 𝑘 = 1, for which we provide more details. The vector proxy for the space
𝑋1
𝑟 ,ℎ

is the space
𝑿𝑟

curl,ℎ =
?
𝐸∈Eℎ

P𝑟 (𝐸) ×
?
𝐹∈Fℎ

RT𝑟 (𝐹) ×
?
𝑇∈Tℎ

RT𝑟 (𝑇)

and, with standard DDR notation, we denote by 𝑿𝑟
curl,𝑌 its restriction to a mesh element or face

𝑌 ∈ Tℎ ∪ Fℎ. By (3.3) with 𝑑 = 𝑘 = 1, the reconstruction process is initialised by 1-forms, whose vector
proxies are scalar-valued polynomials of degree 𝑟 over edges 𝑓1 = 𝐸 ∈ Eℎ that play the role of edge
tangential traces.

Then, for each mesh face 𝑓2 = 𝐹 ∈ Fℎ, we sequentially reconstruct a scalar face curl𝐶𝑟
𝐹

: 𝑿𝑟
curl,𝐹 →

P𝑟 (𝐹) by (3.4) with 𝑑 = 𝑘 + 1 = 2 and a vector face tangential trace 𝜸𝑟
t,𝐹 : 𝑿𝑟

curl,𝐹 → P𝑟 (𝐹) by (3.5).
𝐶𝑟
𝐹

is such that, for all 𝒗
𝐹
=
(
(𝑣𝐸)𝐸∈E𝐹 , 𝒗𝐹

)
∈ 𝑿𝑟

curl,𝐹 ,∫
𝐹

𝐶𝑟
𝐹𝒗𝐹 𝑞 =

∫
𝐹

𝒗𝐹 · rot𝐹 𝑞 +
∑︁

𝐸∈E𝐹
𝜀𝐹𝐸

∫
𝐸

𝑣𝐸 𝑞 ∀𝑞 ∈ P𝑟 (𝐹),

where, for all 𝐸 ∈ E𝐹 (the set of edges of 𝐹), 𝜀𝐹𝐸 ∈ {−1, +1} denotes the orientation of 𝐸 relative to
𝐹, while 𝜸𝑟

t,𝐹 satisfies, for all 𝒗
𝐹
∈ 𝑿𝑟

curl,𝐹 ,∫
𝐹

𝜸𝑟
t,𝐹𝒗𝐹 · (rot𝐹 𝑞 + 𝒘) =

∫
𝐹

𝐶𝑟
𝐹𝒗𝐹 𝑞 −

∑︁
𝐸∈E𝐹

𝜀𝐹𝐸

∫
𝐸

𝑣𝐸 𝑞 +
∫
𝐹

𝒗𝐹 · 𝒘,

∀(𝑞,𝒘) ∈ P♭
𝑟+1(𝐹) × R

c
𝑟 (𝐹).

The alternative interpretation of 1-forms in dimension 𝑑 = 2 results in a rotation of 𝑿𝑟
curl,𝐹 by a right

angle. Correspondingly, (3.4) yields a face divergence (see (A.9) and (A.10) in Appendix A.2).
Next, for each mesh element 𝑓3 = 𝑇 ∈ Tℎ, (3.4) defines the element curl 𝑪𝑟

𝑇 : 𝑿𝑟
curl,𝑇 → P𝑟 (𝑇) such

that, for all 𝒗
𝑇
=
(
(𝑣𝐸)𝐸∈E𝑇 , (𝒗𝐹)𝐹∈F𝑇 , 𝒗𝑇

)
∈ 𝑿𝑟

curl,𝑇 ,∫
𝑇

𝑪𝑟
𝑇𝒗𝑇 · 𝒘 =

∫
𝑇

𝒗𝑇 · curl𝒘 +
∑︁
𝐹∈F𝑇

𝜀𝑇𝐹

∫
𝐹

𝜸𝑟
t,𝐹𝒗𝐹 · (𝒘 × 𝒏𝐹) ∀𝒘 ∈ P𝑟 (𝑇),
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where, for all 𝐹 ∈ F𝑇 (the set of faces of 𝑇), 𝜀𝑇𝐹 ∈ {−1, +1} denotes the orientation of 𝐹 relative to 𝑇 ,
while (3.5) defines the vector potential 𝑷𝑟

curl,𝑇 : 𝑿𝑟
curl,𝑇 → P𝑟 (𝑇) such that, for all 𝒗

𝑇
∈ 𝑿𝑟

curl,𝑇 ,∫
𝑇

𝑷𝑟
curl,𝑇𝒗𝑇 · (curl𝒘 + 𝒛) =

∫
𝑇

𝑪𝑟
𝑇𝒗𝑇 · 𝒘 −

∑︁
𝐹∈F𝑇

𝜀𝑇𝐹

∫
𝐹

𝜸𝑟
t,𝐹𝒗𝐹 · (𝒘 × 𝒏𝐹) +

∫
𝑇

𝒗𝑇 · 𝒛

∀(𝒘, 𝒛) ∈ G
c
𝑟+1(𝑇) × R

c
𝑟 (𝑇).

When 𝑘 = 2, (3.4) reconstructs on mesh elements 𝑓3 = 𝑇 ∈ Tℎ a discrete divergence of order 𝑟

based on the polynomial scalar trace defined by (3.3), which plays the role of a normal trace on the face
𝑓2 = 𝐹 ∈ F𝑇 . Then, (3.5) defines a vector potential of degree 𝑟 over 𝑇 .

Finally, in the case 𝑘 = 3, (3.3) simply yields a polynomial over mesh elements 𝑓3 = 𝑇 ∈ Tℎ.

3.1.4 Global discrete exterior derivative and DDR complex

To arrange the spaces 𝑋 𝑘
𝑟 ,ℎ

into a sequence that mimics the continuous de Rham complex, for any form
degree 𝑘 such that 0 ≤ 𝑘 ≤ 𝑛−1, we introduce the global discrete exterior derivative d𝑘

𝑟 ,ℎ
: 𝑋 𝑘

𝑟 ,ℎ
→ 𝑋 𝑘+1

𝑟 ,ℎ

defined as follows:
d𝑘
𝑟 ,ℎ

𝜔
ℎ
≔

(
𝜋
−,𝑑−𝑘−1
𝑟 , 𝑓

(★d𝑘
𝑟 , 𝑓𝜔 𝑓

)
)
𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛] . (3.7)

In what follows, given a 𝑑-cell 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ∈ [𝑘 + 1, 𝑛], we denote by d𝑘
𝑟 , 𝑓

the local discrete
exterior derivative collecting the components of d𝑘

𝑟 ,ℎ
on 𝑓 and its boundary. The DDR sequence reads

DDR(𝑟) ≔ {0} 𝑋0
𝑟 ,ℎ

𝑋1
𝑟 ,ℎ

· · · 𝑋𝑛−1
𝑟 ,ℎ

𝑋𝑛
𝑟,ℎ

{0}.
d0
𝑟,ℎ

d𝑛−1
𝑟,ℎ (3.8)

The main results concerning this sequence are stated hereafter.

Theorem 10 (Cohomology of the Discrete de Rham complex). The DDR sequence (3.8) is a complex
and its cohomology is isomorphic to the cohomology of the continuous de Rham complex (1.2).

Proof. See Section 3.5. □

Theorem 11 (Polynomial consistency of the discrete potential and exterior derivative). For all integers
0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛 and all 𝑓 ∈ Δ𝑑 (Mℎ), it holds

𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝜔 ∀𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ), (3.9)

and, if 𝑑 ≥ 𝑘 + 1,
d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = d𝜔 ∀𝜔 ∈ P−𝑟+1Λ

𝑘 ( 𝑓 ). (3.10)

Proof. See Section 3.4. □

Remark 12 (Consistency of traces). The above theorem actually implies that, for any 𝑑-face 𝑓 ∈ Δ𝑑 (Mℎ),
𝑑 ∈ [𝑘, 𝑛], any 𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ), and any integer 𝑑′ ∈ [𝑘, 𝑑],

𝑃𝑘
𝑟 , 𝑓 ′ 𝐼

𝑘
𝑟 , 𝑓 ′𝜔 = tr 𝑓 ′ 𝜔 ∀ 𝑓 ′ ∈ Δ𝑑′ ( 𝑓 ).

This can be easily seen noticing that 𝐼𝑘
𝑟 , 𝑓 ′𝜔 = 𝐼𝑘

𝑟 , 𝑓 ′ tr 𝑓 ′ 𝜔 and tr 𝑓 ′ 𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ′), and invoking (3.9)
with ( 𝑓 , 𝜔) ← ( 𝑓 ′, tr 𝑓 ′ 𝜔).
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3.1.5 Discrete 𝐿2-products

Using the potentials built in Section 3.1.3, we can define, for all 𝑘 ∈ [0, 𝑛], an inner product (·, ·)𝑘,ℎ :
𝑋 𝑘
𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
→ R that induces an 𝐿2-structure on 𝑋 𝑘

𝑟 ,ℎ
. Specifically, we set: For all (𝜔

ℎ
, 𝜇

ℎ
) ∈

𝑋 𝑘
𝑟 ,ℎ
× 𝑋 𝑘

𝑟 ,ℎ
,

(𝜔
ℎ
, 𝜇

ℎ
)𝑘,ℎ ≔

∑︁
𝑓 ∈Δ𝑛 (Mℎ )

(𝜔
𝑓
, 𝜇

𝑓
)𝑘, 𝑓

with (𝜔
𝑓
, 𝜇

𝑓
)𝑘, 𝑓 ≔

∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧★𝑃𝑘
𝑟 , 𝑓 𝜇 𝑓

+ 𝑠𝑘, 𝑓 (𝜔 𝑓
, 𝜇

𝑓
) for all 𝑓 ∈ Δ𝑛 (Mℎ),

(3.11)

where 𝑠𝑘, 𝑓 : 𝑋 𝑘
𝑟 , 𝑓
× 𝑋 𝑘

𝑟 , 𝑓
→ R is the stabilisation bilinear form such that

𝑠𝑘, 𝑓 (𝜔 𝑓
, 𝜇

𝑓
) =

𝑛−1∑︁
𝑑′=𝑘

ℎ𝑛−𝑑
′

𝑓

∑︁
𝑓 ′∈Δ𝑑′ ( 𝑓 )

∫
𝑓 ′
(tr 𝑓 ′ 𝑃𝑘

𝑟 , 𝑓𝜔 𝑓
− 𝑃𝑘

𝑟 , 𝑓 ′𝜔 𝑓 ′) ∧★(tr 𝑓 ′ 𝑃
𝑘
𝑟 , 𝑓 𝜇 𝑓

− 𝑃𝑘
𝑟 , 𝑓 ′𝜇 𝑓 ′

),

with ℎ 𝑓 denoting the diameter of 𝑓 . The first term in the right-hand side of (·, ·)𝑘, 𝑓 is responsible for
consistency, while the second one ensures the positivity of this bilinear form. More specifically, by
Theorem 11 and Remark 12 it holds, for all 𝑓 ∈ Δ𝑛 (Mℎ),

(𝐼𝑘𝑟 , 𝑓𝜔, 𝜇 𝑓
)𝑘, 𝑓 =

∫
𝑓

𝜔 ∧★𝑃𝑘
𝑟 , 𝑓 𝜇 𝑓

∀𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ) , ∀𝜇
𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓 .

Additionally, by (3.20) below, the mapping 𝑋 𝑘
𝑟 , 𝑓
∋ 𝜔

𝑓
↦→ ∥𝜔

𝑓
∥𝑘, 𝑓 ≔ (𝜔 𝑓

, 𝜔
𝑓
)1/2
𝑘, 𝑓
∈ R defines a norm

on 𝑋 𝑘
𝑟 , 𝑓

. Numerical schemes for linear PDEs related to the de Rham complex are typically obtained
replacing continuous spaces and 𝐿2-products with their discrete counterparts, according to the principles
illustrated, e.g., in [33, Section 7].
Remark 13 (Stabilisation). A more general expression for the local 𝐿2-product in (3.11) is obtained
replacing 𝑠𝑘, 𝑓 with

𝑠B,𝑘, 𝑓 (𝜔 𝑓
, 𝜇

𝑓
) = B 𝑓 (𝐼𝑘𝑟 , 𝑓 𝑃

𝑘
𝑟 , 𝑓𝜔 𝑓

− 𝜔
𝑓
, 𝐼𝑘𝑟 , 𝑓 𝑃

𝑘
𝑟 , 𝑓 𝜇 𝑓

− 𝜇
𝑓
),

with B 𝑓 : 𝑋 𝑘
𝑟 , 𝑓
× 𝑋 𝑘

𝑟 , 𝑓
→ R denoting a symmetric positive definite bilinear form inducing a norm

that scales in ℎ 𝑓 as ∥·∥𝑘, 𝑓 defined above. Crucially, 𝑠B,𝑘, 𝑓 depends on its arguments only through the
difference operator 𝑋 𝑘

𝑟 , 𝑓
∋ 𝜔

𝑓
↦→ 𝐼𝑘

𝑟 , 𝑓
𝑃𝑘
𝑟 , 𝑓

𝜔
𝑓
−𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
, which guarantees that it vanishes whenever

one of its arguments is the interpolate of a differential form in P𝑟Λ𝑘 ( 𝑓 ) (as can be checked in the same
spirit as [36, Lemma 2.11]).

3.2 Complex property
We introduce, for all integers 𝑑 ∈ [1, 𝑛], the piecewise polynomial boundary exterior derivative d𝑘

𝑟 ,𝜕 𝑓
:

𝑋 𝑘
𝑟 ,𝜕 𝑓
→ Λ𝑘+1(𝜕 𝑓 ) such that (d𝑘

𝑟 ,𝜕 𝑓
) | 𝑓 ′ ≔ d𝑘

𝑟 , 𝑓 ′ for all 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ) (d𝑘
𝑟 , 𝑓 ′ being the discrete exterior

derivative on the (𝑑 − 1)-cell 𝑓 ′ defined by (3.4)). The following lemma is a generalisation of the
links, in the DDR framework based on vector proxies, between element gradients (resp., curls) and face
gradients (resp., curls), see [33, Propositions 1 and 4].

Lemma 14 (Link between discrete exterior derivatives on subcells). It holds, for all 𝑑 ≥ 𝑘 + 2, all
𝑓 ∈ Δ𝑑 (Mℎ), and all 𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
,∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ d𝛼 = (−1)𝑘+1
∫
𝜕 𝑓

d𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼 ∀𝛼 ∈ P−𝑟+1Λ

𝑑−𝑘−2( 𝑓 ). (3.12)
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Proof. Take 𝜇 = d𝛼 ∈ P𝑟Λ𝑑−𝑘−1( 𝑓 ) in (3.4) and use d ◦ d = 0 and tr𝜕 𝑓 d = d tr𝜕 𝑓 (since the trace is a
pullback, it commutes with the exterior derivative) to get∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ d𝛼 =

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ d tr𝜕 𝑓 𝛼. (3.13)

For each 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ) forming 𝜕 𝑓 , by Lemma 4 we have tr 𝑓 ′ 𝛼 ∈ P−𝑟+1Λ
𝑑−𝑘−2( 𝑓 ′) so, by (3.5) applied

to 𝑓 ′ instead of 𝑓 with test function (𝜇, 𝜈) = (tr 𝑓 ′ 𝛼, 0) (see Remark 6), we have

(−1)𝑘+1
∫
𝑓 ′
𝑃𝑘
𝑟 , 𝑓 ′𝜔 𝑓 ′ ∧ d tr 𝑓 ′ 𝛼 =

∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′𝜔 𝑓 ′ ∧ tr 𝑓 ′ 𝛼 −

∫
𝜕 𝑓 ′

𝑃𝑘
𝑟 ,𝜕 𝑓 ′𝜔𝜕 𝑓 ′ ∧ tr𝜕 𝑓 ′ (tr 𝑓 ′ 𝛼).

Use tr𝜕 𝑓 ′ ◦ tr 𝑓 ′ = tr𝜕 𝑓 ′ , sum these relations over 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ), invoke 𝜕 (𝜕 𝑓 ) = 0 (which implies that
the integrals over (𝜕 𝑓 ′) 𝑓 ′∈Δ𝑑−1 ( 𝑓 ) cancel out due to compatible orientations), and plug the result into
(3.13) to conclude. □

Theorem 15 (Link between discrete potentials and exterior derivatives, complex property). It holds,
for all integers 𝑘 ∈ [1, 𝑛] and 𝑑 ≥ 𝑘 , all 𝑓 ∈ Δ𝑑 (Mℎ), and all 𝜔

𝑓
∈ 𝑋 𝑘−1

𝑟 , 𝑓
,

𝑃𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) = d𝑘−1

𝑟 , 𝑓 𝜔 𝑓
, (3.14)

and, if 𝑑 ≥ 𝑘 + 1,
d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) = 0. (3.15)

As a consequence, the sequence (3.8) defines a complex.

Proof. The proof is done by induction on 𝜌 ≔ 𝑑 − 𝑘 .
If 𝜌 = 0 (i.e., 𝑑 = 𝑘), by the definitions (3.3) of the discrete potential and (3.7) of the global discrete

exterior derivative with 𝑘 − 1 instead of 𝑘 , we have 𝑃𝑘
𝑟 , 𝑓
(d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
) = ★−1(★d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
) = d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
(notice

that, in the first passage, we can omit the projector found in the definition of d𝑘−1
𝑟 , 𝑓

𝜔
𝑓

in front of★d𝑘−1
𝑟 , 𝑓

𝜔
𝑓

since this quantity sits in P𝑟Λ0( 𝑓 ) = P−𝑟 Λ0( 𝑓 ), and is therefore left unchanged by 𝜋
−,0
𝑟 , 𝑓

). This proves
(3.14), and the relation (3.15) is irrelevant here since 𝑑 = 𝑘 .

