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Cellular automata are mappings over infinite lattices such that each cell is updated according to the states around it and a unique local function. Block permutations are mappings that generalize a given permutation of blocks (finite arrays of fixed size) to a given partition of the lattice in blocks. We prove that any d-dimensional reversible cellular automaton can be expressed as the composition of d+1 block permutations. We built a simulation in linear time of reversible cellular automata by reversible block cellular automata (also known as partitioning CA and CA with the Margolus neighborhood) which is valid for both finite and infinite configurations. This proves a 1990 conjecture by Toffoli and Margolus (Physica D 45) improved by Kari in 1996 (Mathematical System Theory 29).

Introduction

Cellular automata (CA) provide the most common model for parallel phenomena, computations and architectures. They operate as iterative systems on d-dimensional infinite arrays of cells (the underlying space is Z d ). Each cell takes a value from a finite set of states Q. An iteration of a CA is the synchronous replacement of the state of each cell by the image of the states of the cells around it according to a unique local function. The same local function is used for every cell.

A block is a (finite) d-dimensional array of states. A block permutation (BP) is a generalization of a permutation of blocks, over a regular partition of the lattice Z d into blocks. A reversible block cellular automaton is the composition of various BP which use the same permutation of blocks t. If t is just a mapping -not necessary a permutation-we speak of block cellular automaton. Block cellular automata (BCA) are also known as "CA with the Margolus neighborhood" or "partitioning cellular automata". Let us notice that BCA are not partitioned CA as introduced in Morita [1995].

Reversible cellular automata (R-CA) are famous for modeling non-dissipative systems as well as for being able to backtrack a phenomenon to its source. Reversibility is also conceived as a way to reduce heating and save energy. We refer the reader to Toffoli and Margolus [1990] for a wide survey of the R-CA field (history, aims, uses, decidability. . . ) and a large bibliography (even though it is quite old). In this paper, the authors made the following conjecture about R-CA:

In our definition, the shift is included in the definition of the block permutation. It should be noted that a reversible CA are quite tricky to design while reversibility is very simple to achieve with BCA. Moreover, reversibility of CA is undecidable in dimension greater than 1 [START_REF] Kari | Reversibility and surjectivity problems of cellular automata[END_REF] whereas it can be checked easily for BCA. This does not contradict the conjecture since only invertible / reversibility CA are concerned.

In [START_REF] Durand-Lose | Reversible Cellular Automaton Able to Simulate Any Other Reversible One Using Partitioning Automata[END_REF], Conj. 1 is proved for any dimension d with 2 d+1 -1 BP of width 4r, where r is the greater of the radii of the neighborhood of the CA and of its inverse. Here, Conj. 1 is proved to be true for any dimension d with a lower number of permutations, d+1, than proposed by Kari (exponential in d). The construction presented here is done by progressively erasing previous states and adding next states. The d+1 partitions are not regularly displayed, their origins are aligned; one goes from a partition to the next one by a constant translation of (3r, 3r, • • • , 3r).

All definitions and proofs in this paper can be read without any previous knowledge of the subject. The paper is structured as follows. The definitions of cellular automata, block partitions, reversibility and simulation are given in Section 2. In Section 3, for any reversible CA A, we exhibit d+1 BP such that the global function of A corresponds to their composition.

During the simulation, some cells have to store their previous and next states. This is achieved by embedding the states in (Q ∪ {⊥}) 2 (Q is the set of states of the simulated R-CA). All permutations of blocks are compatible, i.e., the useful parts of their domains and ranges do not overlap.

In Sect. 4, we collapse the set of states of the BP from (Q ∪ {⊥}) 2 to Q ∪ Q 2 and prove that all the local functions of the BP are compatible. This allows to iterate the composition of the BP and to built the corresponding BCA. This yields a simulation where encoding and decoding functions are identities, what we call a representation.

It should be noted that Kari also used Q ∪ Q 2 as the set of states for intermediate configurations.

Definitions

Let d be a natural number. Cellular automata and block permutations define mappings over d-dimensional infinite arrays over a finite set of states Q. Let C = Q Z d be the set of all configurations. For any configuration c and any subset E of Z d , c |E is the restriction of c to E.

The set of integers {i, i + 1, i + 2, . . . j} is denoted

[[ i, j ]]. For any x ∈ Z d , σ x is the shift by x over configurations (i.e. ∀c ∈ C, ∀i ∈ Z d , (σ x (c)) i = c i+x ).
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Cellular automaton

A cellular automaton (CA) A is defined by (d, Q, r, f ), where the radius r is a natural number and the local function

f maps Q (2r+1) d into Q. The global function of A G A maps configurations into configura- tions as follows: ∀c ∈ C, ∀i ∈ Z d , (G A (c)) i = f (c |i+[[ -r, r ]] d ) .
The next state of a cell depends only on the states of the cells which are at distance at most r. All cells are updated simultaneously and no global variable is used.

