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In order to obtain highly-efficient management schemes for thermal components and systems, the thermal dynamic modeling must be robust and accurate. Resistancecapacitance (R-C) thermal models involving unknown coefficients have been widely employed to realize the dynamic modeling following the gray-box methodology. In most of cases, R-C thermal models are amused to be linear, neglecting all the possible dependence of heat transfer coefficients on the node temperatures. Those linear models may become inapplicable, when nonlinearity effects are non-negligible. In addition, the training process of R-C models to determine the unknown coefficients is usually offline currently, which indicates the users have to re-train the models once the heat transfer features change during the operation process. Here, an ensemble Kalman filter (EnKF)-based framework integrated with Gaussian process (GP) is adopted to train nonlinear R-C thermal models to realize the self-adaptive dynamic modeling. The machine learning method, GP, guarantees the high-degree self-adaption of the framework, while the EnKF achieves the online training and the integration of nonlinear R-C thermal model and GP. Furthermore, the performance of our algorithm is evaluated on the synthetic datasets, which well proves its feasibility.

I. INTRODUCTION

Robust and accurate modeling of dynamic thermal behavior is the precondition to achieve highly-efficient thermal management from buildings [START_REF] Luo | Innovative systems for storage of thermal solar energy in buildings[END_REF] [START_REF] Hui | Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples[END_REF] to electronics [START_REF] Rencz | Non-linearity issues in the dynamic compact model generation[END_REF][4] [START_REF] Hadeed | Development of a compact thermal model for electronic package A[END_REF] [START_REF] Shen | Spectral thermal spreading resistance of wide-bandgap semiconductors in ballistic-diffusive regime[END_REF]. Gray-box methodology is the most widely utilized approach for modeling various thermal problems [START_REF] Rao | Modeling of room temperature dynamics for efficient building energy management[END_REF][8] [START_REF] Quinten | Dynamic modelling of multidimensional thermal bridges in building envelopes: Review of existing methods, application and new mixed method[END_REF]. It employs lumped models that reflect some basic physical laws with some unknown coefficients to be determined by training according to experimentally-or numerically-derived datasets [START_REF] Deconinck | A maximum likelihood estimation of the thermal resistance of a cavity wall from on-site measurements[END_REF]. As the combination of white-and black-box methodologies, it has advantages of both sides: some physical information can be captured by the lumped models, while the corrections in terms of datasets guarantee the accuracy for any specific problem.

The flexibility and capability of lumped models can influence the performance of thermal modeling based on the gray-box approach [START_REF] Quinten | Dynamic modelling of multidimensional thermal bridges in building envelopes: Review of existing methods, application and new mixed method[END_REF]. Several types of lumped models have been developed, such as the structure factors method [START_REF] Kossecka | Multi-dimensional heat transfer through complex building envelope assemblies in hourly energy simulation programs[END_REF], the matrix of transfer functions method [START_REF] Quinten | Dynamic modelling of multidimensional thermal bridges in building envelopes: Review of existing methods, application and new mixed method[END_REF], and the resistancecapacitance (R-C) thermal model [START_REF] Alshatshati | Estimating building envelope thermal characteristics from single-point-in-time thermal images[END_REF] [START_REF] Górecki | Compact thermal modeling of power semiconductor devices with the influence of atmospheric pressure[END_REF], etc. Among them, the R-C thermal model has been widely adopted [START_REF] Alshatshati | Estimating building envelope thermal characteristics from single-point-in-time thermal images[END_REF][12] [START_REF] Torzewicz | Parametric compact thermal modeling of power LEDs[END_REF], where the dynamic thermal behavior is described using the model of resistance-capacitance circuits through the thermoselectric analogy. Most of R-C thermal models are linear, that is to say, the heat transfer coefficients (including conduction and convection) are assumed to be constant [START_REF] Wang | Development of RC model for thermal dynamic analysis of buildings through model structure simplification[END_REF]. This may make them inapplicable in the cases where nonlinearity has significant effects. Moreover, the training process of R-C models is frequently offline [START_REF] Brastein | Parameter estimation for grey-box models of building thermal behaviour[END_REF], which means the users have to re-train the models once the heat transfer properties change during the operation of a thermal device or system. Recently, although some researchers used the Kalman filters (KFs) to conduct the online estimations of heat transfer coefficients in thermal models [START_REF] Rao | Modeling of room temperature dynamics for efficient building energy management[END_REF] [START_REF] Elizabeth | Online building thermal parameter estimation via unscented Kalman filtering[END_REF], they are assumed to be constant or described by some simple functions of which the exact expressions should be given in advance. Therefore, their self-adaption ability could be limited.