Let us now assume that (3.14) and (3.15) hold for a given 𝜌 ≥ 0, and let us consider 𝑑 and 𝑘 such
that 𝑑 − 𝑘 = 𝜌 + 1. We start by considering (3.15) (which we need to prove since 𝑑 ≥ 𝑘 + 1 in the
present case). Let us take 𝑓 ∈ Δ𝑑 (Mℎ). Applying (3.4) with d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
instead of 𝜔

𝑓
and a generic

𝜇 ∈ P𝑟Λ𝑑−𝑘−1( 𝑓 ), we have, expanding the local discrete exterior derivative d𝑘−1
𝑟 , 𝑓

𝜔
𝑓

according to its
definition (i.e., the restriction to 𝑓 of (3.7) with 𝑘 − 1 instead of 𝑘),∫

𝑓

d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ 𝜇 = (−1)𝑘+1

∫
𝑓

★−1(𝜋−,𝑑−𝑘
𝑟 , 𝑓

(★d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

)) ∧ d𝜇

+
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓
(d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
) ∧ tr𝜕 𝑓 𝜇. (3.16)

By the induction hypothesis, (3.14) holds on each 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ) (since (𝑑 − 1) − 𝑘 = 𝜌), and thus

𝑃𝑘
𝑟 ,𝜕 𝑓
(d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
) = d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
. (3.17)

Invoking then (2.4) with (X, 𝜔, 𝜇) ← (P−𝑟 Λ𝑑−𝑘 ( 𝑓 ), d𝑘−1
𝑟 , 𝑓

𝜔
𝑓
, d𝜇), noticing that d𝜇 ∈ P

𝑟−1Λ
𝑑−𝑘 ( 𝑓 ) ⊂

P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) (by (2.14) with ℓ = 𝑑 − 𝑘) to handle the first term in the right-hand side of (3.16), we infer∫
𝑓

d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ 𝜇 = (−1)𝑘+1

∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ d𝜇 +
∫
𝜕 𝑓

d𝑘−1
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 = 0, (3.18)
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where the conclusion follows from the link (3.12) between discrete exterior derivatives on subcells
applied with 𝑘 − 1 instead of 𝑘 and 𝛼 = 𝜇 ∈ P𝑟Λ𝑑−𝑘−1( 𝑓 ) ⊂ P−

𝑟+1Λ
𝑑−(𝑘−1)−2( 𝑓 ). Since 𝜇 is arbitrary

in P𝑟Λ𝑑−𝑘−1( 𝑓 ), (3.18) proves (3.15).
We next prove (3.14). For any (𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) × K𝑑−𝑘
𝑟 ( 𝑓 ), the definition (3.5) of the potential

applied to d𝑘−1
𝑟 , 𝑓

𝜔
𝑓

gives

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ (d𝜇 + 𝜈) =

∫
𝑓

d𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ 𝜇

−
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓
(d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
) ∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1

∫
𝑓

★−1𝜋−,𝑑−𝑘
𝑟 , 𝑓

(★d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

) ∧ 𝜈,

where we have additionally used, in the last term, the definition of the local discrete exterior derivative
d𝑘−1
𝑟 , 𝑓

𝜔
𝑓
, corresponding to the restriction to 𝑓 of (3.7) with 𝑘−1 instead of 𝑘 . Using the complex property

(3.15) that we have just proved, we have d𝑘
𝑟 , 𝑓
(d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
) = 0. Moreover, the induction hypothesis (3.17)

yields 𝑃𝑘
𝑟 ,𝜕 𝑓
(d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓
) = d𝑘−1

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓

. Hence, invoking (3.12) with 𝑘 − 1 instead of 𝑘 and 𝛼 = 𝜇

(notice that 𝜇 ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) ⊂ P−

𝑟+1Λ
𝑑−(𝑘−1)−2( 𝑓 ) by (2.12)) and applying (2.4) with (X, 𝜔, 𝜇) ←

(P−𝑟 Λ𝑑−𝑘 ( 𝑓 ), d𝑘−1
𝑟 , 𝑓

𝜔
𝑓
, 𝜈), which is valid since 𝜈 ∈ K𝑑−𝑘

𝑟 ( 𝑓 ) ⊂ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) by (2.12b) with ℓ = 𝑑−𝑘 ≥
1, we obtain

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 (d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) ∧ (d𝜇 + 𝜈) = − (−1)𝑘

∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ d𝜇 + (−1)𝑘+1
∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ 𝜈.

Simplifying by (−1)𝑘+1 and recalling the isomorphism (2.9) concludes the proof of (3.14). □

3.3 Commutation
The following lemma shows that the reconstructed potential 𝑃𝑘

𝑟 , 𝑓
𝜔

𝑓
on a 𝑑-cell 𝑓 is built by adding

a high-order correction to ★−1𝜔 𝑓 ; this correction is designed to obtain a polynomial consistency
unachievable by the component alone (see (3.9)).

Lemma 16 (Links between component and potential reconstruction). For all integers 𝑑 ∈ [0, 𝑛] and
𝑘 ≤ 𝑑, if 𝑓 ∈ Δ𝑑 (Mℎ) and 𝜔

𝑓
∈ 𝑋 𝑘

𝑟 , 𝑓
, then it holds

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈) = (−1)𝑘+1
∫
𝑓

★−1𝜔 𝑓 ∧ (d(𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇) + 𝜈)

+
∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (𝜇 − 𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇) −

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 (𝜇 − 𝜋𝑑−𝑘−1

𝑟 , 𝑓 𝜇)

∀(𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) × K𝑑−𝑘

𝑟 ( 𝑓 ). (3.19)

As a consequence,
𝜋
−,𝑑−𝑘
𝑟 , 𝑓

(★𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

) = 𝜔 𝑓 . (3.20)

Proof. If 𝑑 = 𝑘 , the relation (3.19) follows from K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) = K−1

𝑟+1( 𝑓 ) = {0} and 𝑃𝑘
𝑟 , 𝑓

𝜔
𝑓
= ★−1𝜔 𝑓

(see (3.3)), which also establishes (3.20) since 𝜋
−,0
𝑟 , 𝑓

= Id on P𝑟Λ0( 𝑓 ) = P−𝑟 Λ0( 𝑓 ).
Consider now 𝑑 ≥ 𝑘 + 1 and take (𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) × K𝑑−𝑘
𝑟 ( 𝑓 ). Inserting ±𝜋𝑑−𝑘−1

𝑟 , 𝑓
𝜇 into the
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definition (3.5) of 𝑃𝑘
𝑟 , 𝑓

𝜔
𝑓

we have

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈)

=

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇 +

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (𝜇 − 𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇) −

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇

+ (−1)𝑘+1
∫
𝑓

★−1𝜔 𝑓 ∧ 𝜈.

(3.21)

On the other hand, the definition (3.4) of d𝑘
𝑟 , 𝑓

𝜔
𝑓

applied to 𝜋𝑑−𝑘−1
𝑟 , 𝑓

𝜇 yields∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇 = (−1)𝑘+1

∫
𝑓

★−1𝜔 𝑓 ∧ d(𝜋𝑑−𝑘−1
𝑟 , 𝑓 𝜇) +

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 (𝜋𝑑−𝑘−1

𝑟 , 𝑓 𝜇).

Substituting this relation into (3.21) yields (3.19).
To prove (3.20) we apply (3.19) with (𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟 ( 𝑓 ) × K𝑑−𝑘
𝑟 ( 𝑓 ) and notice that 𝜇 = 𝜋𝑑−𝑘−1

𝑟 , 𝑓
𝜇

since K𝑑−𝑘−1
𝑟 ( 𝑓 ) ⊂ P𝑟Λ𝑑−𝑘−1( 𝑓 ), to get∫

𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (d𝜇 + 𝜈) =
∫
𝑓

★−1𝜔 𝑓 ∧ (d𝜇 + 𝜈). (3.22)

The isomorphism (2.17) with ℓ = 𝑑 − 𝑘 ≥ 1 shows that d𝜇 + 𝜈 spans P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) when (𝜇, 𝜈) span
K𝑑−𝑘−1

𝑟 ( 𝑓 ) × K𝑑−𝑘
𝑟 ( 𝑓 ). Hence, (3.22) gives∫

𝑓

★−1𝜔 𝑓 ∧ 𝛼 =

∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝛼
(2.4)
=

∫
𝑓

★−1𝜋−,𝑑−𝑘
𝑟 , 𝑓

(★𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

) ∧ 𝛼 ∀𝛼 ∈ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ),

proving (3.20) since ★−1𝜔 𝑓 ∈ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) and ★−1 is an isomorphism. □

Theorem 17 (Commutation property for the local discrete exterior derivative). For all integers 𝑑 ∈ [1, 𝑛]
and 𝑘 ≤ 𝑑 − 1, and for all 𝑓 ∈ Δ𝑑 (Mℎ), recalling the definition (3.2) of the interpolators, it holds

d𝑘
𝑟 , 𝑓
(𝐼𝑘𝑟 , 𝑓𝜔) = 𝐼𝑘+1𝑟 , 𝑓 (d𝜔) ∀𝜔 ∈ 𝐶1Λ𝑘 ( 𝑓 ), (3.23)

expressing the commutativity of the following diagram:

𝐶1Λ𝑘 ( 𝑓 ) 𝐶0Λ𝑘+1( 𝑓 )

𝑋 𝑘
𝑟 , 𝑓

𝑋 𝑘+1
𝑟 , 𝑓

.

d

𝐼𝑘
𝑟, 𝑓

𝐼𝑘+1
𝑟, 𝑓

d𝑘
𝑟, 𝑓

Proof. Given the definitions of the interpolator and of the local discrete exterior derivative (see (3.2)
and (3.7)), we have to prove that, for all 𝑓 ′ ∈ Δ𝑑′ ( 𝑓 ) with 𝑑′ ∈ [𝑘 + 1, 𝑑], 𝜋−,𝑑

′−𝑘−1
𝑟 , 𝑓 ′ (★d𝑘

𝑟 , 𝑓 ′ 𝐼
𝑘
𝑟 , 𝑓 ′𝜔) =

𝜋
−,𝑑′−𝑘−1
𝑟 , 𝑓 ′ (★ tr 𝑓 ′ (d𝜔)). Recalling the definition of the projector 𝜋

−,𝑑′−𝑘−1
𝑟 , 𝑓 ′ (i.e., (2.3) with X =

P−𝑟 Λ𝑑′−𝑘−1( 𝑓 ′)), we need to prove that, for any 𝜇 ∈ P−𝑟 Λ𝑑′−𝑘−1( 𝑓 ′)∫
𝑓 ′
★d𝑘

𝑟 , 𝑓 ′ 𝐼
𝑘
𝑟 , 𝑓 ′𝜔 ∧★𝜇 =

∫
𝑓 ′
★ tr 𝑓 ′ (d𝜔) ∧★𝜇.

Applying (A.4), this amounts to proving that∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′ 𝐼

𝑘
𝑟 , 𝑓 ′𝜔 ∧ 𝜇 =

∫
𝑓 ′

tr 𝑓 ′ (d𝜔) ∧ 𝜇. (3.24)
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Using the definitions (3.4) of the discrete exterior derivative on 𝑓 ′ and (3.2) of 𝐼𝑘
𝑟 , 𝑓 ′ , we have∫

𝑓 ′
d𝑘
𝑟 , 𝑓 ′ 𝐼

𝑘
𝑟 , 𝑓 ′𝜔 ∧ 𝜇 = (−1)𝑘+1

∫
𝑓 ′����������: tr 𝑓 ′ 𝜔
★−1𝜋−,𝑑

′−𝑘
𝑟 , 𝑓 ′ (★ tr 𝑓 ′ 𝜔) ∧ d𝜇 +

∫
𝜕 𝑓 ′

𝑃𝑘
𝑟 ,𝜕 𝑓 ′ 𝐼

𝑘
𝑟 ,𝜕 𝑓 ′𝜔 ∧ tr𝜕 𝑓 ′ 𝜇, (3.25)

where the substitution is justified by (2.4) with (X, 𝜔, 𝜇) ← (P−𝑟 Λ𝑑′−𝑘 ( 𝑓 ′), tr 𝑓 ′ 𝜔, d𝜇), since d𝜇 ∈
dP−𝑟 Λ𝑑′−𝑘−1( 𝑓 ′) ⊂ dP𝑟Λ𝑑′−𝑘−1( 𝑓 ′) ⊂ P−𝑟 Λ𝑑′−𝑘 ( 𝑓 ′) (see (2.12b)). For all 𝑓 ′′ ∈ Δ𝑑′−1( 𝑓 ′) we have
tr 𝑓 ′′ 𝜇 ∈ P−𝑟 Λ𝑑′−1−𝑘 ( 𝑓 ′′) (see Lemma 4), so∫

𝑓 ′′
𝑃𝑘
𝑟 , 𝑓 ′′ 𝐼

𝑘
𝑟 , 𝑓 ′′𝜔 ∧ tr 𝑓 ′′ 𝜇 =

∫
𝑓 ′′
★−1𝜋−,𝑑

′−1−𝑘
𝑟 , 𝑓 ′′ (★𝑃𝑘

𝑟 , 𝑓 ′′ 𝐼
𝑘
𝑟 , 𝑓 ′′𝜔) ∧ tr 𝑓 ′′ 𝜇 Eq. (2.4)

=

∫
𝑓 ′′
★−1𝜋−,𝑑

′−1−𝑘
𝑟 , 𝑓 ′′ (★ tr 𝑓 ′′ 𝜔) ∧ tr 𝑓 ′′ 𝜇 Eqs. (3.20), (3.2)

=

∫
𝑓 ′′

tr 𝑓 ′′ 𝜔 ∧ tr 𝑓 ′′ 𝜇. Eq. (2.4)

Summing this relation over 𝑓 ′′ ∈ Δ𝑑′−1( 𝑓 ′) and substituting the result into (3.25) we obtain∫
𝑓 ′

d𝑘
𝑟 , 𝑓 ′ 𝐼

𝑘
𝑟 , 𝑓 ′𝜔 ∧ 𝜇 = (−1)𝑘+1

∫
𝑓 ′

tr 𝑓 ′ 𝜔 ∧ d𝜇 +
∫
𝜕 𝑓 ′

tr𝜕 𝑓 ′ 𝜔 ∧ tr𝜕 𝑓 ′ 𝜇.

The proof of (3.24) is concluded invoking the integration by part formula (2.1) and writing d tr 𝑓 ′ = tr 𝑓 ′ d
(since the trace is a pullback). □

3.4 Polynomial consistency
Proof of Theorem 11. The proof is made, as in Theorem 15, by induction on 𝜌 ≔ 𝑑 − 𝑘 .

If 𝜌 = 0, then 𝑑 = 𝑘 and the definitions (3.3) of the discrete potential and (3.2) of the interpolator
give 𝑃𝑘

𝑟 ,𝑑
𝐼𝑘
𝑟 , 𝑓

𝜔 = ★−1𝜋−,0
𝑟 , 𝑓
(★𝜔) = ★−1 ★𝜔 = 𝜔, where, to remove the projector, we have used the fact

that ★𝜔 ∈ P𝑟Λ0( 𝑓 ) = P−𝑟 Λ0( 𝑓 ) (cf. (2.12a)).
Let us now assume that the lemma holds for a given 𝜌 ≥ 0, and let us consider 𝑑 and 𝑘 such that

𝑑− 𝑘 = 𝜌+1. We first look at (3.10). By the link (3.14) applied to 𝑘 +1 instead of 𝑘 and the commutation
property (3.23), we have, for 𝜔 ∈ P−

𝑟+1Λ
𝑘 ( 𝑓 ),

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝑃𝑘+1

𝑟 , 𝑓 (d
𝑘
𝑟 , 𝑓

𝐼𝑘𝑟 , 𝑓𝜔) = 𝑃𝑘+1
𝑟 , 𝑓 𝐼

𝑘+1
𝑟 , 𝑓 (d𝜔).

We have d𝜔 ∈ dP−
𝑟+1Λ

𝑘 ( 𝑓 ) ⊂ P𝑟Λ𝑘+1( 𝑓 ), and the pair (𝑑, 𝑘 + 1) satisfies 𝑑 − (𝑘 + 1) = 𝜌. We can
therefore apply the induction hypothesis to see that (3.9) holds for this pair and d𝜔 instead of 𝜔; this
gives d𝑘

𝑟 , 𝑓
𝐼𝑘
𝑟 , 𝑓

𝜔 = d𝜔 and proves (3.10).
We now turn to (3.9). For 𝜔 ∈ P𝑟Λ𝑘 ( 𝑓 ), applying the property (3.10) that we have just proved to

𝜔 and recalling the definitions (3.5) and (3.2) of the potential and of the interpolator, we find, for all
(𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) × K𝑑−𝑘
𝑟 ( 𝑓 ),

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 ∧ (d𝜇 + 𝜈)

=

∫
𝑓

d𝜔 ∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝐼𝑘
𝑟 ,𝜕 𝑓

tr𝜕 𝑓 𝜔 ∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1
∫
𝑓���������:𝜔
(★−1𝜋−,𝑑−𝑘

𝑟 , 𝑓
★𝜔) ∧ 𝜈,

the replacement being justified by (2.4) and 𝜈 ∈ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) (see (2.12)). We can then apply the
polynomial consistency (3.9) on each 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ) (as (𝑑 − 1) − 𝑘 = 𝜌) to write 𝑃𝑘

𝑟 ,𝜕 𝑓
𝐼𝑘
𝑟 ,𝜕 𝑓

tr𝜕 𝑓 𝜔 =

tr𝜕 𝑓 𝜔 , and then integrate by parts to conclude, since 𝜇, 𝜈 are generic elements, that 𝑃𝑘
𝑟 , 𝑓

𝐼𝑘
𝑟 , 𝑓

𝜔 = 𝜔. □
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Remark 18 (Consistency property of the improved potential for 𝑘 = 0). In the case 𝑘 = 0, the improved
potential defined in Remark 7 satisfies the following consistency property:

𝑃0
𝑟+1, 𝑓 𝐼

0
𝑟 , 𝑓𝜔 = 𝜔 ∀𝜔 ∈ P𝑟+1Λ

0( 𝑓 ).