Block permutation

A block permutation (BP) is defined by (d, Q, w, o, t) where the width w is a natural number. We define the volume V to be the following subset of

Z d : V = [[ 0, w -1 ]] d .
The coordinate o belongs to V . We call block a mapping from V to Q, or, equivalently, an array of states whose underlying lattice is V . The block function t is a permutation of the blocks, t :

Q V → Q V .
The block permutation t is the following mapping over C:

for any c ∈ C, for any i ∈ Z d , let a = i div w and b = i mod w (a ∈ Z d and b ∈ [[ 0, w -1 ]]) so that i = a . w + b, then t(c) i = t(c |a . w+V ) b .
In other words, the configuration is partitioned into regularly displayed blocks, then each block is replaced by its image by the permutation of blocks t as in Fig. 1. The block permutation of origin o, t o is σ o • t • σ -o . It is the same as before but the partition is shifted by o. An example of a two-dimensional block permutation is given in Fig. 1.

w w w w (o1, o2) = b0,0 b1,0 b0,1 b1,1 t(b0,0) t(b1,0) t(b0,1) t(b1,1) to 1 ,o 2
We call reversible block cellular automaton (R-BCA) the composition of various BP with the same volume w and permutation t. If t is a mapping -not necessarily a permutation-of blocks, the composition is referred as just a block cellular automaton (BCA). The reversible term is explained in the next subsection.

Reversibility

Both cellular automata, block CA and block permutations define synchronous and massively parallel mappings G over Q Z d . An automaton A is reversible (or invertible) if and only if G A is bijective and there exists another automaton B such that

G B = G -1
A . The automaton B is called the inverse of A. Reversible CA are denoted R-CA. [START_REF] Amoroso | Decision procedure for surjectivity and injectivity of parallel maps for tessellation structure[END_REF] provides an algorithm to check whether a 1-dimensional cellular automaton is reversible or not. [START_REF] Kari | Reversibility and surjectivity problems of cellular automata[END_REF] proves that the reversibility of CA is undecidable in greater dimensions.
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By construction, BP are reversible; one simply uses the inverse permutation on the same partition to get the inverse block partition. By composition, it is easy to prove that a block CA is reversible if and only if its block function t is a permutation.

Simulation

Since we are dealing with iterative systems, we use the following definition.

For any two functions f : F → F and g : G → G, we say that g simulates f in linear time τ if there exist two encoding functions α : F → G and β : G → F , space and time inexpensive compared to f and g, such that:

∀x ∈ F, ∀n ∈ N, f n (x) = β • g τ n • α(x) . (1) 
This corresponds to the commuting diagram in Fig. 2. The function g can be used instead of f for iterating.

∀n ∈ N, 0 ≤ n, F α G g τ n f n F β G ? 6 - - Fig. 2: g simulates f in linear time τ .
For n = 0, we get ∀x, β • α(x) = x. If both f and g are invertible and g simulates f , by the uniqueness of predecessors, (1) still holds for n negative.

An automaton simulates another if and only if its global function simulates the global function of the other. We speak of a representation if F is included in G, α is the identity and β is undefined out of F . The domain of g does not have to be included in F , but g τ (F ) must be included in F .

If factor τ is 1 then the simulation is in real time.

3 Simulation of a R-CA by a composition of BP

Let A = (Q, d, r, f
) be a reversible cellular automaton. In this section, we prove that it can be simulated by the composition of d+1 block permutations. The inverse CA of A, A -1 , can be effectively computed: it is easy to built the composition of two CA and check whether it is the identity. Since there are countably many CA, it is possible to test every CA until the inverse is found. The algorithm stops in finite time; but in any dimension greater than one its complexity cannot be bounded by any computable function because of the undecidability of reversibility.

We consider that the radius r of A is large enough for both A and A -1 . Let w = 3r(d+1) be the common width of all the BP.

Block partitions

The following sets are finite sub-arrays of Z d . They are used to locate previous and next states during the iterations. We denote r the vector (r, r,

• • • , r) of Z d . For every λ in [[ 0, d+1 ]], let E P λ = λ≤µ<d+1 3µr + [[ r, 3(d+1)r-r-1 ]] d and E N λ = 0≤µ<λ 3µr + [[ r, 3(d+1)r-r-1 ]] d .
These sets are supposed to be completed by and close under all ±3(d+1)r shifts in every direction. This will never be indicated to ease the presentation.