In the present work, regarding these issues above, an online learning framework integrated with Gaussian process (GP) is utilized to train the nonlinear R-C thermal model, based on the ensemble Kalman filter (EnKF), with the numerical experiments to demonstrate the feasibility of our algorithm.

II. METHODOLOGY

A. Nonlinear R-C Thermal Model with GP-predicted Unknown Coefficients

In general, R-C thermal model is given by,

𝐶𝐶 𝑘𝑘 𝜕𝜕𝑇𝑇 𝑘𝑘 𝜕𝜕𝜕𝜕 = ∑ 𝑇𝑇 𝑖𝑖 -𝑇𝑇 𝑘𝑘 𝑅𝑅 𝑖𝑖𝑘𝑘 (𝑇𝑇 𝑖𝑖 ,𝑇𝑇 𝑘𝑘 ) 𝑖𝑖 + ∑ 𝑤𝑤 𝑗𝑗 𝑄𝑄 𝑗𝑗 𝑗𝑗 , (1) 
where Tk(K) is temperature of node k, Ti(K) is temperature of node i, Ck (J/K) is heat capacity of node k, Rik (K/W) is thermal resistance between nodes i and k, Qj(W) is j th heat (or cold) input into node k, and wj is weighting factor. Some assumptions are adopted to build the R-C models: 1) the heat transfer between the components (nodes) is assumed to be one-dimensional; 2) the heating or cooling is uniform within each region corresponding to each node.

Different from the conventional R-C thermal models of which coefficients are constants, the present model is extended to nonlinear case that assumes them dependent on node temperatures. The GP predictors are employed to describe these coefficients. The GP is a representative method in the "kernel machines", which is characterized by the covariance functions constructed using kernels [START_REF] Seeger | [END_REF]. It is not needed to set a specific form of the unknown functions in advance, and thus the regression based on GP will not be restricted by the form of unknown functions, which can guarantee the high-degree selfadaption. Furthermore, the GP only relies on a few parameters to conduct predictions, in contrast to many of the state-of-the-art ML algorithms. Fewer parameters indicate the less training cost and data amount required, which could be beneficial to the efficiency of online learning for the dynamic thermal modeling problems where the amount of training data may be limited in practice.

The generic form of a GP model is given by,

𝑝𝑝 �� 𝐠𝐠 ob 𝐠𝐠 * �� ~ 𝑵𝑵 �𝟎𝟎, � 𝐾𝐾 cov (𝐗𝐗, 𝐗𝐗) + 𝜎𝜎 𝑔𝑔 2 𝑰𝑰 𝐾𝐾 cov (𝐗𝐗, 𝐗𝐗 * ) 𝐾𝐾 cov (𝐗𝐗 * , 𝐗𝐗) 𝐾𝐾 cov (𝐗𝐗 * , 𝐗𝐗 * ) �� (2)
in which 𝐠𝐠 ob is the assemble of observations for the target function 𝑓𝑓(𝐗𝐗) at the input variables X (that is called the grid points), 𝐠𝐠 * is the predictions at the newly-input variables 𝐗𝐗 * , 𝐾𝐾 cov is the covariance function, 𝜎𝜎 𝑔𝑔 2 is the variance corresponding to the Gaussian noise embedded in the observations, and N refers to a multivariate normal distribution with the mean vector equal to zero. The key prediction expression in the GP regression for 𝐠𝐠 * is derived from Eq. ( 2),

𝐠𝐠 * = 𝐾𝐾 cov (𝐗𝐗 * , 𝐗𝐗)�𝐾𝐾 cov (𝐗𝐗, 𝐗𝐗) + 𝜎𝜎 𝑔𝑔 2 𝑰𝑰� -1 𝐠𝐠 ob . ( 3 
)
Once the covariance function 𝐾𝐾 cov is known, we can make the predictions, 𝐠𝐠 * , for the target function at the newly-input variables 𝐗𝐗 * , given the existing observations 𝐠𝐠 ob at X. The covariance function is built using the "kernel trick" [START_REF] Seeger | [END_REF]. Some commonly-used kernels include the squared-exponential, the Matérn, the dot product covariance functions, and their combinations. They generally hold several free parameters, i.e. hyperparameters, to be determined through a learning (training) process.

