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Cellular automata are mappings over infinite lattices such that each cell is updated according to the states around it
and a unique local function. Block permutations are mappings that generalize a given permutation of blocks (finite
arrays of fixed size) to a given partition of the lattice in blocks. We prove that any d-dimensional reversible cellular
automaton can be expressed as the composition of d+1 block permutations. We built a simulation in linear time of
reversible cellular automata by reversible block cellular automata (also known as partitioning CA and CA with the
Margolus neighborhood) which is valid for both finite and infinite configurations. This proves a 1990 conjecture by
Toffoli and Margolus (Physica D 45) improved by Kari in 1996 (Mathematical System Theory 29).

Keywords: Block Cellular Automata; Cellular Automata; Partitioning Cellular Automata; Reversible Cellular Au-
tomata

1 Introduction
Cellular automata (CA) provide the most common model for parallel phenomena, computations and
architectures. They operate as iterative systems on d-dimensional infinite arrays of cells (the underlying
space is Zd). Each cell takes a value from a finite set of states Q. An iteration of a CA is the synchronous
replacement of the state of each cell by the image of the states of the cells around it according to a unique
local function. The same local function is used for every cell.

A block is a (finite) d-dimensional array of states. A block permutation (BP) is a generalization of a
permutation of blocks, over a regular partition of the lattice Zd into blocks. A reversible block cellular
automaton is the composition of various BP which use the same permutation of blocks t. If t is just a
mapping –not necessary a permutation– we speak of block cellular automaton. Block cellular automata
(BCA) are also known as “CA with the Margolus neighborhood” or “partitioning cellular automata”. Let
us notice that BCA are not partitioned CA as introduced in Morita [1995].

Reversible cellular automata (R-CA) are famous for modeling non-dissipative systems as well as for
being able to backtrack a phenomenon to its source. Reversibility is also conceived as a way to reduce
heating and save energy. We refer the reader to Toffoli and Margolus [1990] for a wide survey of the
R-CA field (history, aims, uses, decidability. . . ) and a large bibliography (even though it is quite old). In
this paper, the authors made the following conjecture about R-CA:
∗jdurand@unice.fr, http://www.i3s.unice.fr/~jdurand
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Conjecture 1 [Toffoli and Margolus, 1990, Conjecture 8.1] All invertible cellular automata are struc-
turally invertible, i.e., can be (isomorphically) expressed in spacetime as a uniform composition of finite
logic primitives.

A “finite logic primitives” is a representation of a permutation of blocks t. Kari [1996] proved Conj. 1
for dimensions 1 and 2. At the end, he conjectures that:

Conjecture 2 [Kari, 1996, Conjecture 5.3] For every d ≥ 1, all reversible d-dimensional cellular au-
tomata are compositions of block permutations and partial shifts.

In our definition, the shift is included in the definition of the block permutation.
It should be noted that a reversible CA are quite tricky to design while reversibility is very simple

to achieve with BCA. Moreover, reversibility of CA is undecidable in dimension greater than 1 [Kari,
1994] whereas it can be checked easily for BCA. This does not contradict the conjecture since only
invertible / reversibility CA are concerned.

In Durand-Lose [1995], Conj. 1 is proved for any dimension d with 2d+1−1 BP of width 4r, where r
is the greater of the radii of the neighborhood of the CA and of its inverse. Here, Conj. 1 is proved to be
true for any dimension d with a lower number of permutations, d+1, than proposed by Kari (exponential
in d). The construction presented here is done by progressively erasing previous states and adding next
states. The d+1 partitions are not regularly displayed, their origins are aligned; one goes from a partition
to the next one by a constant translation of (3r, 3r, · · · , 3r).

All definitions and proofs in this paper can be read without any previous knowledge of the subject.
The paper is structured as follows. The definitions of cellular automata, block partitions, reversibility and
simulation are given in Section 2. In Section 3, for any reversible CA A, we exhibit d+1 BP such that the
global function of A corresponds to their composition.