To see this, first notice that when 𝑑 = 𝑘 = 0 we have 𝑃0
𝑟+1, 𝑓 = 𝑃0

𝑟 , 𝑓
since P

𝑟+1Λ
0( 𝑓 ) = P𝑟Λ0( 𝑓 ) � R,

and then, for 𝑑 ≥ 𝑘 + 1, invoke the definition (3.6) of 𝑃0
𝑟+1, 𝑓 𝐼

0
𝑟 , 𝑓

𝜔, apply (3.10) (since P−
𝑟+1Λ

0( 𝑓 ) =
P
𝑟+1Λ

0( 𝑓 )) and a recursion argument on 𝑑.

3.5 Cohomology
A strategy to establish the exactness of the de Rham complex (for a domain with trivial topology) is
to design a Poincaré operator 𝑝 : 𝐶1Λ𝑘 (Ω) → 𝐶1Λ𝑘−1(Ω), that satisfies d𝑝 + 𝑝d = Id. The Poincaré
operator is built integrating a certain flow of contracted differential forms; see [31, 51] for details and
applications to the design of finite element complexes. Extending such a construction to the context of
fully discrete spaces is not trivial, as it is not clear how the discrete polynomial components on cells
should evolve with such a flow. We therefore select an alternative approach, more suited to hierarchical
discrete spaces.

The starting point is the following idea: if 𝜂 ∈ 𝐶1Λ𝑘 (Ω) satisfies d𝜂 = 0 and we have𝜔 ∈ 𝐶2Λ𝑘−1(Ω)
such that d𝜔 = 𝜂, then (2.1) shows that, for any 𝑑-cell 𝑓 ,

(−1)𝑘
∫
𝑓

𝜔 ∧ d𝜇 =

∫
𝑓

𝜂 ∧ 𝜇 −
∫
𝜕 𝑓

tr𝜕 𝑓 𝜔 ∧ tr𝜕 𝑓 𝜇 ∀𝜇 ∈ 𝐶1Λ𝑑−𝑘 (Ω). (3.26)

In the discrete setting, 𝜔 is built starting from the lowest-dimensional cells, and (3.26) thus gives a
condition on 𝜔 over 𝑓 based on the already constructed tr𝜕 𝑓 𝜔. To start this process, we must fix the
values of 𝜔 on the lowest-dimensional cells, which is not an easy task in general. Actually, from the
point of view of differential forms, the lowest-dimensional cells encode the topology of the domain, and
thus the cohomology of the complex; for a generic 𝜂, the recursive construction of 𝜔 can therefore only
be fully complete if the complex is exact, and thus the topology trivial.

This limitation is circumvented by using the following idea: if 𝜂 has zero average on 𝑘-cells, then
𝜔 can be set to zero on (𝑘 − 1)-cells, which completes the construction above (see Lemma 19 below).
This result is then exploited, through the extension/reduction strategy developed in [35, 37], to compare
the cohomology of the arbitrary-order DDR(𝑟) complex to that of the lowest-order DDR(0) complex,
which is trivially isomorphic to the CW complex based on the mesh.

We therefore start by considering the subspace 𝑋 𝑘
𝑟 ,ℎ,♭

of 𝑋 𝑘
𝑟 ,ℎ

made of vectors of differential forms
whose integrals over cells of dimension 𝑑 = 𝑘 vanish:

𝑋 𝑘
𝑟 ,ℎ,♭

≔

{
𝜔

ℎ
= (𝜔 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘,𝑛] :

∫
𝑓

★−1𝜔 𝑓 = 0 ∀ 𝑓 ∈ Δ𝑘 (Mℎ)
}
.

Lemma 19 (Exactness property for 𝑋 𝑘
𝑟 ,ℎ,♭

). For any integer 𝑘 ∈ [0, 𝑛], if 𝜂
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,♭
satisfies d𝑘

𝑟 ,ℎ
𝜂
ℎ
=

0, then there exists 𝜔
ℎ
∈ 𝑋 𝑘−1

𝑟 ,ℎ,♭
such that 𝜂

ℎ
= d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
, where, in accordance with (3.8), we have set

d−1
𝑟 ,ℎ

= d𝑛
𝑟,ℎ

≔ 0.

Remark 20 (Exact sub-complex). It can easily be checked that d𝑘
𝑟 ,ℎ

: 𝑋 𝑘
𝑟 ,ℎ,♭
→ 𝑋 𝑘+1

𝑟 ,ℎ,♭
. As a consequence,

the previous lemma shows that (𝑋 𝑘
𝑟 ,ℎ,♭

, d𝑘
𝑟 ,ℎ
)𝑘 is an exact sub-complex of DDR(𝑟) (even if the latter

complex is not exact).

Proof. We first notice that the case 𝑟 = 0 is trivial since, for all 𝑘 , 𝑋 𝑘
0,ℎ,♭ = {(0) 𝑓 ∈Δ𝑘 (Mℎ ) }. This comes

from the fact that the space 𝑋 𝑘
0,ℎ only has non-zero components (which are moreover constant) on cells
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of dimension 𝑑 = 𝑘; to check this, notice that the spaces (2.12b) are all trivial since the first component
vanishes for 𝑘-forms with constant coefficients, while the second is zero by (2.6). We can therefore
assume that 𝑟 ≥ 1. The cases 𝑘 = 0 and 𝑘 ≥ 1 have to be handled separately.

Case 𝑘 = 0. We prove that, if 𝜂
ℎ
∈ 𝑋0

𝑟 ,ℎ,♭
and d0

𝑟 ,ℎ
𝜂
ℎ
= 0, then 𝜂 𝑓 = 0 for all 𝑓 ∈ Δ𝑑 (Mℎ), 𝑑 ∈ [0, 𝑛].

This is done by induction on 𝑑. The case 𝑑 = 0 follows immediately from the definition of 𝑋0
𝑟 ,ℎ,♭

which
shows that the value of ★−1𝜂 𝑓 on any vertex 𝑓 ∈ Δ0(Mℎ) is zero. Assuming that all components of
𝜂
ℎ

on cells of dimension 𝑑 − 1 ≥ 0 vanish, we now prove that 𝜂 𝑓 = 0 for all 𝑓 ∈ Δ𝑑 (Mℎ). Note first
that, by (3.14), the property d0

𝑟 , 𝑓
𝜂
𝑓
= 0 implies d0

𝑟 , 𝑓
𝜂
𝑓
= 0. Enforcing then 𝜂

𝜕 𝑓
= 0 (by induction

hypothesis) in the definition (3.4) of d0
𝑟 , 𝑓

𝜂
𝑓

gives∫
𝑓

★−1𝜂 𝑓 ∧ d𝜇 = 0 ∀𝜇 ∈ P𝑟Λ𝑑−1( 𝑓 ).

By definition (2.12b) of the trimmed space with ℓ = 𝑑, and accounting for (2.6), we have dP𝑟Λ𝑑−1( 𝑓 ) =
P−𝑟 Λ𝑑 ( 𝑓 ), so the relation above and (A.4) with (𝜔, 𝜇) ← (𝜂 𝑓 , d𝜇) and 𝜌 = d𝜇 show that

∫
𝑓
𝜂 𝑓 ∧★𝜌 = 0

for all 𝜌 ∈ P−𝑟 Λ𝑑 ( 𝑓 ). Since 𝜂 𝑓 belongs to that space, we conclude that 𝜂 𝑓 = 0.

Case 𝑘 ≥ 1. Let 𝜂
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,♭
be such that d𝑘

𝑟 ,ℎ
𝜂
ℎ
= 0, and let us construct 𝜔

ℎ
∈ 𝑋 𝑘−1

𝑟 ,ℎ,♭
such that

d𝑘−1
𝑟 ,ℎ

𝜔
ℎ
= 𝜂

ℎ
. This construction of 𝜔

ℎ
is done by increasing dimension 𝑑 ∈ [𝑘 − 1, 𝑛] of the cells.

For all 𝑓 ∈ Δ𝑘−1(Mℎ), we set 𝜔 𝑓 = 0 (which ensures, in particular, that the zero-average condition
embedded in the space 𝑋 𝑘−1

𝑟 ,ℎ,♭
is fulfilled). Assume now that the components of𝜔

ℎ
have been constructed

up to cells of dimension 𝑑 − 1 ≥ 𝑘 − 1, and consider 𝑓 ∈ Δ𝑑 (Mℎ). We choose 𝜔 𝑓 ∈ P−𝑟 Λ𝑑−𝑘+1( 𝑓 )
such that the following relation holds:

(−1)𝑘
∫
𝑓

★−1𝜔 𝑓 ∧ d𝜇 =

∫
𝑓

𝑃𝑘
𝑟 , 𝑓 𝜂 𝑓

∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘−1
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 ∀𝜇 ∈ K𝑑−𝑘

𝑟 ( 𝑓 ). (3.27)

Notice that, since the construction is recursive on the dimension of the cells, 𝜔
𝜕 𝑓

has already been
constructed at this stage. Owing to the isomorphism (2.17) with ℓ = 𝑑 − 𝑘 + 1 ≥ 1, this relation
completely defines the projection of 𝜔 𝑓 on dK𝑑−𝑘

𝑟 ( 𝑓 ) ⊂ P−𝑟 Λ𝑑−𝑘+1( 𝑓 ). The projection of 𝜔 𝑓 on the
remaining componentK𝑑−𝑘+1

𝑟 ( 𝑓 ) of P−𝑟 Λ𝑑−𝑘+1( 𝑓 ) is not relevant to the rest of the proof and can be set
to 0.

Let us now prove that d𝑘−1
𝑟 ,ℎ

𝜔
ℎ
= 𝜂

ℎ
. It suffices to show that

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

= 𝑃𝑘
𝑟 , 𝑓 𝜂 𝑓

∀ 𝑓 ∈ Δ𝑑 (Mℎ) , 𝑑 ∈ [𝑘, 𝑛] . (3.28)

Indeed, applying 𝜋
−,𝑑−𝑘
𝑟 , 𝑓

★ to this relation and using (3.20) yields 𝜋
−,𝑑−𝑘
𝑟 , 𝑓

(★d𝑘−1
𝑟 , 𝑓

𝜔
𝑓
) = 𝜂 𝑓 ; using this

relation for all cells 𝑓 , and recalling the definition (3.7) of the global discrete exterior derivative (with
𝑘 − 1 instead of 𝑘), then gives d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
= 𝜂

ℎ
as claimed.

The relation (3.28) is a direct consequence of the following property, for the same 𝑓 and 𝑑:∫
𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ 𝜇 =

∫
𝑓

𝑃𝑘
𝑟 , 𝑓 𝜂 𝑓

∧ 𝜇 ∀𝜇 ∈ P𝑟Λ𝑑−𝑘 ( 𝑓 ). (3.29)

Owing to (2.7), we only need to prove this relation for 𝜇 ∈ K𝑑−𝑘
𝑟 ( 𝑓 ), and 𝜇 ∈ P0Λ

0( 𝑓 ) if 𝑑 = 𝑘 or
𝜇 ∈ dP

𝑟+1Λ
𝑑−𝑘−1( 𝑓 ) if 𝑑 ≥ 𝑘 + 1.

If 𝜇 ∈ K𝑑−𝑘
𝑟 ( 𝑓 ), the definition (3.4) of d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
together with the property (3.27) immediately give

(3.29).

19



Let us consider the case 𝑑 = 𝑘 and 𝜇 ∈ P0Λ
0( 𝑓 ). Then d𝜇 = 0, so the definition (3.4) of d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
and

𝜔
𝜕 𝑓

= 0 (by construction, 𝜔
ℎ

vanishes on cells of dimension 𝑑 − 1 = 𝑘 − 1) show that the left-hand side
of (3.29) vanishes. Since 𝑃𝑘

𝑟 , 𝑓
𝜂
𝑓
= ★−1𝜂 𝑓 (see (3.3)) and

∫
𝑓
★−1𝜂 𝑓 = 0 as 𝜂

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,♭
, the right-hand

side of (3.29) vanishes as well, and this relation holds.
Finally, we turn to the case 𝑑 ≥ 𝑘 + 1 and 𝜇 ∈ dP

𝑟+1Λ
𝑑−𝑘−1( 𝑓 ), which is proved by induction on

𝑑 (the base case 𝑑 = 𝑘 having already been covered). By (2.8) with (ℓ, 𝑟) ← (𝑑 − 𝑘 − 1, 𝑟 + 1), we
have 𝜇 ∈ dK𝑑−𝑘−1

𝑟+1 ( 𝑓 ), and we can therefore write 𝜇 = d𝛼 with 𝛼 ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) ⊂ P−

𝑟+1Λ
𝑑−𝑘−1( 𝑓 )

(see (2.12)). Invoking the link (3.12) between discrete exterior derivatives on subcells (notice that
𝑑 ≥ (𝑘 − 1) + 2), we obtain∫

𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ 𝜇 = (−1)𝑘
∫
𝜕 𝑓

d𝑘−1
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼 = (−1)𝑘

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼,

where the second equality follows from the induction hypothesis that (3.29) holds on subcells of 𝑓 . We
have d𝑘

𝑟 , 𝑓
𝜂
𝑓
= 0 and 𝑑 ≥ 𝑘 + 1, so we can apply (3.14) with 𝑘 + 1 instead of 𝑘 to get d𝑘

𝑟 , 𝑓
𝜂
𝑓
= 0;

the definition (3.5) of 𝑃𝑘
𝑟 , 𝑓

𝜂
𝑓

(with (𝜇, 𝜈) ← (𝛼, 0), see Remark 6 for the validity of this choice of 𝜇)
allows us to continue with∫

𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ 𝜇 = −(−1)𝑘 × (−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 𝜂 𝑓

∧ d𝛼.

Recalling that d𝛼 = 𝜇 concludes the proof of (3.29). □

Proof of Theorem 10. As in [37, Lemma 4], it is straightforward to see that the (discrete) de Rham map
establishes a chain isomorphism between the lowest-degree complex DDR(0) and the CW complex
defined by Mℎ. Since this CW complex has the same cohomology as the de Rham complex (1.2),
the proof is complete if we show that the cohomology of DDR(𝑟) is isomorphic to the cohomology of
DDR(0). This obviously means that we can assume 𝑟 ≥ 1 in the following.

Step 1: Reductions and extensions. With the goal of applying [35, Proposition 2], we define reduction
and extension maps between DDR(𝑟) and DDR(0) as in (3.30).

DDR(𝑟) : · · · 𝑋 𝑘
𝑟 ,ℎ

𝑋 𝑘+1
𝑟 ,ℎ

· · ·

DDR(0) : · · · 𝑋 𝑘
0,ℎ 𝑋 𝑘+1

0,ℎ · · ·

d𝑘
𝑟,ℎ

𝑅𝑘
ℎ

𝑅𝑘+1
ℎ

d𝑘0,ℎ

𝐸𝑘
ℎ

𝐸𝑘+1
ℎ

(3.30)

The reduction 𝑅𝑘
ℎ

: 𝑋 𝑘
𝑟 ,ℎ
→ 𝑋 𝑘

0,ℎ is defined taking the average of components on the cells of dimension
𝑘 (recall that vectors in 𝑋 𝑘

0,ℎ only have components on these cells): For all 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
,

𝑅𝑘
ℎ𝜔ℎ

= (𝜋0
0, 𝑓𝜔 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) . (3.31)

The extension 𝐸 𝑘
ℎ

: 𝑋 𝑘
0,ℎ → 𝑋 𝑘

𝑟 ,ℎ
is defined by induction on the cell dimension: For all 𝜂

ℎ
∈ 𝑋 𝑘

0,ℎ,
𝐸 𝑘
ℎ
𝜂
ℎ
≔ (𝐸 𝑘

𝑓
𝜂
𝑓
) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘,𝑛] , where

• If 𝑑 = 𝑘 ,
𝐸 𝑘

𝑓 𝜂 𝑓
= 𝜂 𝑓 ∈ P−0 Λ

0( 𝑓 ) ⊂ P−𝑟 Λ0( 𝑓 ); (3.32a)
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• If 𝑑 ≥ 𝑘 + 1, 𝐸 𝑘
𝑓
𝜂
𝑓
∈ P−𝑟 Λ𝑑−𝑘 ( 𝑓 ) satisfies

(−1)𝑘+1
∫
𝑓

★−1𝐸 𝑘
𝑓 𝜂 𝑓
∧ (d𝜇 + 𝜈)

=

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝐸 𝑘
𝜕 𝑓
𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1

∫
𝑓

𝑃𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜈

∀(𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟 ( 𝑓 ) × K𝑑−𝑘

𝑟 ( 𝑓 ), (3.32b)

where 𝐸 𝑘
𝜕 𝑓
𝜂
𝜕 𝑓

= (𝐸 𝑘
𝑓 ′𝜂 𝑓 ′
) 𝑓 ′∈Δ𝑑−1 ( 𝑓 ) gathers the extensions already built at previous steps on the

subcells of dimension 𝑑 − 1 of 𝑓 . The isomorphism (2.17) with ℓ = 𝑑 − 𝑘 ≥ 1 ensures that the
relation above fully and properly defines 𝐸 𝑘

𝑓
𝜂
𝑓
.

In passing, we notice that, for all 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘 + 1, combining the definitions (3.4) of
d𝑘
𝑟 , 𝑓

𝐸 𝑘
𝑓
𝜂
𝑓

and (3.32b) of 𝐸 𝑘
𝑓
𝜂
𝑓

(with 𝜈 = 0), we have∫
𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜇 =

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜇 ∀𝜇 ∈ K𝑑−𝑘−1
𝑟 ( 𝑓 ).