It is noted that the learning process for the conventional GP regression is offline: a group of data points will be collected in advance; afterwards the learning process is conducted to determine the covariance function. Moreover, with the increasing size of dataset (i.e. the number of the grid points), the computational time scales cubically, and the storage memory scales quadratically [START_REF] Kuzin | Ensemble Kalman filtering for online Gaussian process regression and learning[END_REF]. This may be a major obstacle for the utilization of GP regression for online learning, since the observed data points will be generated in a temporal sequence and thus the size of dataset will keep increasing with time. A popular means to resolve this issue is the sparse GP [START_REF] Bauer | Understanding probabilistic sparse Gaussian process approximations[END_REF]: the targeted function can be modelled "sufficiently well" by some "inducing points", 𝐠𝐠 in , at a small subgroup 𝐗𝐗 in of X; and thus the number of grid points is fixed to be the size of 𝐗𝐗 in and will not increase with the increasing number of observations; thus, the prediction expression becomes slightly different from that in the conventional GP,

𝐠𝐠 * = 𝐾𝐾 cov (𝐗𝐗 * , 𝐗𝐗 in )�𝐾𝐾 cov (𝐗𝐗 in , 𝐗𝐗 in ) + 𝜎𝜎 𝑔𝑔 2 𝑰𝑰� -1 𝐠𝐠 in , (4) 
Besides the hyperparameters in the kernel function, 𝐠𝐠 in will also be taken as the parameters and optimized during the learning process.

More details about GP regression can be found in Refs. [17][20]. An online learning process will be employed to train the GP predictors for these heat transfer coefficients using the streaming data generated during operation process. In this sense, once heat transfer features change due to the aging effect or incidence, the online learning framework will adjust the model automatically.

B. Algorithm

The overall framework is designed based on a modified EnKF. The detailed explanations of its modules and mathematical clarification based on the theory of Bayesian estimation can be found in our recent paper [START_REF] Hua | An online learning framework for self-adaptive dynamic thermal modeling of building envelopes[END_REF]. Here, we just specify the basic procedure of the algorithm, as given in Fig. 1. 

a) Initialization

IN1 is for initializing the GP [START_REF] Hua | An online learning framework for self-adaptive dynamic thermal modeling of building envelopes[END_REF]. Build the covariance function using the selected kernels; specify the hyperparameters within the kernel; choose the coordinates of inducing points.

IN2 is for initializing the EnKF. Set the size of ensemble N. Initialize the state ensemble and the parameter ensembles [START_REF] Hua | An online learning framework for self-adaptive dynamic thermal modeling of building envelopes[END_REF].

b) Prediction

P1 is for predicting the state ensemble from time t -1 to t. The prediction function in P1 is the R-C thermal model involving the unknown coefficients calculated by the GP model using the hyperparameters and the values of inducing points at time t -1.

P2 is for predicting the parameter ensembles from time t -1 to t in terms of the Liu-West filter [START_REF] Hua | An online learning framework for self-adaptive dynamic thermal modeling of building envelopes[END_REF] [START_REF] Yang | Combined parameter and state estimation in particle filtering[END_REF].

c) Update

UP1 is for updating the state ensemble at time t in terms of the observations. The measurement function depends on the problem investigated.
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UP2 and UP3 are for updating the hyperparameters and the values of inducing points, respectively.

d) Resampling

The simple random resampling is performed every Nrs time steps to avoid the degeneracy problem [START_REF] Labbe | Kalman and Bayesian Filters in Python[END_REF].

e) Output

In our framework, the nonlinear R-C thermal model will be updated once a newly-observed data point is input to capture the timely-varying thermal features of a specific object, like the surface aging, which can avoid the data collection and offline retraining. As one period of observation ends, we will obtain a predictive model capable of predicting the thermal response of next period. When a new period of observation starts, the online learning will continue to further refine the R-C thermal model to guarantee its self-adaptive ability.

III. NUMERICAL EXPERIMENTS

Our algorithm will be tested on the synthetic datasets derived from a pre-defined benchmark model. Here, a 2R2C R-C model with temperature-dependent thermal resistances, R12(T1, T2) and R23(T2, T3), is chosen to generate the benchmark data points. 