During the simulation, some cells have to store their previous and next states. This is achieved by
embedding the states in (Q ∪ {⊥})2 (Q is the set of states of the simulated R-CA). All permutations of
blocks are compatible, i.e., the useful parts of their domains and ranges do not overlap.

In Sect. 4, we collapse the set of states of the BP from (Q ∪ {⊥})2 to Q ∪ Q2 and prove that all the
local functions of the BP are compatible. This allows to iterate the composition of the BP and to built the
corresponding BCA. This yields a simulation where encoding and decoding functions are identities, what
we call a representation.

It should be noted that Kari also used Q ∪Q2 as the set of states for intermediate configurations.

2 Definitions
Let d be a natural number. Cellular automata and block permutations define mappings over d-dimensional
infinite arrays over a finite set of states Q. Let C = QZd be the set of all configurations. For any
configuration c and any subset E of Zd, c|E is the restriction of c to E.

The set of integers {i, i + 1, i + 2, . . . j} is denoted [[ i, j ]]. For any x ∈ Zd, σx is the shift by x over
configurations (i.e. ∀c ∈ C,∀i ∈ Zd, (σx(c))i = ci+x).
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2.1 Cellular automaton
A cellular automaton (CA) A is defined by (d,Q, r, f), where the radius r is a natural number and the
local function f maps Q(2r+1)d into Q. The global function of A GA maps configurations into configura-
tions as follows:

∀c ∈ C, ∀i ∈ Zd, (GA(c))i = f(c|i+[[−r, r ]]d ) .

The next state of a cell depends only on the states of the cells which are at distance at most r. All cells
are updated simultaneously and no global variable is used.

2.2 Block permutation
A block permutation (BP) is defined by (d,Q,w, o, t) where the width w is a natural number. We define
the volume V to be the following subset of Zd: V = [[ 0, w − 1 ]]d. The coordinate o belongs to V . We
call block a mapping from V to Q, or, equivalently, an array of states whose underlying lattice is V . The
block function t is a permutation of the blocks, t : QV → QV .

The block permutation t is the following mapping over C: for any c ∈ C, for any i ∈ Zd, let a = i divw
and b = imodw (a ∈ Zd and b ∈ [[ 0, w − 1 ]]) so that i = a .w + b, then t(c)i = t(c|a .w+V )b. In other
words, the configuration is partitioned into regularly displayed blocks, then each block is replaced by its
image by the permutation of blocks t as in Fig. 1.

w w

w

w

(o1, o2) =

b0,0 b1,0

b0,1 b1,1

t(b0,0) t(b1,0)

t(b0,1) t(b1,1)
to1,o2

Fig. 1: to1,o2 , the block permutation of width w and origin (o1, o2).

The block permutation of origin o, to is σo ◦ t ◦ σ−o. It is the same as before but the partition is shifted
by o. An example of a two-dimensional block permutation is given in Fig. 1.

We call reversible block cellular automaton (R-BCA) the composition of various BP with the same vol-
ume w and permutation t. If t is a mapping –not necessarily a permutation– of blocks, the composition is
referred as just a block cellular automaton (BCA). The reversible term is explained in the next subsection.

2.3 Reversibility
Both cellular automata, block CA and block permutations define synchronous and massively parallel
mappings G over QZd .

An automaton A is reversible (or invertible) if and only if GA is bijective and there exists another
automaton B such that GB = G−1A . The automaton B is called the inverse of A. Reversible CA are
denoted R-CA.

Amoroso and Patt [1972] provides an algorithm to check whether a 1-dimensional cellular automaton
is reversible or not. Kari [1994] proves that the reversibility of CA is undecidable in greater dimensions.
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By construction, BP are reversible; one simply uses the inverse permutation on the same partition to get
the inverse block partition. By composition, it is easy to prove that a block CA is reversible if and only if
its block function t is a permutation.

2.4 Simulation

Since we are dealing with iterative systems, we use the following definition.
For any two functions f : F → F and g : G → G, we say that g simulates f in linear time τ if there

exist two encoding functions α : F → G and β : G→ F , space and time inexpensive compared to f and
g, such that:

∀x ∈ F, ∀n ∈ N, fn(x) = β ◦ gτn ◦ α(x) . (1)

This corresponds to the commuting diagram in Fig. 2. The function g can be used instead of f for
iterating.