Since d𝑘
0, 𝑓 𝜂 𝑓

= 𝑃𝑘+1
0, 𝑓 d𝑘

0, 𝑓 𝜂 𝑓
by (3.14), using the definition of 𝐸 𝑘+1

𝑓
d𝑘

0, 𝑓 𝜂 𝑓
(namely, (3.32a) if 𝑑 = 𝑘 + 1,

or (3.32b) with (𝜇, 𝜈) ← (0, 𝜇) if 𝑑 ≥ 𝑘 + 2) we deduce that∫
𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜇 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ 𝜇 ∀𝜇 ∈ K𝑑−𝑘−1

𝑟 ( 𝑓 ). (3.33)

Step 2: Proof of the theorem. To apply [35, Proposition 2], we need to prove that

d𝑘
0,ℎ = 𝑅𝑘+1

ℎ d𝑘
𝑟 ,ℎ

𝐸 𝑘
ℎ (3.34)

and that [35, Assumption 1] holds, that is:

(C1) 𝑅𝑘
ℎ
𝐸 𝑘
ℎ
= Id on Ker d𝑘

0,ℎ;

(C2) (𝐸 𝑘
ℎ
𝑅𝑘
ℎ
− Id) (Ker d𝑘

𝑟 ,ℎ
) ⊂ Im d𝑘−1

𝑟 ,ℎ
;

(C3) The graded maps 𝐸•
ℎ

and 𝑅•
ℎ

are cochain maps.

We start by noticing that, since DDR(0) is already known to be a complex, (C1) and (C3) imply (3.34).
Indeed, (C3) gives 𝑅𝑘+1

ℎ
d𝑘
𝑟 ,ℎ

𝐸 𝑘
ℎ
= 𝑅𝑘+1

ℎ
𝐸 𝑘+1
ℎ

d𝑘
0,ℎ and, by the complex property, Im d𝑘

0,ℎ ⊂ Ker d𝑘+1
0,ℎ , so

(C1) applied to 𝑘 + 1 instead of 𝑘 yields (3.34).

1. Proof of (C1). The definitions (3.31) and (3.32a) of the reduction and the extension components on
the lowest dimensional cells directly shows that 𝑅𝑘

ℎ
𝐸 𝑘
ℎ
= Id on 𝑋 𝑘

𝑟 ,ℎ
, which establishes a stronger result

than (C1).

2. Proof of (C3) for the extension. We now turn to (C3), considering first the case of the extension. We
have to show that, for all 𝜂

ℎ
∈ 𝑋 𝑘

0,ℎ it holds d𝑘
𝑟 ,ℎ

𝐸 𝑘
ℎ
𝜂
ℎ
= 𝐸 𝑘+1

ℎ
d𝑘

0,ℎ𝜂ℎ
. Given the definitions (3.7) of the

global discrete exterior derivative and of the extension, this boils down to showing that

★−1𝜋−,𝑑−𝑘−1
𝑟 , 𝑓

(★d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
) = ★−1𝐸 𝑘+1

𝑓 d𝑘
0, 𝑓 𝜂 𝑓

∀ 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘 + 1
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which, testing against 𝜌 ∈ P−𝑟 Λ𝑑−𝑘−1( 𝑓 ) and recalling the relation (2.4), can be recast as∫
𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜌 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ 𝜌 ∀ 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘 + 1 ,

∀𝜌 ∈ P−𝑟 Λ𝑑−𝑘−1( 𝑓 ).
(3.35)

We start by noticing that, by (3.33), the relation (3.35) holds for 𝜌 ∈ K𝑑−𝑘−1
𝑟 ( 𝑓 ). The decompositions

(2.7a) of P𝑟Λ0( 𝑓 ) = P−𝑟 Λ0( 𝑓 ) (if 𝑑 = 𝑘 + 1) and (2.16) of P−𝑟 Λ𝑑−𝑘−1( 𝑓 ) (if 𝑑 ≥ 𝑘 + 2) then show that
we only have to prove (3.35) for 𝜌 ∈ P0Λ

0( 𝑓 ) (if 𝑑 = 𝑘 + 1) or 𝜌 ∈ dK𝑑−𝑘−2
𝑟 ( 𝑓 ) (if 𝑑 ≥ 𝑘 + 2). This

fact is proved by induction on 𝑑:

• Let us first consider 𝑑 = 𝑘 + 1 and take 𝜌 ∈ P0Λ
0( 𝑓 ). We can use this polynomial form as a test

function in the definition (3.4) of d𝑘
0, 𝑓 𝜂 𝑓

to get∫
𝜕 𝑓

𝑃𝑘
0,𝜕 𝑓

𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝜌 =

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜌 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ 𝜌 ∀𝜌 ∈ P0Λ

0( 𝑓 ), (3.36)

where the second equality follows from (3.32a) with (𝑘, 𝜂
𝑓
) ← (𝑘+1, d𝑘

0, 𝑓 𝜂 𝑓
). For all 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ),

by definition (3.3) of 𝑃𝑘
0, 𝑓 ′ and (3.32a) of 𝐸 𝑘

𝑓 ′ , we have 𝑃𝑘
0, 𝑓 ′𝜂 𝑓 ′

= ★−1𝜂 𝑓 ′ = ★−1𝐸 𝑘
𝑓 ′𝜂 𝑓 ′

=

𝑃𝑘
𝑟 , 𝑓 ′𝐸

𝑘
𝑓 ′𝜂 𝑓 ′

, where the last relation follows applying the definition (3.3) of 𝑃𝑘
𝑟 , 𝑓 ′ . We infer from

this equality and (3.36) that∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝐸 𝑘
𝜕 𝑓
𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝜌 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ 𝜌 ∀𝜌 ∈ P0Λ

0( 𝑓 ).

Applying the definition (3.4) of d𝑘
𝑟 , 𝑓

𝐸 𝑘
𝑓
𝜂
𝜕 𝑓

with 𝜇 = 𝜌 (which satisfies d𝜌 = 0) to the left-hand
side then concludes the proof of (3.35).

• We now take 𝑑 ≥ 𝑘 + 2 and 𝜌 ∈ dK𝑑−𝑘−2
𝑟 ( 𝑓 ), which we write 𝜌 = d𝛼 with 𝛼 ∈ K𝑑−𝑘−2

𝑟 ( 𝑓 ) ⊂
P−𝑟 Λ𝑑−𝑘−2( 𝑓 ). Applying the link (3.12) between discrete exterior derivatives on 𝑓 and 𝜕 𝑓 , we
have ∫

𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜌 = (−1)𝑘+1

∫
𝜕 𝑓

d𝑘
𝑟 ,𝜕 𝑓

𝐸 𝑘
𝜕 𝑓
𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼. (3.37)

By Lemma 4, for all 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ), tr 𝑓 ′ 𝛼 ∈ P−𝑟 Λ𝑑−𝑘−2( 𝑓 ′), so we can apply (3.35) on 𝑓 ′ (by the
induction hypothesis) to get∫

𝑓 ′
d𝑘
𝑟 , 𝑓 ′𝐸

𝑘
𝑓 ′𝜂 𝑓 ′

∧ tr 𝑓 ′ 𝛼 =

∫
𝑓 ′
★−1𝐸 𝑘+1

𝑓 ′ d𝑘
0, 𝑓 ′𝜂 𝑓 ′

∧ tr 𝑓 ′ 𝛼 =

∫
𝑓 ′
𝑃𝑘+1
𝑟 , 𝑓 ′𝐸

𝑘+1
𝑓 ′ d𝑘

0, 𝑓 ′𝜂 𝑓 ′
∧ tr 𝑓 ′ 𝛼,

the second equality being justified by (3.20) and (2.4) (with (X, 𝑓 , 𝑑, 𝑘) ← (P−𝑟 Λ(𝑑−1)−(𝑘+1) ( 𝑓 ′), 𝑓 ′, 𝑑−
1, 𝑘 + 1)) and the fact that tr 𝑓 ′ 𝛼 ∈ P−𝑟 Λ(𝑑−1)−(𝑘+1) ( 𝑓 ′). Plugging this relation into (3.37) yields∫

𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜌 = (−1)𝑘+1

∫
𝜕 𝑓

𝑃𝑘+1
𝑟 ,𝜕 𝑓

𝐸 𝑘+1
𝜕 𝑓

d𝑘
0,𝜕 𝑓

𝜂
𝜕 𝑓
∧ tr𝜕 𝑓 𝛼.

Invoking then the definition (3.32b) of 𝐸 𝑘+1
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

with (𝑘, 𝜇, 𝜈, 𝜂
𝑓
) ← (𝑘 + 1, 𝛼, 0, d0, 𝑓 𝜂 𝑓

), and

using the property d𝑘+1
0, 𝑓 ◦ d𝑘

0, 𝑓 = 0 (consequence of (3.15) with 𝑘 + 1 instead of 𝑘) we infer∫
𝑓

d𝑘
𝑟 , 𝑓 𝐸

𝑘
𝑓 𝜂 𝑓
∧ 𝜌 =

∫
𝑓

★−1𝐸 𝑘+1
𝑓 d𝑘

0, 𝑓 𝜂 𝑓
∧ d𝛼

and (3.35) follows by recalling that 𝜌 = d𝛼.

22



3. Proof of (C3) for the reduction. To conclude the proof of (C3), it remains to show that 𝑅𝑘+1
ℎ

d𝑘
𝑟 ,ℎ

𝜔
ℎ
=

d𝑘
0,ℎ𝑅

𝑘
ℎ
𝜔

ℎ
for all 𝜔

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
. Since vectors in 𝑋 𝑘+1

0,ℎ only have constant components on cells of dimension
𝑘 + 1, and since 𝑅𝑘+1

ℎ
is defined by (3.31), we only have to show that∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜌 =

∫
𝑓

d𝑘
0, 𝑓 𝑅

𝑘
𝑓𝜔 𝑓
∧ 𝜌 ∀ 𝑓 ∈ Δ𝑘+1(Mℎ) , ∀𝜌 ∈ P0Λ

0( 𝑓 ). (3.38)

Let 𝜌 as above and apply the definition (3.4) of d𝑘
𝑟 , 𝑓

𝜔
𝑓

to 𝜇 = 𝜌; accounting for d𝜌 = 0, we obtain∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜌 =

∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜌. (3.39)

For each 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ), by definition (3.3) of 𝑃𝑘
𝑟 , 𝑓 ′ , we can write∫

𝑓 ′
𝑃𝑘
𝑟 , 𝑓 ′𝜔 𝑓

∧ tr 𝑓 ′ 𝜌 =

∫
𝑓 ′
★−1𝜔 𝑓 ∧ tr 𝑓 ′ 𝜌 =

∫
𝑓 ′
★−1𝜋0

0, 𝑓𝜔 𝑓 ∧ tr 𝑓 ′ 𝜌 =

∫
𝑓 ′
𝑃𝑘

0, 𝑓 ′𝑅
𝑘
𝑓 ′𝜔 𝑓 ′ ∧ tr 𝑓 ′ 𝜌, (3.40)

where we have used the fact that tr 𝑓 ′ 𝜌 ∈ P0Λ
0( 𝑓 ′) to insert the projector in the second equality and the

definitions (3.31) of 𝑅𝑘
𝑓 ′ and (3.3) of 𝑃𝑘

0, 𝑓 ′ to conclude. Combining (3.39) and (3.40), we find∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜌 =

∫
𝜕 𝑓

𝑃𝑘
0,𝜕 𝑓

𝑅𝑘
𝜕 𝑓
𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜌.

Applying the definition (3.4) of d𝑘
0, 𝑓 𝑅

𝑘
𝑓
𝜔

𝑓
then concludes the proof of (3.38).

4. Proof of (C2). Finally, to prove (C2), we notice that if 𝜔
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
, then by (3.31) and (3.32a) the

components of 𝐸 𝑘
ℎ
𝑅𝑘
ℎ
𝜔

ℎ
on the lowest dimensional cells 𝑓 ∈ Δ𝑘 (Mℎ) are just the averages of the

components of 𝜔
ℎ

on these cells; hence, 𝐸 𝑘
ℎ
𝑅𝑘
ℎ
𝜔

ℎ
− 𝜔

ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ,♭
. Moreover, by the cochain map

property (C3), d𝑘
𝑟 ,ℎ
(𝐸 𝑘

ℎ
𝑅𝑘
ℎ
𝜔

ℎ
− 𝜔

ℎ
) = 𝐸 𝑘

ℎ
𝑅𝑘
ℎ
d𝑘
𝑟 ,ℎ

𝜔
ℎ
− d𝑘

𝑟 ,ℎ
𝜔

ℎ
= 0 whenever 𝜔

ℎ
∈ Ker d𝑘

𝑟 ,ℎ
. We can

thus, for such an 𝜔
ℎ
, apply Lemma 19 with 𝜔

ℎ
← 𝐸 𝑘

ℎ
𝑅𝑘
ℎ
𝜔

ℎ
− 𝜔

ℎ
to see that this element belongs to

Im d𝑘−1
𝑟 ,ℎ

, establishing (C2). □

4 A VEM-inspired complex
In this section we consider an alternative construction inspired by the Virtual Element complex of [8].
Notice that we make here no effort to reduce the polynomial degree of certain components of the
discrete spaces, which is known to be possible; see, e.g., [9] and also [35] for a general framework with
application to DDR methods. Notice also that we work in a fully discrete spirit, without attempting to
identify the underlying virtual spaces (which are not needed for the purposes of the present work).

Let again a polynomial degree 𝑟 ≥ 0 be fixed. The general principle to design the VEM-inspired
sequence is to select polynomial components that make it possible to reconstruct, for each 𝑑-cell
and inductively on the dimension 𝑑, a discrete potential capable of reproducing polynomial forms in
P−
𝑟+1Λ

𝑘 ( 𝑓 ). The main difference with respect to the DDR approach illustrated in Section 3 is that, with
the exception of (𝑘 + 1)-cells, the required information on the discrete exterior derivative is directly
encoded in the discrete spaces.

Adopting this approach has several, far-reaching, consequences. The first one is that the discrete
spaces contain a mix of both traces and exterior derivatives (which, in passing, requires higher regularity
in the definition of the interpolators). The components on 𝑘- and (𝑘 + 1)-cells in the discrete space
of 𝑘-forms play a slightly different role than the others (and are, as a result, treated separately in the
definition of the space). The second consequence is that the proofs of key properties (polynomial
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𝑘

𝑑
0 1 2 3

0 R = P𝑟Λ0( 𝑓0) {0} × K0
𝑟 ( 𝑓1) {0} × K1

𝑟+1( 𝑓2) {0} × K2
𝑟+1( 𝑓3)

1 P𝑟Λ0( 𝑓1) K1
𝑟+1( 𝑓2) × K

0
𝑟 ( 𝑓2) K2

𝑟+1( 𝑓3) × K
1
𝑟+1( 𝑓3)

2 P𝑟Λ0( 𝑓2) K1
𝑟+1( 𝑓3) × K

0
𝑟 ( 𝑓3)

3 P𝑟Λ0( 𝑓3)

𝑘

𝑑
0 1 2 3

0 R = P𝑟 ( 𝑓0) {0} × P♭
𝑟 ( 𝑓2) {0} × R

c
𝑟+1( 𝑓2) {0} × R

c
𝑟+1( 𝑓3)

1 P𝑟 ( 𝑓1) R
c
𝑟+1( 𝑓2) × P♭

𝑟 ( 𝑓2) R
c
𝑟+1( 𝑓3) × G

c
𝑟+1( 𝑓3)

2 P𝑟 ( 𝑓2) G
c
𝑟+1( 𝑓3) × P♭

𝑟 ( 𝑓3)
3 P𝑟 ( 𝑓3)

Table 2: Polynomial components attached to each mesh entity 𝑓𝑑 of dimension 𝑑 ∈ {0, . . . , 3} for the
space 𝑉 𝑘

𝑟 ,ℎ
for 𝑘 ∈ {0, . . . , 3} (top) and counterparts through vector proxies (bottom).

consistency, cohomology, etc.) are carried out by induction on the dimension (and not on the difference
between the dimension and the form degree, as in Theorems 11 and 15). This leads to somewhat simpler
arguments, at the cost of larger discrete spaces. Also, the commutation property is essentially obtained
by definition of the local discrete exterior derivative (with the exception of lowest-dimensional cells).

4.1 Definition
4.1.1 Discrete spaces

We define the following discrete counterpart of 𝐻Λ𝑘 (Ω), 0 ≤ 𝑘 ≤ 𝑛:

𝑉 𝑘
𝑟 ,ℎ

≔
?

𝑓 ∈Δ𝑘 (Mℎ )
P𝑟Λ0( 𝑓 ) ×

?
𝑓 ∈Δ𝑘+1 (Mℎ )

K1
𝑟+1( 𝑓 ) × K

0
𝑟 ( 𝑓 )

×
𝑛?

𝑑=𝑘+2

?
𝑓 ∈Δ𝑑 (Mℎ )

K𝑑−𝑘
𝑟+1 ( 𝑓 ) × K

𝑑−𝑘−1
𝑟+1 ( 𝑓 ). (4.1)

Notice that, on (𝑘 + 1)-cells, the second component has polynomial degree reduced by one compared
to 𝑑-cells with 𝑑 ≥ 𝑘 + 2, i.e., we have K0

𝑟 ( 𝑓 ) instead of K0
𝑟+1( 𝑓 ). A generic element of 𝑉 𝑘

𝑟 ,ℎ
will be

denoted by
𝜔

ℎ
=
(
(𝜔 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) , (𝜔 𝑓 , 𝐷𝜔, 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
. (4.2)

The notation 𝐷𝜔, 𝑓 is reminescent of the fact that these polynomial components are interpreted as Hodge
stars of exterior derivatives. We refer to Table 2 for an overview of the polynomial unknowns in 𝑉 𝑘

𝑟 , 𝑓
in

dimensions 0 to 3, as well as their vector proxies.
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4.1.2 Interpolators

For all integers 0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛 and any 𝑓 ∈ Δ𝑑 (Mℎ), the local interpolator is such that, for all
𝜔 ∈ 𝐶1Λ𝑘 ( 𝑓 ),

𝐼𝑘𝑟 , 𝑓𝜔 ≔

( (
𝜋0
𝑟 , 𝑓 ′ (★ tr 𝑓 ′ 𝜔)

)
𝑓 ′∈Δ𝑘 ( 𝑓 ) ,(

𝜋
K ,1
𝑟+1, 𝑓 ′ (★ tr 𝑓 ′ 𝜔), 𝜋K ,0

𝑟 , 𝑓 ′ (★ tr 𝑓 ′ d𝜔)
)
𝑓 ′∈Δ𝑘+1 ( 𝑓 )

)
,(

𝜋
K ,𝑑′−𝑘
𝑟+1, 𝑓 ′ (★ tr 𝑓 ′ 𝜔), 𝜋K ,𝑑′−𝑘−1

𝑟+1, 𝑓 ′ (★ tr 𝑓 ′ d𝜔)
)
𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘+2,𝑑 ]

)
.