Lemma 3 These sets verify the symmetry E N λ = -3rd -E P d+1-λ for 0 ≤ λ ≤ d+1; and the equalities:

E P d+1 = E N 0 = ∅ and E P 0 = E N d+1 = Z d .
Proof: The symmetry and the equality with ∅ are obvious.

Let us prove that E N d+1 = Z d , the last equality follows by symmetry. Let x be any element of the underlying lattice Z d . The d+1 sets (of

Z) 3λr + [[ -r, r-1 ]] (for λ ∈ [[ 0, d ]]
) are non-empty and disjoint. Since x has d coordinates, there exists λ 0 such that none of the coordinates of x belongs to 3λ 0 r + [ [ -r, r-1 ]]. This means that all the coordinates of x belong to 3λ

0 r + [[ r, 3(d+1)r-r-1 ]] -remember that E N λ is closed by 3(d+1)r shifts-thus x ∈ E N d+1 . 2 
The BP use the set of states (Q ∪ {⊥}) 2 to store the previous configuration in the first component and the next one in the second component. The state ⊥ stand for the missing parts.

Let us define the following configurations:

∀c ∈ C, ∀λ ∈ [[ 0, d+1 ]], E λ (c) = c |E P λ , G(c) |E N λ .
The states are completed by ⊥ everywhere they are not in of the restrictions; ⊥ also denotes the configuration where all cells are in state ⊥. Lemma 3 implies that: E 0 (c) = (c, ⊥) and E d+1 (c) = (⊥, G(c)). Let B λ be a BP of width 3(d+1)r and origin 3λr. The width of B λ matches the length of the shift closure of the sets E P λ and E N λ . The partition of blocks t λ is defined so that B λ maps reversiblely E λ (c) into E λ+1 (c). The aim is to get the commuting diagram in Fig. 3. The BP B λ add next states and erase previous states. Let us prove that there is enough data in E λ (c) to compute the added next states, and then that the erasing of previous states is done reversiblely.

(c, ⊥)=E0(c) E1(c) E2(c) E d (c) E d+1 (c) = (⊥, GA(c)) c GA(c) GA B0 B1 B d
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Lemma 4 For any λ in [[ 0, d ]], there is enough information in E λ (c) to compute E λ+1 (c).

Proof: The next states added belong to:

∆ λ = E N λ+1 \ E N λ = 3λr + [[ r, 3(d+1)r-r-1 ]] d \ 0≤µ<λ 3µr + [[ r, 3(d+1)r-r-1 ]] d . For any x ∈ ∆ λ , x ∈ 3λr+[[ r, 3(d+1)r-r-1 ]] d .
All the cells of the neighborhood of x should still hold their previous states in order to compute the next state of x. Cell x and its neighbors are all in the block 3λr+[[ 0, 3(d+1)r-1 ]] d . It corresponds to the block of the partition of B λ since its origin is 3λr. Now, it only remains to verify that previous states needed to compute the next state of x are still present.

For any µ in

[[ 0, λ-1 ]], since x ∈ 3µr + [[ r, 3(d+1)r-r-1 ]] d , there is some index j µ such that x jµ ∈ 3µr+[[ r, 3(d+1)r-r-1 ]]. So x jµ is in 3µr+[[ -r, r-1 ]]
(remember that all is 3(d+1)r periodic). Since the sets 3µr + [[ -r, r-1 ]] are disjoint, all j µ must be different and there are λ of them.

Let y be any cell needed to compute x, y belongs to x + [[ -r, r ]], then, for all µ in [[ 0, d-1 ]], y jµ must be in 3µr + [[ -2r, 2r-1 ]]. By contradiction, let us assume that there exists such a y which does not belong to E P λ then for all ν ∈ [[ λ, d+1 ]], there exists some k ν such that y kν does not belong to νr + [[ r, 3(d+1)r-r-1 ]], or equivalently, y kν ∈ 3νr + [ [ -r, r-1 ]]. Since the sets 3νr + [[ -r, r-1 ]] are disjoint, all the k ν must be different and there are d + 1 -λ of them.

Altogether, there are d+1 j µ and k ν for d values so there exist µ 0 and ν 0 such that j µ0 = k ν0 . Then the intersection of 3µ 0 r + [ [ -2r, 2r-1 ]] and 3ν 0 r + [[ -r, r-1 ]] is not empty. This means that µ 0 = ν 0 , but by construction, µ 0 < ν 0 .