∀n ∈ N, 0 ≤ n,

F

α

G
gτn

fn

F

β

G

?

6

-

-

Fig. 2: g simulates f in linear time τ .

For n = 0, we get ∀x, β ◦α(x) = x. If both f and g are invertible and g simulates f , by the uniqueness
of predecessors, (1) still holds for n negative.

An automaton simulates another if and only if its global function simulates the global function of the
other. We speak of a representation if F is included in G, α is the identity and β is undefined out of F .
The domain of g does not have to be included in F , but gτ (F ) must be included in F .

If factor τ is 1 then the simulation is in real time.

3 Simulation of a R-CA by a composition of BP

Let A = (Q, d, r, f) be a reversible cellular automaton. In this section, we prove that it can be simulated
by the composition of d+1 block permutations.

The inverse CA of A, A−1, can be effectively computed: it is easy to built the composition of two CA
and check whether it is the identity. Since there are countably many CA, it is possible to test every CA
until the inverse is found. The algorithm stops in finite time; but in any dimension greater than one its
complexity cannot be bounded by any computable function because of the undecidability of reversibility.

We consider that the radius r of A is large enough for both A and A−1. Let w = 3r(d+1) be the
common width of all the BP.
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3.1 Block partitions
The following sets are finite sub-arrays of Zd. They are used to locate previous and next states during the
iterations. We denote r the vector (r, r, · · · , r) of Zd. For every λ in [[ 0, d+1 ]], let

EP
λ =

⋃
λ≤µ<d+1

(
3µr + [[ r, 3(d+1)r−r−1 ]]d

)
and

EN
λ =

⋃
0≤µ<λ

(
3µr + [[ r, 3(d+1)r−r−1 ]]d

)
.

These sets are supposed to be completed by and close under all ±3(d+1)r shifts in every direction. This
will never be indicated to ease the presentation.

Lemma 3 These sets verify the symmetry EN
λ = −3rd− EP

d+1−λ for 0 ≤ λ ≤ d+1; and the equalities:
EP
d+1 = EN

0 = ∅ and EP
0 = EN

d+1 = Zd.

Proof: The symmetry and the equality with ∅ are obvious.
Let us prove that EN

d+1 = Zd, the last equality follows by symmetry. Let x be any element of the
underlying lattice Zd. The d+1 sets (of Z) 3λr + [[−r, r−1 ]] (for λ ∈ [[ 0, d ]]) are non-empty and
disjoint. Since x has d coordinates, there exists λ0 such that none of the coordinates of x belongs to
3λ0r + [[−r, r−1 ]]. This means that all the coordinates of x belong to 3λ0r + [[ r, 3(d+1)r−r−1 ]]
–remember that EN

λ is closed by 3(d+1)r shifts– thus x ∈ EN
d+1. 2

The BP use the set of states (Q ∪ {⊥})2 to store the previous configuration in the first component and
the next one in the second component. The state ⊥ stand for the missing parts.

Let us define the following configurations:

∀c ∈ C, ∀λ ∈ [[ 0, d+1 ]], Eλ(c) =
(
c|EP

λ
, G(c)|EN

λ

)
.

The states are completed by ⊥ everywhere they are not in of the restrictions; ⊥ also denotes the configu-
ration where all cells are in state ⊥. Lemma 3 implies that: E0(c) = (c,⊥) and Ed+1(c) = (⊥,G(c)).

Let Bλ be a BP of width 3(d+1)r and origin 3λr. The width of Bλ matches the length of the shift
closure of the sets EP

λ and EN
λ . The partition of blocks tλ is defined so that Bλ maps reversiblely Eλ(c)

into Eλ+1(c). The aim is to get the commuting diagram in Fig. 3.

(c,⊥)=E0(c) E1(c) E2(c) Ed(c) Ed+1(c) = (⊥,GA(c))

c GA(c)
GA

B0 B1 Bd

Fig. 3: Simulation commuting diagram.