For convenience, we set some reference quantities, 𝑇𝑇 min (K), 𝑇𝑇 max (K) , and tperiod(hour), to convert the benchmark model above to be dimensionless,

𝜕𝜕𝑇𝑇 1 𝜕𝜕𝜏𝜏 = 𝑟𝑟 12 (𝑇𝑇 2 -𝑇𝑇 1 ) + 𝑞𝑞, ( 7 
) 𝜕𝜕𝑇𝑇 2 𝜕𝜕𝜏𝜏 = 𝑟𝑟 23 (𝑇𝑇 3 -𝑇𝑇 2 ) + 𝑟𝑟 12 𝑟𝑟 𝐶𝐶12 (𝑇𝑇 1 -𝑇𝑇 2 ) (8) 
with

𝑇𝑇 = 𝑇𝑇 -𝑇𝑇 min 𝑇𝑇 max -𝑇𝑇 min , 𝜏𝜏 = 𝑡𝑡 𝑡𝑡 period , 𝑟𝑟 12 = 𝑡𝑡 period 𝑅𝑅 12 𝐶𝐶 1 , 𝑟𝑟 23 = 𝑡𝑡 period 𝑅𝑅 23 𝐶𝐶 2 , 𝑟𝑟 𝐶𝐶12 = 𝐶𝐶 1 𝐶𝐶 2 , 𝑞𝑞 = 𝑄𝑄 1 𝑡𝑡 period 𝐶𝐶 1 .
tperiod is the duration of one training period that is set as 24 hours, i.e. 1day. Moreover, the relations between the dimensionless thermal resistances and the dimensionless temperature are assumed to be nonlinear,

𝑟𝑟 12 = 𝑐𝑐 12 �1 + 𝑎𝑎 1 𝑇𝑇 1 𝑎𝑎 2 + 𝑎𝑎 3 𝑇𝑇 2 𝑎𝑎 4 �, (9) 
𝑟𝑟 23 = 𝑐𝑐 23 �1 + 𝑎𝑎 5 𝑇𝑇 2 𝑎𝑎 6 + 𝑎𝑎 7 𝑇𝑇 3 𝑎𝑎 8 �, (10) 
with the constants{𝑐𝑐 Days #1-4: {2.0, 2.2, 1.1, 1.0, 0.8, 4.0, 2.0, 0.8, 1.0, 1.5} Days #5-8: {2.5, 1.8, 1.5, 0.8, 1.0, 2.5, 3.0, 2.0, 0.8, 2.0}

Furthermore, the prediction function in our framework is given,

𝑇𝑇 1(𝜏𝜏) = 𝑇𝑇 1(𝜏𝜏-1) + 𝑟𝑟 12_GP �𝑇𝑇 2(𝜏𝜏-1) -𝑇𝑇 1(𝜏𝜏-1) �∆𝜏𝜏 + 𝑞𝑞∆𝜏𝜏 (11) 𝑇𝑇 2(𝜏𝜏) = 𝑇𝑇 2(𝜏𝜏-1) + 𝑟𝑟 23_GP �𝑇𝑇 3(𝜏𝜏-1) -𝑇𝑇 2(𝜏𝜏-1) �∆𝜏𝜏 + 𝑟𝑟 12_GP 𝑟𝑟 𝐶𝐶12 �𝑇𝑇 1(𝜏𝜏-1) -𝑇𝑇 2(𝜏𝜏-1) �∆𝜏𝜏 (12) 
where ∆𝜏𝜏 = 0.01 is the time interval, and 𝑟𝑟 12_GP & 𝑟𝑟 23_GP are predictions by the GP predictor that will be gradually refined during the learning process.

Here, the total observation period is set as 8 days. Each day will sever as a sub-period. The temperature evolutions of a subperiod will be estimated using the R-C model within the GP predictor trained during the sub-periods before. As for Day #1, the initial GP model will be utilized. The temperature of node 3, T3, and the dimensionless heat input will be taken as input variables, of which evolutions are illustrated in Figs. 3(a) and (b), respectively. Moreover, in order to quantitatively evaluate the prediction accuracy, the normalized mean squared error (NMSE) is calculated,