Thus y belongs to E P λ and all the previous states needed to compute the next state of x are still present in the block. The next state of x can be computed with the information held inside the block.

2

Using the symmetry between E N and E P , the previous states erased can be computed from the next states in E λ+1 (c). This means that the corresponding blocks of E λ (c) and E λ+1 (c) in the partition of B λ can be uniquely determined one from the other. The partial function t λ can be completed so that t λ is a permutation.

The two BP for dimension 1 are given in Fig. 4. This corresponds to the construction of Kari Kari [1996].

GA r ⇑ t1 ⇑ t1 ⇑ t1 ⇑ t2 ⇑ t2
Previous states, Next states. In the 2-dimensional case, the partitions are given in Fig. 5. The three BP are detailed in Fig. 6. It does not correspond to the construction of Kari any more. Remark 6 Thanks to the symmetry (Lem. 3), it also holds that the position of double states after the BP indicate which t λ was used.

Above Lemma and Remark show that all the partial definitions of the permutations of blocks of the BP are compatible for domains and ranges. They can be grouped in a unique bijective local function and states can be collapsed. Altogether:

Theorem 7 In any dimension d, any R-CA of radius r can be expressed as a composition of d+1 BP of width 3(d+1)r and with the same permutation of blocks t, or as a R-BCA with d+1 partitions.

The origins of the partitions are: 0, 3r, 6r, 9r. . . and 3dr.

Conclusion

Conjectures 1 and 2 are true. It should be noted that even if states in Q 2 are used in intermediate configurations during the simulation, it perfectly works since the input and output are restricted to Q. Since the BP are compatible and the states are collapsed, the composition can be iterated directly. This defines a reversible block cellular automaton (with d + 1 BP) which simulates the R-CA in real time.

The fact that the BCA representation can be effectively constructed does not contradict the undecidability of reversibility of CA because the inverse CA is needed for the construction.

The proof of Th. 7 is not as explicit and visible as the one in Durand-Lose [1995]. Nevertheless, the number of BP needed is lowered from 2 d+1 -1 to d+1. Generation and erasement are done concurrently, not one after the other as in Durand-Lose [1995].

We believe that it is not possible to make a representation with less that d+1 BP. Compare to Durand-Lose [1995], the main drawback is that the volume of the blocks is (3r(d+1)) d instead of (4r) d . The complexity of a BP (or a BCA) is the size of the table of its local function t. It should be noted that if the number of BP is decreasing, the complexity is increasing.

The expression with BP allows one to use reversible circuitry in order to build R-CA. This was done in Durand-Lose [1995] to prove that, for 2 ≤ d, there exists d-dimensional R-CA (based on the the Billiard ball model) able to simulate any d-dimensional R-CA in linear time on infinite configurations. This result was extended in Durand-Lose [1997] to the first dimension.

For more about the relation between R-CA and BCA, we refer to the 1999 article by Kari Kari [1999] which refers to an unpublished earlier version of the present article.
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 1 Fig. 1: to 1 ,o 2 , the block permutation of width w and origin (o1, o2).
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 3 Fig. 3: Simulation commuting diagram.
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 4 Fig. 4: The two steps in dimension 1.
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 5 Fig. 5: The three partitions in dimension 2.
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 6 Fig. 6: The 3 steps in dimension 2.
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Collapsing the states and the permutations

We collapse the states on Q ∪ Q 2 to make iterations of the simulating R-BCA possible and to get a representation. We also show that the partial definitions of functions t λ are compatible so that they can be merged into a unique t to define a reversible block cellular automaton.

Lemma 5

The current BP B λ can be identified by the position of the double states inside the blocks of partition λ.

Proof: If all cells are single, then λ = 0.

For i in [[ 0, d ]], let ε i be the following element of Z d : The equation

is (by Lemma 3 and a shift):

The situation is depicted in Fig. 7. The fact that -3r is a coordinate of ε i implies that the shifted intervals are not to be considered. Since -3r, -6r, -9r,. . . and -3ir have to be in the interval, the maximum i such that the equality is true is λ-1.

Then λ is the maximum i such that ε i holds two states, plus one. If there is no such i then λ = 0.

-3(d+1)r -3(λ-1)r -9r -6r -3r 0 3(d+1)r Inside a block of the λ partition, ε i simplifies to (-3r, -6r, -9r, . . . -3(i-1)r, -3ir, . . . -3ir), which is independent of λ. It is enough to know the position of the double states in a block to know which permutation of blocks t λ to use.