The BP Bλ add next states and erase previous states. Let us prove that there is enough data in Eλ(c) to
compute the added next states, and then that the erasing of previous states is done reversiblely.
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Lemma 4 For any λ in [[ 0, d ]], there is enough information in Eλ(c) to compute Eλ+1(c).

Proof: The next states added belong to:

∆λ = EN
λ+1 \ EN

λ =
(

3λr + [[ r, 3(d+1)r−r−1 ]]d
)
\

⋃
0≤µ<λ

(
3µr + [[ r, 3(d+1)r−r−1 ]]d

)
.

For any x ∈ ∆λ, x ∈ 3λr+[[ r, 3(d+1)r−r−1 ]]d. All the cells of the neighborhood of x should still
hold their previous states in order to compute the next state of x. Cell x and its neighbors are all in the
block 3λr+[[ 0, 3(d+1)r−1 ]]d. It corresponds to the block of the partition of Bλ since its origin is 3λr.
Now, it only remains to verify that previous states needed to compute the next state of x are still present.

For any µ in [[ 0, λ−1 ]], since x 6∈ 3µr + [[ r, 3(d+1)r−r−1 ]]d, there is some index jµ such that
xjµ 6∈ 3µr+[[ r, 3(d+1)r−r−1 ]]. So xjµ is in 3µr+[[−r, r−1 ]] (remember that all is 3(d+1)r periodic).
Since the sets 3µr + [[−r, r−1 ]] are disjoint, all jµ must be different and there are λ of them.

Let y be any cell needed to compute x, y belongs to x + [[−r, r ]], then, for all µ in [[ 0, d−1 ]], yjµ
must be in 3µr + [[−2r, 2r−1 ]]. By contradiction, let us assume that there exists such a y which does
not belong to EP

λ then for all ν ∈ [[λ, d+1 ]], there exists some kν such that ykν does not belong to
νr + [[ r, 3(d+1)r−r−1 ]], or equivalently, ykν ∈ 3νr + [[−r, r−1 ]]. Since the sets 3νr + [[−r, r−1 ]]
are disjoint, all the kν must be different and there are d+ 1− λ of them.

Altogether, there are d+1 jµ and kν for d values so there exist µ0 and ν0 such that jµ0
= kν0 . Then

the intersection of 3µ0r + [[−2r, 2r−1 ]] and 3ν0r + [[−r, r−1 ]] is not empty. This means that µ0 = ν0,
but by construction, µ0 < ν0.

Thus y belongs to EP
λ and all the previous states needed to compute the next state of x are still present

in the block. The next state of x can be computed with the information held inside the block. 2

Using the symmetry between EN and EP, the previous states erased can be computed from the next
states in Eλ+1(c). This means that the corresponding blocks of Eλ(c) and Eλ+1(c) in the partition of Bλ
can be uniquely determined one from the other. The partial function tλ can be completed so that tλ is a
permutation.

The two BP for dimension 1 are given in Fig. 4. This corresponds to the construction of Kari Kari
[1996].

GA

r ⇑ t1 ⇑ t1 ⇑ t1

⇑ t2 ⇑ t2

Previous states, Next states.

Fig. 4: The two steps in dimension 1.
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In the 2-dimensional case, the partitions are given in Fig. 5. The three BP are detailed in Fig. 6. It does
not correspond to the construction of Kari any more.

Fig. 5: The three partitions in dimension 2.

→

↙

→

Previous states, Next states.

Fig. 6: The 3 steps in dimension 2.
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4 Collapsing the states and the permutations
We collapse the states on Q ∪ Q2 to make iterations of the simulating R-BCA possible and to get a
representation. We also show that the partial definitions of functions tλ are compatible so that they can be
merged into a unique t to define a reversible block cellular automaton.

Lemma 5 The current BP Bλ can be identified by the position of the double states inside the blocks of
partition λ.