NMSE = 1 𝑀𝑀 ∑ � �𝑦𝑦 𝑚𝑚 test -𝑓𝑓�𝜏𝜏 𝑚𝑚 test �� 2 �𝑦𝑦 𝑚𝑚 test � 𝑀𝑀 𝑚𝑚=1 , (13) 
where 𝑦𝑦 𝑚𝑚 test is the benchmark data point (without perturbation) at the test time 𝜏𝜏 𝑚𝑚 test , and 𝑓𝑓(𝜏𝜏 𝑚𝑚 test )is the prediction at the same time. According to Figs.4 &5, the nonlinear R-C model with the initial GP model gives a poor prediction of Day#1's temperature evolutions: the relative deviations from the benchmark data, i.e. NMSEs reach more than 0.2, which is much larger than the artificial relative measurement error. With the online learning process beginning and continuing, the model is self-adapted and able to give better predictions: on Day#4, the NMSEs become less than 0.05.

In order to test the self-adaptive ability of our framework, the dependence of dimensionless resistances on temperature is changed after Day#4 to simulate an incidental variation of heat transfer characteristics. In this case, the NMSEs increase considerably at Day#5, since the model is trained on the data before Day#5 that does not characterize the influence of that incidental change. Nevertheless, that errors will be corrected by the online learning process without artificial intervention. After Day #5, the NMSEs are largely reduced. Therefore, our algorithm may also serve as a means of fault-detecting for the thermal devices by evaluating the NMSE values.

IV. CONCLUSIONS

The gray-box approach with R-C models has been extensively utilized to handle dynamic thermal modeling problems from buildings to electronic devices. Nevertheless, currently most of R-C thermal models are assumed to be linear, which neglect the possible dependence of coefficients on the node temperature. Meanwhile, the training process of R-C models is frequently offline and lacks of the self-adaption ability.

Here, we propose that a modified EnKF-based framework can be employed to train nonlinear R-C thermal models involving GP predictors online. The R-C thermal model defines the physical constraints during the online learning process; the node-temperature-dependent coefficients are characterized by the GP, without restricting to some specific expressions, which guarantees the high-degree self-adaption of the framework. The algorithm is tested on the synthetic datasets obtained from the 2R2C benchmark model. The numerical experiments well demonstrate that the GP-embedded nonlinear R-C thermal model can gradually improve itself during the learning process and hold the strong self-adaptive ability that can handle the incidental variations of heat transfer characteristics.

Our framework enables training the nonlinear R-C thermal models capable of self-improvement and self-adaption, which will be much helpful for the development of the optimal control of various thermal systems and components. 
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 1 Fig. 1. Flowchart of the algorithm [20].

Fig. 2 .
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 2212 Fig.2shows the schematic of 2R2C model. It is usually employed for modeling the energy consumption and temperature evolutions of buildings[START_REF] Wang | Development of RC model for thermal dynamic analysis of buildings through model structure simplification[END_REF], and it is given by𝐶𝐶 1 𝜕𝜕𝑇𝑇 1 𝜕𝜕𝜕𝜕 = 𝑇𝑇 2 -𝑇𝑇 1 𝑅𝑅 12 (𝑇𝑇 1 ,𝑇𝑇 2 ) + 𝑄𝑄 1 ,(5)
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 3 Fig. 3. The input variables: (a) Node temperature T3; (b) Dimensionless heat input q.
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 45 Fig. 4. Temperature evolutions from Day #1 to Day #8.

  12 , 𝑎𝑎 1 , 𝑎𝑎 2 , 𝑎𝑎 3 , 𝑎𝑎 4 , 𝑐𝑐 23 , 𝑎𝑎 5 , 𝑎𝑎 6 , 𝑎𝑎 7 , 𝑎𝑎 8 }. Additionally, an artificial relative error εre is added to the benchmark dimensionless temperature solutions to generate the observations. The setting values of the benchmark model are given in TABLE I.

TABLE I

 I 𝑎𝑎 1 , 𝑎𝑎 2 , 𝑎𝑎 3 , 𝑎𝑎 4 , 𝑐𝑐 23 , 𝑎𝑎 5 , 𝑎𝑎 6 , 𝑎𝑎 7 , 𝑎𝑎 8 }

	.	SETTING VALUES OF BENCHMARK MODEL
	Symbol	Setting value
	𝑇𝑇 min (K)	0
	𝑇𝑇 max (K)	30
	tperiod (hour)	24
	𝑟𝑟 𝐶𝐶12	2
	εre	0.02
	{𝑐𝑐 12 ,	
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