(4.3)

Remark 21 (Domain of the interpolator). Owing to the presence of polynomial components that are
interpreted as exterior derivatives (compare (3.2) with (4.3)), the interpolator in the VEM-inspired
construction requires higher regularity of the interpolated functions compared to the DDR complex
presented in Section 3, namely 𝐶1Λ𝑘 ( 𝑓 ) instead of 𝐶0Λ𝑘 ( 𝑓 ).
4.1.3 Global discrete exterior derivative and VEM complex

For all 𝑓 ∈ Δ𝑘+1(Mℎ), we define the discrete exterior derivative d𝑘
𝑟 , 𝑓

: 𝑉 𝑘
𝑟 , 𝑓
→ P𝑟Λ𝑘+1( 𝑓 ) such that,

for all 𝜔
𝑓
∈ 𝑉 𝑘

𝑟 , 𝑓
,∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ (𝜇 + 𝜈) =
∫
𝜕 𝑓

★−1𝜔𝜕 𝑓 ∧ tr𝜕 𝑓 𝜇 +
∫
𝑓

★−1𝐷𝜔, 𝑓 ∧ 𝜈

∀(𝜇, 𝜈) ∈ P0Λ
0( 𝑓 ) × K0

𝑟 ( 𝑓 ), (4.4)

where, as before, 𝜔𝜕 𝑓 is defined by (𝜔𝜕 𝑓 ) | 𝑓 ′ = 𝜔 𝑓 ′ ∈ P𝑟Λ0( 𝑓 ′) for all 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ). Notice that the
above equation defines d𝑘

𝑟 , 𝑓
𝜔

𝑓
uniquely as, by (2.7a), 𝜇 + 𝜈 spans P𝑟Λ0( 𝑓 ) as (𝜇, 𝜈) spans P0Λ

0( 𝑓 ) ×
K0

𝑟 ( 𝑓 ). Moreover, taking 𝜇 = 0 and letting 𝜈 span K0
𝑟 ( 𝑓 ), we infer, using (2.4) with (X, 𝜔, 𝜇) ←

(K0
𝑟 ( 𝑓 ), d𝑘

𝑟 , 𝑓
𝜔

𝑓
, 𝜈),

𝐷𝜔, 𝑓 = 𝜋
K ,0
𝑟 , 𝑓
(★d𝑘

𝑟 , 𝑓𝜔 𝑓
) ∀ 𝑓 ∈ Δ𝑘+1(Mℎ). (4.5)

Unlike the DDR complex, the construction of a global discrete exterior derivative for the VEM
complex does not require to first reconstruct traces on lower-dimensional cells, as all the necessary
information is encoded in the polynomial components (𝐷𝜔, 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+2,𝑛] supplemented by
(d𝑘

𝑟 , 𝑓
𝜔

𝑓
) 𝑓 ∈Δ𝑘+1 (Mℎ ) . More specifically, for all integers 𝑘 ∈ [0, 𝑛 − 1], we let d𝑘

𝑟 ,ℎ
: 𝑉 𝑘

𝑟 ,ℎ
→ 𝑉 𝑘+1

𝑟 ,ℎ
be

such that, for all 𝜔
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ
,

d𝑘
𝑟 ,ℎ

𝜔
ℎ
≔

(
(★d𝑘

𝑟 , 𝑓𝜔 𝑓
) 𝑓 ∈Δ𝑘+1 (Mℎ ) , (𝐷𝜔, 𝑓 , 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+2,𝑛]

)
(4.6)

(compare with (4.2) and notice the different positioning, compared to 𝜔
ℎ
, of the polynomial components

𝐷𝜔, 𝑓 ). As for the DDR complex, we will denote by d𝑘
𝑟 , 𝑓

the restriction of d𝑘
𝑟 ,ℎ

to 𝑓 ∈ Δ𝑑 (Mℎ) with
𝑑 ∈ [0, 𝑛] such that 𝑘 ≤ 𝑑 − 1.

The VEM sequence of spaces and operators then reads

VEM(𝑟) ≔ {0} 𝑉0
𝑟 ,ℎ

𝑉1
𝑟 ,ℎ

· · · 𝑉𝑛−1
𝑟 ,ℎ

𝑉𝑛
𝑟,ℎ

{0}.
d0
𝑟,ℎ

d𝑛−1
𝑟,ℎ (4.7)

4.1.4 Local discrete potentials and discrete exterior derivatives

Given a form degree 𝑘 ∈ [0, 𝑛], for all 𝑓 ∈ Δ𝑑 (Mℎ), 𝑘 ≤ 𝑑 ≤ 𝑛, we define the local discrete potential
𝑃𝑘
𝑟 , 𝑓

: 𝑉 𝑘
𝑟
( 𝑓 ) → P−

𝑟+1Λ
𝑘 ( 𝑓 ) by induction on 𝑑 as follows: For all 𝜔

𝑓
∈ 𝑉 𝑘

𝑟 , 𝑓
,
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• If 𝑑 = 𝑘 , we simply set

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

≔ ★−1𝜔 𝑓 ∈ P𝑟Λ𝑑 ( 𝑓 ) = P−𝑟+1Λ
𝑑 ( 𝑓 ), (4.8)

where the last equality follows from (2.13) if 𝑑 = 0 (after noticing that P𝑟Λ𝑑 ( 𝑓 ) � R �
P−
𝑟+1Λ

𝑑 ( 𝑓 )) and from (2.15) if 𝑑 ≥ 1;

• If 𝑘 + 1 ≤ 𝑑 ≤ 𝑛, using the isomorphism (2.17) with ℓ = 𝑑 − 𝑘 ≥ 1 and 𝑟 replaced by 𝑟 + 1, we
define 𝑃𝑘

𝑟 , 𝑓
𝜔

𝑓
∈ P−

𝑟+1Λ
𝑘 ( 𝑓 ) as the unique solution of the following equation:

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓𝜔 𝑓

∧(d𝜇+𝜈) =
∫
𝑓

★−1𝐷𝜔, 𝑓 ∧𝜇−
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧tr𝜕 𝑓 𝜇+(−1)𝑘+1

∫
𝑓

★−1𝜔 𝑓 ∧𝜈

∀(𝜇, 𝜈) ∈ K𝑑−𝑘−1
𝑟+1 ( 𝑓 ) × K𝑑−𝑘

𝑟+1 ( 𝑓 ), (4.9)

where

𝐷𝜔, 𝑓 ≔

{
★d𝑘

𝑟 , 𝑓
𝜔

𝑓
if 𝑑 = 𝑘 + 1,

𝐷𝜔, 𝑓 if 𝑑 ≥ 𝑘 + 2,
(4.10)

and we have introduced the piecewise polynomial boundary potential 𝑃𝑘
𝑟 ,𝜕 𝑓

: 𝑉 𝑘
𝑟 ,𝜕 𝑓
→ Λ𝑘 (𝜕 𝑓 )

such that (𝑃𝑘
𝑟 ,𝜕 𝑓
) | 𝑓 ′ ≔ 𝑃𝑘

𝑟 , 𝑓 ′ for all 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ).

Leveraging the above-defined discrete potentials, we can define the discrete exterior derivative d𝑘
𝑟 , 𝑓

:
𝑉 𝑘
𝑟 , 𝑓
→ P𝑟Λ𝑘+1( 𝑓 ) for all 𝑓 ∈ Δ𝑑 (Mℎ), 𝑘 + 2 ≤ 𝑑 ≤ 𝑛 − 1 (this object was previously only defined for

𝑑 = 𝑘 + 1, see (4.4)), setting:

d𝑘
𝑟 , 𝑓𝜔 𝑓

≔ 𝑃𝑘+1
𝑟 , 𝑓 d𝑘

𝑟 , 𝑓
𝜔

𝑓
∀𝜔

𝑓
∈ 𝑉 𝑘

𝑟 , 𝑓
. (4.11)

Notice that these discrete exterior derivatives are not relevant in the definition of the VEM complex, but
may be useful in practical applications.

4.2 Main properties of the VEM complex
The main results for the VEM complex are stated below.

Theorem 22 (Cohomology of the VEM complex). The VEM sequence (4.7) is a complex and its
cohomology is isomorphic to the cohomology of the continuous de Rham complex (1.2).

Proof. See Section 4.6. □

Theorem 23 (Polynomial consistency of the discrete potential and exterior derivative). For all integers
0 ≤ 𝑘 ≤ 𝑑 ≤ 𝑛 and all 𝑓 ∈ Δ𝑑 (Mℎ), it holds

𝑃𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝜔 ∀𝜔 ∈ P−𝑟+1Λ

𝑘 ( 𝑓 ), (4.12)

and, if 𝑑 ≥ 𝑘 + 1,
d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = d𝜔 ∀𝜔 ∈ P−𝑟+1Λ

𝑘 ( 𝑓 ). (4.13)

Proof. See Section 4.5. □
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4.3 Complex property
Lemma 24 (Complex property). The sequence (4.7) defines a complex, i.e., for all integers 𝑘 ∈ [1, 𝑛−1]
and all 𝜔

ℎ
∈ 𝑉 𝑘−1

𝑟 ,ℎ
,

d𝑘
𝑟 ,ℎ
(d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
) = 0.

Proof. Applying the definition (4.6) of the global discrete exterior derivative first for 𝑘 − 1 then for 𝑘 ,
we obtain

d𝑘−1
𝑟 ,ℎ

𝜔
ℎ
=

(
(★d𝑘−1

𝑟 , 𝑓 𝜔 𝑓
) 𝑓 ∈Δ𝑘 (Mℎ ) , (𝐷𝜔, 𝑓 , 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
∈ 𝑉 𝑘

𝑟 ,ℎ
, (4.14)

which shows that, for all 𝑑 ∈ [𝑘 + 1, 𝑛] and all 𝑓 ∈ Δ𝑑 (Mℎ), the exterior derivative components of
d𝑘−1
𝑟 ,ℎ

𝜔
ℎ

are zero, and thus that

d𝑘
𝑟 ,ℎ
(d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
) =

( (
★ d𝑘

𝑟 , 𝑓 (d
𝑘−1
𝑟 , 𝑓

𝜔
𝑓
)
)
𝑓 ∈Δ𝑘+1 (Mℎ ) , (0, 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+2,𝑛]

)
∈ 𝑉 𝑘+1

𝑟 ,ℎ
.

The assertion is therefore proved if we show that d𝑘
𝑟 , 𝑓
(d𝑘−1

𝑟 , 𝑓
𝜔

𝑓
) = 0 for all 𝑓 ∈ Δ𝑘+1(Mℎ). Applying

the definition of the local discrete exterior derivative (see (4.4)) with 𝜔
𝑓

replaced by d𝑘−1
𝑟 , 𝑓

𝜔
𝑓

obtained
by restricting (4.14) to 𝑓 , we get: For all (𝜇, 𝜈) ∈ P0Λ

0( 𝑓 ) × K0
𝑟 ( 𝑓 ),∫

𝑓

d𝑘
𝑟 , 𝑓 d

𝑘−1
𝑟 , 𝑓

𝜔
𝑓
∧ (𝜇 + 𝜈) =

∫
𝜕 𝑓

d𝑘−1
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
∧ tr𝜕 𝑓 𝜇 = 0,

where the conclusion follows using the definition (4.4) of d𝑘−1
𝑟 , 𝑓 ′𝜔 𝑓 ′ with (𝜇, 𝜈) ← (tr 𝑓 ′ 𝜇, 0) for all

𝑓 ′ ∈ Δ𝑘 ( 𝑓 ) and noticing, as at the end of the proof of Lemma 14, that the sum over 𝑓 ′ of the integrals
over 𝜕 𝑓 ′ is zero. □

4.4 Commutation
Proposition 25 (Commutation property for the discrete exterior derivative in dimension 𝑑 = 𝑘 +1). For
all 𝑓 ∈ Δ𝑘+1(Mℎ), it holds

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = ★−1𝜋0

𝑟 , 𝑓 (★d𝜔) ∀𝜔 ∈ 𝐶1Λ𝑘 ( 𝑓 ), (4.15)

expressing the commutativity of the following diagram:

𝐶1Λ𝑘 ( 𝑓 ) 𝐶0Λ𝑘+1( 𝑓 )

𝑉 𝑘
𝑟
( 𝑓 ) P𝑟Λ𝑘+1( 𝑓 ).

d

𝐼𝑘
𝑟, 𝑓

★−1𝜋0
𝑟, 𝑓

★

d𝑘
𝑟, 𝑓

Proof. Plugging the definition (4.3) of the interpolator into (4.4) we get, for all (𝜇, 𝜈) ∈ P0Λ
0( 𝑓 ) ×

K0
𝑟 ( 𝑓 ), ∫

𝑓

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 ∧ (𝜇 + 𝜈) =

∫
𝜕 𝑓

★−1𝜋0
𝑟 ,𝜕 𝑓
(★ tr𝜕 𝑓 𝜔) ∧ tr𝜕 𝑓 𝜇 +

∫
𝑓

★−1𝜋K ,0
𝑟 , 𝑓
(★d𝜔) ∧ 𝜈,

where 𝜋0
𝑟 ,𝜕 𝑓

denotes the piecewise 𝐿2-orthogonal projector obtained patching together the 𝜋0
𝑟 , 𝑓 ′ , 𝑓 ′ ∈

Δ𝑘 ( 𝑓 ). Using (2.4) with (X, 𝜔, 𝜇) ← (K0
𝑟 ( 𝑓 ′), d𝜔, 𝜈) for the second term and, for each 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ),

(X, 𝑑, 𝑓 ) ← (P𝑟Λ0( 𝑓 ′), 𝑘, 𝑓 ′) for the first term, the projectors can be removed. The Stokes formula
(2.1) along with d𝜇 = 0 (since 𝜇 is constant) then yields∫

𝑓

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 ∧ (𝜇 + 𝜈) =

∫
𝑓

d𝜔 ∧ 𝜇 +
∫
𝑓

d𝜔 ∧ 𝜈 =

∫
𝑓

★−1𝜋0
𝑟 , 𝑓 (★d𝜔) ∧ (𝜇 + 𝜈),

where the conclusion follows from (2.4) with (X, 𝜔, 𝜇) ← (P𝑟Λ0( 𝑓 ), d𝜔, 𝜇+ 𝜈). Since, by (2.7a), 𝜇+ 𝜈
spans P𝑟Λ0( 𝑓 ) as (𝜇, 𝜈) spans P0Λ

0( 𝑓 ) × K0
𝑟 ( 𝑓 ), this concludes the proof. □
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Proposition 26 (Commutation property for the local discrete exterior derivative). For all integers
𝑑 ∈ [1, 𝑛] and 𝑘 ≤ 𝑑 − 1, and all 𝑓 ∈ Δ𝑑 (Mℎ), it holds

d𝑘
𝑟 , 𝑓
(𝐼𝑘𝑟 , 𝑓𝜔) = 𝐼𝑘+1𝑟 , 𝑓 (d𝜔) ∀𝜔 ∈ 𝐶2Λ𝑘 ( 𝑓 ), (4.16)

expressing the commutativity of the following diagram:

𝐶2Λ𝑘 ( 𝑓 ) 𝐶1Λ𝑘+1( 𝑓 )

𝑉 𝑘
𝑟
( 𝑓 ) 𝑉 𝑘+1

𝑟
( 𝑓 ).

d

𝐼𝑘
𝑟, 𝑓

𝐼𝑘+1
𝑟, 𝑓

d𝑘
𝑟, 𝑓

Proof. Immediate consequence of (4.15) along with the definition (4.3) of the interpolator, and the
property d ◦ d = 0. □

4.5 Polynomial consistency
Proof of Theorem 23. The proof proceeds by induction on the dimension 𝑑. When 𝑑 = 𝑘 , (4.12)
is a direct consequence of the definitions (4.8) of the potential and (4.3) of the interpolator, which
give 𝑃𝑘

𝑟 , 𝑓
𝐼𝑘
𝑟 , 𝑓

𝜔 = ★−1𝜋0
𝑟 , 𝑓
(★𝜔) = 𝜔, where, to remove the projector, we have used the fact that

★𝜔 ∈ P𝑟Λ0( 𝑓 ), since 𝜔 ∈ P−
𝑟+1Λ

𝑑 ( 𝑓 ) = P𝑟Λ𝑑 ( 𝑓 ) (see (2.15) with 𝑟 + 1 instead of 𝑟).
We next prove (4.12) for 𝑑 ≥ 𝑘 + 1 assuming that it holds for 𝑑 − 1. Writing the definition (4.9) of

the potential for 𝜔
𝑓
= 𝐼𝑘

𝑟 , 𝑓
𝜔, we get, for all (𝜇, 𝜈) ∈ K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) × K𝑑−𝑘
𝑟+1 ( 𝑓 ),

(−1)𝑘+1
∫
𝑓

𝑃𝑘
𝑟 , 𝑓 (𝐼

𝑘
𝑟 , 𝑓𝜔) ∧ (d𝜇 + 𝜈)

=

∫
𝑓

★−1𝐷𝜔, 𝑓 ∧ 𝜇 −
∫
𝜕 𝑓

𝑃𝑘
𝑟 ,𝜕 𝑓
(𝐼𝑘

𝑟 ,𝜕 𝑓
tr𝜕 𝑓 𝜔) ∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1

∫
𝑓

★−1(𝜋K ,𝑑−𝑘
𝑟+1, 𝑓 ★𝜔) ∧ 𝜈

=

∫
𝑓

★−1𝐷𝜔, 𝑓 ∧ 𝜇 −
∫
𝜕 𝑓

tr𝜕 𝑓 𝜔 ∧ tr𝜕 𝑓 𝜇 + (−1)𝑘+1
∫
𝑓

𝜔 ∧ 𝜈,

(4.17)
where we have used the induction hypothesis for the second term in the right-hand side after noticing that,
by Lemma 4 with ℓ = 𝑘 , tr 𝑓 ′ 𝜔 ∈ P−𝑟+1Λ

𝑘 ( 𝑓 ′) for all 𝑓 ′ ∈ Δ𝑑−1( 𝑓 ), together with (2.4) for the third one.
Recalling the definition (4.10) of 𝐷𝑘

𝜔, 𝑓
, we distinguish two cases for the first term in the right-hand side.