Proof: If all cells are single, then λ = 0.
For i in [[ 0, d ]], let εi be the following element of Zd:

ε0 = 3λr ,

ε1 = 3λr + (−3r, −3r, −3r, . . .− 3r ) ,

ε2 = 3λr + (−3r, −6r, −6r, −6r, . . .− 6r ) ,

εi = 3λr + (−3r, −6r, −9r, . . .− 3(i−1)r, −3ir, . . .− 3ir ) ,

εd = 3λr + (−3r, −6r, −9r, . . .− 3dr ) .

The equation

3λr+(−3r,−6r,−9r, . . .−3(i−1)r,−3ir, . . .−3ir) ∈ 3λr+[[ r, 3(d+1)r−r−1 ]]d ⊂ EN
λ (λ 6= d+1)

implies that εi belongs to EP
λ for λ ≤ d –which is always the case. The point εi belongs to EN

λ only if
εi ∈

⋃
0≤µ<λ

(
3µr + [[ r, 3(d+1)r−r−1 ]]d

)
that is (by Lemma 3 and a shift):

(−3r,−6r, . . .− 3(i−1)r,−3ir, . . .− 3ir) ∈
⋃

−λ≤µ<0

(
3µr + [[ r, 3(d+1)r−r−1 ]]d

)
.

The situation is depicted in Fig. 7. The fact that −3r is a coordinate of εi implies that the shifted intervals
are not to be considered. Since −3r, −6r, −9r,. . . and −3ir have to be in the interval, the maximum i
such that the equality is true is λ−1.

Then λ is the maximum i such that εi holds two states, plus one. If there is no such i then λ = 0.

−3(d+1)r −3(λ−1)r −9r −6r −3r 0 3(d+1)r

µ = −1
µ = −2

. . . . . .
µ = −λ

Fig. 7: Graphical representation of the inclusion of εi following any direction.

Inside a block of the λ partition, εi simplifies to (−3r,−6r,−9r, . . . − 3(i−1)r,−3ir, . . . − 3ir),
which is independent of λ. It is enough to know the position of the double states in a block to know which
permutation of blocks tλ to use. 2
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Remark 6 Thanks to the symmetry (Lem. 3), it also holds that the position of double states after the BP
indicate which tλ was used.

Above Lemma and Remark show that all the partial definitions of the permutations of blocks of the
BP are compatible for domains and ranges. They can be grouped in a unique bijective local function and
states can be collapsed. Altogether:

Theorem 7 In any dimension d, any R-CA of radius r can be expressed as a composition of d+1 BP of
width 3(d+1)r and with the same permutation of blocks t, or as a R-BCA with d+1 partitions.

The origins of the partitions are: 0, 3r, 6r, 9r. . . and 3dr.

5 Conclusion
Conjectures 1 and 2 are true. It should be noted that even if states in Q2 are used in intermediate config-
urations during the simulation, it perfectly works since the input and output are restricted to Q. Since the
BP are compatible and the states are collapsed, the composition can be iterated directly. This defines a
reversible block cellular automaton (with d+ 1 BP) which simulates the R-CA in real time.

The fact that the BCA representation can be effectively constructed does not contradict the undecid-
ability of reversibility of CA because the inverse CA is needed for the construction.

The proof of Th. 7 is not as explicit and visible as the one in Durand-Lose [1995]. Nevertheless, the
number of BP needed is lowered from 2d+1−1 to d+1. Generation and erasement are done concurrently,
not one after the other as in Durand-Lose [1995].

We believe that it is not possible to make a representation with less that d+1 BP.
Compare to Durand-Lose [1995], the main drawback is that the volume of the blocks is (3r(d+1))d

instead of (4r)d. The complexity of a BP (or a BCA) is the size of the table of its local function t. It
should be noted that if the number of BP is decreasing, the complexity is increasing.

The expression with BP allows one to use reversible circuitry in order to build R-CA. This was done in
Durand-Lose [1995] to prove that, for 2 ≤ d, there exists d-dimensional R-CA (based on the the Billiard
ball model) able to simulate any d-dimensional R-CA in linear time on infinite configurations. This result
was extended in Durand-Lose [1997] to the first dimension.

For more about the relation between R-CA and BCA, we refer to the 1999 article by Kari Kari [1999]
which refers to an unpublished earlier version of the present article.
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