If 𝑑 = 𝑘 + 1, (4.13) (immediate consequence of (4.15) after observing that 𝑑P−
𝑟+1Λ

𝑘 ( 𝑓 ) ⊂ P𝑟Λ𝑘+1( 𝑓 ))
gives★−1𝐷𝜔, 𝑓 = ★−1★d𝑘

𝑟 , 𝑓
(𝐼𝑘

𝑟 , 𝑓
𝜔) = d𝜔. If, on the other hand, 𝑑 ≥ 𝑘 +2, recalling the definition (4.3)

of the interpolator, we have
∫
𝑓
★−1𝐷𝜔, 𝑓 ∧ 𝜇 =

∫
𝑓
★−1(𝜋K ,𝑑−𝑘−1

𝑟+1, 𝑓 ★ d𝜔) ∧ 𝜇
(2.4)
=

∫
𝑓

d𝜔 ∧ 𝜇. Plugging
these relations into (4.17), using the Stokes formula (2.1), and simplifying, we get∫

𝑓

𝑃𝑘
𝑟 , 𝑓 (𝐼

𝑘
𝑟 , 𝑓𝜔) ∧ (d𝜇 + 𝜈) =

∫
𝑓

𝜔 ∧ (d𝜇 + 𝜈),

which yields (4.12) for 𝑑 ≥ 𝑘 + 1 since, by (2.17) with ℓ = 𝑑 − 𝑘 ≥ 1, d𝜇 + 𝜈 spans P−
𝑟+1Λ

𝑑−𝑘 ( 𝑓 ) as
(𝜇, 𝜈) spans K𝑑−𝑘−1

𝑟+1 ( 𝑓 ) × K𝑑−𝑘
𝑟+1 ( 𝑓 ).

We have already seen above that (4.13) holds for 𝑑 = 𝑘 + 1. To prove this relation for 𝑑 ≥ 𝑘 + 2, it
suffices to recall (4.11) and (4.16) to write

d𝑘
𝑟 , 𝑓 𝐼

𝑘
𝑟 , 𝑓𝜔 = 𝑃𝑘+1

𝑟 , 𝑓 (d
𝑘
𝑟 , 𝑓

𝐼𝑘𝑟 , 𝑓𝜔) = 𝑃𝑘+1
𝑟 , 𝑓 (𝐼

𝑘+1
𝑟 , 𝑓 d𝜔) = d𝜔,

where the conclusion follows from (4.12) after observing that d𝜔 ∈ P𝑟Λ𝑘+1( 𝑓 ) ⊂ P−
𝑟+1Λ

𝑘+1( 𝑓 ). □
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4.6 Cohomology
As in Section 3.5, given a form degree 𝑘 ∈ [0, 𝑛], we first consider the following subspace of 𝑉 𝑘

𝑟 ,ℎ
:

𝑉 𝑘
𝑟 ,ℎ,♭

≔

{
𝜔

ℎ
=
(
(𝜔 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) , (𝜔 𝑓 , 𝐷𝜔, 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
:
∫
𝑓

★−1𝜔 𝑓 = 0 ∀ 𝑓 ∈ Δ𝑘 (Mℎ)
}
.

Lemma 27 (Exactness property for 𝑉 𝑘
𝑟 ,ℎ,♭

). For all 𝑘 ∈ [0, 𝑛], if 𝜂
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ,♭
satisfies d𝑘

𝑟 ,ℎ
𝜂
ℎ
= 0, then

there exists 𝜔
ℎ
∈ 𝑉 𝑘−1

𝑟 ,ℎ,♭
such that 𝜂

ℎ
= d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
, where, in accordance with the sequence (4.7), we have

set d−1
𝑟 ,ℎ

= d𝑛
𝑟,ℎ

≔ 0.

Proof. Recalling the definition (4.6) of d𝑘
𝑟 ,ℎ

𝜂
ℎ
, we have

d𝑘
𝑟 ,ℎ

𝜂
ℎ
=
(
(★d𝑘

𝑟 , 𝑓 𝜂 𝑓
) 𝑓 ∈Δ𝑘+1 (Mℎ ) , (𝐷𝜂, 𝑓 , 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+2,𝑛]

)
.

If 𝑘 = 0, then
∫
𝑓
★−1𝜂 𝑓 = 0 implies 𝜂 𝑓 = 0 for all 𝑓 ∈ Δ0(Mℎ); moreover, 𝜂 𝑓 = 0 for all 𝑓 ∈ Δ𝑑 (Mℎ),

𝑑 ∈ [1, 𝑛], by definition (4.1) of 𝑉0
𝑟 ,ℎ

(recall that K𝑑
𝑟 ( 𝑓 ) = {0} for all 𝑟 , cf. (2.6)). The condition

d𝑘
𝑟 ,ℎ

𝜂
ℎ
= 0 together with (4.5) yields 𝐷𝜔, 𝑓 = 0 for all 𝑓 ∈ Δ𝑑 (Mℎ), 𝑑 ≥ 𝑘 + 1, and thus

𝜂
ℎ
=
(
(0) 𝑓 ∈Δ0 (Mℎ ) , (0, 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
= d−1

𝑟 ,ℎ
0.

If 1 ≤ 𝑘 ≤ 𝑛 − 1, on the other hand, from d𝑘
𝑟 ,ℎ

𝜂
ℎ
= 0 and (4.5) we infer

𝜂
ℎ
=
(
(𝜂 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) , (𝜂 𝑓 , 0) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]

)
, (4.18a)

while, if 𝑘 = 𝑛, we simply have
𝜂
ℎ
= (𝜂 𝑓 ) 𝑓 ∈Δ𝑛 (Mℎ ) . (4.18b)

Let now

𝜔
ℎ
=
(
(0) 𝑓 ∈Δ𝑘−1 (Mℎ ) , (0, 𝜋

K ,0
𝑟 , 𝑓

𝜂 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) , (0, 𝜂 𝑓 ) 𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑∈[𝑘+1,𝑛]
)
∈ 𝑉 𝑘−1

𝑟 ,ℎ,♭
.

To check that this𝜔
ℎ

is well defined, it suffices to notice that, if 𝑓 ∈ Δ𝑑 (Mℎ) with 𝑑 ≥ 𝑘+1 = (𝑘−1)+2,
then 𝜂 𝑓 ∈ K𝑑−𝑘

𝑟+1 ( 𝑓 ) = K
𝑑−(𝑘−1)−1
𝑟+1 ( 𝑓 ) is a suitable choice for the corresponding component of 𝜔

ℎ
. By

definition (4.4) of d𝑘−1
𝑟 , 𝑓

, we have: For all 𝑓 ∈ Δ𝑘 (Mℎ) and all (𝜇, 𝜈) ∈ P0Λ
0( 𝑓 ) ×K0

𝑟 ( 𝑓 ), since 𝜔 𝑓 ′ = 0
for all 𝑓 ′ ∈ Δ𝑘 ( 𝑓 ),∫

𝑓

d𝑘−1
𝑟 , 𝑓 𝜔 𝑓

∧ (𝜇 + 𝜈) =
∫
𝑓

★−1
�

��𝜋
K ,0
𝑟 , 𝑓

𝜂 𝑓 ∧ 𝜈 =

∫
𝑓

★−1𝜂 𝑓 ∧ (𝜇 + 𝜈),

where the cancellation of 𝜋K ,0
𝑟 , 𝑓

is made possible by (2.4) with (X, 𝜔, 𝜇) ← (K0
𝑟 ( 𝑓 ), ★−1𝜂 𝑓 , 𝜈), while

the introduction of 𝜇 in the last passage is justified observing that 𝜂
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ,♭
implies

∫
𝑓
★−1𝜂 𝑓 = 0 for

all 𝑓 ∈ Δ𝑘 (Mℎ). This relation gives d𝑘−1
𝑟 , 𝑓

𝜔
𝑓
= ★−1𝜂 𝑓 for all 𝑓 ∈ Δ𝑘 (Mℎ) which, combined with the

definition (4.6) of the global discrete exterior derivative and the expression (4.18) of 𝜂
ℎ
, readily yields

𝜂
ℎ
= d𝑘−1

𝑟 ,ℎ
𝜔

ℎ
and concludes the proof. □

Proof of Theorem 22. Contrary to the DDR(0) complex, the VEM(0) complex is not isomorphic to
the CW complex (the VEM spaces for 𝑟 = 0 do not have only constant polynomial components on the
lowest-dimensional cells). As a consequence, designing extensions and reductions between the VEM(𝑟)
and VEM(0) complexes would not directly allow us, as it was the case for the DDR complex in the
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proof of Theorem 10, to analyse the cohomology of the VEM complex. To circumvent this difficulty,
we will instead design extensions 𝐸 𝑘

ℎ
: 𝑋 𝑘

0,ℎ → 𝑉 𝑘
𝑟 ,ℎ

and reductions 𝑅𝑘
ℎ

: 𝑉 𝑘
𝑟 ,ℎ
→ 𝑋 𝑘

0,ℎ between the
VEM(𝑟), 𝑟 ≥ 0, and the DDR(0) complexes, in order to show that their cohomologies are isomorphic.
By Theorem 10, this will prove that the cohomology of VEM(𝑟) is isomorphic to the continuous de
Rham cohomology.

Throughout the rest of this proof, (𝑃𝑘
0, 𝑓 , d

𝑘
0, 𝑓 ) and (𝑃𝑘

𝑟 , 𝑓
, d𝑘

𝑟 , 𝑓
) denote, respectively, the couple

(potential reconstruction, discrete exterior derivative) of the DDR(0) and VEM(𝑟) complexes. We do
not need to differentiate these notations, as the argument removes all ambiguity. For all form degrees
𝑘 ∈ [0, 𝑑], the reduction is obtained setting

𝑅𝑘
ℎ𝜔ℎ

≔
(
(𝜋0

0, 𝑓𝜔 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ )
)

∀𝜔
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ
, (4.19)

while the extension is given by

𝐸 𝑘
ℎ𝜂ℎ

≔

(
(𝜂 𝑓 ) 𝑓 ∈Δ𝑘 (Mℎ ) ,(
𝜋
K ,1
𝑟+1, 𝑓 (★𝑃

𝑘
0, 𝑓 𝜂 𝑓

), 𝜋K ,0
𝑟 , 𝑓
(★d𝑘

0, 𝑓 𝜂 𝑓
)
)
𝑓 ∈Δ𝑘+1 (Mℎ ) ,(

𝜋
K ,𝑑−𝑘
𝑟+1, 𝑓 (★𝑃

𝑘
0, 𝑓 𝜂 𝑓

), 𝜋K ,𝑑−𝑘−1
𝑟+1, 𝑓 (★d𝑘

0, 𝑓 𝜂 𝑓
)
)
𝑓 ∈Δ𝑑 (Mℎ ) , 𝑑≥𝑘+2

)
∀𝜂

ℎ
∈ 𝑋 𝑘

0,ℎ .

(4.20)

As in the proof of Theorem 10, we need to establish the properties (C1)–(C3) of [35, Assumption 1] to
obtain the desired isomorphism in cohomology (also in this case, the relation (3.34) is an immediate
consequence of (C1) and (C3)).

Proof of (C1). An inspection of the definitions (4.19) of the reduction and (4.20) of the extension shows
that 𝑅𝑘

ℎ
𝐸 𝑘
ℎ
𝜂
ℎ
= 𝜂

ℎ
for all 𝜂

ℎ
∈ 𝑋 𝑘

0,ℎ, and thus (C1) holds a fortiori.

Proof of (C3). We need to prove that both the reduction and extension are cochain maps.

Let us start with the extension. We have to prove that, for any integer 𝑘 ∈ [0, 𝑛−1] and all 𝜂
ℎ
∈ 𝑋 𝑘

𝑟 ,ℎ
,

𝐸 𝑘+1
ℎ
(d𝑘

0,ℎ𝜂ℎ
) = d𝑘

𝑟 ,ℎ
(𝐸 𝑘

ℎ
𝜂
ℎ
). Owing to the definitions (4.20) of the extension, (3.7) of d𝑘

0, 𝑓 , and (4.6) of
d𝑘
𝑟 , 𝑓

, and since d𝑘+1
0, 𝑓 ◦ d𝑘

0, 𝑓 = 0 (by (3.15) with 𝑟 = 0 and 𝑘 + 1 instead of 𝑘) this amounts to proving that

★d𝑘
0, 𝑓 𝜂 𝑓

= ★ d𝑘
𝑟 , 𝑓 (𝐸

𝑘
𝑓 𝜂 𝑓
) ∀ 𝑓 ∈ Δ𝑘+1(Mℎ), (4.21)

𝜋
K ,𝑑−𝑘−1
𝑟+1, 𝑓 (★𝑃𝑘+1

0, 𝑓 d𝑘
0, 𝑓 𝜂 𝑓

) = 𝜋
K ,𝑑−𝑘−1
𝑟+1, 𝑓 (★d𝑘

0, 𝑓 𝜂 𝑓
) ∀ 𝑓 ∈ Δ𝑑 (Mℎ), 𝑑 ≥ 𝑘 + 2. (4.22)

The relation (4.22) trivially follows from 𝑃𝑘+1
0, 𝑓 d𝑘

0, 𝑓 = d𝑘
0, 𝑓 , see (3.14) with (𝑘, 𝑟) ← (𝑘 + 1, 0). To prove

(4.21), we take (𝜇, 𝜈) ∈ P0Λ
0( 𝑓 ) × K0

𝑟 ( 𝑓 ) and apply the definitions (4.4) of d𝑘
𝑟 , 𝑓
(𝐸 𝑘

𝑓
𝜂
𝑓
) and (4.20) of

𝐸ℎ
𝑘
𝜂
ℎ

to get∫
𝑓

d𝑘
𝑟 , 𝑓 (𝐸

𝑘
𝑓 𝜂 𝑓
) ∧ (𝜇 + 𝜈) =

∫
𝜕 𝑓

★−1𝜂𝜕 𝑓 ∧ 𝜇 +
∫
𝑓

★−1𝜋K ,0
𝑟 , 𝑓
(★d𝑘

0, 𝑓 𝜂 𝑓
) ∧ 𝜈

=

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜇 +
∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ 𝜈 =

∫
𝑓

d𝑘
0, 𝑓 𝜂 𝑓

∧ (𝜇 + 𝜈),

where the second equality is obtained using the definition (3.4) of d𝑘
0, 𝑓 for the first term and (2.4) with

(X, 𝜔, 𝜇) ← (K0
𝑟 ( 𝑓 ), d𝑘

0, 𝑓 𝜂 𝑓
, 𝜈) for the second one. By (2.7a), and since both d𝑘

𝑟 , 𝑓
(𝐸 𝑘

𝑓
𝜂
𝑓
) and d𝑘

0, 𝑓 𝜂 𝑓

belong to P𝑟Λ𝑘+1( 𝑓 ), this relation gives d𝑘
𝑟 , 𝑓
(𝐸 𝑘

𝑓
𝜂
𝑓
) = d𝑘

0, 𝑓 𝜂 𝑓
, thus proving (4.21).

30



Let us now turn to the reduction. We need to show that, for any integer 𝑘 ∈ [0, 𝑛 − 1] and all
𝜔

ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ
, 𝑅𝑘+1

ℎ
(d𝑘

𝑟 ,ℎ
𝜔

ℎ
) = d𝑘

0,ℎ (𝑅𝑘
ℎ
𝜔

ℎ
), i.e., accounting for the definitions (4.19) of the reduction,

(3.7) of d𝑘
0,ℎ (additionally noticing that 𝜋−,00, 𝑓 concides with 𝜋0

0, 𝑓 owing to (2.12a)), and (4.6) of d𝑘
𝑟 ,ℎ

,

𝜋0
0, 𝑓 (★d𝑘

𝑟 , 𝑓𝜔 𝑓
) = ★d𝑘

0, 𝑓 𝑅
𝑘
𝑓𝜔 𝑓

∀ 𝑓 ∈ Δ𝑘+1(Mℎ). (4.23)

To check this relation, let 𝑓 ∈ Δ𝑘+1(Mℎ) and write, for all 𝜇 ∈ P0Λ
0( 𝑓 ),∫

𝑓

★−1𝜋0
0, 𝑓 (★d𝑘

𝑟 , 𝑓𝜔 𝑓
) ∧ 𝜇 =

∫
𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 Eq. (2.4)

=

∫
𝜕 𝑓

★−1𝜔𝜕 𝑓 ∧ tr𝜕 𝑓 𝜇 Eq. (4.4)

=

∫
𝜕 𝑓

★−1𝜋0
0,𝜕 𝑓

𝜔𝜕 𝑓 ∧ tr𝜕 𝑓 𝜇

=

∫
𝑓

d𝑘
0, 𝑓 𝑅

𝑘
𝑓𝜔 𝑓
∧ 𝜇, Eqs. (4.19), (3.4), (3.3)

where the third equality follows from (2.4) with (X, 𝜔, 𝜇) ← (P0Λ
0(𝜕 𝑓 ), ★−1𝜔𝜕 𝑓 , tr𝜕 𝑓 𝜇). This proves

(4.23), and thus that the reductions form a cochain map.

Proof of (C2). For all 𝜔
ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ
, by the definitions (4.19) and (4.20) of the reduction and extension, it

holds 𝐸 𝑘
ℎ
𝑅𝑘
ℎ
𝜔

ℎ
− 𝜔

ℎ
∈ 𝑉 𝑘

𝑟 ,ℎ,♭
. The proof then continues as in point 4. of the proof of Theorem 10 (see

Section 3.5) with 𝑋 𝑘
𝑟 ,ℎ,♭

replaced by 𝑉 𝑘
𝑟 ,ℎ,♭

and Lemma 19 replaced by Lemma 27. □

5 Links with the literature
We provide here some elements of comparison between the DDR and VEM constructions of Sections
3 and 4, and two other families of discrete complexes.

5.1 Finite Element Exterior Calculus and Finite Element Systems
Finite Element Exterior Calculus (FEEC) is the (conforming) finite element approach for the unified
analysis of discrete complexes [2, 4]. It is based on the selection of piecewise polynomial subspaces of
𝐻Λ(Ω) that form a subcomplex of the continuous complex (1.2). Finite Element Systems (FES) is a
framework for designing such subcomplexes that generalises FEEC to cover finite dimensional spaces
spanned by differential forms that may not be piecewise polynomial on the selected mesh [29, 31]. In
FEEC/FES complexes, only the spaces of differential forms in the continuous complex are replaced with
discrete counterparts: the graded map that links these spaces is the usual exterior derivative d.

A FES space is a space of 𝑘-forms on all 𝑑-cells with 𝑑 ≥ 𝑘 , with a compatibility condition on the
traces:

𝐴𝑘 (Mℎ) =

𝑣ℎ ∈
?

𝑓 ∈ Δ𝑑 (Mℎ )
𝑑 ∈ [𝑘, 𝑛]

𝐴𝑘 ( 𝑓 ) : tr 𝑓 ′ 𝑣 𝑓 = 𝑣 𝑓 ′ for all ( 𝑓 , 𝑓 ′) ∈ Δ𝑑 (Mℎ) × Δ𝑑′ ( 𝑓 ) with 𝑘 ≤ 𝑑′ ≤ 𝑑

 ,

(5.1)
where each 𝐴𝑘 ( 𝑓 ) is a finite-dimensional space of 𝑘-forms and 𝑣 𝑓 denotes the component of 𝑣

ℎ
on 𝑓 .

Because of this compatibility, any element in 𝐴𝑘 (Mℎ) can be identified with an element of 𝐻Λ𝑘 (Ω).
FES contains the usual FEEC complexes (in which case 𝐴𝑘 ( 𝑓 ) are certain polynomial subspaces –
typically full polynomial spaces or trimmed polynomial spaces depending on the considered finite
element), but has also been used to develop other discrete complexes, e.g. based on macro-elements
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(in which case 𝐴𝑘 ( 𝑓 ) is a space of piecewise polynomial forms on a subdivision of 𝑓 ) or with higher
inter-element regularity (𝐶1 spaces, for example).

The concept of (faithful) mirror system plays the role of degrees of freedom in the FES framework.
Mirror systems are constructed on a case-by-case basis for each FES, and are auxiliary tools in the
framework: they are not required to design the FES spaces, but they identify (by duality) a basis of such
spaces. A mirror system for 𝐴𝑘 (Mℎ) is a family of subspaces of linear forms:

𝑍 𝑘 (Mℎ) =
?

𝑓 ∈ Δ𝑑 (Mℎ )
𝑑 ∈ [𝑘, 𝑛]

𝑍 𝑘 ( 𝑓 ) with 𝑍 𝑘 ( 𝑓 ) ⊂ 𝐴𝑘 ( 𝑓 )∗ for all 𝑓 ∈ Δ(Mℎ), (5.2)

where 𝐴𝑘 ( 𝑓 )∗ is the dual space of 𝐴𝑘 ( 𝑓 ) (actually, to link mirror systems and interpolators, each 𝑍 𝑘 ( 𝑓 )
is chosen as a subspace of �̂� 𝑘 ( 𝑓 )∗ with �̂� 𝑘 ( 𝑓 ) ⊃ 𝐴𝑘 ( 𝑓 ), but we won’t need this in the discussion here).
As can be seen in (5.2), a mirror system is built hierarchically on the mesh, and each 𝑍 𝑘 ( 𝑓 ) identifies
the modes of the FES forms that are “interior” to 𝑓 ; to obtain all the modes (interior and boundary)
associated with 𝑓 , one must consider

>
𝑓 ′∈Δ𝑑′ ( 𝑓 ) , 𝑑′∈[𝑘,𝑑 ] 𝑍

𝑘 ( 𝑓 ′).
A particular case of interest in the present context is when 𝑍 𝑘 ( 𝑓 ) ⊂ 𝐿2Λ𝑘 ( 𝑓 )∗ (see Remark 5).

Using the Riesz representation theorem and applying the Hodge star transformation, 𝑍 𝑘 ( 𝑓 ) can then be
identified with a family of subspaces of 𝐿2-integrable (𝑑 − 𝑘)-forms:

𝑍 𝑘 (Mℎ) �
?

𝑓 ∈ Δ𝑑 (Mℎ )
𝑑 ∈ [𝑘, 𝑛]

𝑍𝑑−𝑘 ( 𝑓 ) with 𝑍𝑑−𝑘 ( 𝑓 ) ⊂ 𝐿2Λ𝑑−𝑘 ( 𝑓 ). (5.3)

Here, and contrary to (5.1), no compatibility condition of the traces is imposed: the spaces 𝑍𝑑−𝑘 ( 𝑓 ) are
completely disconnected from each other.

FEEC and FES provide computable spaces – that is, in which functions are entirely described in
an algebraic manner – only on certain types of meshes. This is due to the requirement of compatible
traces. In the DDR and VEM constructions of Sections 3 and 4, on the other hand, this requirement of
computability for conforming subspaces is relaxed. Actually, no such space even needs to be identified:
polytopal methods can be entirely built using spaces of polynomial functions on the mesh, without any
compatibility condition on the traces. These spaces are explicit, and their basis is directly given by the
polynomial components.

Comparing (3.1) and (5.3) for example, we see that the DDR space plays the role of a mirror
system, and puts discrete polynomial components at the center of the construction. A similar approach
is also true for the VEM-inspired spaces (4.1), with, contrary to DDR, some polynomial components
representing exterior derivatives; see the definition (4.3) of the interpolator.

A closer link between DDR and FES can be drawn by noticing that the FES [30, Section 2.1] has
the DDR spaces as mirror system (in the sense of (5.3)). This FES space, based on liftings of harmonic
functions on each cell, therefore identifies a space of conforming functions whose degrees of freedom
correspond to the DDR polynomial components; note that, in the context of vector proxies, another such
identification was done in [11, Section 6.2].

The analogies, however, seem to stop here. While the FES theory would then use this conforming
space and the continuous exterior derivative d to construct a discrete de Rham complex, DDR reconstructs
directly from the unknowns (mirror system) a discrete exterior derivative d

𝑟 ,ℎ
, whose link with the

continuous derivative of the corresponding FES function is not immediate. The appeal of this fully
discrete approach is that, even when the FES space may not be computable (e.g., on polytopal meshes)
and thus not directly usable in a scheme, the DDR space, its discrete exterior derivative, and its potential
reconstruction are always computable, and are polynomially consistent, thus ensuring their practical
applicability and optimal approximation properties.
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5.2 Distributional Differential Forms
The theory of Distributional Differential Forms (DDF) has been introduced in [52] as a generalisation
of the construction in [20] for the a posteriori error analysis of Nédélec edge elements. DDF are built on
triangulations of the domain and, using their relation with the underlying simplicial complexes (as well
as the concept of double complexes), their cohomology was analysed in [52] for rather general boundary
conditions. Poincaré–Friedrichs inequalities were later established in [28].

As is the case for the spaces appearing in the DDR and VEM complexes, DDF spaces are collections
of differential forms on cells of various dimensions, with form degree depending on the dimension
of the cell: if the domain Ω has dimension 𝑛, the DDF space of degree 𝑘 is made of (𝑘 − 𝑛 + 𝑑)-
forms on 𝑑-cells. No compatibility of the traces is enforced on these forms, which can be completely
discontinuous between two 𝑑-simplices. The discrete distributional exterior derivative on the DDF
space is then composed of two contributions: the exterior derivative inside the simplices, and a trace
term. For example, focusing on the highest dimension 𝑑 = 𝑛, if the DDF space of 𝑘-forms is

Λ̂𝑘
−2(Δ𝑛 (Mℎ)) = Λ̂𝑘

−1(Δ𝑛 (Mℎ)) ⊕ Λ̂𝑘−1
−1 (Δ𝑛−1(Mℎ)), (5.4)

(with Λ̂ℓ
−1 subspace of piecewise 𝐶∞Λℓ forms, the index −1 expressing the absence of continuity

properties at the interfaces), for a family 𝜔𝑛,ℎ = (𝜔 𝑓 ) 𝑓 ∈Δ𝑛 (Mℎ ) ∈ Λ̂𝑘
−1(Δ𝑛 (Mℎ)), we define the

distributional derivative d̂𝑘
ℎ

: Λ̂𝑘
−1(Δ𝑛 (Mℎ)) → Λ̂𝑘+1

−2 (Δ𝑛 (Mℎ)) by

d̂𝑘
ℎ𝜔𝑛,ℎ =

©«(d𝑘𝜔 𝑓 ) 𝑓 ∈Δ𝑛 (Mℎ ) ,
©«−

∑︁
𝑓 ∈Σ𝑛 ( 𝑓 ′ )

𝜀 𝑓 𝑓 ′ tr 𝑓 ′ 𝜔 𝑓
ª®¬ 𝑓 ′∈Δ𝑛−1 (Mℎ )

ª®¬ , (5.5)

where Σ𝑛 ( 𝑓 ′) is the set of 𝑛-simplices 𝑓 that share 𝑓 ′ (that is, 𝑓 ′ ∈ Δ𝑛−1( 𝑓 )), and 𝜀 𝑓 𝑓 ′ is the relative
orientation of the simplex 𝑓 ′ with respect to the simplex 𝑓 . Note that, in (5.5), we have adopted a
presentation of the distributional derivative that distributes its two contributions (D and T in [52]) on the
corresponding components (Λ̂𝑘+1−𝑖

−1 (Δ𝑛−𝑖 (Mℎ)))𝑖=0,1 of Λ̂𝑘+1
−2 (Δ𝑛 (Mℎ)) (see (5.4) with 𝑘 + 1 instead

of 𝑘), instead of writing d̂𝑘
ℎ

as a sum of elements in the global space Λ̂𝑘+1
−2 (Δ𝑛 (Mℎ)); this is to better

compare with the definition (3.7). This definition of distributional derivative is a global one, obtained
by testing the piecewise smooth form 𝜔𝑛,ℎ against globally smooth forms, which classically results in
a term inside each 𝑓 ∈ Δ𝑛 (Mℎ) corresponding to the standard exterior derivative (first component in
(5.5)), and a jump across the (𝑛− 1)-sub-simplices based on the difference of traces on the two adjacent
𝑛-simplices (second component in (5.5)).

A crucial remark is that, in (5.5), the component (d𝑘𝜔 𝑓 ) 𝑓 ∈Δ𝑛 (Mℎ ) of 𝑑𝑘
ℎ
𝜔𝑛,ℎ on 𝑛-cells only depends

on the values 𝜔𝑛,ℎ of the discrete distributional differential form on 𝑛-cells, not on the values of these
forms on lower-dimensional cells (e.g., Λ̂𝑘−1

−1 (Δ𝑛−1(Mℎ)) in (5.4)). This is in contrast with the discrete
exterior derivatives in DDR and VEM complexes, whose definition on higher-dimensional cells depends
on polynomial components on their sub-cells; see (3.4) and (4.6). Another difference between DDR
and DDF can be seen when recasting the discrete exterior derivative: integrating by parts (3.4) yields
the following characterisation:∫

𝑓

d𝑘
𝑟 , 𝑓𝜔 𝑓

∧ 𝜇 = −
∫
𝑓

d(★−1𝜔 𝑓 ) ∧ 𝜇 +
∫
𝜕 𝑓

(𝑃𝑘
𝑟 ,𝜕 𝑓

𝜔
𝜕 𝑓
− tr𝜕 𝑓 (★−1𝜔 𝑓 )) ∧ tr𝜕 𝑓 𝜇

∀𝜇 ∈ P𝑟Λ𝑑−𝑘−1( 𝑓 ).

This relation reveals that d𝑘
𝑟 , 𝑓

𝜔
𝑓

is, as in DDF, composed of an exterior derivative term in the 𝑑-cell
and a boundary term involving jumps. However, contrary to DDF, the jumps here are between the trace
of the 𝑑-cell unknown and the potential 𝑃𝑘

𝑟 ,𝜕 𝑓
𝜔
𝜕 𝑓

reconstructed on (𝑑 − 1)-cells (which depends on
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the unknowns on all 𝑑′-subcells of 𝑓 , 𝑘 ≤ 𝑑′ ≤ 𝑑), not between traces of two 𝑑-cells unknowns (as in
(5.5) with 𝑑 = 𝑛). In this respect, the “jump” term in DDR relates more to the kind of face differences
encountered in polytopal methods (e.g., the HHO method [36]) while the jump term in DDF is more
akin to those arising in discontinuous Galerkin (DG) methods [41].

This comparison can be extended to the potential reconstructions themselves. Equation (3.19) shows
that 𝑃𝑘

𝑟 , 𝑓
𝜔

𝑓
is obtained applying a higher-order correction to the cell component★−1𝜔 𝑓 , designed from

the discrete exterior derivative on 𝑓 and the potentials on 𝜕 𝑓 . This enhancement process ensures the
high-order consistency of the method starting from lower-order polynomial unknowns. In the context
of elliptic equations, it is commonly used in methods with unknowns in the elements and on the faces
of the mesh, but it is not directly available in DG methods. In DDF, as in DG, the cell unknown itself
must be used (e.g., in a scheme to discretise the source term), and the consistency is therefore limited
by the degree of this unknown.

A Differential forms and vector proxies
In this section, we briefly recall basic concepts on alternating (resp. differential) forms, and their
representation in terms of vectors (resp. vector fields); these representations are often referred to as
“vector proxies”. We refer the reader to [2, Chapter 6] for a presentation in the framework of Finite
Element Exterior Calculus, and to [15], [25, Chapter 1], [50, Chapter 1] for an introduction in more
general scientific and engineering contexts.

A.1 Exterior algebra in R𝑛

A.1.1 Alternating forms

Let {𝒆𝑖}𝑖∈[1,𝑛] be the canonical basis of R𝑛, equipped with the standard inner product. A basis for
the space of linear forms over R𝑛, i.e., the dual space (R𝑛)′ of R𝑛, is given by {d𝑥𝑖}𝑖∈[1,𝑛] , with
d𝑥𝑖 (𝒆 𝑗) ≔ 𝛿𝑖

𝑗
(Krönecker symbol), for all (𝑖, 𝑗) ∈ [1, 𝑛]2. The starting point of exterior calculus

is to consider alternating multilinear forms, vanishing whenever they are applied to a set of linearly
dependent vectors in R𝑛. For any integer 𝑘 ≥ 1, the set of alternating 𝑘-linear forms on R𝑛 is denoted
by Alt𝑘 (R𝑛); by convention, we set Alt0(R𝑛) ≔ R. We also note that Alt1(R𝑛) = (R𝑛)′ and that
Alt𝑘 (R𝑛) = {0} if 𝑘 > 𝑛 (since families of 𝑘 > 𝑛 vectors are always linearly dependent). It can be
checked that dim Alt𝑘 (R𝑛) =

(𝑛
𝑘

)
. In particular, Alt𝑛 (R𝑛) is the 1-dimensional space spanned by the

determinant in the canonical basis vol (called the volume form).

A.1.2 Exterior product

Given two alternating multilinear forms 𝜔 ∈ Alt𝑖 (R𝑛) and 𝜇 ∈ Alt 𝑗 (R𝑛), their exterior product
𝜔 ∧ 𝜇 ∈ Alt𝑖+ 𝑗 (R𝑛) is defined, for any vectors 𝒗1, . . . , 𝒗𝑖+ 𝑗 ∈ R𝑛, by

(𝜔 ∧ 𝜇) (𝒗1, . . . , 𝒗𝑖+ 𝑗) ≔
∑︁

𝜎∈Σ𝑖, 𝑗

sign(𝜎) 𝜔(𝒗𝜎1 , . . . , 𝒗𝜎𝑖
) 𝜇(𝒗𝜎𝑖+1 , . . . , 𝒗𝜎𝑖+ 𝑗 ),

where Σ𝑖, 𝑗 is the set of all permutations 𝜎 of the (𝑖 + 𝑗)-tuple (1, . . . , 𝑖 + 𝑗) such that 𝜎1 < · · · < 𝜎𝑖 and
𝜎𝑖+1 < · · · < 𝜎𝑖+ 𝑗 . The exterior product satisfies the anticommutativity law

𝜔 ∧ 𝜇 = (−1)𝑖 𝑗𝜇 ∧ 𝜔, (A.1)

so that, in particular, we have d𝑥𝑖 ∧ d𝑥𝑖 = 0 and d𝑥𝑖 ∧ d𝑥 𝑗 = −d𝑥 𝑗 ∧ d𝑥𝑖 . With these definitions, for
𝑘 ∈ [1, 𝑛] a basis of the space Alt𝑘 (R𝑛) is {d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 }𝜎 where 𝜎 spans all strictly increasing
functions [1, 𝑘] → [1, 𝑛]. Hence, any 𝜔 ∈ Alt𝑘 (R𝑛) can be written

𝜔 =
∑︁

1≤𝜎1<· · ·<𝜎𝑘≤𝑛
𝑎𝜎 d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 , 𝑎𝜎 ∈ R. (A.2)
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A.1.3 Hodge star operator

The scalar product in R𝑛 induces a scalar product, denoted by ⟨·, ·⟩, on Alt𝑛−𝑘 (R𝑛) – namely, the scalar
product for which the aforementioned basis {d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑛−𝑘 }𝜎 of Alt𝑛−𝑘 (R𝑛) is orthonormal.
The Hodge star operator is the unique linear mapping ★ : Alt𝑘 (R𝑛) → Alt𝑛−𝑘 (R𝑛) such that, for all
𝜔 ∈ Alt𝑘 (R𝑛), ⟨★𝜔, 𝜇⟩vol = 𝜔 ∧ 𝜇 for all 𝜇 ∈ Alt𝑛−𝑘 (R𝑛). It can be checked that

★(d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 ) = sign(𝜎, 𝜏) (d𝑥𝜏1 ∧ · · · ∧ d𝑥𝜏𝑛−𝑘 ),

where (𝜎, 𝜏) = (𝜎1, . . . , 𝜎𝑘 , 𝜏1, . . . , 𝜏𝑛−𝑘) is a permutation of (1, . . . , 𝑛) such that 𝜎1 < · · · < 𝜎𝑘 and
𝜏1 < · · · < 𝜏𝑛−𝑘 . From the above identity, one can infer that

★(★𝜔) = (−1)𝑘 (𝑛−𝑘 )𝜔 ∀𝜔 ∈ Alt𝑘 (R𝑛) (A.3)

and, hence, that ⟨★𝜔,★𝜇⟩ = ⟨𝜔, 𝜇⟩, i.e., ★ is an isometry. Formula (A.3) justifies the definition (2.2) of
★−1. The anticommutativity (A.1) of ∧, the definition of ★, and the symmetry of ⟨·, ·⟩ then give

★−1𝜔 ∧ 𝜇 = 𝜇 ∧★𝜔 = 𝜔 ∧★𝜇 ∀𝜔, 𝜇 ∈ Alt𝑘 (R𝑛). (A.4)

Example 28 (Hodge star operator in two and three dimensions). If 𝜔 ∈ Alt2(R3), i.e., 𝜔 = 𝑎12 d𝑥1 ∧
d𝑥2 + 𝑎13 d𝑥1 ∧ d𝑥3 + 𝑎23 d𝑥2 ∧ d𝑥3 (see (A.2)), one obtains ★𝜔 ∈ Alt1(R3) with

★𝜔 = 𝑎12 d𝑥3 − 𝑎13 d𝑥2 + 𝑎23 d𝑥1.

If 𝜔 ∈ Alt1(R2), i.e., 𝜔 = 𝑎1 d𝑥1 + 𝑎2 d𝑥2, then ★𝜔 ∈ Alt1(R2) with

★𝜔 = 𝑎1 d𝑥2 − 𝑎2 d𝑥1.

A.1.4 Vector proxies for alternating forms

As already mentioned in Section A.1.1, Alt0(R𝑛) = R and Alt𝑛 (R𝑛) � R. Using the Riesz representation
theorem to identify (R𝑛)′ and R𝑛, we can identify two further spaces of alternating forms. Specifically,
Alt1(R𝑛) = (R𝑛)′ � R𝑛 and, writing ★Alt𝑛−1(R𝑛) = Alt1(R𝑛) � R𝑛, since ★ is bijective, we obtain the
identification Alt𝑛−1(R𝑛) � R𝑛.

Applied with 𝑛 = 3, and recalling the formula for Hodge star transformations of 2-forms in Re-
mark 28, these identifications lead to considering a vector 𝒗 = (𝑎, 𝑏, 𝑐) ∈ R3 as a proxy for both the
alternating linear and bilinear forms

Alt1(R3) ∋ 𝜔 = 𝑎 d𝑥1 + 𝑏 d𝑥2 + 𝑐 d𝑥3 and Alt2(R3) ∋ 𝜇 = 𝑎 d𝑥2 ∧ d𝑥3 − 𝑏 d𝑥1 ∧ d𝑥3 + 𝑐 d𝑥1 ∧ d𝑥2.

On the other hand, when 𝑛 = 2, the discussion above gives two possible ways to identify Alt1(R2) =
Alt2−1(R2) with R2. This leads to associating 𝑎 d𝑥1 + 𝑏 d𝑥2 = 𝜔 ∈ Alt1(R2) either to the vector
𝒗 = (𝑎, 𝑏) ∈ R2, or to its rotation by a right angle 𝜚−𝜋/2𝒗 = (𝑏,−𝑎) ∈ R2.

Based on the the above identifications, when 𝑛 = 3, one can interpret the exterior product of two
alternating multilinear forms 𝜔 ∧ 𝜇 in terms of vector proxies (𝒘, 𝒗) as follows:

• the vector product R3 × R3 ∋ (𝒘, 𝒗) ↦→ 𝒘 × 𝒗 ∈ R3 when (𝜔, 𝜇) ∈ Alt1(R3) × Alt1(R3);

• the dot product R3 × R3 ∋ (𝒘, 𝒗) ↦→ 𝒘 · 𝒗 ∈ R when (𝜔, 𝜇) ∈ Alt1(R3) × Alt2(R3).

On the other hand, if 𝑛 = 2 and 𝜔, 𝜇 ∈ Alt1(R2), we can write 𝜔∧𝜇 = (𝑎 d𝑥1+𝑏 d𝑥2)∧ ( 𝑓 d𝑥1+𝑔 d𝑥2) =
(𝑎𝑔 − 𝑏 𝑓 ) d𝑥1 ∧ d𝑥2. Considering the correspondences 𝜔↔ 𝒘 = (𝑎, 𝑏) and 𝜇↔ 𝒗 = ( 𝑓 , 𝑔), we obtain

𝜔 ∧ 𝜇 = (𝒘 · 𝜚−𝜋/2𝒗) d𝑥1 ∧ d𝑥2. (A.5)
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A.1.5 Contraction and trace

For a given vector 𝒗 ∈ R𝑛, the contraction 𝜔⌟𝒗 ∈ Alt𝑘−1(R𝑛) of 𝜔 ∈ Alt𝑘 (R𝑛) with 𝒗 is defined, for
any 𝒗1, . . . , 𝒗𝑘−1 ∈ R𝑛, by

(𝜔⌟𝒗) (𝒗1, . . . , 𝒗𝑘−1) ≔ 𝜔(𝒗, 𝒗1, . . . , 𝒗𝑘−1). (A.6)

In terms of vector proxies, in the case where 𝑛 = 3, this contraction with 𝒗 corresponds to

• the scalar product R3 ∋ 𝒘 ↦→ 𝒗 · 𝒘 ∈ R when 𝒘 ↔ 𝜔 ∈ Alt1(R3);

• the vector product R3 ∋ 𝒘 ↦→ 𝒗 × 𝒘 ∈ R3 when 𝒘 ↔ 𝜔 ∈ Alt2(R3);

• the multiplication of a real number R ∋ 𝑤 ↦→ 𝑤𝒗 ∈ R3 when 𝑤↔ 𝜔 ∈ Alt3(R3).

Let now 𝑉 ⊂ 𝑊 be finite dimensional subspaces of R𝑛, and 𝜄𝑉 : 𝑉 ↩→ 𝑊 be the inclusion of 𝑉 in
𝑊 . The trace tr𝑉 : Alt𝑘 (𝑊) → Alt𝑘 (𝑉) is the pullback under 𝜄𝑉 , that is: for any 𝒗1, . . . , 𝒗𝑘 ∈ 𝑉 ,

tr𝑉 𝜔(𝒗1, . . . , 𝒗𝑘) ≔ 𝜔(𝜄𝑉𝒗1, . . . , 𝜄𝑉𝒗𝑘). (A.7)

The trace respects the exterior product, i.e., tr𝑉 (𝜔 ∧ 𝜇) = tr𝑉𝜔 ∧ tr𝑉𝜇.
It is easy to see that, through the vector proxy of Alt1 spaces, tr𝑉 : Alt1(𝑊) → Alt1(𝑉) is the

orthogonal projection 𝜋𝑉 : 𝑊 → 𝑉 of a vector 𝒘 ∈ 𝑊 onto 𝑉 .
Let us fix an integer 𝑚 ∈ [1, 𝑛] and suppose that dim(𝑊) = 𝑚 and dim(𝑉) = 𝑚 − 1, and that

both spaces are oriented; let 𝒏𝑉 be the unit normal to 𝑉 such that, given a positively oriented basis
(𝒆1, . . . , 𝒆𝑚−1) of 𝑉 , the family (𝒏𝑉 , 𝒆1, . . . , 𝒆𝑚−1) forms a positively oriented basis of 𝑊 . Then, an
identification of the trace tr𝑉 : Alt𝑚−1(𝑊) → Alt𝑚−1(𝑉) through vector proxies is the scalar product
with the vector 𝒏𝑉 , that is, 𝑊 ∋ 𝒘 ↦→ 𝒘 · 𝒏𝑉 ∈ R.

A.2 Exterior calculus in R𝑛

A.2.1 Differential forms

Let 𝑀 be an 𝑛-dimensional flat manifold. When the coefficients in (A.2) are functions 𝑎𝜎 : 𝑀 → R,
the map 𝜔 : 𝑀 → Alt𝑘 (R𝑛) is referred to as a differential form, or simply a 𝑘-form. Consistently
with the notation adopted in Section 2.1, the space of 𝑘-forms over 𝑀 without any specific smoothness
requirement on the coefficients 𝑎𝜎 is denoted by Λ𝑘 (𝑀). If 𝜔 ∈ Λ𝑘 (𝑀), the value of 𝜔 at 𝒙 ∈ 𝑀 is
denoted by 𝜔𝒙 ∈ Alt𝑘 (R𝑛).

If the coefficients 𝑎𝜎 in (A.2) are polynomial functions, 𝜔 is said to be a polynomial differential
form. Specifically, for an integer 𝑟 ≥ 0, the space of polynomial 𝑘-forms of degree ≤ 𝑟 is defined as

P𝑟Λ𝑘 (𝑀) ≔
{ ∑︁

1≤𝜎1<· · ·<𝜎𝑘≤𝑛
𝑝𝜎 d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 : 𝑝𝜎 ∈ P𝑟 (𝑀)

}
,

where P𝑟 (𝑀) is the space of scalar polynomials of degree ≤ 𝑟 over 𝑀 . All the arguments concerning
vector proxies presented in Section A.1 for alternating 𝑘-linear forms can be immediately extended to
the case of 𝑘-forms. Hence, when 𝑛 ∈ {2, 3}, their corresponding vector proxies are scalar fields over
𝑀 when 𝑘 ∈ {0, 𝑛}, and vector fields over 𝑀 when 𝑘 ∈ {1, 𝑛 − 1}.
A.2.2 Exterior derivative and de Rham complexes

Provided that the coefficients 𝑎𝜎 in (A.2) are smooth enough, the exterior derivative of a 𝑘-form
𝜔 ∈ Λ𝑘 (𝑀) is the linear unbounded operator d : Λ𝑘 (𝑀) → Λ𝑘+1(𝑀) such that, in terms of standard
coordinates on R𝑛,

d𝜔 =
∑︁

1≤𝜎1<· · ·<𝜎𝑘≤𝑛

𝑛∑︁
𝑖=1

𝜕𝑎𝜎

𝜕𝑥𝑖
d𝑥𝑖 ∧ d𝑥𝜎1 ∧ · · · ∧ d𝑥𝜎𝑘 .
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The interpretation of the exterior derivative in terms of vector calculus operators, through vector
proxies of alternating forms and when 𝑀 is a domain Ω of R3, is given in (A.8). We have used in this
diagram the spaces defined in the introduction of the paper.

Differential forms: 𝐻Λ0(Ω) 𝐻Λ1(Ω) 𝐻Λ2(Ω) 𝐻Λ3(Ω)

Vector proxies: 𝐻1(Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2(Ω).

d d d

grad curl div

(A.8)

In the case 𝑛 = 2, as we have two possible vector proxies for Alt1(R2). These interpretations are
illustrated in (A.9) when 𝜔 = 𝑎 d𝑥1 + 𝑏 d𝑥2 ∈ Alt1(R2) is identified with 𝒗 = (𝑎, 𝑏), and in (A.10)
when 𝜔 ∈ Alt2−1(R2) is identified with 𝜚−𝜋/2𝒗 (with rot = div 𝜚−𝜋/2 and rot = 𝜚−𝜋/2 grad, respectively,
denoting the scalar and vector curls, and 𝑯(rot;Ω) the space of square-integrable vector-valued functions
whose rot is also square-integrable).

Differential forms: 𝐻Λ0(Ω) 𝐻Λ1(Ω) 𝐻Λ2(Ω)

Vector proxies: 𝐻1(Ω) 𝑯(rot;Ω) 𝐿2(Ω).

d d

grad rot

(A.9)

Differential forms: 𝐻Λ0(Ω) 𝐻Λ1(Ω) 𝐻Λ2(Ω)

Vector proxies: 𝐻1(Ω) 𝑯(div;Ω) 𝐿2(Ω).

d d

rot div

(A.10)

Notice, finally, that the exterior derivative satisfies the complex property d ◦ d = 0. This property
translates, through vector proxies, into the well-known identities curl grad = 0 and div curl = 0 for
𝑛 = 3, and rot grad = 0, div rot = 0 when 𝑛 = 2.

A.2.3 Koszul differential

Given 𝒙𝑀 ∈ R𝑛, the Koszul differential 𝜅𝑀 : Λ𝑘 (𝑀) → Λ𝑘−1(𝑀) is defined pointwise over 𝑀 as
follows: For all 𝒙 ∈ 𝑀 , recalling the definition (A.6) of the contraction ⌟,

(𝜅𝑀𝜔)𝒙 ≔ 𝜔𝒙⌟(𝒙 − 𝒙𝑀 ).

Its interpretation in terms of vector fields proxy is then analogous to that of a contraction of an
alternating multilinear form with a vector, except that the contraction is made pointwise with the vector
field R𝑛 ∋ 𝒙 ↦→ 𝒙 − 𝒙𝑀 ∈ R𝑛. The terminology “differential” is legitimate, as 𝜅𝑀 satisfies the complex
property 𝜅𝑀 ◦ 𝜅𝑀 = 0 (since any alternating form applied to the same vector twice vanishes).

A.2.4 Trace

If 𝑃 ⊂ 𝑄 are (relatively) open sets in affine subspaces𝑉 ⊂ 𝑊 ofR𝑛, the trace operator tr𝑃 : 𝐶0Λ𝑘 (𝑄) →
𝐶0Λ𝑘 (𝑃) on differential forms is defined pointwise, using the trace operator (A.7) on alternating forms:
For all 𝜔 ∈ 𝐶0Λ𝑘 (𝑄),

(tr𝑃 𝜔)𝒙 ≔ tr𝑉 𝜔𝒙 ∀𝒙 ∈ 𝑃.

Note that, in the case 𝑃 = 𝑄, the trace is simply the identity operator (and can be defined without any
continuity assumption): tr𝑃 𝜔 = 𝜔 for all 𝜔 ∈ Λ𝑘 (𝑃).

Applying the same arguments as in Section A.1 pointwise over 𝑃, the trace operator in terms of
vector fields proxy gives
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• the restriction of functions, when 𝑘 = 0;

• the orthogonal projection onto 𝑉 (that is, tr𝑃 𝜔↔ 𝜋𝑉𝒘 if 𝜔↔ 𝒘), when 𝑘 = 1;

• the normal component on 𝑃 along the direction 𝒏 (that is, tr𝑃 𝜔 ↔ 𝒘 · 𝒏 if 𝜔 ↔ 𝒘), with 𝒏 unit
normal vector field preserving the orientations of 𝑉 and 𝑊 , when 𝑘 = dim(𝑃) = dim(𝑄) − 1.

Example 29 (Interpretation of the Stokes formula for ℓ = 1 and 𝑛 = 3). We rewrite here, for the reader’s
convenience, the integration by parts formula (2.1) for ℓ = 1 and 𝑛 = 3:∫

𝑀

d𝜔 ∧ 𝜇 =

∫
𝑀

𝜔 ∧ d𝜇 +
∫
𝜕𝑀

tr𝜕𝑀 𝜔 ∧ tr𝜕𝑀 𝜇 ∀(𝜔, 𝜇) ∈ Λ1(𝑀) × Λ1(𝑀). (A.11)

Given the previous interpretations of the exterior derivative and product in terms of vector proxies, if
𝜔 ↔ 𝒘 and 𝜇 ↔ 𝒗, then d𝜔 ∧ 𝜇 ↔ curl𝒘 · 𝒗 and 𝜔 ∧ d𝜇 ↔ 𝒘 · curl 𝒗. This leads to considering the
integration by parts formula for the curl:∫

𝑀

curl𝒘 · 𝒗 =
∫
𝑀

𝒘 · curl 𝒗 +
∫
𝜕𝑀

(𝒏 × (𝒘 × 𝒏)) · (𝒗 × 𝒏), (A.12)

where 𝒏 is the outer unit normal vector field over 𝜕𝑀 . For any fixed 𝒙 ∈ 𝜕𝑀 , we have 𝒏(𝒙) ×
(𝒘(𝒙) × 𝒏(𝒙)) = 𝜋𝑇𝒙𝜕𝑀𝒘(𝒙) (here, 𝑇𝒙𝜕𝑀 is the tangent space of 𝜕𝑀 at 𝒙), whereas 𝒗(𝒙) × 𝒏(𝒙) =
𝜚−𝜋/2(𝜋𝑇𝒙𝜕𝑀𝒗(𝒙)), where the rotation is considered with respect to the orientation of the tangent plane
given by 𝒏(𝒙). The boundary terms of (A.11) and (A.12) therefore coincide, through the vector proxy
for the exterior product of 1-forms in dimension 2 (see (A.5)).
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Montpellier, Dec. 2022.

[51] S. Lang. Fundamentals of differential geometry. Vol. 191. Graduate Texts in Mathematics.
Springer-Verlag, New York, 1999, pp. xviii+535. doi: 10.1007/978-1-4612-0541-8.

[52] M. W. Licht. “Complexes of discrete distributional differential forms and their homology theory”.
In: Found. Comput. Math. 17.4 (2017), pp. 1085–1122. doi: 10.1007/s10208-016-9315-y.
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